]> git.ipfire.org Git - people/ms/linux.git/blob - crypto/Kconfig
Merge tag 'armsoc-fixes-nc' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[people/ms/linux.git] / crypto / Kconfig
1 #
2 # Generic algorithms support
3 #
4 config XOR_BLOCKS
5 tristate
6
7 #
8 # async_tx api: hardware offloaded memory transfer/transform support
9 #
10 source "crypto/async_tx/Kconfig"
11
12 #
13 # Cryptographic API Configuration
14 #
15 menuconfig CRYPTO
16 tristate "Cryptographic API"
17 help
18 This option provides the core Cryptographic API.
19
20 if CRYPTO
21
22 comment "Crypto core or helper"
23
24 config CRYPTO_FIPS
25 bool "FIPS 200 compliance"
26 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27 depends on MODULE_SIG
28 help
29 This options enables the fips boot option which is
30 required if you want to system to operate in a FIPS 200
31 certification. You should say no unless you know what
32 this is.
33
34 config CRYPTO_ALGAPI
35 tristate
36 select CRYPTO_ALGAPI2
37 help
38 This option provides the API for cryptographic algorithms.
39
40 config CRYPTO_ALGAPI2
41 tristate
42
43 config CRYPTO_AEAD
44 tristate
45 select CRYPTO_AEAD2
46 select CRYPTO_ALGAPI
47
48 config CRYPTO_AEAD2
49 tristate
50 select CRYPTO_ALGAPI2
51 select CRYPTO_NULL2
52 select CRYPTO_RNG2
53
54 config CRYPTO_BLKCIPHER
55 tristate
56 select CRYPTO_BLKCIPHER2
57 select CRYPTO_ALGAPI
58
59 config CRYPTO_BLKCIPHER2
60 tristate
61 select CRYPTO_ALGAPI2
62 select CRYPTO_RNG2
63 select CRYPTO_WORKQUEUE
64
65 config CRYPTO_HASH
66 tristate
67 select CRYPTO_HASH2
68 select CRYPTO_ALGAPI
69
70 config CRYPTO_HASH2
71 tristate
72 select CRYPTO_ALGAPI2
73
74 config CRYPTO_RNG
75 tristate
76 select CRYPTO_RNG2
77 select CRYPTO_ALGAPI
78
79 config CRYPTO_RNG2
80 tristate
81 select CRYPTO_ALGAPI2
82
83 config CRYPTO_RNG_DEFAULT
84 tristate
85 select CRYPTO_DRBG_MENU
86
87 config CRYPTO_PCOMP
88 tristate
89 select CRYPTO_PCOMP2
90 select CRYPTO_ALGAPI
91
92 config CRYPTO_PCOMP2
93 tristate
94 select CRYPTO_ALGAPI2
95
96 config CRYPTO_AKCIPHER2
97 tristate
98 select CRYPTO_ALGAPI2
99
100 config CRYPTO_AKCIPHER
101 tristate
102 select CRYPTO_AKCIPHER2
103 select CRYPTO_ALGAPI
104
105 config CRYPTO_RSA
106 tristate "RSA algorithm"
107 select CRYPTO_AKCIPHER
108 select MPILIB
109 select ASN1
110 help
111 Generic implementation of the RSA public key algorithm.
112
113 config CRYPTO_MANAGER
114 tristate "Cryptographic algorithm manager"
115 select CRYPTO_MANAGER2
116 help
117 Create default cryptographic template instantiations such as
118 cbc(aes).
119
120 config CRYPTO_MANAGER2
121 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
122 select CRYPTO_AEAD2
123 select CRYPTO_HASH2
124 select CRYPTO_BLKCIPHER2
125 select CRYPTO_PCOMP2
126 select CRYPTO_AKCIPHER2
127
128 config CRYPTO_USER
129 tristate "Userspace cryptographic algorithm configuration"
130 depends on NET
131 select CRYPTO_MANAGER
132 help
133 Userspace configuration for cryptographic instantiations such as
134 cbc(aes).
135
136 config CRYPTO_MANAGER_DISABLE_TESTS
137 bool "Disable run-time self tests"
138 default y
139 depends on CRYPTO_MANAGER2
140 help
141 Disable run-time self tests that normally take place at
142 algorithm registration.
143
144 config CRYPTO_GF128MUL
145 tristate "GF(2^128) multiplication functions"
146 help
147 Efficient table driven implementation of multiplications in the
148 field GF(2^128). This is needed by some cypher modes. This
149 option will be selected automatically if you select such a
150 cipher mode. Only select this option by hand if you expect to load
151 an external module that requires these functions.
152
153 config CRYPTO_NULL
154 tristate "Null algorithms"
155 select CRYPTO_NULL2
156 help
157 These are 'Null' algorithms, used by IPsec, which do nothing.
158
159 config CRYPTO_NULL2
160 tristate
161 select CRYPTO_ALGAPI2
162 select CRYPTO_BLKCIPHER2
163 select CRYPTO_HASH2
164
165 config CRYPTO_PCRYPT
166 tristate "Parallel crypto engine"
167 depends on SMP
168 select PADATA
169 select CRYPTO_MANAGER
170 select CRYPTO_AEAD
171 help
172 This converts an arbitrary crypto algorithm into a parallel
173 algorithm that executes in kernel threads.
174
175 config CRYPTO_WORKQUEUE
176 tristate
177
178 config CRYPTO_CRYPTD
179 tristate "Software async crypto daemon"
180 select CRYPTO_BLKCIPHER
181 select CRYPTO_HASH
182 select CRYPTO_MANAGER
183 select CRYPTO_WORKQUEUE
184 help
185 This is a generic software asynchronous crypto daemon that
186 converts an arbitrary synchronous software crypto algorithm
187 into an asynchronous algorithm that executes in a kernel thread.
