]> git.ipfire.org Git - people/ms/linux.git/blob - block/blk-map.c
Merge tag 'memblock-v5.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rppt...
[people/ms/linux.git] / block / blk-map.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to mapping data to requests
4 */
5 #include <linux/kernel.h>
6 #include <linux/sched/task_stack.h>
7 #include <linux/module.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/uio.h>
11
12 #include "blk.h"
13
14 struct bio_map_data {
15 bool is_our_pages : 1;
16 bool is_null_mapped : 1;
17 struct iov_iter iter;
18 struct iovec iov[];
19 };
20
21 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
22 gfp_t gfp_mask)
23 {
24 struct bio_map_data *bmd;
25
26 if (data->nr_segs > UIO_MAXIOV)
27 return NULL;
28
29 bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
30 if (!bmd)
31 return NULL;
32 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
33 bmd->iter = *data;
34 bmd->iter.iov = bmd->iov;
35 return bmd;
36 }
37
38 /**
39 * bio_copy_from_iter - copy all pages from iov_iter to bio
40 * @bio: The &struct bio which describes the I/O as destination
41 * @iter: iov_iter as source
42 *
43 * Copy all pages from iov_iter to bio.
44 * Returns 0 on success, or error on failure.
45 */
46 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
47 {
48 struct bio_vec *bvec;
49 struct bvec_iter_all iter_all;
50
51 bio_for_each_segment_all(bvec, bio, iter_all) {
52 ssize_t ret;
53
54 ret = copy_page_from_iter(bvec->bv_page,
55 bvec->bv_offset,
56 bvec->bv_len,
57 iter);
58
59 if (!iov_iter_count(iter))
60 break;
61
62 if (ret < bvec->bv_len)
63 return -EFAULT;
64 }
65
66 return 0;
67 }
68
69 /**
70 * bio_copy_to_iter - copy all pages from bio to iov_iter
71 * @bio: The &struct bio which describes the I/O as source
72 * @iter: iov_iter as destination
73 *
74 * Copy all pages from bio to iov_iter.
75 * Returns 0 on success, or error on failure.
76 */
77 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
78 {
79 struct bio_vec *bvec;
80 struct bvec_iter_all iter_all;
81
82 bio_for_each_segment_all(bvec, bio, iter_all) {
83 ssize_t ret;
84
85 ret = copy_page_to_iter(bvec->bv_page,
86 bvec->bv_offset,
87 bvec->bv_len,
88 &iter);
89
90 if (!iov_iter_count(&iter))
91 break;
92
93 if (ret < bvec->bv_len)
94 return -EFAULT;
95 }
96
97 return 0;
98 }
99
100 /**
101 * bio_uncopy_user - finish previously mapped bio
102 * @bio: bio being terminated
103 *
104 * Free pages allocated from bio_copy_user_iov() and write back data
105 * to user space in case of a read.
106 */
107 static int bio_uncopy_user(struct bio *bio)
108 {
109 struct bio_map_data *bmd = bio->bi_private;
110 int ret = 0;
111
112 if (!bmd->is_null_mapped) {
113 /*
114 * if we're in a workqueue, the request is orphaned, so
115 * don't copy into a random user address space, just free
116 * and return -EINTR so user space doesn't expect any data.
117 */
118 if (!current->mm)
119 ret = -EINTR;
120 else if (bio_data_dir(bio) == READ)
121 ret = bio_copy_to_iter(bio, bmd->iter);
122 if (bmd->is_our_pages)
123 bio_free_pages(bio);
124 }
125 kfree(bmd);
126 return ret;
127 }
128
129 static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data,
130 struct iov_iter *iter, gfp_t gfp_mask)
131 {
132 struct bio_map_data *bmd;
133 struct page *page;
134 struct bio *bio;
135 int i = 0, ret;
136 int nr_pages;
137 unsigned int len = iter->count;
138 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
139
140 bmd = bio_alloc_map_data(iter, gfp_mask);
141 if (!bmd)
142 return -ENOMEM;
143
144 /*
145 * We need to do a deep copy of the iov_iter including the iovecs.
