]> git.ipfire.org Git - people/ms/linux.git/blob - block/blk-iocost.c
Merge tag 'drm-misc-fixes-2022-09-08' of git://anongit.freedesktop.org/drm/drm-misc...
[people/ms/linux.git] / block / blk-iocost.c
1 /* SPDX-License-Identifier: GPL-2.0
2 *
3 * IO cost model based controller.
4 *
5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6 * Copyright (C) 2019 Andy Newell <newella@fb.com>
7 * Copyright (C) 2019 Facebook
8 *
9 * One challenge of controlling IO resources is the lack of trivially
10 * observable cost metric. This is distinguished from CPU and memory where
11 * wallclock time and the number of bytes can serve as accurate enough
12 * approximations.
13 *
14 * Bandwidth and iops are the most commonly used metrics for IO devices but
15 * depending on the type and specifics of the device, different IO patterns
16 * easily lead to multiple orders of magnitude variations rendering them
17 * useless for the purpose of IO capacity distribution. While on-device
18 * time, with a lot of clutches, could serve as a useful approximation for
19 * non-queued rotational devices, this is no longer viable with modern
20 * devices, even the rotational ones.
21 *
22 * While there is no cost metric we can trivially observe, it isn't a
23 * complete mystery. For example, on a rotational device, seek cost
24 * dominates while a contiguous transfer contributes a smaller amount
25 * proportional to the size. If we can characterize at least the relative
26 * costs of these different types of IOs, it should be possible to
27 * implement a reasonable work-conserving proportional IO resource
28 * distribution.
29 *
30 * 1. IO Cost Model
31 *
32 * IO cost model estimates the cost of an IO given its basic parameters and
33 * history (e.g. the end sector of the last IO). The cost is measured in
34 * device time. If a given IO is estimated to cost 10ms, the device should
35 * be able to process ~100 of those IOs in a second.
36 *
37 * Currently, there's only one builtin cost model - linear. Each IO is
38 * classified as sequential or random and given a base cost accordingly.
39 * On top of that, a size cost proportional to the length of the IO is
40 * added. While simple, this model captures the operational
41 * characteristics of a wide varienty of devices well enough. Default
42 * parameters for several different classes of devices are provided and the
43 * parameters can be configured from userspace via
44 * /sys/fs/cgroup/io.cost.model.
45 *
46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47 * device-specific coefficients.
48 *
49 * 2. Control Strategy
50 *
51 * The device virtual time (vtime) is used as the primary control metric.
52 * The control strategy is composed of the following three parts.
53 *
54 * 2-1. Vtime Distribution
55 *
56 * When a cgroup becomes active in terms of IOs, its hierarchical share is
57 * calculated. Please consider the following hierarchy where the numbers
58 * inside parentheses denote the configured weights.
59 *
60 * root
61 * / \
62 * A (w:100) B (w:300)
63 * / \
64 * A0 (w:100) A1 (w:100)
65 *
66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B
68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69 * 12.5% each. The distribution mechanism only cares about these flattened
70 * shares. They're called hweights (hierarchical weights) and always add
71 * upto 1 (WEIGHT_ONE).
72 *
73 * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75 * against the device vtime - an IO which takes 10ms on the underlying
76 * device is considered to take 80ms on A0.
77 *
78 * This constitutes the basis of IO capacity distribution. Each cgroup's
79 * vtime is running at a rate determined by its hweight. A cgroup tracks
80 * the vtime consumed by past IOs and can issue a new IO if doing so
81 * wouldn't outrun the current device vtime. Otherwise, the IO is
82 * suspended until the vtime has progressed enough to cover it.
83 *
84 * 2-2. Vrate Adjustment
85 *
86 * It's unrealistic to expect the cost model to be perfect. There are too
87 * many devices and even on the same device the overall performance
88 * fluctuates depending on numerous factors such as IO mixture and device
89 * internal garbage collection. The controller needs to adapt dynamically.
90 *
91 * This is achieved by adjusting the overall IO rate according to how busy
92 * the device is. If the device becomes overloaded, we're sending down too
93 * many IOs and should generally slow down. If there are waiting issuers
94 * but the device isn't saturated, we're issuing too few and should
95 * generally speed up.
96 *
97 * To slow down, we lower the vrate - the rate at which the device vtime
98 * passes compared to the wall clock. For example, if the vtime is running
99 * at the vrate of 75%, all cgroups added up would only be able to issue
100 * 750ms worth of IOs per second, and vice-versa for speeding up.
101 *
102 * Device business is determined using two criteria - rq wait and
103 * completion latencies.
104 *
105 * When a device gets saturated, the on-device and then the request queues
106 * fill up and a bio which is ready to be issued has to wait for a request
107 * to become available. When this delay becomes noticeable, it's a clear
108 * indication that the device is saturated and we lower the vrate. This
109 * saturation signal is fairly conservative as it only triggers when both
110 * hardware and software queues are filled up, and is used as the default
111 * busy signal.
112 *
113 * As devices can have deep queues and be unfair in how the queued commands
114 * are executed, soley depending on rq wait may not result in satisfactory
115 * control quality. For a better control quality, completion latency QoS
116 * parameters can be configured so that the device is considered saturated
117 * if N'th percentile completion latency rises above the set point.
118 *
119 * The completion latency requirements are a function of both the
120 * underlying device characteristics and the desired IO latency quality of
121 * service. There is an inherent trade-off - the tighter the latency QoS,
122 * the higher the bandwidth lossage. Latency QoS is disabled by default
123 * and can be set through /sys/fs/cgroup/io.cost.qos.
124 *
125 * 2-3. Work Conservation
126 *
127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO
128 * periodically while B is sending out enough parallel IOs to saturate the
129 * device on its own. Let's say A's usage amounts to 100ms worth of IO
130 * cost per second, i.e., 10% of the device capacity. The naive
131 * distribution of half and half would lead to 60% utilization of the
132 * device, a significant reduction in the total amount of work done
133 * compared to free-for-all competition. This is too high a cost to pay
134 * for IO control.
135 *
136 * To conserve the total amount of work done, we keep track of how much
137 * each active cgroup is actually using and yield part of its weight if
138 * there are other cgroups which can make use of it. In the above case,
139 * A's weight will be lowered so that it hovers above the actual usage and
140 * B would be able to use the rest.
141 *
142 * As we don't want to penalize a cgroup for donating its weight, the
143 * surplus weight adjustment factors in a margin and has an immediate
144 * snapback mechanism in case the cgroup needs more IO vtime for itself.
145 *
146 * Note that adjusting down surplus weights has the same effects as
147 * accelerating vtime for other cgroups and work conservation can also be
148 * implemented by adjusting vrate dynamically. However, squaring who can
149 * donate and should take back how much requires hweight propagations
150 * anyway making it easier to implement and understand as a separate
151 * mechanism.
152 *
153 * 3. Monitoring
154 *
155 * Instead of debugfs or other clumsy monitoring mechanisms, this
156 * controller uses a drgn based monitoring script -
157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see
158 * https://github.com/osandov/drgn. The output looks like the following.
159 *
160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161 * active weight hweight% inflt% dbt delay usages%
162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033
163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077
164 *
165 * - per : Timer period
166 * - cur_per : Internal wall and device vtime clock
167 * - vrate : Device virtual time rate against wall clock
168 * - weight : Surplus-adjusted and configured weights
169 * - hweight : Surplus-adjusted and configured hierarchical weights
170 * - inflt : The percentage of in-flight IO cost at the end of last period
171 * - del_ms : Deferred issuer delay induction level and duration
172 * - usages : Usage history
173 */
174
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <asm/local.h>
182 #include <asm/local64.h>
183 #include "blk-rq-qos.h"
184 #include "blk-stat.h"
185 #include "blk-wbt.h"
186 #include "blk-cgroup.h"
187
188 #ifdef CONFIG_TRACEPOINTS
189
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194
195 #define TRACE_IOCG_PATH(type, iocg, ...) \
196 do { \
197 unsigned long flags; \
198 if (trace_iocost_##type##_enabled()) { \
199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \
200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \
201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \
202 trace_iocost_##type(iocg, trace_iocg_path, \
203 ##__VA_ARGS__); \
204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \
205 } \
206 } while (0)
207
208 #else /* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0)
210 #endif /* CONFIG_TRACE_POINTS */
211
212 enum {
213 MILLION = 1000000,
214
215 /* timer period is calculated from latency requirements, bound it */
216 MIN_PERIOD = USEC_PER_MSEC,
217 MAX_PERIOD = USEC_PER_SEC,
218
219 /*
220 * iocg->vtime is targeted at 50% behind the device vtime, which
221 * serves as its IO credit buffer. Surplus weight adjustment is
222 * immediately canceled if the vtime margin runs below 10%.
223 */
224 MARGIN_MIN_PCT = 10,
225 MARGIN_LOW_PCT = 20,
226 MARGIN_TARGET_PCT = 50,
227
228 INUSE_ADJ_STEP_PCT = 25,
229
230 /* Have some play in timer operations */
231 TIMER_SLACK_PCT = 1,
232
233 /* 1/64k is granular enough and can easily be handled w/ u32 */
234 WEIGHT_ONE = 1 << 16,
235
236 /*
237 * As vtime is used to calculate the cost of each IO, it needs to
238 * be fairly high precision. For example, it should be able to
239 * represent the cost of a single page worth of discard with
240 * suffificient accuracy. At the same time, it should be able to
241 * represent reasonably long enough durations to be useful and
242 * convenient during operation.
243 *
244 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond
245 * granularity and days of wrap-around time even at extreme vrates.
246 */
247 VTIME_PER_SEC_SHIFT = 37,
248 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT,
249 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC,
250 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC,
251
252 /* bound vrate adjustments within two orders of magnitude */
253 VRATE_MIN_PPM = 10000, /* 1% */
254 VRATE_MAX_PPM = 100000000, /* 10000% */
255
256 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
257 VRATE_CLAMP_ADJ_PCT = 4,
258
259 /* if IOs end up waiting for requests, issue less */
260 RQ_WAIT_BUSY_PCT = 5,
261
262 /* unbusy hysterisis */
263 UNBUSY_THR_PCT = 75,
264
265 /*
266 * The effect of delay is indirect and non-linear and a huge amount of
267 * future debt can accumulate abruptly while unthrottled. Linearly scale
268 * up delay as debt is going up and then let it decay exponentially.
269 * This gives us quick ramp ups while delay is accumulating and long
270 * tails which can help reducing the frequency of debt explosions on
271 * unthrottle. The parameters are experimentally determined.
272 *
273 * The delay mechanism provides adequate protection and behavior in many
274 * cases. However, this is far from ideal and falls shorts on both
275 * fronts. The debtors are often throttled too harshly costing a
276 * significant level of fairness and possibly total work while the
277 * protection against their impacts on the system can be choppy and
278 * unreliable.
279 *
280 * The shortcoming primarily stems from the fact that, unlike for page
281 * cache, the kernel doesn't have well-defined back-pressure propagation
282 * mechanism and policies for anonymous memory. Fully addressing this
283 * issue will likely require substantial improvements in the area.
284 */
285 MIN_DELAY_THR_PCT = 500,
286 MAX_DELAY_THR_PCT = 25000,
287 MIN_DELAY = 250,
288 MAX_DELAY = 250 * USEC_PER_MSEC,
289
290 /* halve debts if avg usage over 100ms is under 50% */
291 DFGV_USAGE_PCT = 50,
292 DFGV_PERIOD = 100 * USEC_PER_MSEC,
293
294 /* don't let cmds which take a very long time pin lagging for too long */
295 MAX_LAGGING_PERIODS = 10,
296
297 /* switch iff the conditions are met for longer than this */
298 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC,
299
300 /*
301 * Count IO size in 4k pages. The 12bit shift helps keeping
302 * size-proportional components of cost calculation in closer
303 * numbers of digits to per-IO cost components.