188
189 config CRYPTO_MCRYPTD
190 tristate "Software async multi-buffer crypto daemon"
191 select CRYPTO_BLKCIPHER
192 select CRYPTO_HASH
193 select CRYPTO_MANAGER
194 select CRYPTO_WORKQUEUE
195 help
196 This is a generic software asynchronous crypto daemon that
197 provides the kernel thread to assist multi-buffer crypto
198 algorithms for submitting jobs and flushing jobs in multi-buffer
199 crypto algorithms. Multi-buffer crypto algorithms are executed
200 in the context of this kernel thread and drivers can post
201 their crypto request asynchronously to be processed by this daemon.
202
203 config CRYPTO_AUTHENC
204 tristate "Authenc support"
205 select CRYPTO_AEAD
206 select CRYPTO_BLKCIPHER
207 select CRYPTO_MANAGER
208 select CRYPTO_HASH
209 select CRYPTO_NULL
210 help
211 Authenc: Combined mode wrapper for IPsec.
212 This is required for IPSec.
213
214 config CRYPTO_TEST
215 tristate "Testing module"
216 depends on m
217 select CRYPTO_MANAGER
218 help
219 Quick & dirty crypto test module.
220
221 config CRYPTO_ABLK_HELPER
222 tristate
223 select CRYPTO_CRYPTD
224
225 config CRYPTO_GLUE_HELPER_X86
226 tristate
227 depends on X86
228 select CRYPTO_ALGAPI
229
230 comment "Authenticated Encryption with Associated Data"
231
232 config CRYPTO_CCM
233 tristate "CCM support"
234 select CRYPTO_CTR
235 select CRYPTO_AEAD
236 help
237 Support for Counter with CBC MAC. Required for IPsec.
238
239 config CRYPTO_GCM
240 tristate "GCM/GMAC support"
241 select CRYPTO_CTR
242 select CRYPTO_AEAD
243 select CRYPTO_GHASH
244 select CRYPTO_NULL
245 help
246 Support for Galois/Counter Mode (GCM) and Galois Message
247 Authentication Code (GMAC). Required for IPSec.
248
249 config CRYPTO_CHACHA20POLY1305
250 tristate "ChaCha20-Poly1305 AEAD support"
251 select CRYPTO_CHACHA20
252 select CRYPTO_POLY1305
253 select CRYPTO_AEAD
254 help
255 ChaCha20-Poly1305 AEAD support, RFC7539.
256
257 Support for the AEAD wrapper using the ChaCha20 stream cipher combined
258 with the Poly1305 authenticator. It is defined in RFC7539 for use in
259 IETF protocols.
260
261 config CRYPTO_SEQIV
262 tristate "Sequence Number IV Generator"
263 select CRYPTO_AEAD
264 select CRYPTO_BLKCIPHER
265 select CRYPTO_NULL
266 select CRYPTO_RNG_DEFAULT
267 help
268 This IV generator generates an IV based on a sequence number by
269 xoring it with a salt. This algorithm is mainly useful for CTR
270
271 config CRYPTO_ECHAINIV
272 tristate "Encrypted Chain IV Generator"
273 select CRYPTO_AEAD
274 select CRYPTO_NULL
275 select CRYPTO_RNG_DEFAULT
276 default m
277 help
278 This IV generator generates an IV based on the encryption of
279 a sequence number xored with a salt. This is the default
280 algorithm for CBC.
281
282 comment "Block modes"
283
284 config CRYPTO_CBC
285 tristate "CBC support"
286 select CRYPTO_BLKCIPHER
287 select CRYPTO_MANAGER
288 help
289 CBC: Cipher Block Chaining mode
290 This block cipher algorithm is required for IPSec.
291
292 config CRYPTO_CTR
293 tristate "CTR support"
294 select CRYPTO_BLKCIPHER
295 select CRYPTO_SEQIV
296 select CRYPTO_MANAGER
297 help
298 CTR: Counter mode
299 This block cipher algorithm is required for IPSec.
300
301 config CRYPTO_CTS
302 tristate "CTS support"
303 select CRYPTO_BLKCIPHER
304 help
305 CTS: Cipher Text Stealing
306 This is the Cipher Text Stealing mode as described by
307 Section 8 of rfc2040 and referenced by rfc3962.
308 (rfc3962 includes errata information in its Appendix A)
309 This mode is required for Kerberos gss mechanism support
310 for AES encryption.
311
312 config CRYPTO_ECB
313 tristate "ECB support"
314 select CRYPTO_BLKCIPHER
315 select CRYPTO_MANAGER
316 help
317 ECB: Electronic CodeBook mode
318 This is the simplest block cipher algorithm. It simply encrypts
319 the input block by block.
320
321 config CRYPTO_LRW
322 tristate "LRW support"
323 select CRYPTO_BLKCIPHER
324 select CRYPTO_MANAGER
325 select CRYPTO_GF128MUL
326 help
327 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
328 narrow block cipher mode for dm-crypt. Use it with cipher
329 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
330 The first 128, 192 or 256 bits in the key are used for AES and the
331 rest is used to tie each cipher block to its logical position.
332
333 config CRYPTO_PCBC
334 tristate "PCBC support"
335 select CRYPTO_BLKCIPHER
336 select CRYPTO_MANAGER
337 help
338 PCBC: Propagating Cipher Block Chaining mode
339 This block cipher algorithm is required for RxRPC.
340
341 config CRYPTO_XTS
342 tristate "XTS support"
343 select CRYPTO_BLKCIPHER
344 select CRYPTO_MANAGER
345 select CRYPTO_GF128MUL
346 help
347 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
348 key size 256, 384 or 512 bits. This implementation currently
349 can't handle a sectorsize which is not a multiple of 16 bytes.
350
351 config CRYPTO_KEYWRAP
352 tristate "Key wrapping support"
353 select CRYPTO_BLKCIPHER
354 help
355 Support for key wrapping (NIST SP800-38F / RFC3394) without
356 padding.