146 * The caller provided iov might point to an on-stack or otherwise
147 * shortlived one.
148 */
149 bmd->is_our_pages = !map_data;
150 bmd->is_null_mapped = (map_data && map_data->null_mapped);
151
152 nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE));
153
154 ret = -ENOMEM;
155 bio = bio_kmalloc(nr_pages, gfp_mask);
156 if (!bio)
157 goto out_bmd;
158 bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, req_op(rq));
159
160 if (map_data) {
161 nr_pages = 1 << map_data->page_order;
162 i = map_data->offset / PAGE_SIZE;
163 }
164 while (len) {
165 unsigned int bytes = PAGE_SIZE;
166
167 bytes -= offset;
168
169 if (bytes > len)
170 bytes = len;
171
172 if (map_data) {
173 if (i == map_data->nr_entries * nr_pages) {
174 ret = -ENOMEM;
175 goto cleanup;
176 }
177
178 page = map_data->pages[i / nr_pages];
179 page += (i % nr_pages);
180
181 i++;
182 } else {
183 page = alloc_page(GFP_NOIO | gfp_mask);
184 if (!page) {
185 ret = -ENOMEM;
186 goto cleanup;
187 }
188 }
189
190 if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) {
191 if (!map_data)
192 __free_page(page);
193 break;
194 }
195
196 len -= bytes;
197 offset = 0;
198 }
199
200 if (map_data)
201 map_data->offset += bio->bi_iter.bi_size;
202
203 /*
204 * success
205 */
206 if ((iov_iter_rw(iter) == WRITE &&
207 (!map_data || !map_data->null_mapped)) ||
208 (map_data && map_data->from_user)) {
209 ret = bio_copy_from_iter(bio, iter);
210 if (ret)
211 goto cleanup;
212 } else {
213 if (bmd->is_our_pages)
214 zero_fill_bio(bio);
215 iov_iter_advance(iter, bio->bi_iter.bi_size);
216 }
217
218 bio->bi_private = bmd;
219
220 ret = blk_rq_append_bio(rq, bio);
221 if (ret)
222 goto cleanup;
223 return 0;
224 cleanup:
225 if (!map_data)
226 bio_free_pages(bio);
227 bio_uninit(bio);
228 kfree(bio);
229 out_bmd:
230 kfree(bmd);
231 return ret;
232 }
233
234 static int bio_map_user_iov(struct request *rq, struct iov_iter *iter,
235 gfp_t gfp_mask)
236 {
237 unsigned int max_sectors = queue_max_hw_sectors(rq->q);
238 unsigned int nr_vecs = iov_iter_npages(iter, BIO_MAX_VECS);
239 struct bio *bio;
240 int ret;
241 int j;
242
243 if (!iov_iter_count(iter))
244 return -EINVAL;
245
246 bio = bio_kmalloc(nr_vecs, gfp_mask);
247 if (!bio)
248 return -ENOMEM;
249 bio_init(bio, NULL, bio->bi_inline_vecs, nr_vecs, req_op(rq));
250
251 while (iov_iter_count(iter)) {
252 struct page **pages;
253 ssize_t bytes;
254 size_t offs, added = 0;
255 int npages;
256
257 bytes = iov_iter_get_pages_alloc2(iter, &pages, LONG_MAX, &offs);
258 if (unlikely(bytes <= 0)) {
259 ret = bytes ? bytes : -EFAULT;
260 goto out_unmap;
261 }
262
263 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
264
265 if (unlikely(offs & queue_dma_alignment(rq->q)))
266 j = 0;
267 else {
268 for (j = 0; j < npages; j++) {
269 struct page *page = pages[j];
270 unsigned int n = PAGE_SIZE - offs;
271 bool same_page = false;
272
273 if (n > bytes)
274 n = bytes;
275
276 if (!bio_add_hw_page(rq->q, bio, page, n, offs,
277 max_sectors, &same_page)) {
278 if (same_page)
279 put_page(page);
280 break;
281 }
282
283 added += n;
284 bytes -= n;
285 offs = 0;
286 }
287 }
288 /*
289 * release the pages we didn't map into the bio, if any
290 */
291 while (j < npages)
292 put_page(pages[j++]);
293 kvfree(pages);
294 /* couldn't stuff something into bio? */