304 */
305 IOC_PAGE_SHIFT = 12,
306 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT,
307 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT,
308
309 /* if apart further than 16M, consider randio for linear model */
310 LCOEF_RANDIO_PAGES = 4096,
311 };
312
313 enum ioc_running {
314 IOC_IDLE,
315 IOC_RUNNING,
316 IOC_STOP,
317 };
318
319 /* io.cost.qos controls including per-dev enable of the whole controller */
320 enum {
321 QOS_ENABLE,
322 QOS_CTRL,
323 NR_QOS_CTRL_PARAMS,
324 };
325
326 /* io.cost.qos params */
327 enum {
328 QOS_RPPM,
329 QOS_RLAT,
330 QOS_WPPM,
331 QOS_WLAT,
332 QOS_MIN,
333 QOS_MAX,
334 NR_QOS_PARAMS,
335 };
336
337 /* io.cost.model controls */
338 enum {
339 COST_CTRL,
340 COST_MODEL,
341 NR_COST_CTRL_PARAMS,
342 };
343
344 /* builtin linear cost model coefficients */
345 enum {
346 I_LCOEF_RBPS,
347 I_LCOEF_RSEQIOPS,
348 I_LCOEF_RRANDIOPS,
349 I_LCOEF_WBPS,
350 I_LCOEF_WSEQIOPS,
351 I_LCOEF_WRANDIOPS,
352 NR_I_LCOEFS,
353 };
354
355 enum {
356 LCOEF_RPAGE,
357 LCOEF_RSEQIO,
358 LCOEF_RRANDIO,
359 LCOEF_WPAGE,
360 LCOEF_WSEQIO,
361 LCOEF_WRANDIO,
362 NR_LCOEFS,
363 };
364
365 enum {
366 AUTOP_INVALID,
367 AUTOP_HDD,
368 AUTOP_SSD_QD1,
369 AUTOP_SSD_DFL,
370 AUTOP_SSD_FAST,
371 };
372
373 struct ioc_params {
374 u32 qos[NR_QOS_PARAMS];
375 u64 i_lcoefs[NR_I_LCOEFS];
376 u64 lcoefs[NR_LCOEFS];
377 u32 too_fast_vrate_pct;
378 u32 too_slow_vrate_pct;
379 };
380
381 struct ioc_margins {
382 s64 min;
383 s64 low;
384 s64 target;
385 };
386
387 struct ioc_missed {
388 local_t nr_met;
389 local_t nr_missed;
390 u32 last_met;
391 u32 last_missed;
392 };
393
394 struct ioc_pcpu_stat {
395 struct ioc_missed missed[2];
396
397 local64_t rq_wait_ns;
398 u64 last_rq_wait_ns;
399 };
400
401 /* per device */
402 struct ioc {
403 struct rq_qos rqos;
404
405 bool enabled;
406
407 struct ioc_params params;
408 struct ioc_margins margins;
409 u32 period_us;
410 u32 timer_slack_ns;
411 u64 vrate_min;
412 u64 vrate_max;
413
414 spinlock_t lock;
415 struct timer_list timer;
416 struct list_head active_iocgs; /* active cgroups */
417 struct ioc_pcpu_stat __percpu *pcpu_stat;
418
419 enum ioc_running running;
420 atomic64_t vtime_rate;
421 u64 vtime_base_rate;
422 s64 vtime_err;
423
424 seqcount_spinlock_t period_seqcount;
425 u64 period_at; /* wallclock starttime */
426 u64 period_at_vtime; /* vtime starttime */
427
428 atomic64_t cur_period; /* inc'd each period */
429 int busy_level; /* saturation history */
430
431 bool weights_updated;
432 atomic_t hweight_gen; /* for lazy hweights */
433
434 /* debt forgivness */
435 u64 dfgv_period_at;
436 u64 dfgv_period_rem;
437 u64 dfgv_usage_us_sum;
438
439 u64 autop_too_fast_at;
440 u64 autop_too_slow_at;
441 int autop_idx;
442 bool user_qos_params:1;
443 bool user_cost_model:1;
444 };
445
446 struct iocg_pcpu_stat {
447 local64_t abs_vusage;
448 };
449
450 struct iocg_stat {
451 u64 usage_us;
452 u64 wait_us;
453 u64 indebt_us;
454 u64 indelay_us;
455 };
456
457 /* per device-cgroup pair */
458 struct ioc_gq {
459 struct blkg_policy_data pd;
460 struct ioc *ioc;
461
462 /*
463 * A iocg can get its weight from two sources - an explicit
464 * per-device-cgroup configuration or the default weight of the
465 * cgroup. `cfg_weight` is the explicit per-device-cgroup
466 * configuration. `weight` is the effective considering both
467 * sources.
468 *
469 * When an idle cgroup becomes active its `active` goes from 0 to
470 * `weight`. `inuse` is the surplus adjusted active weight.
471 * `active` and `inuse` are used to calculate `hweight_active` and
472 * `hweight_inuse`.
473 *
474 * `last_inuse` remembers `inuse` while an iocg is idle to persist
475 * surplus adjustments.
476 *
477 * `inuse` may be adjusted dynamically during period. `saved_*` are used
478 * to determine and track adjustments.
479 */
480 u32 cfg_weight;
481 u32 weight;
482 u32 active;
483 u32 inuse;
484
485 u32 last_inuse;
486 s64 saved_margin;
487
488 sector_t cursor; /* to detect randio */
489
490 /*
491 * `vtime` is this iocg's vtime cursor which progresses as IOs are
492 * issued. If lagging behind device vtime, the delta represents
493 * the currently available IO budget. If running ahead, the
494 * overage.
495 *
496 * `vtime_done` is the same but progressed on completion rather
497 * than issue. The delta behind `vtime` represents the cost of
498 * currently in-flight IOs.
499 */
500 atomic64_t vtime;
501 atomic64_t done_vtime;
502 u64 abs_vdebt;
503
504 /* current delay in effect and when it started */
505 u64 delay;
506 u64 delay_at;
507
508 /*
509 * The period this iocg was last active in. Used for deactivation
510 * and invalidating `vtime`.
511 */
512 atomic64_t active_period;
513 struct list_head active_list;
514
515 /* see __propagate_weights() and current_hweight() for details */
516 u64 child_active_sum;
517 u64 child_inuse_sum;
518 u64 child_adjusted_sum;
519 int hweight_gen;
520 u32 hweight_active;
521 u32 hweight_inuse;
522 u32 hweight_donating;
523 u32 hweight_after_donation;
524
525 struct list_head walk_list;
526 struct list_head surplus_list;
527
528 struct wait_queue_head waitq;
529 struct hrtimer waitq_timer;
530
531 /* timestamp at the latest activation */
532 u64 activated_at;
533
534 /* statistics */
535 struct iocg_pcpu_stat __percpu *pcpu_stat;
536 struct iocg_stat stat;
537 struct iocg_stat last_stat;
538 u64 last_stat_abs_vusage;
539 u64 usage_delta_us;
540 u64 wait_since;
541 u64 indebt_since;
542 u64 indelay_since;
543
544 /* this iocg's depth in the hierarchy and ancestors including self */
545 int level;
546 struct ioc_gq *ancestors[];
547 };
548
549 /* per cgroup */
550 struct ioc_cgrp {
551 struct blkcg_policy_data cpd;
552 unsigned int dfl_weight;
553 };
554
555 struct ioc_now {
556 u64 now_ns;
557 u64 now;
558 u64 vnow;
559 u64 vrate;
560 };
561
562 struct iocg_wait {
563 struct wait_queue_entry wait;
564 struct bio *bio;
565 u64 abs_cost;
566 bool committed;
567 };
568
569 struct iocg_wake_ctx {
570 struct ioc_gq *iocg;
571 u32 hw_inuse;
572 s64 vbudget;
573 };
574
575 static const struct ioc_params autop[] = {
576 [AUTOP_HDD] = {
577 .qos = {
578 [QOS_RLAT] = 250000, /* 250ms */
579 [QOS_WLAT] = 250000,
580 [QOS_MIN] = VRATE_MIN_PPM,
581 [QOS_MAX] = VRATE_MAX_PPM,
582 },
583 .i_lcoefs = {
584 [I_LCOEF_RBPS] = 174019176,
585 [I_LCOEF_RSEQIOPS] = 41708,
586 [I_LCOEF_RRANDIOPS] = 370,
587 [I_LCOEF_WBPS] = 178075866,
588 [I_LCOEF_WSEQIOPS] = 42705,
589 [I_LCOEF_WRANDIOPS] = 378,
590 },
591 },
592 [AUTOP_SSD_QD1] = {
593 .qos = {
594 [QOS_RLAT] = 25000, /* 25ms */
595 [QOS_WLAT] = 25000,
596 [QOS_MIN] = VRATE_MIN_PPM,
597 [QOS_MAX] = VRATE_MAX_PPM,
598 },
599 .i_lcoefs = {
600 [I_LCOEF_RBPS] = 245855193,
601 [I_LCOEF_RSEQIOPS] = 61575,
602 [I_LCOEF_RRANDIOPS] = 6946,
603 [I_LCOEF_WBPS] = 141365009,
604 [I_LCOEF_WSEQIOPS] = 33716,
605 [I_LCOEF_WRANDIOPS] = 26796,
606 },
607 },
608 [AUTOP_SSD_DFL] = {
609 .qos = {
610 [QOS_RLAT] = 25000, /* 25ms */
611 [QOS_WLAT] = 25000,
612 [QOS_MIN] = VRATE_MIN_PPM,
613 [QOS_MAX] = VRATE_MAX_PPM,
614 },
615 .i_lcoefs = {
616 [I_LCOEF_RBPS] = 488636629,
617 [I_LCOEF_RSEQIOPS] = 8932,
618 [I_LCOEF_RRANDIOPS] = 8518,
619 [I_LCOEF_WBPS] = 427891549,
620 [I_LCOEF_WSEQIOPS] = 28755,
621 [I_LCOEF_WRANDIOPS] = 21940,
622 },
623 .too_fast_vrate_pct = 500,
624 },
625 [AUTOP_SSD_FAST] = {
626 .qos = {
627 [QOS_RLAT] = 5000, /* 5ms */
628 [QOS_WLAT] = 5000,
629 [QOS_MIN] = VRATE_MIN_PPM,
630 [QOS_MAX] = VRATE_MAX_PPM,
631 },
632 .i_lcoefs = {
633 [I_LCOEF_RBPS] = 3102524156LLU,
634 [I_LCOEF_RSEQIOPS] = 724816,
635 [I_LCOEF_RRANDIOPS] = 778122,
636 [I_LCOEF_WBPS] = 1742780862LLU,
637 [I_LCOEF_WSEQIOPS] = 425702,
638 [I_LCOEF_WRANDIOPS] = 443193,
639 },
640 .too_slow_vrate_pct = 10,
641 },
642 };
643
644 /*
645 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on
646 * vtime credit shortage and down on device saturation.
647 */
648 static u32 vrate_adj_pct[] =
649 { 0, 0, 0, 0,
650 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
651 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
652 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
653
654 static struct blkcg_policy blkcg_policy_iocost;
655
656 /* accessors and helpers */
657 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
658 {
659 return container_of(rqos, struct ioc, rqos);
660 }
661
662 static struct ioc *q_to_ioc(struct request_queue *q)
663 {
664 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
665 }
666
667 static const char *q_name(struct request_queue *q)
668 {
669 if (blk_queue_registered(q))
670 return kobject_name(q->kobj.parent);
671 else
672 return "<unknown>";
673 }
674
675 static const char __maybe_unused *ioc_name(struct ioc *ioc)
676 {
677 return q_name(ioc->rqos.q);
678 }
679
680 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
681 {
682 return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
683 }
684
685 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
686 {
687 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
688 }
689
690 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
691 {
692 return pd_to_blkg(&iocg->pd);
693 }
694
695 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
696 {
697 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
698 struct ioc_cgrp, cpd);
699 }
700
701 /*
702 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical
703 * weight, the more expensive each IO. Must round up.
704 */
705 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
706 {
707 return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
708 }
709
710 /*
711 * The inverse of abs_cost_to_cost(). Must round up.
712 */
713 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
714 {
715 return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
716 }
717
718 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
719 u64 abs_cost, u64 cost)
720 {
721 struct iocg_pcpu_stat *gcs;
722
723 bio->bi_iocost_cost = cost;
724 atomic64_add(cost, &iocg->vtime);
725
726 gcs = get_cpu_ptr(iocg->pcpu_stat);
727 local64_add(abs_cost, &gcs->abs_vusage);
728 put_cpu_ptr(gcs);
729 }
730
731 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
732 {
733 if (lock_ioc) {
734 spin_lock_irqsave(&iocg->ioc->lock, *flags);
735 spin_lock(&iocg->waitq.lock);
736 } else {
737 spin_lock_irqsave(&iocg->waitq.lock, *flags);
738 }
739 }
740
741 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
742 {
743 if (unlock_ioc) {
744 spin_unlock(&iocg->waitq.lock);
745 spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
746 } else {
747 spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
748 }
749 }
750
751 #define CREATE_TRACE_POINTS
752 #include <trace/events/iocost.h>
753
754 static void ioc_refresh_margins(struct ioc *ioc)
755 {
756 struct ioc_margins *margins = &ioc->margins;
757 u32 period_us = ioc->period_us;
758 u64 vrate = ioc->vtime_base_rate;
759
760 margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
761 margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
762 margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
763 }
764
765 /* latency Qos params changed, update period_us and all the dependent params */
766 static void ioc_refresh_period_us(struct ioc *ioc)
767 {
768 u32 ppm, lat, multi, period_us;
769
770 lockdep_assert_held(&ioc->lock);
771
772 /* pick the higher latency target */
773 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
774 ppm = ioc->params.qos[QOS_RPPM];
775 lat = ioc->params.qos[QOS_RLAT];
776 } else {
777 ppm = ioc->params.qos[QOS_WPPM];
778 lat = ioc->params.qos[QOS_WLAT];
779 }
780
781 /*
782 * We want the period to be long enough to contain a healthy number
783 * of IOs while short enough for granular control. Define it as a
784 * multiple of the latency target. Ideally, the multiplier should
785 * be scaled according to the percentile so that it would nominally
786 * contain a certain number of requests. Let's be simpler and
787 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
788 */
789 if (ppm)
790 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
791 else
792 multi = 2;
793 period_us = multi * lat;
794 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
795
796 /* calculate dependent params */
797 ioc->period_us = period_us;
798 ioc->timer_slack_ns = div64_u64(
799 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
800 100);
801 ioc_refresh_margins(ioc);
802 }
803
804 static int ioc_autop_idx(struct ioc *ioc)
805 {
806 int idx = ioc->autop_idx;
807 const struct ioc_params *p = &autop[idx];
808 u32 vrate_pct;
809 u64 now_ns;
810
811 /* rotational? */
812 if (!blk_queue_nonrot(ioc->rqos.q))
813 return AUTOP_HDD;
814
815 /* handle SATA SSDs w/ broken NCQ */
816 if (blk_queue_depth(ioc->rqos.q) == 1)
817 return AUTOP_SSD_QD1;
818
819 /* use one of the normal ssd sets */
820 if (idx < AUTOP_SSD_DFL)
821 return AUTOP_SSD_DFL;
822
823 /* if user is overriding anything, maintain what was there */
824 if (ioc->user_qos_params || ioc->user_cost_model)
825 return idx;
826
827 /* step up/down based on the vrate */
828 vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
829 now_ns = ktime_get_ns();
830
831 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
832 if (!ioc->autop_too_fast_at)
833 ioc->autop_too_fast_at = now_ns;
834 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
835 return idx + 1;
836 } else {
837 ioc->autop_too_fast_at = 0;
838 }
839
840 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
841 if (!ioc->autop_too_slow_at)
842 ioc->autop_too_slow_at = now_ns;
843 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
844 return idx - 1;
845 } else {
846 ioc->autop_too_slow_at = 0;
847 }
848
849 return idx;
850 }
851
852 /*
853 * Take the followings as input
854 *
855 * @bps maximum sequential throughput
856 * @seqiops maximum sequential 4k iops
857 * @randiops maximum random 4k iops
858 *
859 * and calculate the linear model cost coefficients.