357
358 comment "Hash modes"
359
360 config CRYPTO_CMAC
361 tristate "CMAC support"
362 select CRYPTO_HASH
363 select CRYPTO_MANAGER
364 help
365 Cipher-based Message Authentication Code (CMAC) specified by
366 The National Institute of Standards and Technology (NIST).
367
368 https://tools.ietf.org/html/rfc4493
369 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
370
371 config CRYPTO_HMAC
372 tristate "HMAC support"
373 select CRYPTO_HASH
374 select CRYPTO_MANAGER
375 help
376 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
377 This is required for IPSec.
378
379 config CRYPTO_XCBC
380 tristate "XCBC support"
381 select CRYPTO_HASH
382 select CRYPTO_MANAGER
383 help
384 XCBC: Keyed-Hashing with encryption algorithm
385 http://www.ietf.org/rfc/rfc3566.txt
386 http://csrc.nist.gov/encryption/modes/proposedmodes/
387 xcbc-mac/xcbc-mac-spec.pdf
388
389 config CRYPTO_VMAC
390 tristate "VMAC support"
391 select CRYPTO_HASH
392 select CRYPTO_MANAGER
393 help
394 VMAC is a message authentication algorithm designed for
395 very high speed on 64-bit architectures.
396
397 See also:
398 <http://fastcrypto.org/vmac>
399
400 comment "Digest"
401
402 config CRYPTO_CRC32C
403 tristate "CRC32c CRC algorithm"
404 select CRYPTO_HASH
405 select CRC32
406 help
407 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
408 by iSCSI for header and data digests and by others.
409 See Castagnoli93. Module will be crc32c.
410
411 config CRYPTO_CRC32C_INTEL
412 tristate "CRC32c INTEL hardware acceleration"
413 depends on X86
414 select CRYPTO_HASH
415 help
416 In Intel processor with SSE4.2 supported, the processor will
417 support CRC32C implementation using hardware accelerated CRC32
418 instruction. This option will create 'crc32c-intel' module,
419 which will enable any routine to use the CRC32 instruction to
420 gain performance compared with software implementation.
421 Module will be crc32c-intel.
422
423 config CRYPTO_CRC32C_SPARC64
424 tristate "CRC32c CRC algorithm (SPARC64)"
425 depends on SPARC64
426 select CRYPTO_HASH
427 select CRC32
428 help
429 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
430 when available.
431
432 config CRYPTO_CRC32
433 tristate "CRC32 CRC algorithm"
434 select CRYPTO_HASH
435 select CRC32
436 help
437 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
438 Shash crypto api wrappers to crc32_le function.
439
440 config CRYPTO_CRC32_PCLMUL
441 tristate "CRC32 PCLMULQDQ hardware acceleration"
442 depends on X86
443 select CRYPTO_HASH
444 select CRC32
445 help
446 From Intel Westmere and AMD Bulldozer processor with SSE4.2
447 and PCLMULQDQ supported, the processor will support
448 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
449 instruction. This option will create 'crc32-plcmul' module,
450 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
451 and gain better performance as compared with the table implementation.
452
453 config CRYPTO_CRCT10DIF
454 tristate "CRCT10DIF algorithm"
455 select CRYPTO_HASH
456 help
457 CRC T10 Data Integrity Field computation is being cast as
458 a crypto transform. This allows for faster crc t10 diff
459 transforms to be used if they are available.
460
461 config CRYPTO_CRCT10DIF_PCLMUL
462 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
463 depends on X86 && 64BIT && CRC_T10DIF
464 select CRYPTO_HASH
465 help
466 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
467 CRC T10 DIF PCLMULQDQ computation can be hardware
468 accelerated PCLMULQDQ instruction. This option will create
469 'crct10dif-plcmul' module, which is faster when computing the
470 crct10dif checksum as compared with the generic table implementation.
471
472 config CRYPTO_GHASH
473 tristate "GHASH digest algorithm"
474 select CRYPTO_GF128MUL
475 help
476 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
477
478 config CRYPTO_POLY1305
479 tristate "Poly1305 authenticator algorithm"
480 help
481 Poly1305 authenticator algorithm, RFC7539.
482
483 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
484 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
485 in IETF protocols. This is the portable C implementation of Poly1305.
486
487 config CRYPTO_POLY1305_X86_64
488 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
489 depends on X86 && 64BIT
490 select CRYPTO_POLY1305
491 help
492 Poly1305 authenticator algorithm, RFC7539.
493
494 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
495 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
496 in IETF protocols. This is the x86_64 assembler implementation using SIMD
497 instructions.
498
499 config CRYPTO_MD4
500 tristate "MD4 digest algorithm"
501 select CRYPTO_HASH
502 help
503 MD4 message digest algorithm (RFC1320).
504
505 config CRYPTO_MD5
506 tristate "MD5 digest algorithm"
507 select CRYPTO_HASH
508 help
509 MD5 message digest algorithm (RFC1321).
510
511 config CRYPTO_MD5_OCTEON
512 tristate "MD5 digest algorithm (OCTEON)"
513 depends on CPU_CAVIUM_OCTEON
514 select CRYPTO_MD5
515 select CRYPTO_HASH
516 help
517 MD5 message digest algorithm (RFC1321) implemented
518 using OCTEON crypto instructions, when available.
519
520 config CRYPTO_MD5_PPC
521 tristate "MD5 digest algorithm (PPC)"
522 depends on PPC
523 select CRYPTO_HASH
524 help
525 MD5 message digest algorithm (RFC1321) implemented
526 in PPC assembler.
527
528 config CRYPTO_MD5_SPARC64
529 tristate "MD5 digest algorithm (SPARC64)"
530 depends on SPARC64
531 select CRYPTO_MD5
532 select CRYPTO_HASH
533 help
534 MD5 message digest algorithm (RFC1321) implemented
535 using sparc64 crypto instructions, when available.