295 if (bytes) {
296 iov_iter_revert(iter, bytes);
297 break;
298 }
299 }
300
301 ret = blk_rq_append_bio(rq, bio);
302 if (ret)
303 goto out_unmap;
304 return 0;
305
306 out_unmap:
307 bio_release_pages(bio, false);
308 bio_uninit(bio);
309 kfree(bio);
310 return ret;
311 }
312
313 static void bio_invalidate_vmalloc_pages(struct bio *bio)
314 {
315 #ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
316 if (bio->bi_private && !op_is_write(bio_op(bio))) {
317 unsigned long i, len = 0;
318
319 for (i = 0; i < bio->bi_vcnt; i++)
320 len += bio->bi_io_vec[i].bv_len;
321 invalidate_kernel_vmap_range(bio->bi_private, len);
322 }
323 #endif
324 }
325
326 static void bio_map_kern_endio(struct bio *bio)
327 {
328 bio_invalidate_vmalloc_pages(bio);
329 bio_uninit(bio);
330 kfree(bio);
331 }
332
333 /**
334 * bio_map_kern - map kernel address into bio
335 * @q: the struct request_queue for the bio
336 * @data: pointer to buffer to map
337 * @len: length in bytes
338 * @gfp_mask: allocation flags for bio allocation
339 *
340 * Map the kernel address into a bio suitable for io to a block
341 * device. Returns an error pointer in case of error.
342 */
343 static struct bio *bio_map_kern(struct request_queue *q, void *data,
344 unsigned int len, gfp_t gfp_mask)
345 {
346 unsigned long kaddr = (unsigned long)data;
347 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
348 unsigned long start = kaddr >> PAGE_SHIFT;
349 const int nr_pages = end - start;
350 bool is_vmalloc = is_vmalloc_addr(data);
351 struct page *page;
352 int offset, i;
353 struct bio *bio;
354
355 bio = bio_kmalloc(nr_pages, gfp_mask);
356 if (!bio)
357 return ERR_PTR(-ENOMEM);
358 bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
359
360 if (is_vmalloc) {
361 flush_kernel_vmap_range(data, len);
362 bio->bi_private = data;
363 }
364
365 offset = offset_in_page(kaddr);
366 for (i = 0; i < nr_pages; i++) {
367 unsigned int bytes = PAGE_SIZE - offset;
368
369 if (len <= 0)
370 break;
371
372 if (bytes > len)
373 bytes = len;
374
375 if (!is_vmalloc)
376 page = virt_to_page(data);
377 else
378 page = vmalloc_to_page(data);
379 if (bio_add_pc_page(q, bio, page, bytes,
380 offset) < bytes) {
381 /* we don't support partial mappings */
382 bio_uninit(bio);
383 kfree(bio);
384 return ERR_PTR(-EINVAL);
385 }
386
387 data += bytes;
388 len -= bytes;
389 offset = 0;
390 }
391
392 bio->bi_end_io = bio_map_kern_endio;
393 return bio;
394 }
395
396 static void bio_copy_kern_endio(struct bio *bio)
397 {
398 bio_free_pages(bio);
399 bio_uninit(bio);
400 kfree(bio);
401 }
402
403 static void bio_copy_kern_endio_read(struct bio *bio)
404 {
405 char *p = bio->bi_private;
406 struct bio_vec *bvec;
407 struct bvec_iter_all iter_all;
408
409 bio_for_each_segment_all(bvec, bio, iter_all) {
410 memcpy_from_bvec(p, bvec);
411 p += bvec->bv_len;
412 }
413
414 bio_copy_kern_endio(bio);
415 }
416
417 /**
418 * bio_copy_kern - copy kernel address into bio
419 * @q: the struct request_queue for the bio
420 * @data: pointer to buffer to copy
421 * @len: length in bytes
422 * @gfp_mask: allocation flags for bio and page allocation
423 * @reading: data direction is READ
424 *
425 * copy the kernel address into a bio suitable for io to a block
426 * device. Returns an error pointer in case of error.