860 *
861 * *@page per-page cost 1s / (@bps / 4096)
862 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0)
863 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0)
864 */
865 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
866 u64 *page, u64 *seqio, u64 *randio)
867 {
868 u64 v;
869
870 *page = *seqio = *randio = 0;
871
872 if (bps)
873 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC,
874 DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE));
875
876 if (seqiops) {
877 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
878 if (v > *page)
879 *seqio = v - *page;
880 }
881
882 if (randiops) {
883 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
884 if (v > *page)
885 *randio = v - *page;
886 }
887 }
888
889 static void ioc_refresh_lcoefs(struct ioc *ioc)
890 {
891 u64 *u = ioc->params.i_lcoefs;
892 u64 *c = ioc->params.lcoefs;
893
894 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
895 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
896 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
897 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
898 }
899
900 static bool ioc_refresh_params(struct ioc *ioc, bool force)
901 {
902 const struct ioc_params *p;
903 int idx;
904
905 lockdep_assert_held(&ioc->lock);
906
907 idx = ioc_autop_idx(ioc);
908 p = &autop[idx];
909
910 if (idx == ioc->autop_idx && !force)
911 return false;
912
913 if (idx != ioc->autop_idx)
914 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
915
916 ioc->autop_idx = idx;
917 ioc->autop_too_fast_at = 0;
918 ioc->autop_too_slow_at = 0;
919
920 if (!ioc->user_qos_params)
921 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
922 if (!ioc->user_cost_model)
923 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
924
925 ioc_refresh_period_us(ioc);
926 ioc_refresh_lcoefs(ioc);
927
928 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
929 VTIME_PER_USEC, MILLION);
930 ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
931 VTIME_PER_USEC, MILLION);
932
933 return true;
934 }
935
936 /*
937 * When an iocg accumulates too much vtime or gets deactivated, we throw away
938 * some vtime, which lowers the overall device utilization. As the exact amount
939 * which is being thrown away is known, we can compensate by accelerating the
940 * vrate accordingly so that the extra vtime generated in the current period
941 * matches what got lost.
942 */
943 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
944 {
945 s64 pleft = ioc->period_at + ioc->period_us - now->now;
946 s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
947 s64 vcomp, vcomp_min, vcomp_max;
948
949 lockdep_assert_held(&ioc->lock);
950
951 /* we need some time left in this period */
952 if (pleft <= 0)
953 goto done;
954
955 /*
956 * Calculate how much vrate should be adjusted to offset the error.
957 * Limit the amount of adjustment and deduct the adjusted amount from
958 * the error.
959 */
960 vcomp = -div64_s64(ioc->vtime_err, pleft);
961 vcomp_min = -(ioc->vtime_base_rate >> 1);
962 vcomp_max = ioc->vtime_base_rate;
963 vcomp = clamp(vcomp, vcomp_min, vcomp_max);
964
965 ioc->vtime_err += vcomp * pleft;
966
967 atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
968 done:
969 /* bound how much error can accumulate */
970 ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
971 }
972
973 static void ioc_adjust_base_vrate(struct ioc *ioc, u32 rq_wait_pct,
974 int nr_lagging, int nr_shortages,
975 int prev_busy_level, u32 *missed_ppm)
976 {
977 u64 vrate = ioc->vtime_base_rate;
978 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
979
980 if (!ioc->busy_level || (ioc->busy_level < 0 && nr_lagging)) {
981 if (ioc->busy_level != prev_busy_level || nr_lagging)
982 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
983 missed_ppm, rq_wait_pct,
984 nr_lagging, nr_shortages);
985
986 return;
987 }
988
989 /*
990 * If vrate is out of bounds, apply clamp gradually as the
991 * bounds can change abruptly. Otherwise, apply busy_level
992 * based adjustment.
993 */
994 if (vrate < vrate_min) {
995 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 100);
996 vrate = min(vrate, vrate_min);
997 } else if (vrate > vrate_max) {
998 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 100);
999 vrate = max(vrate, vrate_max);
1000 } else {
1001 int idx = min_t(int, abs(ioc->busy_level),
1002 ARRAY_SIZE(vrate_adj_pct) - 1);
1003 u32 adj_pct = vrate_adj_pct[idx];
1004
1005 if (ioc->busy_level > 0)
1006 adj_pct = 100 - adj_pct;
1007 else
1008 adj_pct = 100 + adj_pct;
1009
1010 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
1011 vrate_min, vrate_max);
1012 }
1013
1014 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
1015 nr_lagging, nr_shortages);
1016
1017 ioc->vtime_base_rate = vrate;
1018 ioc_refresh_margins(ioc);
1019 }
1020
1021 /* take a snapshot of the current [v]time and vrate */
1022 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
1023 {
1024 unsigned seq;
1025
1026 now->now_ns = ktime_get();
1027 now->now = ktime_to_us(now->now_ns);
1028 now->vrate = atomic64_read(&ioc->vtime_rate);
1029
1030 /*
1031 * The current vtime is
1032 *
1033 * vtime at period start + (wallclock time since the start) * vrate
1034 *
1035 * As a consistent snapshot of `period_at_vtime` and `period_at` is
1036 * needed, they're seqcount protected.
1037 */
1038 do {
1039 seq = read_seqcount_begin(&ioc->period_seqcount);
1040 now->vnow = ioc->period_at_vtime +
1041 (now->now - ioc->period_at) * now->vrate;
1042 } while (read_seqcount_retry(&ioc->period_seqcount, seq));
1043 }
1044
1045 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1046 {
1047 WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1048
1049 write_seqcount_begin(&ioc->period_seqcount);
1050 ioc->period_at = now->now;
1051 ioc->period_at_vtime = now->vnow;
1052 write_seqcount_end(&ioc->period_seqcount);
1053
1054 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1055 add_timer(&ioc->timer);
1056 }
1057
1058 /*
1059 * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1060 * weight sums and propagate upwards accordingly. If @save, the current margin
1061 * is saved to be used as reference for later inuse in-period adjustments.
1062 */
1063 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1064 bool save, struct ioc_now *now)
1065 {
1066 struct ioc *ioc = iocg->ioc;
1067 int lvl;
1068
1069 lockdep_assert_held(&ioc->lock);
1070
1071 /*
1072 * For an active leaf node, its inuse shouldn't be zero or exceed
1073 * @active. An active internal node's inuse is solely determined by the
1074 * inuse to active ratio of its children regardless of @inuse.
1075 */
1076 if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1077 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1078 iocg->child_active_sum);
1079 } else {
1080 inuse = clamp_t(u32, inuse, 1, active);
1081 }
1082
1083 iocg->last_inuse = iocg->inuse;
1084 if (save)
1085 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1086
1087 if (active == iocg->active && inuse == iocg->inuse)
1088 return;
1089
1090 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1091 struct ioc_gq *parent = iocg->ancestors[lvl];
1092 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1093 u32 parent_active = 0, parent_inuse = 0;
1094
1095 /* update the level sums */
1096 parent->child_active_sum += (s32)(active - child->active);
1097 parent->child_inuse_sum += (s32)(inuse - child->inuse);
1098 /* apply the updates */
1099 child->active = active;
1100 child->inuse = inuse;
1101
1102 /*
1103 * The delta between inuse and active sums indicates that
1104 * much of weight is being given away. Parent's inuse
1105 * and active should reflect the ratio.
1106 */
1107 if (parent->child_active_sum) {
1108 parent_active = parent->weight;
1109 parent_inuse = DIV64_U64_ROUND_UP(
1110 parent_active * parent->child_inuse_sum,
1111 parent->child_active_sum);
1112 }
1113
1114 /* do we need to keep walking up? */
1115 if (parent_active == parent->active &&
1116 parent_inuse == parent->inuse)
1117 break;
1118
1119 active = parent_active;
1120 inuse = parent_inuse;
1121 }
1122
1123 ioc->weights_updated = true;
1124 }
1125
1126 static void commit_weights(struct ioc *ioc)
1127 {
1128 lockdep_assert_held(&ioc->lock);
1129
1130 if (ioc->weights_updated) {
1131 /* paired with rmb in current_hweight(), see there */
1132 smp_wmb();
1133 atomic_inc(&ioc->hweight_gen);
1134 ioc->weights_updated = false;
1135 }
1136 }
1137
1138 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1139 bool save, struct ioc_now *now)
1140 {
1141 __propagate_weights(iocg, active, inuse, save, now);
1142 commit_weights(iocg->ioc);
1143 }
1144
1145 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1146 {
1147 struct ioc *ioc = iocg->ioc;
1148 int lvl;
1149 u32 hwa, hwi;
1150 int ioc_gen;
1151
1152 /* hot path - if uptodate, use cached */
1153 ioc_gen = atomic_read(&ioc->hweight_gen);
1154 if (ioc_gen == iocg->hweight_gen)
1155 goto out;
1156
1157 /*
1158 * Paired with wmb in commit_weights(). If we saw the updated
1159 * hweight_gen, all the weight updates from __propagate_weights() are
1160 * visible too.
1161 *
1162 * We can race with weight updates during calculation and get it
1163 * wrong. However, hweight_gen would have changed and a future
1164 * reader will recalculate and we're guaranteed to discard the
1165 * wrong result soon.
1166 */
1167 smp_rmb();
1168
1169 hwa = hwi = WEIGHT_ONE;
1170 for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1171 struct ioc_gq *parent = iocg->ancestors[lvl];
1172 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1173 u64 active_sum = READ_ONCE(parent->child_active_sum);
1174 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1175 u32 active = READ_ONCE(child->active);
1176 u32 inuse = READ_ONCE(child->inuse);
1177
1178 /* we can race with deactivations and either may read as zero */
1179 if (!active_sum || !inuse_sum)
1180 continue;
1181
1182 active_sum = max_t(u64, active, active_sum);
1183 hwa = div64_u64((u64)hwa * active, active_sum);
1184
1185 inuse_sum = max_t(u64, inuse, inuse_sum);
1186 hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1187 }
1188
1189 iocg->hweight_active = max_t(u32, hwa, 1);
1190 iocg->hweight_inuse = max_t(u32, hwi, 1);
1191 iocg->hweight_gen = ioc_gen;
1192 out:
1193 if (hw_activep)
1194 *hw_activep = iocg->hweight_active;
1195 if (hw_inusep)
1196 *hw_inusep = iocg->hweight_inuse;
1197 }
1198
1199 /*
1200 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1201 * other weights stay unchanged.
1202 */
1203 static u32 current_hweight_max(struct ioc_gq *iocg)
1204 {
1205 u32 hwm = WEIGHT_ONE;
1206 u32 inuse = iocg->active;
1207 u64 child_inuse_sum;
1208 int lvl;
1209
1210 lockdep_assert_held(&iocg->ioc->lock);
1211
1212 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1213 struct ioc_gq *parent = iocg->ancestors[lvl];
1214 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1215
1216 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1217 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1218 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1219 parent->child_active_sum);
1220 }
1221
1222 return max_t(u32, hwm, 1);
1223 }
1224
1225 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1226 {
1227 struct ioc *ioc = iocg->ioc;
1228 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1229 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1230 u32 weight;
1231
1232 lockdep_assert_held(&ioc->lock);
1233
1234 weight = iocg->cfg_weight ?: iocc->dfl_weight;
1235 if (weight != iocg->weight && iocg->active)
1236 propagate_weights(iocg, weight, iocg->inuse, true, now);
1237 iocg->weight = weight;
1238 }
1239
1240 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1241 {
1242 struct ioc *ioc = iocg->ioc;
1243 u64 last_period, cur_period;
1244 u64 vtime, vtarget;
1245 int i;
1246
1247 /*
1248 * If seem to be already active, just update the stamp to tell the
1249 * timer that we're still active. We don't mind occassional races.
1250 */
1251 if (!list_empty(&iocg->active_list)) {
1252 ioc_now(ioc, now);
1253 cur_period = atomic64_read(&ioc->cur_period);
1254 if (atomic64_read(&iocg->active_period) != cur_period)
1255 atomic64_set(&iocg->active_period, cur_period);
1256 return true;
1257 }
1258
1259 /* racy check on internal node IOs, treat as root level IOs */
1260 if (iocg->child_active_sum)
1261 return false;
1262
1263 spin_lock_irq(&ioc->lock);
1264
1265 ioc_now(ioc, now);
1266
1267 /* update period */
1268 cur_period = atomic64_read(&ioc->cur_period);
1269 last_period = atomic64_read(&iocg->active_period);
1270 atomic64_set(&iocg->active_period, cur_period);
1271
1272 /* already activated or breaking leaf-only constraint? */
1273 if (!list_empty(&iocg->active_list))
1274 goto succeed_unlock;
1275 for (i = iocg->level - 1; i > 0; i--)
1276 if (!list_empty(&iocg->ancestors[i]->active_list))
1277 goto fail_unlock;
1278
1279 if (iocg->child_active_sum)
1280 goto fail_unlock;
1281
1282 /*
1283 * Always start with the target budget. On deactivation, we throw away
1284 * anything above it.
1285 */
1286 vtarget = now->vnow - ioc->margins.target;
1287 vtime = atomic64_read(&iocg->vtime);
1288
1289 atomic64_add(vtarget - vtime, &iocg->vtime);
1290 atomic64_add(vtarget - vtime, &iocg->done_vtime);
1291 vtime = vtarget;
1292
1293 /*
1294 * Activate, propagate weight and start period timer if not
1295 * running. Reset hweight_gen to avoid accidental match from
1296 * wrapping.