536
537 config CRYPTO_MICHAEL_MIC
538 tristate "Michael MIC keyed digest algorithm"
539 select CRYPTO_HASH
540 help
541 Michael MIC is used for message integrity protection in TKIP
542 (IEEE 802.11i). This algorithm is required for TKIP, but it
543 should not be used for other purposes because of the weakness
544 of the algorithm.
545
546 config CRYPTO_RMD128
547 tristate "RIPEMD-128 digest algorithm"
548 select CRYPTO_HASH
549 help
550 RIPEMD-128 (ISO/IEC 10118-3:2004).
551
552 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
553 be used as a secure replacement for RIPEMD. For other use cases,
554 RIPEMD-160 should be used.
555
556 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
557 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
558
559 config CRYPTO_RMD160
560 tristate "RIPEMD-160 digest algorithm"
561 select CRYPTO_HASH
562 help
563 RIPEMD-160 (ISO/IEC 10118-3:2004).
564
565 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
566 to be used as a secure replacement for the 128-bit hash functions
567 MD4, MD5 and it's predecessor RIPEMD
568 (not to be confused with RIPEMD-128).
569
570 It's speed is comparable to SHA1 and there are no known attacks
571 against RIPEMD-160.
572
573 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
574 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
575
576 config CRYPTO_RMD256
577 tristate "RIPEMD-256 digest algorithm"
578 select CRYPTO_HASH
579 help
580 RIPEMD-256 is an optional extension of RIPEMD-128 with a
581 256 bit hash. It is intended for applications that require
582 longer hash-results, without needing a larger security level
583 (than RIPEMD-128).
584
585 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
586 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
587
588 config CRYPTO_RMD320
589 tristate "RIPEMD-320 digest algorithm"
590 select CRYPTO_HASH
591 help
592 RIPEMD-320 is an optional extension of RIPEMD-160 with a
593 320 bit hash. It is intended for applications that require
594 longer hash-results, without needing a larger security level
595 (than RIPEMD-160).
596
597 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
598 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
599
600 config CRYPTO_SHA1
601 tristate "SHA1 digest algorithm"
602 select CRYPTO_HASH
603 help
604 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
605
606 config CRYPTO_SHA1_SSSE3
607 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
608 depends on X86 && 64BIT
609 select CRYPTO_SHA1
610 select CRYPTO_HASH
611 help
612 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
613 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
614 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
615 when available.
616
617 config CRYPTO_SHA256_SSSE3
618 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
619 depends on X86 && 64BIT
620 select CRYPTO_SHA256
621 select CRYPTO_HASH
622 help
623 SHA-256 secure hash standard (DFIPS 180-2) implemented
624 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
625 Extensions version 1 (AVX1), or Advanced Vector Extensions
626 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
627 Instructions) when available.
628
629 config CRYPTO_SHA512_SSSE3
630 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
631 depends on X86 && 64BIT
632 select CRYPTO_SHA512
633 select CRYPTO_HASH
634 help
635 SHA-512 secure hash standard (DFIPS 180-2) implemented
636 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
637 Extensions version 1 (AVX1), or Advanced Vector Extensions
638 version 2 (AVX2) instructions, when available.
639
640 config CRYPTO_SHA1_OCTEON
641 tristate "SHA1 digest algorithm (OCTEON)"
642 depends on CPU_CAVIUM_OCTEON
643 select CRYPTO_SHA1
644 select CRYPTO_HASH
645 help
646 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
647 using OCTEON crypto instructions, when available.
648
649 config CRYPTO_SHA1_SPARC64
650 tristate "SHA1 digest algorithm (SPARC64)"
651 depends on SPARC64
652 select CRYPTO_SHA1
653 select CRYPTO_HASH
654 help
655 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
656 using sparc64 crypto instructions, when available.
657
658 config CRYPTO_SHA1_PPC
659 tristate "SHA1 digest algorithm (powerpc)"
660 depends on PPC
661 help
662 This is the powerpc hardware accelerated implementation of the
663 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
664
665 config CRYPTO_SHA1_PPC_SPE
666 tristate "SHA1 digest algorithm (PPC SPE)"
667 depends on PPC && SPE
668 help
669 SHA-1 secure hash standard (DFIPS 180-4) implemented
670 using powerpc SPE SIMD instruction set.
671
672 config CRYPTO_SHA1_MB
673 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
674 depends on X86 && 64BIT
675 select CRYPTO_SHA1
676 select CRYPTO_HASH
677 select CRYPTO_MCRYPTD
678 help
679 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
680 using multi-buffer technique. This algorithm computes on
681 multiple data lanes concurrently with SIMD instructions for
682 better throughput. It should not be enabled by default but
683 used when there is significant amount of work to keep the keep
684 the data lanes filled to get performance benefit. If the data
685 lanes remain unfilled, a flush operation will be initiated to
686 process the crypto jobs, adding a slight latency.
687
688 config CRYPTO_SHA256
689 tristate "SHA224 and SHA256 digest algorithm"
690 select CRYPTO_HASH
691 help
692 SHA256 secure hash standard (DFIPS 180-2).
693
694 This version of SHA implements a 256 bit hash with 128 bits of
695 security against collision attacks.
696
697 This code also includes SHA-224, a 224 bit hash with 112 bits
698 of security against collision attacks.
699
700 config CRYPTO_SHA256_PPC_SPE
701 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
702 depends on PPC && SPE
703 select CRYPTO_SHA256
704 select CRYPTO_HASH
705 help
706 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
707 implemented using powerpc SPE SIMD instruction set.
708
709 config CRYPTO_SHA256_OCTEON
710 tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
711 depends on CPU_CAVIUM_OCTEON
712 select CRYPTO_SHA256
713 select CRYPTO_HASH
714 help
715 SHA-256 secure hash standard (DFIPS 180-2) implemented
716 using OCTEON crypto instructions, when available.