427 */
428 static struct bio *bio_copy_kern(struct request_queue *q, void *data,
429 unsigned int len, gfp_t gfp_mask, int reading)
430 {
431 unsigned long kaddr = (unsigned long)data;
432 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
433 unsigned long start = kaddr >> PAGE_SHIFT;
434 struct bio *bio;
435 void *p = data;
436 int nr_pages = 0;
437
438 /*
439 * Overflow, abort
440 */
441 if (end < start)
442 return ERR_PTR(-EINVAL);
443
444 nr_pages = end - start;
445 bio = bio_kmalloc(nr_pages, gfp_mask);
446 if (!bio)
447 return ERR_PTR(-ENOMEM);
448 bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
449
450 while (len) {
451 struct page *page;
452 unsigned int bytes = PAGE_SIZE;
453
454 if (bytes > len)
455 bytes = len;
456
457 page = alloc_page(GFP_NOIO | __GFP_ZERO | gfp_mask);
458 if (!page)
459 goto cleanup;
460
461 if (!reading)
462 memcpy(page_address(page), p, bytes);
463
464 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
465 break;
466
467 len -= bytes;
468 p += bytes;
469 }
470
471 if (reading) {
472 bio->bi_end_io = bio_copy_kern_endio_read;
473 bio->bi_private = data;
474 } else {
475 bio->bi_end_io = bio_copy_kern_endio;
476 }
477
478 return bio;
479
480 cleanup:
481 bio_free_pages(bio);
482 bio_uninit(bio);
483 kfree(bio);
484 return ERR_PTR(-ENOMEM);
485 }
486
487 /*
488 * Append a bio to a passthrough request. Only works if the bio can be merged
489 * into the request based on the driver constraints.
490 */
491 int blk_rq_append_bio(struct request *rq, struct bio *bio)
492 {
493 struct bvec_iter iter;
494 struct bio_vec bv;
495 unsigned int nr_segs = 0;
496
497 bio_for_each_bvec(bv, bio, iter)
498 nr_segs++;
499
500 if (!rq->bio) {
501 blk_rq_bio_prep(rq, bio, nr_segs);
502 } else {
503 if (!ll_back_merge_fn(rq, bio, nr_segs))
504 return -EINVAL;
505 rq->biotail->bi_next = bio;
506 rq->biotail = bio;
507 rq->__data_len += (bio)->bi_iter.bi_size;
508 bio_crypt_free_ctx(bio);
509 }
510
511 return 0;
512 }
513 EXPORT_SYMBOL(blk_rq_append_bio);
514
515 /**
516 * blk_rq_map_user_iov - map user data to a request, for passthrough requests
517 * @q: request queue where request should be inserted
518 * @rq: request to map data to
519 * @map_data: pointer to the rq_map_data holding pages (if necessary)
520 * @iter: iovec iterator
521 * @gfp_mask: memory allocation flags
522 *
523 * Description:
524 * Data will be mapped directly for zero copy I/O, if possible. Otherwise
525 * a kernel bounce buffer is used.
526 *
527 * A matching blk_rq_unmap_user() must be issued at the end of I/O, while
528 * still in process context.