1297 */
1298 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1299 list_add(&iocg->active_list, &ioc->active_iocgs);
1300
1301 propagate_weights(iocg, iocg->weight,
1302 iocg->last_inuse ?: iocg->weight, true, now);
1303
1304 TRACE_IOCG_PATH(iocg_activate, iocg, now,
1305 last_period, cur_period, vtime);
1306
1307 iocg->activated_at = now->now;
1308
1309 if (ioc->running == IOC_IDLE) {
1310 ioc->running = IOC_RUNNING;
1311 ioc->dfgv_period_at = now->now;
1312 ioc->dfgv_period_rem = 0;
1313 ioc_start_period(ioc, now);
1314 }
1315
1316 succeed_unlock:
1317 spin_unlock_irq(&ioc->lock);
1318 return true;
1319
1320 fail_unlock:
1321 spin_unlock_irq(&ioc->lock);
1322 return false;
1323 }
1324
1325 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1326 {
1327 struct ioc *ioc = iocg->ioc;
1328 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1329 u64 tdelta, delay, new_delay;
1330 s64 vover, vover_pct;
1331 u32 hwa;
1332
1333 lockdep_assert_held(&iocg->waitq.lock);
1334
1335 /* calculate the current delay in effect - 1/2 every second */
1336 tdelta = now->now - iocg->delay_at;
1337 if (iocg->delay)
1338 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1339 else
1340 delay = 0;
1341
1342 /* calculate the new delay from the debt amount */
1343 current_hweight(iocg, &hwa, NULL);
1344 vover = atomic64_read(&iocg->vtime) +
1345 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1346 vover_pct = div64_s64(100 * vover,
1347 ioc->period_us * ioc->vtime_base_rate);
1348
1349 if (vover_pct <= MIN_DELAY_THR_PCT)
1350 new_delay = 0;
1351 else if (vover_pct >= MAX_DELAY_THR_PCT)
1352 new_delay = MAX_DELAY;
1353 else
1354 new_delay = MIN_DELAY +
1355 div_u64((MAX_DELAY - MIN_DELAY) *
1356 (vover_pct - MIN_DELAY_THR_PCT),
1357 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1358
1359 /* pick the higher one and apply */
1360 if (new_delay > delay) {
1361 iocg->delay = new_delay;
1362 iocg->delay_at = now->now;
1363 delay = new_delay;
1364 }
1365
1366 if (delay >= MIN_DELAY) {
1367 if (!iocg->indelay_since)
1368 iocg->indelay_since = now->now;
1369 blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1370 return true;
1371 } else {
1372 if (iocg->indelay_since) {
1373 iocg->stat.indelay_us += now->now - iocg->indelay_since;
1374 iocg->indelay_since = 0;
1375 }
1376 iocg->delay = 0;
1377 blkcg_clear_delay(blkg);
1378 return false;
1379 }
1380 }
1381
1382 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1383 struct ioc_now *now)
1384 {
1385 struct iocg_pcpu_stat *gcs;
1386
1387 lockdep_assert_held(&iocg->ioc->lock);
1388 lockdep_assert_held(&iocg->waitq.lock);
1389 WARN_ON_ONCE(list_empty(&iocg->active_list));
1390
1391 /*
1392 * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1393 * inuse donating all of it share to others until its debt is paid off.
1394 */
1395 if (!iocg->abs_vdebt && abs_cost) {
1396 iocg->indebt_since = now->now;
1397 propagate_weights(iocg, iocg->active, 0, false, now);
1398 }
1399
1400 iocg->abs_vdebt += abs_cost;
1401
1402 gcs = get_cpu_ptr(iocg->pcpu_stat);
1403 local64_add(abs_cost, &gcs->abs_vusage);
1404 put_cpu_ptr(gcs);
1405 }
1406
1407 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1408 struct ioc_now *now)
1409 {
1410 lockdep_assert_held(&iocg->ioc->lock);
1411 lockdep_assert_held(&iocg->waitq.lock);
1412
1413 /* make sure that nobody messed with @iocg */
1414 WARN_ON_ONCE(list_empty(&iocg->active_list));
1415 WARN_ON_ONCE(iocg->inuse > 1);
1416
1417 iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1418
1419 /* if debt is paid in full, restore inuse */
1420 if (!iocg->abs_vdebt) {
1421 iocg->stat.indebt_us += now->now - iocg->indebt_since;
1422 iocg->indebt_since = 0;
1423
1424 propagate_weights(iocg, iocg->active, iocg->last_inuse,
1425 false, now);
1426 }
1427 }
1428
1429 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1430 int flags, void *key)
1431 {
1432 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1433 struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1434 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1435
1436 ctx->vbudget -= cost;
1437
1438 if (ctx->vbudget < 0)
1439 return -1;
1440
1441 iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1442 wait->committed = true;
1443
1444 /*
1445 * autoremove_wake_function() removes the wait entry only when it
1446 * actually changed the task state. We want the wait always removed.
1447 * Remove explicitly and use default_wake_function(). Note that the
1448 * order of operations is important as finish_wait() tests whether
1449 * @wq_entry is removed without grabbing the lock.
1450 */
1451 default_wake_function(wq_entry, mode, flags, key);
1452 list_del_init_careful(&wq_entry->entry);
1453 return 0;
1454 }
1455
1456 /*
1457 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1458 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1459 * addition to iocg->waitq.lock.
1460 */
1461 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1462 struct ioc_now *now)
1463 {
1464 struct ioc *ioc = iocg->ioc;
1465 struct iocg_wake_ctx ctx = { .iocg = iocg };
1466 u64 vshortage, expires, oexpires;
1467 s64 vbudget;
1468 u32 hwa;
1469
1470 lockdep_assert_held(&iocg->waitq.lock);
1471
1472 current_hweight(iocg, &hwa, NULL);
1473 vbudget = now->vnow - atomic64_read(&iocg->vtime);
1474
1475 /* pay off debt */
1476 if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1477 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1478 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1479 u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1480
1481 lockdep_assert_held(&ioc->lock);
1482
1483 atomic64_add(vpay, &iocg->vtime);
1484 atomic64_add(vpay, &iocg->done_vtime);
1485 iocg_pay_debt(iocg, abs_vpay, now);
1486 vbudget -= vpay;
1487 }
1488
1489 if (iocg->abs_vdebt || iocg->delay)
1490 iocg_kick_delay(iocg, now);
1491
1492 /*
1493 * Debt can still be outstanding if we haven't paid all yet or the
1494 * caller raced and called without @pay_debt. Shouldn't wake up waiters
1495 * under debt. Make sure @vbudget reflects the outstanding amount and is
1496 * not positive.
1497 */
1498 if (iocg->abs_vdebt) {
1499 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1500 vbudget = min_t(s64, 0, vbudget - vdebt);
1501 }
1502
1503 /*
1504 * Wake up the ones which are due and see how much vtime we'll need for
1505 * the next one. As paying off debt restores hw_inuse, it must be read
1506 * after the above debt payment.
1507 */
1508 ctx.vbudget = vbudget;
1509 current_hweight(iocg, NULL, &ctx.hw_inuse);
1510
1511 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1512
1513 if (!waitqueue_active(&iocg->waitq)) {
1514 if (iocg->wait_since) {
1515 iocg->stat.wait_us += now->now - iocg->wait_since;
1516 iocg->wait_since = 0;
1517 }
1518 return;
1519 }
1520
1521 if (!iocg->wait_since)
1522 iocg->wait_since = now->now;
1523
1524 if (WARN_ON_ONCE(ctx.vbudget >= 0))
1525 return;
1526
1527 /* determine next wakeup, add a timer margin to guarantee chunking */
1528 vshortage = -ctx.vbudget;
1529 expires = now->now_ns +
1530 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1531 NSEC_PER_USEC;
1532 expires += ioc->timer_slack_ns;
1533
1534 /* if already active and close enough, don't bother */
1535 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1536 if (hrtimer_is_queued(&iocg->waitq_timer) &&
1537 abs(oexpires - expires) <= ioc->timer_slack_ns)
1538 return;
1539
1540 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1541 ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1542 }
1543
1544 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1545 {
1546 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1547 bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1548 struct ioc_now now;
1549 unsigned long flags;
1550
1551 ioc_now(iocg->ioc, &now);
1552
1553 iocg_lock(iocg, pay_debt, &flags);
1554 iocg_kick_waitq(iocg, pay_debt, &now);
1555 iocg_unlock(iocg, pay_debt, &flags);
1556
1557 return HRTIMER_NORESTART;
1558 }
1559
1560 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1561 {
1562 u32 nr_met[2] = { };
1563 u32 nr_missed[2] = { };
1564 u64 rq_wait_ns = 0;
1565 int cpu, rw;
1566
1567 for_each_online_cpu(cpu) {
1568 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1569 u64 this_rq_wait_ns;
1570
1571 for (rw = READ; rw <= WRITE; rw++) {
1572 u32 this_met = local_read(&stat->missed[rw].nr_met);
1573 u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1574
1575 nr_met[rw] += this_met - stat->missed[rw].last_met;
1576 nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1577 stat->missed[rw].last_met = this_met;
1578 stat->missed[rw].last_missed = this_missed;
1579 }
1580
1581 this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1582 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1583 stat->last_rq_wait_ns = this_rq_wait_ns;
1584 }
1585
1586 for (rw = READ; rw <= WRITE; rw++) {
1587 if (nr_met[rw] + nr_missed[rw])
1588 missed_ppm_ar[rw] =
1589 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1590 nr_met[rw] + nr_missed[rw]);
1591 else
1592 missed_ppm_ar[rw] = 0;
1593 }
1594
1595 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1596 ioc->period_us * NSEC_PER_USEC);
1597 }
1598
1599 /* was iocg idle this period? */
1600 static bool iocg_is_idle(struct ioc_gq *iocg)
1601 {
1602 struct ioc *ioc = iocg->ioc;
1603
1604 /* did something get issued this period? */
1605 if (atomic64_read(&iocg->active_period) ==
1606 atomic64_read(&ioc->cur_period))
1607 return false;
1608
1609 /* is something in flight? */
1610 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1611 return false;
1612
1613 return true;
1614 }
1615
1616 /*
1617 * Call this function on the target leaf @iocg's to build pre-order traversal
1618 * list of all the ancestors in @inner_walk. The inner nodes are linked through
1619 * ->walk_list and the caller is responsible for dissolving the list after use.
1620 */
1621 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1622 struct list_head *inner_walk)
1623 {
1624 int lvl;
1625
1626 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1627
1628 /* find the first ancestor which hasn't been visited yet */
1629 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1630 if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1631 break;
1632 }
1633
1634 /* walk down and visit the inner nodes to get pre-order traversal */
1635 while (++lvl <= iocg->level - 1) {
1636 struct ioc_gq *inner = iocg->ancestors[lvl];
1637
1638 /* record traversal order */
1639 list_add_tail(&inner->walk_list, inner_walk);
1640 }
1641 }
1642
1643 /* propagate the deltas to the parent */
1644 static void iocg_flush_stat_upward(struct ioc_gq *iocg)
1645 {
1646 if (iocg->level > 0) {
1647 struct iocg_stat *parent_stat =
1648 &iocg->ancestors[iocg->level - 1]->stat;
1649
1650 parent_stat->usage_us +=
1651 iocg->stat.usage_us - iocg->last_stat.usage_us;
1652 parent_stat->wait_us +=
1653 iocg->stat.wait_us - iocg->last_stat.wait_us;
1654 parent_stat->indebt_us +=
1655 iocg->stat.indebt_us - iocg->last_stat.indebt_us;
1656 parent_stat->indelay_us +=
1657 iocg->stat.indelay_us - iocg->last_stat.indelay_us;
1658 }
1659
1660 iocg->last_stat = iocg->stat;
1661 }
1662
1663 /* collect per-cpu counters and propagate the deltas to the parent */
1664 static void iocg_flush_stat_leaf(struct ioc_gq *iocg, struct ioc_now *now)
1665 {
1666 struct ioc *ioc = iocg->ioc;
1667 u64 abs_vusage = 0;
1668 u64 vusage_delta;
1669 int cpu;
1670
1671 lockdep_assert_held(&iocg->ioc->lock);
1672
1673 /* collect per-cpu counters */
1674 for_each_possible_cpu(cpu) {
1675 abs_vusage += local64_read(
1676 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1677 }
1678 vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1679 iocg->last_stat_abs_vusage = abs_vusage;
1680
1681 iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1682 iocg->stat.usage_us += iocg->usage_delta_us;
1683
1684 iocg_flush_stat_upward(iocg);
1685 }
1686
1687 /* get stat counters ready for reading on all active iocgs */
1688 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1689 {
1690 LIST_HEAD(inner_walk);
1691 struct ioc_gq *iocg, *tiocg;
1692
1693 /* flush leaves and build inner node walk list */
1694 list_for_each_entry(iocg, target_iocgs, active_list) {
1695 iocg_flush_stat_leaf(iocg, now);
1696 iocg_build_inner_walk(iocg, &inner_walk);
1697 }
1698
1699 /* keep flushing upwards by walking the inner list backwards */
1700 list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1701 iocg_flush_stat_upward(iocg);
1702 list_del_init(&iocg->walk_list);
1703 }
1704 }
1705
1706 /*
1707 * Determine what @iocg's hweight_inuse should be after donating unused
1708 * capacity. @hwm is the upper bound and used to signal no donation. This
1709 * function also throws away @iocg's excess budget.
1710 */
1711 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1712 u32 usage, struct ioc_now *now)
1713 {
1714 struct ioc *ioc = iocg->ioc;
1715 u64 vtime = atomic64_read(&iocg->vtime);
1716 s64 excess, delta, target, new_hwi;
1717
1718 /* debt handling owns inuse for debtors */
1719 if (iocg->abs_vdebt)
1720 return 1;
1721
1722 /* see whether minimum margin requirement is met */
1723 if (waitqueue_active(&iocg->waitq) ||
1724 time_after64(vtime, now->vnow - ioc->margins.min))
1725 return hwm;
1726
1727 /* throw away excess above target */
1728 excess = now->vnow - vtime - ioc->margins.target;
1729 if (excess > 0) {
1730 atomic64_add(excess, &iocg->vtime);
1731 atomic64_add(excess, &iocg->done_vtime);
1732 vtime += excess;
1733 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1734 }
1735
1736 /*
1737 * Let's say the distance between iocg's and device's vtimes as a
1738 * fraction of period duration is delta. Assuming that the iocg will
1739 * consume the usage determined above, we want to determine new_hwi so
1740 * that delta equals MARGIN_TARGET at the end of the next period.