717
718 config CRYPTO_SHA256_SPARC64
719 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
720 depends on SPARC64
721 select CRYPTO_SHA256
722 select CRYPTO_HASH
723 help
724 SHA-256 secure hash standard (DFIPS 180-2) implemented
725 using sparc64 crypto instructions, when available.
726
727 config CRYPTO_SHA512
728 tristate "SHA384 and SHA512 digest algorithms"
729 select CRYPTO_HASH
730 help
731 SHA512 secure hash standard (DFIPS 180-2).
732
733 This version of SHA implements a 512 bit hash with 256 bits of
734 security against collision attacks.
735
736 This code also includes SHA-384, a 384 bit hash with 192 bits
737 of security against collision attacks.
738
739 config CRYPTO_SHA512_OCTEON
740 tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
741 depends on CPU_CAVIUM_OCTEON
742 select CRYPTO_SHA512
743 select CRYPTO_HASH
744 help
745 SHA-512 secure hash standard (DFIPS 180-2) implemented
746 using OCTEON crypto instructions, when available.
747
748 config CRYPTO_SHA512_SPARC64
749 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
750 depends on SPARC64
751 select CRYPTO_SHA512
752 select CRYPTO_HASH
753 help
754 SHA-512 secure hash standard (DFIPS 180-2) implemented
755 using sparc64 crypto instructions, when available.
756
757 config CRYPTO_TGR192
758 tristate "Tiger digest algorithms"
759 select CRYPTO_HASH
760 help
761 Tiger hash algorithm 192, 160 and 128-bit hashes
762
763 Tiger is a hash function optimized for 64-bit processors while
764 still having decent performance on 32-bit processors.
765 Tiger was developed by Ross Anderson and Eli Biham.
766
767 See also:
768 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
769
770 config CRYPTO_WP512
771 tristate "Whirlpool digest algorithms"
772 select CRYPTO_HASH
773 help
774 Whirlpool hash algorithm 512, 384 and 256-bit hashes
775
776 Whirlpool-512 is part of the NESSIE cryptographic primitives.
777 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
778
779 See also:
780 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
781
782 config CRYPTO_GHASH_CLMUL_NI_INTEL
783 tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
784 depends on X86 && 64BIT
785 select CRYPTO_CRYPTD
786 help
787 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
788 The implementation is accelerated by CLMUL-NI of Intel.
789
790 comment "Ciphers"
791
792 config CRYPTO_AES
793 tristate "AES cipher algorithms"
794 select CRYPTO_ALGAPI
795 help
796 AES cipher algorithms (FIPS-197). AES uses the Rijndael
797 algorithm.
798
799 Rijndael appears to be consistently a very good performer in
800 both hardware and software across a wide range of computing
801 environments regardless of its use in feedback or non-feedback
802 modes. Its key setup time is excellent, and its key agility is
803 good. Rijndael's very low memory requirements make it very well
804 suited for restricted-space environments, in which it also
805 demonstrates excellent performance. Rijndael's operations are
806 among the easiest to defend against power and timing attacks.
807
808 The AES specifies three key sizes: 128, 192 and 256 bits
809
810 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
811
812 config CRYPTO_AES_586
813 tristate "AES cipher algorithms (i586)"
814 depends on (X86 || UML_X86) && !64BIT
815 select CRYPTO_ALGAPI
816 select CRYPTO_AES
817 help
818 AES cipher algorithms (FIPS-197). AES uses the Rijndael
819 algorithm.
820
821 Rijndael appears to be consistently a very good performer in
822 both hardware and software across a wide range of computing
823 environments regardless of its use in feedback or non-feedback
824 modes. Its key setup time is excellent, and its key agility is
825 good. Rijndael's very low memory requirements make it very well
826 suited for restricted-space environments, in which it also
827 demonstrates excellent performance. Rijndael's operations are
828 among the easiest to defend against power and timing attacks.
829
830 The AES specifies three key sizes: 128, 192 and 256 bits
831
832 See <http://csrc.nist.gov/encryption/aes/> for more information.
833
834 config CRYPTO_AES_X86_64
835 tristate "AES cipher algorithms (x86_64)"
836 depends on (X86 || UML_X86) && 64BIT
837 select CRYPTO_ALGAPI
838 select CRYPTO_AES
839 help
840 AES cipher algorithms (FIPS-197). AES uses the Rijndael
841 algorithm.
842
843 Rijndael appears to be consistently a very good performer in
844 both hardware and software across a wide range of computing
845 environments regardless of its use in feedback or non-feedback
846 modes. Its key setup time is excellent, and its key agility is
847 good. Rijndael's very low memory requirements make it very well
848 suited for restricted-space environments, in which it also
849 demonstrates excellent performance. Rijndael's operations are
850 among the easiest to defend against power and timing attacks.
851
852 The AES specifies three key sizes: 128, 192 and 256 bits
853
854 See <http://csrc.nist.gov/encryption/aes/> for more information.
855
856 config CRYPTO_AES_NI_INTEL
857 tristate "AES cipher algorithms (AES-NI)"
858 depends on X86
859 select CRYPTO_AES_X86_64 if 64BIT
860 select CRYPTO_AES_586 if !64BIT
861 select CRYPTO_CRYPTD
862 select CRYPTO_ABLK_HELPER
863 select CRYPTO_ALGAPI
864 select CRYPTO_GLUE_HELPER_X86 if 64BIT
865 select CRYPTO_LRW
866 select CRYPTO_XTS
867 help
868 Use Intel AES-NI instructions for AES algorithm.
869
870 AES cipher algorithms (FIPS-197). AES uses the Rijndael
871 algorithm.
872
873 Rijndael appears to be consistently a very good performer in
874 both hardware and software across a wide range of computing
875 environments regardless of its use in feedback or non-feedback
876 modes. Its key setup time is excellent, and its key agility is
877 good. Rijndael's very low memory requirements make it very well
878 suited for restricted-space environments, in which it also
879 demonstrates excellent performance. Rijndael's operations are
880 among the easiest to defend against power and timing attacks.