529 */
530 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
531 struct rq_map_data *map_data,
532 const struct iov_iter *iter, gfp_t gfp_mask)
533 {
534 bool copy = false;
535 unsigned long align = q->dma_pad_mask | queue_dma_alignment(q);
536 struct bio *bio = NULL;
537 struct iov_iter i;
538 int ret = -EINVAL;
539
540 if (!iter_is_iovec(iter))
541 goto fail;
542
543 if (map_data)
544 copy = true;
545 else if (blk_queue_may_bounce(q))
546 copy = true;
547 else if (iov_iter_alignment(iter) & align)
548 copy = true;
549 else if (queue_virt_boundary(q))
550 copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);
551
552 i = *iter;
553 do {
554 if (copy)
555 ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask);
556 else
557 ret = bio_map_user_iov(rq, &i, gfp_mask);
558 if (ret)
559 goto unmap_rq;
560 if (!bio)
561 bio = rq->bio;
562 } while (iov_iter_count(&i));
563
564 return 0;
565
566 unmap_rq:
567 blk_rq_unmap_user(bio);
568 fail:
569 rq->bio = NULL;
570 return ret;
571 }
572 EXPORT_SYMBOL(blk_rq_map_user_iov);
573
574 int blk_rq_map_user(struct request_queue *q, struct request *rq,
575 struct rq_map_data *map_data, void __user *ubuf,
576 unsigned long len, gfp_t gfp_mask)
577 {
578 struct iovec iov;
579 struct iov_iter i;
580 int ret = import_single_range(rq_data_dir(rq), ubuf, len, &iov, &i);
581
582 if (unlikely(ret < 0))
583 return ret;
584
585 return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
586 }
587 EXPORT_SYMBOL(blk_rq_map_user);
588
589 /**
590 * blk_rq_unmap_user - unmap a request with user data
591 * @bio: start of bio list
592 *
593 * Description:
594 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
595 * supply the original rq->bio from the blk_rq_map_user() return, since
596 * the I/O completion may have changed rq->bio.
597 */
598 int blk_rq_unmap_user(struct bio *bio)
599 {
600 struct bio *next_bio;
601 int ret = 0, ret2;
602
603 while (bio) {
604 if (bio->bi_private) {
605 ret2 = bio_uncopy_user(bio);
606 if (ret2 && !ret)
607 ret = ret2;
608 } else {
609 bio_release_pages(bio, bio_data_dir(bio) == READ);
610 }
611
612 next_bio = bio;
613 bio = bio->bi_next;
614 bio_uninit(next_bio);
615 kfree(next_bio);
616 }
617
618 return ret;
619 }
620 EXPORT_SYMBOL(blk_rq_unmap_user);
621
622 /**
623 * blk_rq_map_kern - map kernel data to a request, for passthrough requests
624 * @q: request queue where request should be inserted
625 * @rq: request to fill
626 * @kbuf: the kernel buffer
627 * @len: length of user data
628 * @gfp_mask: memory allocation flags
629 *
630 * Description:
631 * Data will be mapped directly if possible. Otherwise a bounce
632 * buffer is used. Can be called multiple times to append multiple
633 * buffers.
634 */
635 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
636 unsigned int len, gfp_t gfp_mask)
637 {
638 int reading = rq_data_dir(rq) == READ;
639 unsigned long addr = (unsigned long) kbuf;
640 struct bio *bio;
641 int ret;
642
643 if (len > (queue_max_hw_sectors(q) << 9))
644 return -EINVAL;
645 if (!len || !kbuf)
646 return -EINVAL;
647
648 if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf) ||
649 blk_queue_may_bounce(q))
650 bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading);
651 else
652 bio = bio_map_kern(q, kbuf, len, gfp_mask);
653
654 if (IS_ERR(bio))
655 return PTR_ERR(bio);
656
657 bio->bi_opf &= ~REQ_OP_MASK;
658 bio->bi_opf |= req_op(rq);
659
660 ret = blk_rq_append_bio(rq, bio);
661 if (unlikely(ret)) {
662 bio_uninit(bio);
663 kfree(bio);
664 }
665 return ret;
666 }
667 EXPORT_SYMBOL(blk_rq_map_kern);