1741 *
1742 * We need to execute usage worth of IOs while spending the sum of the
1743 * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1744 * (delta):
1745 *
1746 * usage = (1 - MARGIN_TARGET + delta) * new_hwi
1747 *
1748 * Therefore, the new_hwi is:
1749 *
1750 * new_hwi = usage / (1 - MARGIN_TARGET + delta)
1751 */
1752 delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1753 now->vnow - ioc->period_at_vtime);
1754 target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1755 new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1756
1757 return clamp_t(s64, new_hwi, 1, hwm);
1758 }
1759
1760 /*
1761 * For work-conservation, an iocg which isn't using all of its share should
1762 * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1763 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1764 *
1765 * #1 is mathematically simpler but has the drawback of requiring synchronous
1766 * global hweight_inuse updates when idle iocg's get activated or inuse weights
1767 * change due to donation snapbacks as it has the possibility of grossly
1768 * overshooting what's allowed by the model and vrate.
1769 *
1770 * #2 is inherently safe with local operations. The donating iocg can easily
1771 * snap back to higher weights when needed without worrying about impacts on
1772 * other nodes as the impacts will be inherently correct. This also makes idle
1773 * iocg activations safe. The only effect activations have is decreasing
1774 * hweight_inuse of others, the right solution to which is for those iocgs to
1775 * snap back to higher weights.
1776 *
1777 * So, we go with #2. The challenge is calculating how each donating iocg's
1778 * inuse should be adjusted to achieve the target donation amounts. This is done
1779 * using Andy's method described in the following pdf.
1780 *
1781 * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1782 *
1783 * Given the weights and target after-donation hweight_inuse values, Andy's
1784 * method determines how the proportional distribution should look like at each
1785 * sibling level to maintain the relative relationship between all non-donating
1786 * pairs. To roughly summarize, it divides the tree into donating and
1787 * non-donating parts, calculates global donation rate which is used to
1788 * determine the target hweight_inuse for each node, and then derives per-level
1789 * proportions.
1790 *
1791 * The following pdf shows that global distribution calculated this way can be
1792 * achieved by scaling inuse weights of donating leaves and propagating the
1793 * adjustments upwards proportionally.
1794 *
1795 * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1796 *
1797 * Combining the above two, we can determine how each leaf iocg's inuse should
1798 * be adjusted to achieve the target donation.
1799 *
1800 * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1801 *
1802 * The inline comments use symbols from the last pdf.
1803 *
1804 * b is the sum of the absolute budgets in the subtree. 1 for the root node.
1805 * f is the sum of the absolute budgets of non-donating nodes in the subtree.
1806 * t is the sum of the absolute budgets of donating nodes in the subtree.
1807 * w is the weight of the node. w = w_f + w_t
1808 * w_f is the non-donating portion of w. w_f = w * f / b
1809 * w_b is the donating portion of w. w_t = w * t / b
1810 * s is the sum of all sibling weights. s = Sum(w) for siblings
1811 * s_f and s_t are the non-donating and donating portions of s.
1812 *
1813 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1814 * w_pt is the donating portion of the parent's weight and w'_pt the same value
1815 * after adjustments. Subscript r denotes the root node's values.
1816 */
1817 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1818 {
1819 LIST_HEAD(over_hwa);
1820 LIST_HEAD(inner_walk);
1821 struct ioc_gq *iocg, *tiocg, *root_iocg;
1822 u32 after_sum, over_sum, over_target, gamma;
1823
1824 /*
1825 * It's pretty unlikely but possible for the total sum of
1826 * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1827 * confuse the following calculations. If such condition is detected,
1828 * scale down everyone over its full share equally to keep the sum below
1829 * WEIGHT_ONE.
1830 */
1831 after_sum = 0;
1832 over_sum = 0;
1833 list_for_each_entry(iocg, surpluses, surplus_list) {
1834 u32 hwa;
1835
1836 current_hweight(iocg, &hwa, NULL);
1837 after_sum += iocg->hweight_after_donation;
1838
1839 if (iocg->hweight_after_donation > hwa) {
1840 over_sum += iocg->hweight_after_donation;
1841 list_add(&iocg->walk_list, &over_hwa);
1842 }
1843 }
1844
1845 if (after_sum >= WEIGHT_ONE) {
1846 /*
1847 * The delta should be deducted from the over_sum, calculate
1848 * target over_sum value.
1849 */
1850 u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1851 WARN_ON_ONCE(over_sum <= over_delta);
1852 over_target = over_sum - over_delta;
1853 } else {
1854 over_target = 0;
1855 }
1856
1857 list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1858 if (over_target)
1859 iocg->hweight_after_donation =
1860 div_u64((u64)iocg->hweight_after_donation *
1861 over_target, over_sum);
1862 list_del_init(&iocg->walk_list);
1863 }
1864
1865 /*
1866 * Build pre-order inner node walk list and prepare for donation
1867 * adjustment calculations.
1868 */
1869 list_for_each_entry(iocg, surpluses, surplus_list) {
1870 iocg_build_inner_walk(iocg, &inner_walk);
1871 }
1872
1873 root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1874 WARN_ON_ONCE(root_iocg->level > 0);
1875
1876 list_for_each_entry(iocg, &inner_walk, walk_list) {
1877 iocg->child_adjusted_sum = 0;
1878 iocg->hweight_donating = 0;
1879 iocg->hweight_after_donation = 0;
1880 }
1881
1882 /*
1883 * Propagate the donating budget (b_t) and after donation budget (b'_t)
1884 * up the hierarchy.
1885 */
1886 list_for_each_entry(iocg, surpluses, surplus_list) {
1887 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1888
1889 parent->hweight_donating += iocg->hweight_donating;
1890 parent->hweight_after_donation += iocg->hweight_after_donation;
1891 }
1892
1893 list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1894 if (iocg->level > 0) {
1895 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1896
1897 parent->hweight_donating += iocg->hweight_donating;
1898 parent->hweight_after_donation += iocg->hweight_after_donation;
1899 }
1900 }
1901
1902 /*
1903 * Calculate inner hwa's (b) and make sure the donation values are
1904 * within the accepted ranges as we're doing low res calculations with
1905 * roundups.
1906 */
1907 list_for_each_entry(iocg, &inner_walk, walk_list) {
1908 if (iocg->level) {
1909 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1910
1911 iocg->hweight_active = DIV64_U64_ROUND_UP(
1912 (u64)parent->hweight_active * iocg->active,
1913 parent->child_active_sum);
1914
1915 }
1916
1917 iocg->hweight_donating = min(iocg->hweight_donating,
1918 iocg->hweight_active);
1919 iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1920 iocg->hweight_donating - 1);
1921 if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1922 iocg->hweight_donating <= 1 ||
1923 iocg->hweight_after_donation == 0)) {
1924 pr_warn("iocg: invalid donation weights in ");
1925 pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1926 pr_cont(": active=%u donating=%u after=%u\n",
1927 iocg->hweight_active, iocg->hweight_donating,
1928 iocg->hweight_after_donation);
1929 }
1930 }
1931
1932 /*
1933 * Calculate the global donation rate (gamma) - the rate to adjust
1934 * non-donating budgets by.
1935 *
1936 * No need to use 64bit multiplication here as the first operand is
1937 * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1938 *
1939 * We know that there are beneficiary nodes and the sum of the donating
1940 * hweights can't be whole; however, due to the round-ups during hweight
1941 * calculations, root_iocg->hweight_donating might still end up equal to
1942 * or greater than whole. Limit the range when calculating the divider.
1943 *
1944 * gamma = (1 - t_r') / (1 - t_r)
1945 */
1946 gamma = DIV_ROUND_UP(
1947 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1948 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1949
1950 /*
1951 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1952 * nodes.
1953 */
1954 list_for_each_entry(iocg, &inner_walk, walk_list) {
1955 struct ioc_gq *parent;
1956 u32 inuse, wpt, wptp;
1957 u64 st, sf;
1958
1959 if (iocg->level == 0) {
1960 /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1961 iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1962 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1963 WEIGHT_ONE - iocg->hweight_after_donation);
1964 continue;
1965 }
1966
1967 parent = iocg->ancestors[iocg->level - 1];
1968
1969 /* b' = gamma * b_f + b_t' */
1970 iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1971 (u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1972 WEIGHT_ONE) + iocg->hweight_after_donation;
1973
1974 /* w' = s' * b' / b'_p */
1975 inuse = DIV64_U64_ROUND_UP(
1976 (u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1977 parent->hweight_inuse);
1978
1979 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1980 st = DIV64_U64_ROUND_UP(
1981 iocg->child_active_sum * iocg->hweight_donating,
1982 iocg->hweight_active);
1983 sf = iocg->child_active_sum - st;
1984 wpt = DIV64_U64_ROUND_UP(
1985 (u64)iocg->active * iocg->hweight_donating,
1986 iocg->hweight_active);
1987 wptp = DIV64_U64_ROUND_UP(
1988 (u64)inuse * iocg->hweight_after_donation,
1989 iocg->hweight_inuse);
1990
1991 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
1992 }
1993
1994 /*
1995 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
1996 * we can finally determine leaf adjustments.
1997 */
1998 list_for_each_entry(iocg, surpluses, surplus_list) {
1999 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
2000 u32 inuse;
2001
2002 /*
2003 * In-debt iocgs participated in the donation calculation with
2004 * the minimum target hweight_inuse. Configuring inuse
2005 * accordingly would work fine but debt handling expects
2006 * @iocg->inuse stay at the minimum and we don't wanna
2007 * interfere.
2008 */
2009 if (iocg->abs_vdebt) {
2010 WARN_ON_ONCE(iocg->inuse > 1);
2011 continue;
2012 }
2013
2014 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
2015 inuse = DIV64_U64_ROUND_UP(
2016 parent->child_adjusted_sum * iocg->hweight_after_donation,
2017 parent->hweight_inuse);
2018
2019 TRACE_IOCG_PATH(inuse_transfer, iocg, now,
2020 iocg->inuse, inuse,
2021 iocg->hweight_inuse,
2022 iocg->hweight_after_donation);
2023
2024 __propagate_weights(iocg, iocg->active, inuse, true, now);
2025 }
2026
2027 /* walk list should be dissolved after use */
2028 list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
2029 list_del_init(&iocg->walk_list);
2030 }
2031
2032 /*
2033 * A low weight iocg can amass a large amount of debt, for example, when
2034 * anonymous memory gets reclaimed aggressively. If the system has a lot of
2035 * memory paired with a slow IO device, the debt can span multiple seconds or
2036 * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2037 * up blocked paying its debt while the IO device is idle.
2038 *
2039 * The following protects against such cases. If the device has been
2040 * sufficiently idle for a while, the debts are halved and delays are
2041 * recalculated.
2042 */
2043 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2044 struct ioc_now *now)
2045 {
2046 struct ioc_gq *iocg;
2047 u64 dur, usage_pct, nr_cycles;
2048
2049 /* if no debtor, reset the cycle */
2050 if (!nr_debtors) {
2051 ioc->dfgv_period_at = now->now;
2052 ioc->dfgv_period_rem = 0;
2053 ioc->dfgv_usage_us_sum = 0;
2054 return;
2055 }
2056
2057 /*
2058 * Debtors can pass through a lot of writes choking the device and we
2059 * don't want to be forgiving debts while the device is struggling from
2060 * write bursts. If we're missing latency targets, consider the device
2061 * fully utilized.
2062 */
2063 if (ioc->busy_level > 0)
2064 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2065
2066 ioc->dfgv_usage_us_sum += usage_us_sum;
2067 if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2068 return;
2069
2070 /*
2071 * At least DFGV_PERIOD has passed since the last period. Calculate the
2072 * average usage and reset the period counters.
2073 */
2074 dur = now->now - ioc->dfgv_period_at;
2075 usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2076
2077 ioc->dfgv_period_at = now->now;
2078 ioc->dfgv_usage_us_sum = 0;
2079
2080 /* if was too busy, reset everything */
2081 if (usage_pct > DFGV_USAGE_PCT) {
2082 ioc->dfgv_period_rem = 0;
2083 return;
2084 }
2085
2086 /*
2087 * Usage is lower than threshold. Let's forgive some debts. Debt
2088 * forgiveness runs off of the usual ioc timer but its period usually
2089 * doesn't match ioc's. Compensate the difference by performing the
2090 * reduction as many times as would fit in the duration since the last
2091 * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2092 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2093 * reductions is doubled.
2094 */
2095 nr_cycles = dur + ioc->dfgv_period_rem;
2096 ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2097
2098 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2099 u64 __maybe_unused old_debt, __maybe_unused old_delay;
2100
2101 if (!iocg->abs_vdebt && !iocg->delay)
2102 continue;
2103
2104 spin_lock(&iocg->waitq.lock);
2105
2106 old_debt = iocg->abs_vdebt;
2107 old_delay = iocg->delay;
2108
2109 if (iocg->abs_vdebt)
2110 iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2111 if (iocg->delay)
2112 iocg->delay = iocg->delay >> nr_cycles ?: 1;
2113
2114 iocg_kick_waitq(iocg, true, now);
2115
2116 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2117 old_debt, iocg->abs_vdebt,
2118 old_delay, iocg->delay);
2119
2120 spin_unlock(&iocg->waitq.lock);
2121 }
2122 }
2123
2124 /*
2125 * Check the active iocgs' state to avoid oversleeping and deactive
2126 * idle iocgs.
2127 *
2128 * Since waiters determine the sleep durations based on the vrate
2129 * they saw at the time of sleep, if vrate has increased, some
2130 * waiters could be sleeping for too long. Wake up tardy waiters
2131 * which should have woken up in the last period and expire idle
2132 * iocgs.
2133 */
2134 static int ioc_check_iocgs(struct ioc *ioc, struct ioc_now *now)
2135 {
2136 int nr_debtors = 0;
2137 struct ioc_gq *iocg, *tiocg;
2138
2139 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2140 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2141 !iocg->delay && !iocg_is_idle(iocg))
2142 continue;
2143
2144 spin_lock(&iocg->waitq.lock);
2145
2146 /* flush wait and indebt stat deltas */
2147 if (iocg->wait_since) {
2148 iocg->stat.wait_us += now->now - iocg->wait_since;
2149 iocg->wait_since = now->now;
2150 }
2151 if (iocg->indebt_since) {
2152 iocg->stat.indebt_us +=
2153 now->now - iocg->indebt_since;
2154 iocg->indebt_since = now->now;
2155 }
2156 if (iocg->indelay_since) {
2157 iocg->stat.indelay_us +=
2158 now->now - iocg->indelay_since;
2159 iocg->indelay_since = now->now;
2160 }
2161
2162 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2163 iocg->delay) {
2164 /* might be oversleeping vtime / hweight changes, kick */
2165 iocg_kick_waitq(iocg, true, now);
2166 if (iocg->abs_vdebt || iocg->delay)
2167 nr_debtors++;
2168 } else if (iocg_is_idle(iocg)) {
2169 /* no waiter and idle, deactivate */
2170 u64 vtime = atomic64_read(&iocg->vtime);
2171 s64 excess;
2172
2173 /*
2174 * @iocg has been inactive for a full duration and will
2175 * have a high budget. Account anything above target as
2176 * error and throw away. On reactivation, it'll start
2177 * with the target budget.