881
882 The AES specifies three key sizes: 128, 192 and 256 bits
883
884 See <http://csrc.nist.gov/encryption/aes/> for more information.
885
886 In addition to AES cipher algorithm support, the acceleration
887 for some popular block cipher mode is supported too, including
888 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
889 acceleration for CTR.
890
891 config CRYPTO_AES_SPARC64
892 tristate "AES cipher algorithms (SPARC64)"
893 depends on SPARC64
894 select CRYPTO_CRYPTD
895 select CRYPTO_ALGAPI
896 help
897 Use SPARC64 crypto opcodes for AES algorithm.
898
899 AES cipher algorithms (FIPS-197). AES uses the Rijndael
900 algorithm.
901
902 Rijndael appears to be consistently a very good performer in
903 both hardware and software across a wide range of computing
904 environments regardless of its use in feedback or non-feedback
905 modes. Its key setup time is excellent, and its key agility is
906 good. Rijndael's very low memory requirements make it very well
907 suited for restricted-space environments, in which it also
908 demonstrates excellent performance. Rijndael's operations are
909 among the easiest to defend against power and timing attacks.
910
911 The AES specifies three key sizes: 128, 192 and 256 bits
912
913 See <http://csrc.nist.gov/encryption/aes/> for more information.
914
915 In addition to AES cipher algorithm support, the acceleration
916 for some popular block cipher mode is supported too, including
917 ECB and CBC.
918
919 config CRYPTO_AES_PPC_SPE
920 tristate "AES cipher algorithms (PPC SPE)"
921 depends on PPC && SPE
922 help
923 AES cipher algorithms (FIPS-197). Additionally the acceleration
924 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
925 This module should only be used for low power (router) devices
926 without hardware AES acceleration (e.g. caam crypto). It reduces the
927 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
928 timining attacks. Nevertheless it might be not as secure as other
929 architecture specific assembler implementations that work on 1KB
930 tables or 256 bytes S-boxes.
931
932 config CRYPTO_ANUBIS
933 tristate "Anubis cipher algorithm"
934 select CRYPTO_ALGAPI
935 help
936 Anubis cipher algorithm.
937
938 Anubis is a variable key length cipher which can use keys from
939 128 bits to 320 bits in length. It was evaluated as a entrant
940 in the NESSIE competition.
941
942 See also:
943 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
944 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
945
946 config CRYPTO_ARC4
947 tristate "ARC4 cipher algorithm"
948 select CRYPTO_BLKCIPHER
949 help
950 ARC4 cipher algorithm.
951
952 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
953 bits in length. This algorithm is required for driver-based
954 WEP, but it should not be for other purposes because of the
955 weakness of the algorithm.
956
957 config CRYPTO_BLOWFISH
958 tristate "Blowfish cipher algorithm"
959 select CRYPTO_ALGAPI
960 select CRYPTO_BLOWFISH_COMMON
961 help
962 Blowfish cipher algorithm, by Bruce Schneier.
963
964 This is a variable key length cipher which can use keys from 32
965 bits to 448 bits in length. It's fast, simple and specifically
966 designed for use on "large microprocessors".
967
968 See also:
969 <http://www.schneier.com/blowfish.html>
970
971 config CRYPTO_BLOWFISH_COMMON
972 tristate
973 help
974 Common parts of the Blowfish cipher algorithm shared by the
975 generic c and the assembler implementations.
976
977 See also:
978 <http://www.schneier.com/blowfish.html>
979
980 config CRYPTO_BLOWFISH_X86_64
981 tristate "Blowfish cipher algorithm (x86_64)"
982 depends on X86 && 64BIT
983 select CRYPTO_ALGAPI
984 select CRYPTO_BLOWFISH_COMMON
985 help
986 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
987
988 This is a variable key length cipher which can use keys from 32
989 bits to 448 bits in length. It's fast, simple and specifically
990 designed for use on "large microprocessors".
991
992 See also:
993 <http://www.schneier.com/blowfish.html>
994
995 config CRYPTO_CAMELLIA
996 tristate "Camellia cipher algorithms"
997 depends on CRYPTO
998 select CRYPTO_ALGAPI
999 help
1000 Camellia cipher algorithms module.
1001
1002 Camellia is a symmetric key block cipher developed jointly
1003 at NTT and Mitsubishi Electric Corporation.
1004
1005 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1006
1007 See also:
1008 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1009
1010 config CRYPTO_CAMELLIA_X86_64
1011 tristate "Camellia cipher algorithm (x86_64)"
1012 depends on X86 && 64BIT
1013 depends on CRYPTO
1014 select CRYPTO_ALGAPI
1015 select CRYPTO_GLUE_HELPER_X86
1016 select CRYPTO_LRW
1017 select CRYPTO_XTS
1018 help
1019 Camellia cipher algorithm module (x86_64).
1020
1021 Camellia is a symmetric key block cipher developed jointly
1022 at NTT and Mitsubishi Electric Corporation.
1023
1024 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1025
1026 See also:
1027 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1028
1029 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1030 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1031 depends on X86 && 64BIT
1032 depends on CRYPTO
1033 select CRYPTO_ALGAPI
1034 select CRYPTO_CRYPTD
1035 select CRYPTO_ABLK_HELPER
1036 select CRYPTO_GLUE_HELPER_X86
1037 select CRYPTO_CAMELLIA_X86_64
1038 select CRYPTO_LRW
1039 select CRYPTO_XTS
1040 help
1041 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1042
1043 Camellia is a symmetric key block cipher developed jointly
1044 at NTT and Mitsubishi Electric Corporation.