2178 */
2179 excess = now->vnow - vtime - ioc->margins.target;
2180 if (excess > 0) {
2181 u32 old_hwi;
2182
2183 current_hweight(iocg, NULL, &old_hwi);
2184 ioc->vtime_err -= div64_u64(excess * old_hwi,
2185 WEIGHT_ONE);
2186 }
2187
2188 TRACE_IOCG_PATH(iocg_idle, iocg, now,
2189 atomic64_read(&iocg->active_period),
2190 atomic64_read(&ioc->cur_period), vtime);
2191 __propagate_weights(iocg, 0, 0, false, now);
2192 list_del_init(&iocg->active_list);
2193 }
2194
2195 spin_unlock(&iocg->waitq.lock);
2196 }
2197
2198 commit_weights(ioc);
2199 return nr_debtors;
2200 }
2201
2202 static void ioc_timer_fn(struct timer_list *timer)
2203 {
2204 struct ioc *ioc = container_of(timer, struct ioc, timer);
2205 struct ioc_gq *iocg, *tiocg;
2206 struct ioc_now now;
2207 LIST_HEAD(surpluses);
2208 int nr_debtors, nr_shortages = 0, nr_lagging = 0;
2209 u64 usage_us_sum = 0;
2210 u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2211 u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2212 u32 missed_ppm[2], rq_wait_pct;
2213 u64 period_vtime;
2214 int prev_busy_level;
2215
2216 /* how were the latencies during the period? */
2217 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2218
2219 /* take care of active iocgs */
2220 spin_lock_irq(&ioc->lock);
2221
2222 ioc_now(ioc, &now);
2223
2224 period_vtime = now.vnow - ioc->period_at_vtime;
2225 if (WARN_ON_ONCE(!period_vtime)) {
2226 spin_unlock_irq(&ioc->lock);
2227 return;
2228 }
2229
2230 nr_debtors = ioc_check_iocgs(ioc, &now);
2231
2232 /*
2233 * Wait and indebt stat are flushed above and the donation calculation
2234 * below needs updated usage stat. Let's bring stat up-to-date.
2235 */
2236 iocg_flush_stat(&ioc->active_iocgs, &now);
2237
2238 /* calc usage and see whether some weights need to be moved around */
2239 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2240 u64 vdone, vtime, usage_us;
2241 u32 hw_active, hw_inuse;
2242
2243 /*
2244 * Collect unused and wind vtime closer to vnow to prevent
2245 * iocgs from accumulating a large amount of budget.
2246 */
2247 vdone = atomic64_read(&iocg->done_vtime);
2248 vtime = atomic64_read(&iocg->vtime);
2249 current_hweight(iocg, &hw_active, &hw_inuse);
2250
2251 /*
2252 * Latency QoS detection doesn't account for IOs which are
2253 * in-flight for longer than a period. Detect them by
2254 * comparing vdone against period start. If lagging behind
2255 * IOs from past periods, don't increase vrate.
2256 */
2257 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2258 !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2259 time_after64(vtime, vdone) &&
2260 time_after64(vtime, now.vnow -
2261 MAX_LAGGING_PERIODS * period_vtime) &&
2262 time_before64(vdone, now.vnow - period_vtime))
2263 nr_lagging++;
2264
2265 /*
2266 * Determine absolute usage factoring in in-flight IOs to avoid
2267 * high-latency completions appearing as idle.
2268 */
2269 usage_us = iocg->usage_delta_us;
2270 usage_us_sum += usage_us;
2271
2272 /* see whether there's surplus vtime */
2273 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2274 if (hw_inuse < hw_active ||
2275 (!waitqueue_active(&iocg->waitq) &&
2276 time_before64(vtime, now.vnow - ioc->margins.low))) {
2277 u32 hwa, old_hwi, hwm, new_hwi, usage;
2278 u64 usage_dur;
2279
2280 if (vdone != vtime) {
2281 u64 inflight_us = DIV64_U64_ROUND_UP(
2282 cost_to_abs_cost(vtime - vdone, hw_inuse),
2283 ioc->vtime_base_rate);
2284
2285 usage_us = max(usage_us, inflight_us);
2286 }
2287
2288 /* convert to hweight based usage ratio */
2289 if (time_after64(iocg->activated_at, ioc->period_at))
2290 usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2291 else
2292 usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2293
2294 usage = clamp_t(u32,
2295 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2296 usage_dur),
2297 1, WEIGHT_ONE);
2298
2299 /*
2300 * Already donating or accumulated enough to start.
2301 * Determine the donation amount.
2302 */
2303 current_hweight(iocg, &hwa, &old_hwi);
2304 hwm = current_hweight_max(iocg);
2305 new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2306 usage, &now);
2307 /*
2308 * Donation calculation assumes hweight_after_donation
2309 * to be positive, a condition that a donor w/ hwa < 2
2310 * can't meet. Don't bother with donation if hwa is
2311 * below 2. It's not gonna make a meaningful difference
2312 * anyway.
2313 */
2314 if (new_hwi < hwm && hwa >= 2) {
2315 iocg->hweight_donating = hwa;
2316 iocg->hweight_after_donation = new_hwi;
2317 list_add(&iocg->surplus_list, &surpluses);
2318 } else if (!iocg->abs_vdebt) {
2319 /*
2320 * @iocg doesn't have enough to donate. Reset
2321 * its inuse to active.
2322 *
2323 * Don't reset debtors as their inuse's are
2324 * owned by debt handling. This shouldn't affect
2325 * donation calculuation in any meaningful way
2326 * as @iocg doesn't have a meaningful amount of
2327 * share anyway.
2328 */
2329 TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2330 iocg->inuse, iocg->active,
2331 iocg->hweight_inuse, new_hwi);
2332
2333 __propagate_weights(iocg, iocg->active,
2334 iocg->active, true, &now);
2335 nr_shortages++;
2336 }
2337 } else {
2338 /* genuinely short on vtime */
2339 nr_shortages++;
2340 }
2341 }
2342
2343 if (!list_empty(&surpluses) && nr_shortages)
2344 transfer_surpluses(&surpluses, &now);
2345
2346 commit_weights(ioc);
2347
2348 /* surplus list should be dissolved after use */
2349 list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2350 list_del_init(&iocg->surplus_list);
2351
2352 /*
2353 * If q is getting clogged or we're missing too much, we're issuing
2354 * too much IO and should lower vtime rate. If we're not missing
2355 * and experiencing shortages but not surpluses, we're too stingy
2356 * and should increase vtime rate.
2357 */
2358 prev_busy_level = ioc->busy_level;
2359 if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2360 missed_ppm[READ] > ppm_rthr ||
2361 missed_ppm[WRITE] > ppm_wthr) {
2362 /* clearly missing QoS targets, slow down vrate */
2363 ioc->busy_level = max(ioc->busy_level, 0);
2364 ioc->busy_level++;
2365 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2366 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2367 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2368 /* QoS targets are being met with >25% margin */
2369 if (nr_shortages) {
2370 /*
2371 * We're throttling while the device has spare
2372 * capacity. If vrate was being slowed down, stop.
2373 */
2374 ioc->busy_level = min(ioc->busy_level, 0);
2375
2376 /*
2377 * If there are IOs spanning multiple periods, wait
2378 * them out before pushing the device harder.
2379 */
2380 if (!nr_lagging)
2381 ioc->busy_level--;
2382 } else {
2383 /*
2384 * Nobody is being throttled and the users aren't
2385 * issuing enough IOs to saturate the device. We
2386 * simply don't know how close the device is to
2387 * saturation. Coast.
2388 */
2389 ioc->busy_level = 0;
2390 }
2391 } else {
2392 /* inside the hysterisis margin, we're good */
2393 ioc->busy_level = 0;
2394 }
2395
2396 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2397
2398 ioc_adjust_base_vrate(ioc, rq_wait_pct, nr_lagging, nr_shortages,
2399 prev_busy_level, missed_ppm);
2400
2401 ioc_refresh_params(ioc, false);
2402
2403 ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2404
2405 /*
2406 * This period is done. Move onto the next one. If nothing's
2407 * going on with the device, stop the timer.
2408 */
2409 atomic64_inc(&ioc->cur_period);
2410
2411 if (ioc->running != IOC_STOP) {
2412 if (!list_empty(&ioc->active_iocgs)) {
2413 ioc_start_period(ioc, &now);
2414 } else {
2415 ioc->busy_level = 0;
2416 ioc->vtime_err = 0;
2417 ioc->running = IOC_IDLE;
2418 }
2419
2420 ioc_refresh_vrate(ioc, &now);
2421 }
2422
2423 spin_unlock_irq(&ioc->lock);
2424 }
2425
2426 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2427 u64 abs_cost, struct ioc_now *now)
2428 {
2429 struct ioc *ioc = iocg->ioc;
2430 struct ioc_margins *margins = &ioc->margins;
2431 u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2432 u32 hwi, adj_step;
2433 s64 margin;
2434 u64 cost, new_inuse;
2435
2436 current_hweight(iocg, NULL, &hwi);
2437 old_hwi = hwi;
2438 cost = abs_cost_to_cost(abs_cost, hwi);
2439 margin = now->vnow - vtime - cost;
2440
2441 /* debt handling owns inuse for debtors */
2442 if (iocg->abs_vdebt)
2443 return cost;
2444
2445 /*
2446 * We only increase inuse during period and do so if the margin has
2447 * deteriorated since the previous adjustment.
2448 */
2449 if (margin >= iocg->saved_margin || margin >= margins->low ||
2450 iocg->inuse == iocg->active)
2451 return cost;
2452
2453 spin_lock_irq(&ioc->lock);
2454
2455 /* we own inuse only when @iocg is in the normal active state */
2456 if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2457 spin_unlock_irq(&ioc->lock);
2458 return cost;
2459 }
2460
2461 /*
2462 * Bump up inuse till @abs_cost fits in the existing budget.
2463 * adj_step must be determined after acquiring ioc->lock - we might
2464 * have raced and lost to another thread for activation and could
2465 * be reading 0 iocg->active before ioc->lock which will lead to
2466 * infinite loop.
2467 */
2468 new_inuse = iocg->inuse;
2469 adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2470 do {
2471 new_inuse = new_inuse + adj_step;
2472 propagate_weights(iocg, iocg->active, new_inuse, true, now);
2473 current_hweight(iocg, NULL, &hwi);
2474 cost = abs_cost_to_cost(abs_cost, hwi);
2475 } while (time_after64(vtime + cost, now->vnow) &&
2476 iocg->inuse != iocg->active);
2477
2478 spin_unlock_irq(&ioc->lock);
2479
2480 TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2481 old_inuse, iocg->inuse, old_hwi, hwi);
2482
2483 return cost;
2484 }
2485
2486 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2487 bool is_merge, u64 *costp)
2488 {
2489 struct ioc *ioc = iocg->ioc;
2490 u64 coef_seqio, coef_randio, coef_page;
2491 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2492 u64 seek_pages = 0;
2493 u64 cost = 0;
2494
2495 switch (bio_op(bio)) {
2496 case REQ_OP_READ:
2497 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO];
2498 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO];
2499 coef_page = ioc->params.lcoefs[LCOEF_RPAGE];
2500 break;
2501 case REQ_OP_WRITE:
2502 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO];
2503 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO];
2504 coef_page = ioc->params.lcoefs[LCOEF_WPAGE];
2505 break;
2506 default:
2507 goto out;
2508 }
2509
2510 if (iocg->cursor) {
2511 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2512 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2513 }
2514
2515 if (!is_merge) {
2516 if (seek_pages > LCOEF_RANDIO_PAGES) {
2517 cost += coef_randio;
2518 } else {
2519 cost += coef_seqio;
2520 }
2521 }
2522 cost += pages * coef_page;
2523 out:
2524 *costp = cost;
2525 }
2526
2527 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2528 {
2529 u64 cost;
2530
2531 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2532 return cost;
2533 }
2534
2535 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2536 u64 *costp)
2537 {
2538 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2539
2540 switch (req_op(rq)) {
2541 case REQ_OP_READ:
2542 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2543 break;
2544 case REQ_OP_WRITE:
2545 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2546 break;
2547 default:
2548 *costp = 0;
2549 }
2550 }
2551
2552 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2553 {
2554 u64 cost;
2555
2556 calc_size_vtime_cost_builtin(rq, ioc, &cost);
2557 return cost;
2558 }
2559
2560 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2561 {
2562 struct blkcg_gq *blkg = bio->bi_blkg;
2563 struct ioc *ioc = rqos_to_ioc(rqos);
2564 struct ioc_gq *iocg = blkg_to_iocg(blkg);
2565 struct ioc_now now;
2566 struct iocg_wait wait;
2567 u64 abs_cost, cost, vtime;
2568 bool use_debt, ioc_locked;
2569 unsigned long flags;
2570
2571 /* bypass IOs if disabled, still initializing, or for root cgroup */
2572 if (!ioc->enabled || !iocg || !iocg->level)
2573 return;
2574
2575 /* calculate the absolute vtime cost */
2576 abs_cost = calc_vtime_cost(bio, iocg, false);
2577 if (!abs_cost)
2578 return;
2579
2580 if (!iocg_activate(iocg, &now))
2581 return;
2582
2583 iocg->cursor = bio_end_sector(bio);
2584 vtime = atomic64_read(&iocg->vtime);
2585 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2586
2587 /*
2588 * If no one's waiting and within budget, issue right away. The
2589 * tests are racy but the races aren't systemic - we only miss once
2590 * in a while which is fine.
2591 */
2592 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2593 time_before_eq64(vtime + cost, now.vnow)) {
2594 iocg_commit_bio(iocg, bio, abs_cost, cost);
2595 return;
2596 }
2597
2598 /*
2599 * We're over budget. This can be handled in two ways. IOs which may
2600 * cause priority inversions are punted to @ioc->aux_iocg and charged as
2601 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2602 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2603 * whether debt handling is needed and acquire locks accordingly.
2604 */
2605 use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2606 ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2607 retry_lock:
2608 iocg_lock(iocg, ioc_locked, &flags);
2609
2610 /*
2611 * @iocg must stay activated for debt and waitq handling. Deactivation
2612 * is synchronized against both ioc->lock and waitq.lock and we won't
2613 * get deactivated as long as we're waiting or has debt, so we're good
2614 * if we're activated here. In the unlikely cases that we aren't, just
2615 * issue the IO.
2616 */
2617 if (unlikely(list_empty(&iocg->active_list))) {
2618 iocg_unlock(iocg, ioc_locked, &flags);
2619 iocg_commit_bio(iocg, bio, abs_cost, cost);
2620 return;
2621 }
2622
2623 /*
2624 * We're over budget. If @bio has to be issued regardless, remember
2625 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2626 * off the debt before waking more IOs.
2627 *
2628 * This way, the debt is continuously paid off each period with the
2629 * actual budget available to the cgroup. If we just wound vtime, we
2630 * would incorrectly use the current hw_inuse for the entire amount
2631 * which, for example, can lead to the cgroup staying blocked for a
2632 * long time even with substantially raised hw_inuse.
2633 *
2634 * An iocg with vdebt should stay online so that the timer can keep
2635 * deducting its vdebt and [de]activate use_delay mechanism
2636 * accordingly. We don't want to race against the timer trying to
2637 * clear them and leave @iocg inactive w/ dangling use_delay heavily
2638 * penalizing the cgroup and its descendants.
2639 */
2640 if (use_debt) {
2641 iocg_incur_debt(iocg, abs_cost, &now);
2642 if (iocg_kick_delay(iocg, &now))
2643 blkcg_schedule_throttle(rqos->q,
2644 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2645 iocg_unlock(iocg, ioc_locked, &flags);
2646 return;
2647 }
2648
2649 /* guarantee that iocgs w/ waiters have maximum inuse */
2650 if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2651 if (!ioc_locked) {
2652 iocg_unlock(iocg, false, &flags);
2653 ioc_locked = true;
2654 goto retry_lock;
2655 }
2656 propagate_weights(iocg, iocg->active, iocg->active, true,
2657 &now);
2658 }
2659
2660 /*
2661 * Append self to the waitq and schedule the wakeup timer if we're
2662 * the first waiter. The timer duration is calculated based on the
2663 * current vrate. vtime and hweight changes can make it too short
2664 * or too long. Each wait entry records the absolute cost it's
2665 * waiting for to allow re-evaluation using a custom wait entry.
2666 *
2667 * If too short, the timer simply reschedules itself. If too long,
2668 * the period timer will notice and trigger wakeups.
2669 *
2670 * All waiters are on iocg->waitq and the wait states are
2671 * synchronized using waitq.lock.
2672 */
2673 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2674 wait.wait.private = current;
2675 wait.bio = bio;
2676 wait.abs_cost = abs_cost;
2677 wait.committed = false; /* will be set true by waker */
2678
2679 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2680 iocg_kick_waitq(iocg, ioc_locked, &now);
2681
2682 iocg_unlock(iocg, ioc_locked, &flags);
2683
2684 while (true) {
2685 set_current_state(TASK_UNINTERRUPTIBLE);
2686 if (wait.committed)
2687 break;
2688 io_schedule();
2689 }
2690
2691 /* waker already committed us, proceed */
2692 finish_wait(&iocg->waitq, &wait.wait);
2693 }
2694
2695 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2696 struct bio *bio)
2697 {
2698 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2699 struct ioc *ioc = rqos_to_ioc(rqos);
2700 sector_t bio_end = bio_end_sector(bio);
2701 struct ioc_now now;
2702 u64 vtime, abs_cost, cost;
2703 unsigned long flags;
2704
2705 /* bypass if disabled, still initializing, or for root cgroup */
2706 if (!ioc->enabled || !iocg || !iocg->level)
2707 return;
2708
2709 abs_cost = calc_vtime_cost(bio, iocg, true);
2710 if (!abs_cost)
2711 return;
2712
2713 ioc_now(ioc, &now);
2714
2715 vtime = atomic64_read(&iocg->vtime);
2716 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2717
2718 /* update cursor if backmerging into the request at the cursor */
2719 if (blk_rq_pos(rq) < bio_end &&
2720 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2721 iocg->cursor = bio_end;
2722
2723 /*
2724 * Charge if there's enough vtime budget and the existing request has
2725 * cost assigned.
2726 */
2727 if (rq->bio && rq->bio->bi_iocost_cost &&
2728 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2729 iocg_commit_bio(iocg, bio, abs_cost, cost);
2730 return;
2731 }
2732
2733 /*
2734 * Otherwise, account it as debt if @iocg is online, which it should
2735 * be for the vast majority of cases. See debt handling in
2736 * ioc_rqos_throttle() for details.
2737 */
2738 spin_lock_irqsave(&ioc->lock, flags);
2739 spin_lock(&iocg->waitq.lock);
2740
2741 if (likely(!list_empty(&iocg->active_list))) {
2742 iocg_incur_debt(iocg, abs_cost, &now);
2743 if (iocg_kick_delay(iocg, &now))
2744 blkcg_schedule_throttle(rqos->q,
2745 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2746 } else {
2747 iocg_commit_bio(iocg, bio, abs_cost, cost);
2748 }
2749
2750 spin_unlock(&iocg->waitq.lock);
2751 spin_unlock_irqrestore(&ioc->lock, flags);
2752 }
2753
2754 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2755 {
2756 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2757
2758 if (iocg && bio->bi_iocost_cost)
2759 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2760 }
2761
2762 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2763 {
2764 struct ioc *ioc = rqos_to_ioc(rqos);
2765 struct ioc_pcpu_stat *ccs;
2766 u64 on_q_ns, rq_wait_ns, size_nsec;
2767 int pidx, rw;
2768
2769 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2770 return;
2771
2772 switch (req_op(rq)) {
2773 case REQ_OP_READ:
2774 pidx = QOS_RLAT;
2775 rw = READ;
2776 break;
2777 case REQ_OP_WRITE:
2778 pidx = QOS_WLAT;
2779 rw = WRITE;
2780 break;
2781 default:
2782 return;
2783 }
2784
2785 on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2786 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2787 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2788
2789 ccs = get_cpu_ptr(ioc->pcpu_stat);
2790
2791 if (on_q_ns <= size_nsec ||
2792 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2793 local_inc(&ccs->missed[rw].nr_met);
2794 else
2795 local_inc(&ccs->missed[rw].nr_missed);
2796
2797 local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2798
2799 put_cpu_ptr(ccs);
2800 }
2801
2802 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2803 {
2804 struct ioc *ioc = rqos_to_ioc(rqos);
2805
2806 spin_lock_irq(&ioc->lock);
2807 ioc_refresh_params(ioc, false);
2808 spin_unlock_irq(&ioc->lock);
2809 }
2810
2811 static void ioc_rqos_exit(struct rq_qos *rqos)
2812 {
2813 struct ioc *ioc = rqos_to_ioc(rqos);
2814
2815 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2816
2817 spin_lock_irq(&ioc->lock);
2818 ioc->running = IOC_STOP;
2819 spin_unlock_irq(&ioc->lock);
2820
2821 del_timer_sync(&ioc->timer);
2822 free_percpu(ioc->pcpu_stat);
2823 kfree(ioc);
2824 }
2825
2826 static struct rq_qos_ops ioc_rqos_ops = {
2827 .throttle = ioc_rqos_throttle,
2828 .merge = ioc_rqos_merge,
2829 .done_bio = ioc_rqos_done_bio,
2830 .done = ioc_rqos_done,
2831 .queue_depth_changed = ioc_rqos_queue_depth_changed,
2832 .exit = ioc_rqos_exit,
2833 };
2834
2835 static int blk_iocost_init(struct request_queue *q)
2836 {
2837 struct ioc *ioc;
2838 struct rq_qos *rqos;
2839 int i, cpu, ret;
2840
2841 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2842 if (!ioc)
2843 return -ENOMEM;
2844
2845 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2846 if (!ioc->pcpu_stat) {
2847 kfree(ioc);
2848 return -ENOMEM;
2849 }
2850
2851 for_each_possible_cpu(cpu) {
2852 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2853
2854 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2855 local_set(&ccs->missed[i].nr_met, 0);
2856 local_set(&ccs->missed[i].nr_missed, 0);
2857 }
2858 local64_set(&ccs->rq_wait_ns, 0);
2859 }
2860
2861 rqos = &ioc->rqos;
2862 rqos->id = RQ_QOS_COST;
2863 rqos->ops = &ioc_rqos_ops;
2864 rqos->q = q;
2865
2866 spin_lock_init(&ioc->lock);
2867 timer_setup(&ioc->timer, ioc_timer_fn, 0);
2868 INIT_LIST_HEAD(&ioc->active_iocgs);
2869
2870 ioc->running = IOC_IDLE;
2871 ioc->vtime_base_rate = VTIME_PER_USEC;
2872 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2873 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2874 ioc->period_at = ktime_to_us(ktime_get());
2875 atomic64_set(&ioc->cur_period, 0);
2876 atomic_set(&ioc->hweight_gen, 0);
2877
2878 spin_lock_irq(&ioc->lock);
2879 ioc->autop_idx = AUTOP_INVALID;
2880 ioc_refresh_params(ioc, true);
2881 spin_unlock_irq(&ioc->lock);
2882
2883 /*
2884 * rqos must be added before activation to allow iocg_pd_init() to
2885 * lookup the ioc from q. This means that the rqos methods may get
2886 * called before policy activation completion, can't assume that the
2887 * target bio has an iocg associated and need to test for NULL iocg.