1045
1046 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1047
1048 See also:
1049 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1050
1051 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1052 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1053 depends on X86 && 64BIT
1054 depends on CRYPTO
1055 select CRYPTO_ALGAPI
1056 select CRYPTO_CRYPTD
1057 select CRYPTO_ABLK_HELPER
1058 select CRYPTO_GLUE_HELPER_X86
1059 select CRYPTO_CAMELLIA_X86_64
1060 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1061 select CRYPTO_LRW
1062 select CRYPTO_XTS
1063 help
1064 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1065
1066 Camellia is a symmetric key block cipher developed jointly
1067 at NTT and Mitsubishi Electric Corporation.
1068
1069 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1070
1071 See also:
1072 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1073
1074 config CRYPTO_CAMELLIA_SPARC64
1075 tristate "Camellia cipher algorithm (SPARC64)"
1076 depends on SPARC64
1077 depends on CRYPTO
1078 select CRYPTO_ALGAPI
1079 help
1080 Camellia cipher algorithm module (SPARC64).
1081
1082 Camellia is a symmetric key block cipher developed jointly
1083 at NTT and Mitsubishi Electric Corporation.
1084
1085 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1086
1087 See also:
1088 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1089
1090 config CRYPTO_CAST_COMMON
1091 tristate
1092 help
1093 Common parts of the CAST cipher algorithms shared by the
1094 generic c and the assembler implementations.
1095
1096 config CRYPTO_CAST5
1097 tristate "CAST5 (CAST-128) cipher algorithm"
1098 select CRYPTO_ALGAPI
1099 select CRYPTO_CAST_COMMON
1100 help
1101 The CAST5 encryption algorithm (synonymous with CAST-128) is
1102 described in RFC2144.
1103
1104 config CRYPTO_CAST5_AVX_X86_64
1105 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1106 depends on X86 && 64BIT
1107 select CRYPTO_ALGAPI
1108 select CRYPTO_CRYPTD
1109 select CRYPTO_ABLK_HELPER
1110 select CRYPTO_CAST_COMMON
1111 select CRYPTO_CAST5
1112 help
1113 The CAST5 encryption algorithm (synonymous with CAST-128) is
1114 described in RFC2144.
1115
1116 This module provides the Cast5 cipher algorithm that processes
1117 sixteen blocks parallel using the AVX instruction set.
1118
1119 config CRYPTO_CAST6
1120 tristate "CAST6 (CAST-256) cipher algorithm"
1121 select CRYPTO_ALGAPI
1122 select CRYPTO_CAST_COMMON
1123 help
1124 The CAST6 encryption algorithm (synonymous with CAST-256) is
1125 described in RFC2612.
1126
1127 config CRYPTO_CAST6_AVX_X86_64
1128 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1129 depends on X86 && 64BIT
1130 select CRYPTO_ALGAPI
1131 select CRYPTO_CRYPTD
1132 select CRYPTO_ABLK_HELPER
1133 select CRYPTO_GLUE_HELPER_X86
1134 select CRYPTO_CAST_COMMON
1135 select CRYPTO_CAST6
1136 select CRYPTO_LRW
1137 select CRYPTO_XTS
1138 help
1139 The CAST6 encryption algorithm (synonymous with CAST-256) is
1140 described in RFC2612.
1141
1142 This module provides the Cast6 cipher algorithm that processes
1143 eight blocks parallel using the AVX instruction set.
1144
1145 config CRYPTO_DES
1146 tristate "DES and Triple DES EDE cipher algorithms"
1147 select CRYPTO_ALGAPI
1148 help
1149 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1150
1151 config CRYPTO_DES_SPARC64
1152 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1153 depends on SPARC64
1154 select CRYPTO_ALGAPI
1155 select CRYPTO_DES
1156 help
1157 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1158 optimized using SPARC64 crypto opcodes.
1159
1160 config CRYPTO_DES3_EDE_X86_64
1161 tristate "Triple DES EDE cipher algorithm (x86-64)"
1162 depends on X86 && 64BIT
1163 select CRYPTO_ALGAPI
1164 select CRYPTO_DES
1165 help
1166 Triple DES EDE (FIPS 46-3) algorithm.
1167
1168 This module provides implementation of the Triple DES EDE cipher
1169 algorithm that is optimized for x86-64 processors. Two versions of
1170 algorithm are provided; regular processing one input block and
1171 one that processes three blocks parallel.
1172
1173 config CRYPTO_FCRYPT
1174 tristate "FCrypt cipher algorithm"
1175 select CRYPTO_ALGAPI
1176 select CRYPTO_BLKCIPHER
1177 help
1178 FCrypt algorithm used by RxRPC.
1179
1180 config CRYPTO_KHAZAD
1181 tristate "Khazad cipher algorithm"
1182 select CRYPTO_ALGAPI
1183 help
1184 Khazad cipher algorithm.
1185
1186 Khazad was a finalist in the initial NESSIE competition. It is
1187 an algorithm optimized for 64-bit processors with good performance
1188 on 32-bit processors. Khazad uses an 128 bit key size.
1189
1190 See also:
1191 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1192
1193 config CRYPTO_SALSA20
1194 tristate "Salsa20 stream cipher algorithm"
1195 select CRYPTO_BLKCIPHER
1196 help
1197 Salsa20 stream cipher algorithm.
1198
1199 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1200 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1201
1202 The Salsa20 stream cipher algorithm is designed by Daniel J.
1203 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1204
1205 config CRYPTO_SALSA20_586
1206 tristate "Salsa20 stream cipher algorithm (i586)"
1207 depends on (X86 || UML_X86) && !64BIT
1208 select CRYPTO_BLKCIPHER
1209 help
1210 Salsa20 stream cipher algorithm.
1211
1212 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1213 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1214
1215 The Salsa20 stream cipher algorithm is designed by Daniel J.
1216 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1217
1218 config CRYPTO_SALSA20_X86_64
1219 tristate "Salsa20 stream cipher algorithm (x86_64)"
1220 depends on (X86 || UML_X86) && 64BIT
1221 select CRYPTO_BLKCIPHER
1222 help
1223 Salsa20 stream cipher algorithm.
1224
1225 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1226 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1227
1228 The Salsa20 stream cipher algorithm is designed by Daniel J.
1229 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1230
1231 config CRYPTO_CHACHA20
1232 tristate "ChaCha20 cipher algorithm"
1233 select CRYPTO_BLKCIPHER
1234 help
1235 ChaCha20 cipher algorithm, RFC7539.
1236
1237 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1238 Bernstein and further specified in RFC7539 for use in IETF protocols.