2888 */
2889 ret = rq_qos_add(q, rqos);
2890 if (ret)
2891 goto err_free_ioc;
2892
2893 ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2894 if (ret)
2895 goto err_del_qos;
2896 return 0;
2897
2898 err_del_qos:
2899 rq_qos_del(q, rqos);
2900 err_free_ioc:
2901 free_percpu(ioc->pcpu_stat);
2902 kfree(ioc);
2903 return ret;
2904 }
2905
2906 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2907 {
2908 struct ioc_cgrp *iocc;
2909
2910 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2911 if (!iocc)
2912 return NULL;
2913
2914 iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2915 return &iocc->cpd;
2916 }
2917
2918 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2919 {
2920 kfree(container_of(cpd, struct ioc_cgrp, cpd));
2921 }
2922
2923 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2924 struct blkcg *blkcg)
2925 {
2926 int levels = blkcg->css.cgroup->level + 1;
2927 struct ioc_gq *iocg;
2928
2929 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2930 if (!iocg)
2931 return NULL;
2932
2933 iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2934 if (!iocg->pcpu_stat) {
2935 kfree(iocg);
2936 return NULL;
2937 }
2938
2939 return &iocg->pd;
2940 }
2941
2942 static void ioc_pd_init(struct blkg_policy_data *pd)
2943 {
2944 struct ioc_gq *iocg = pd_to_iocg(pd);
2945 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2946 struct ioc *ioc = q_to_ioc(blkg->q);
2947 struct ioc_now now;
2948 struct blkcg_gq *tblkg;
2949 unsigned long flags;
2950
2951 ioc_now(ioc, &now);
2952
2953 iocg->ioc = ioc;
2954 atomic64_set(&iocg->vtime, now.vnow);
2955 atomic64_set(&iocg->done_vtime, now.vnow);
2956 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2957 INIT_LIST_HEAD(&iocg->active_list);
2958 INIT_LIST_HEAD(&iocg->walk_list);
2959 INIT_LIST_HEAD(&iocg->surplus_list);
2960 iocg->hweight_active = WEIGHT_ONE;
2961 iocg->hweight_inuse = WEIGHT_ONE;
2962
2963 init_waitqueue_head(&iocg->waitq);
2964 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2965 iocg->waitq_timer.function = iocg_waitq_timer_fn;
2966
2967 iocg->level = blkg->blkcg->css.cgroup->level;
2968
2969 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2970 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2971 iocg->ancestors[tiocg->level] = tiocg;
2972 }
2973
2974 spin_lock_irqsave(&ioc->lock, flags);
2975 weight_updated(iocg, &now);
2976 spin_unlock_irqrestore(&ioc->lock, flags);
2977 }
2978
2979 static void ioc_pd_free(struct blkg_policy_data *pd)
2980 {
2981 struct ioc_gq *iocg = pd_to_iocg(pd);
2982 struct ioc *ioc = iocg->ioc;
2983 unsigned long flags;
2984
2985 if (ioc) {
2986 spin_lock_irqsave(&ioc->lock, flags);
2987
2988 if (!list_empty(&iocg->active_list)) {
2989 struct ioc_now now;
2990
2991 ioc_now(ioc, &now);
2992 propagate_weights(iocg, 0, 0, false, &now);
2993 list_del_init(&iocg->active_list);
2994 }
2995
2996 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
2997 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2998
2999 spin_unlock_irqrestore(&ioc->lock, flags);
3000
3001 hrtimer_cancel(&iocg->waitq_timer);
3002 }
3003 free_percpu(iocg->pcpu_stat);
3004 kfree(iocg);
3005 }
3006
3007 static void ioc_pd_stat(struct blkg_policy_data *pd, struct seq_file *s)
3008 {
3009 struct ioc_gq *iocg = pd_to_iocg(pd);
3010 struct ioc *ioc = iocg->ioc;
3011
3012 if (!ioc->enabled)
3013 return;
3014
3015 if (iocg->level == 0) {
3016 unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3017 ioc->vtime_base_rate * 10000,
3018 VTIME_PER_USEC);
3019 seq_printf(s, " cost.vrate=%u.%02u", vp10k / 100, vp10k % 100);
3020 }
3021
3022 seq_printf(s, " cost.usage=%llu", iocg->last_stat.usage_us);
3023
3024 if (blkcg_debug_stats)
3025 seq_printf(s, " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3026 iocg->last_stat.wait_us,
3027 iocg->last_stat.indebt_us,
3028 iocg->last_stat.indelay_us);
3029 }
3030
3031 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3032 int off)
3033 {
3034 const char *dname = blkg_dev_name(pd->blkg);
3035 struct ioc_gq *iocg = pd_to_iocg(pd);
3036
3037 if (dname && iocg->cfg_weight)
3038 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3039 return 0;
3040 }
3041
3042
3043 static int ioc_weight_show(struct seq_file *sf, void *v)
3044 {
3045 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3046 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3047
3048 seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3049 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3050 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3051 return 0;
3052 }
3053
3054 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3055 size_t nbytes, loff_t off)
3056 {
3057 struct blkcg *blkcg = css_to_blkcg(of_css(of));
3058 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3059 struct blkg_conf_ctx ctx;
3060 struct ioc_now now;
3061 struct ioc_gq *iocg;
3062 u32 v;
3063 int ret;
3064
3065 if (!strchr(buf, ':')) {
3066 struct blkcg_gq *blkg;
3067
3068 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3069 return -EINVAL;
3070
3071 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3072 return -EINVAL;
3073
3074 spin_lock_irq(&blkcg->lock);
3075 iocc->dfl_weight = v * WEIGHT_ONE;
3076 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3077 struct ioc_gq *iocg = blkg_to_iocg(blkg);
3078
3079 if (iocg) {
3080 spin_lock(&iocg->ioc->lock);
3081 ioc_now(iocg->ioc, &now);
3082 weight_updated(iocg, &now);
3083 spin_unlock(&iocg->ioc->lock);
3084 }
3085 }
3086 spin_unlock_irq(&blkcg->lock);
3087
3088 return nbytes;
3089 }
3090
3091 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
3092 if (ret)
3093 return ret;
3094
3095 iocg = blkg_to_iocg(ctx.blkg);
3096
3097 if (!strncmp(ctx.body, "default", 7)) {
3098 v = 0;
3099 } else {
3100 if (!sscanf(ctx.body, "%u", &v))
3101 goto einval;
3102 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3103 goto einval;
3104 }
3105
3106 spin_lock(&iocg->ioc->lock);
3107 iocg->cfg_weight = v * WEIGHT_ONE;
3108 ioc_now(iocg->ioc, &now);
3109 weight_updated(iocg, &now);
3110 spin_unlock(&iocg->ioc->lock);
3111
3112 blkg_conf_finish(&ctx);
3113 return nbytes;
3114
3115 einval:
3116 blkg_conf_finish(&ctx);
3117 return -EINVAL;
3118 }
3119
3120 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3121 int off)
3122 {
3123 const char *dname = blkg_dev_name(pd->blkg);
3124 struct ioc *ioc = pd_to_iocg(pd)->ioc;
3125
3126 if (!dname)
3127 return 0;
3128
3129 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3130 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3131 ioc->params.qos[QOS_RPPM] / 10000,
3132 ioc->params.qos[QOS_RPPM] % 10000 / 100,
3133 ioc->params.qos[QOS_RLAT],
3134 ioc->params.qos[QOS_WPPM] / 10000,
3135 ioc->params.qos[QOS_WPPM] % 10000 / 100,
3136 ioc->params.qos[QOS_WLAT],
3137 ioc->params.qos[QOS_MIN] / 10000,
3138 ioc->params.qos[QOS_MIN] % 10000 / 100,
3139 ioc->params.qos[QOS_MAX] / 10000,
3140 ioc->params.qos[QOS_MAX] % 10000 / 100);
3141 return 0;
3142 }
3143
3144 static int ioc_qos_show(struct seq_file *sf, void *v)
3145 {
3146 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3147
3148 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3149 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3150 return 0;
3151 }
3152
3153 static const match_table_t qos_ctrl_tokens = {
3154 { QOS_ENABLE, "enable=%u" },
3155 { QOS_CTRL, "ctrl=%s" },
3156 { NR_QOS_CTRL_PARAMS, NULL },
3157 };
3158
3159 static const match_table_t qos_tokens = {
3160 { QOS_RPPM, "rpct=%s" },
3161 { QOS_RLAT, "rlat=%u" },
3162 { QOS_WPPM, "wpct=%s" },
3163 { QOS_WLAT, "wlat=%u" },
3164 { QOS_MIN, "min=%s" },
3165 { QOS_MAX, "max=%s" },
3166 { NR_QOS_PARAMS, NULL },
3167 };
3168
3169 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3170 size_t nbytes, loff_t off)
3171 {
3172 struct block_device *bdev;
3173 struct ioc *ioc;
3174 u32 qos[NR_QOS_PARAMS];
3175 bool enable, user;
3176 char *p;
3177 int ret;
3178
3179 bdev = blkcg_conf_open_bdev(&input);
3180 if (IS_ERR(bdev))
3181 return PTR_ERR(bdev);
3182
3183 ioc = q_to_ioc(bdev_get_queue(bdev));
3184 if (!ioc) {
3185 ret = blk_iocost_init(bdev_get_queue(bdev));
3186 if (ret)
3187 goto err;
3188 ioc = q_to_ioc(bdev_get_queue(bdev));
3189 }
3190
3191 spin_lock_irq(&ioc->lock);
3192 memcpy(qos, ioc->params.qos, sizeof(qos));
3193 enable = ioc->enabled;
3194 user = ioc->user_qos_params;
3195 spin_unlock_irq(&ioc->lock);
3196
3197 while ((p = strsep(&input, " \t\n"))) {
3198 substring_t args[MAX_OPT_ARGS];
3199 char buf[32];
3200 int tok;
3201 s64 v;
3202
3203 if (!*p)
3204 continue;
3205
3206 switch (match_token(p, qos_ctrl_tokens, args)) {
3207 case QOS_ENABLE:
3208 match_u64(&args[0], &v);
3209 enable = v;
3210 continue;
3211 case QOS_CTRL:
3212 match_strlcpy(buf, &args[0], sizeof(buf));
3213 if (!strcmp(buf, "auto"))
3214 user = false;
3215 else if (!strcmp(buf, "user"))
3216 user = true;
3217 else
3218 goto einval;
3219 continue;
3220 }
3221
3222 tok = match_token(p, qos_tokens, args);
3223 switch (tok) {
3224 case QOS_RPPM:
3225 case QOS_WPPM:
3226 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3227 sizeof(buf))
3228 goto einval;
3229 if (cgroup_parse_float(buf, 2, &v))
3230 goto einval;
3231 if (v < 0 || v > 10000)
3232 goto einval;
3233 qos[tok] = v * 100;
3234 break;
3235 case QOS_RLAT:
3236 case QOS_WLAT:
3237 if (match_u64(&args[0], &v))
3238 goto einval;
3239 qos[tok] = v;
3240 break;
3241 case QOS_MIN:
3242 case QOS_MAX:
3243 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3244 sizeof(buf))
3245 goto einval;
3246 if (cgroup_parse_float(buf, 2, &v))
3247 goto einval;
3248 if (v < 0)
3249 goto einval;
3250 qos[tok] = clamp_t(s64, v * 100,
3251 VRATE_MIN_PPM, VRATE_MAX_PPM);
3252 break;
3253 default:
3254 goto einval;
3255 }
3256 user = true;
3257 }
3258
3259 if (qos[QOS_MIN] > qos[QOS_MAX])
3260 goto einval;
3261
3262 spin_lock_irq(&ioc->lock);
3263
3264 if (enable) {
3265 blk_stat_enable_accounting(ioc->rqos.q);
3266 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3267 ioc->enabled = true;
3268 } else {
3269 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3270 ioc->enabled = false;
3271 }
3272
3273 if (user) {
3274 memcpy(ioc->params.qos, qos, sizeof(qos));
3275 ioc->user_qos_params = true;
3276 } else {
3277 ioc->user_qos_params = false;
3278 }
3279
3280 ioc_refresh_params(ioc, true);
3281 spin_unlock_irq(&ioc->lock);
3282
3283 blkdev_put_no_open(bdev);
3284 return nbytes;
3285 einval:
3286 ret = -EINVAL;
3287 err:
3288 blkdev_put_no_open(bdev);
3289 return ret;
3290 }
3291
3292 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3293 struct blkg_policy_data *pd, int off)
3294 {
3295 const char *dname = blkg_dev_name(pd->blkg);
3296 struct ioc *ioc = pd_to_iocg(pd)->ioc;
3297 u64 *u = ioc->params.i_lcoefs;
3298
3299 if (!dname)
3300 return 0;
3301
3302 seq_printf(sf, "%s ctrl=%s model=linear "
3303 "rbps=%llu rseqiops=%llu rrandiops=%llu "
3304 "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3305 dname, ioc->user_cost_model ? "user" : "auto",
3306 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3307 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3308 return 0;
3309 }
3310
3311 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3312 {
3313 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3314
3315 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3316 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3317 return 0;
3318 }
3319
3320 static const match_table_t cost_ctrl_tokens = {
3321 { COST_CTRL, "ctrl=%s" },
3322 { COST_MODEL, "model=%s" },
3323 { NR_COST_CTRL_PARAMS, NULL },
3324 };
3325
3326 static const match_table_t i_lcoef_tokens = {
3327 { I_LCOEF_RBPS, "rbps=%u" },
3328 { I_LCOEF_RSEQIOPS, "rseqiops=%u" },
3329 { I_LCOEF_RRANDIOPS, "rrandiops=%u" },
3330 { I_LCOEF_WBPS, "wbps=%u" },
3331 { I_LCOEF_WSEQIOPS, "wseqiops=%u" },
3332 { I_LCOEF_WRANDIOPS, "wrandiops=%u" },
3333 { NR_I_LCOEFS, NULL },
3334 };
3335
3336 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3337 size_t nbytes, loff_t off)
3338 {
3339 struct block_device *bdev;
3340 struct ioc *ioc;
3341 u64 u[NR_I_LCOEFS];
3342 bool user;
3343 char *p;
3344 int ret;
3345
3346 bdev = blkcg_conf_open_bdev(&input);
3347 if (IS_ERR(bdev))
3348 return PTR_ERR(bdev);
3349
3350 ioc = q_to_ioc(bdev_get_queue(bdev));
3351 if (!ioc) {
3352 ret = blk_iocost_init(bdev_get_queue(bdev));
3353 if (ret)
3354 goto err;
3355 ioc = q_to_ioc(bdev_get_queue(bdev));
3356 }
3357
3358 spin_lock_irq(&ioc->lock);
3359 memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3360 user = ioc->user_cost_model;
3361 spin_unlock_irq(&ioc->lock);
3362
3363 while ((p = strsep(&input, " \t\n"))) {
3364 substring_t args[MAX_OPT_ARGS];
3365 char buf[32];
3366 int tok;
3367 u64 v;
3368
3369 if (!*p)
3370 continue;
3371
3372 switch (match_token(p, cost_ctrl_tokens, args)) {
3373 case COST_CTRL:
3374 match_strlcpy(buf, &args[0], sizeof(buf));
3375 if (!strcmp(buf, "auto"))
3376 user = false;
3377 else if (!strcmp(buf, "user"))
3378 user = true;
3379 else
3380 goto einval;
3381 continue;
3382 case COST_MODEL:
3383 match_strlcpy(buf, &args[0], sizeof(buf));
3384 if (strcmp(buf, "linear"))
3385 goto einval;
3386 continue;
3387 }
3388
3389 tok = match_token(p, i_lcoef_tokens, args);
3390 if (tok == NR_I_LCOEFS)
3391 goto einval;
3392 if (match_u64(&args[0], &v))
3393 goto einval;
3394 u[tok] = v;
3395 user = true;
3396 }
3397
3398 spin_lock_irq(&ioc->lock);
3399 if (user) {
3400 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3401 ioc->user_cost_model = true;
3402 } else {
3403 ioc->user_cost_model = false;
3404 }
3405 ioc_refresh_params(ioc, true);
3406 spin_unlock_irq(&ioc->lock);
3407
3408 blkdev_put_no_open(bdev);
3409 return nbytes;
3410
3411 einval:
3412 ret = -EINVAL;
3413 err:
3414 blkdev_put_no_open(bdev);
3415 return ret;
3416 }
3417
3418 static struct cftype ioc_files[] = {
3419 {
3420 .name = "weight",
3421 .flags = CFTYPE_NOT_ON_ROOT,
3422 .seq_show = ioc_weight_show,
3423 .write = ioc_weight_write,
3424 },
3425 {
3426 .name = "cost.qos",
3427 .flags = CFTYPE_ONLY_ON_ROOT,
3428 .seq_show = ioc_qos_show,
3429 .write = ioc_qos_write,
3430 },
3431 {
3432 .name = "cost.model",
3433 .flags = CFTYPE_ONLY_ON_ROOT,
3434 .seq_show = ioc_cost_model_show,
3435 .write = ioc_cost_model_write,
3436 },
3437 {}
3438 };
3439
3440 static struct blkcg_policy blkcg_policy_iocost = {
3441 .dfl_cftypes = ioc_files,
3442 .cpd_alloc_fn = ioc_cpd_alloc,
3443 .cpd_free_fn = ioc_cpd_free,
3444 .pd_alloc_fn = ioc_pd_alloc,
3445 .pd_init_fn = ioc_pd_init,
3446 .pd_free_fn = ioc_pd_free,
3447 .pd_stat_fn = ioc_pd_stat,
3448 };
3449
3450 static int __init ioc_init(void)
3451 {
3452 return blkcg_policy_register(&blkcg_policy_iocost);
3453 }
3454
3455 static void __exit ioc_exit(void)
3456 {
3457 blkcg_policy_unregister(&blkcg_policy_iocost);
3458 }
3459
3460 module_init(ioc_init);
3461 module_exit(ioc_exit);