1239 This is the portable C implementation of ChaCha20.
1240
1241 See also:
1242 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1243
1244 config CRYPTO_CHACHA20_X86_64
1245 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1246 depends on X86 && 64BIT
1247 select CRYPTO_BLKCIPHER
1248 select CRYPTO_CHACHA20
1249 help
1250 ChaCha20 cipher algorithm, RFC7539.
1251
1252 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1253 Bernstein and further specified in RFC7539 for use in IETF protocols.
1254 This is the x86_64 assembler implementation using SIMD instructions.
1255
1256 See also:
1257 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1258
1259 config CRYPTO_SEED
1260 tristate "SEED cipher algorithm"
1261 select CRYPTO_ALGAPI
1262 help
1263 SEED cipher algorithm (RFC4269).
1264
1265 SEED is a 128-bit symmetric key block cipher that has been
1266 developed by KISA (Korea Information Security Agency) as a
1267 national standard encryption algorithm of the Republic of Korea.
1268 It is a 16 round block cipher with the key size of 128 bit.
1269
1270 See also:
1271 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1272
1273 config CRYPTO_SERPENT
1274 tristate "Serpent cipher algorithm"
1275 select CRYPTO_ALGAPI
1276 help
1277 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1278
1279 Keys are allowed to be from 0 to 256 bits in length, in steps
1280 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1281 variant of Serpent for compatibility with old kerneli.org code.
1282
1283 See also:
1284 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1285
1286 config CRYPTO_SERPENT_SSE2_X86_64
1287 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1288 depends on X86 && 64BIT
1289 select CRYPTO_ALGAPI
1290 select CRYPTO_CRYPTD
1291 select CRYPTO_ABLK_HELPER
1292 select CRYPTO_GLUE_HELPER_X86
1293 select CRYPTO_SERPENT
1294 select CRYPTO_LRW
1295 select CRYPTO_XTS
1296 help
1297 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1298
1299 Keys are allowed to be from 0 to 256 bits in length, in steps
1300 of 8 bits.
1301
1302 This module provides Serpent cipher algorithm that processes eight
1303 blocks parallel using SSE2 instruction set.
1304
1305 See also:
1306 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1307
1308 config CRYPTO_SERPENT_SSE2_586
1309 tristate "Serpent cipher algorithm (i586/SSE2)"
1310 depends on X86 && !64BIT
1311 select CRYPTO_ALGAPI
1312 select CRYPTO_CRYPTD
1313 select CRYPTO_ABLK_HELPER
1314 select CRYPTO_GLUE_HELPER_X86
1315 select CRYPTO_SERPENT
1316 select CRYPTO_LRW
1317 select CRYPTO_XTS
1318 help
1319 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1320
1321 Keys are allowed to be from 0 to 256 bits in length, in steps
1322 of 8 bits.
1323
1324 This module provides Serpent cipher algorithm that processes four
1325 blocks parallel using SSE2 instruction set.
1326
1327 See also:
1328 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1329
1330 config CRYPTO_SERPENT_AVX_X86_64
1331 tristate "Serpent cipher algorithm (x86_64/AVX)"
1332 depends on X86 && 64BIT
1333 select CRYPTO_ALGAPI
1334 select CRYPTO_CRYPTD
1335 select CRYPTO_ABLK_HELPER
1336 select CRYPTO_GLUE_HELPER_X86
1337 select CRYPTO_SERPENT
1338 select CRYPTO_LRW
1339 select CRYPTO_XTS
1340 help
1341 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1342
1343 Keys are allowed to be from 0 to 256 bits in length, in steps
1344 of 8 bits.
1345
1346 This module provides the Serpent cipher algorithm that processes
1347 eight blocks parallel using the AVX instruction set.
1348
1349 See also:
1350 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1351
1352 config CRYPTO_SERPENT_AVX2_X86_64
1353 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1354 depends on X86 && 64BIT
1355 select CRYPTO_ALGAPI
1356 select CRYPTO_CRYPTD
1357 select CRYPTO_ABLK_HELPER
1358 select CRYPTO_GLUE_HELPER_X86
1359 select CRYPTO_SERPENT
1360 select CRYPTO_SERPENT_AVX_X86_64
1361 select CRYPTO_LRW
1362 select CRYPTO_XTS
1363 help
1364 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1365
1366 Keys are allowed to be from 0 to 256 bits in length, in steps
1367 of 8 bits.
1368
1369 This module provides Serpent cipher algorithm that processes 16
1370 blocks parallel using AVX2 instruction set.
1371
1372 See also:
1373 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1374
1375 config CRYPTO_TEA
1376 tristate "TEA, XTEA and XETA cipher algorithms"
1377 select CRYPTO_ALGAPI
1378 help
1379 TEA cipher algorithm.
1380
1381 Tiny Encryption Algorithm is a simple cipher that uses
1382 many rounds for security. It is very fast and uses
1383 little memory.
1384
1385 Xtendend Tiny Encryption Algorithm is a modification to
1386 the TEA algorithm to address a potential key weakness
1387 in the TEA algorithm.
1388
1389 Xtendend Encryption Tiny Algorithm is a mis-implementation
1390 of the XTEA algorithm for compatibility purposes.
1391
1392 config CRYPTO_TWOFISH
1393 tristate "Twofish cipher algorithm"
1394 select CRYPTO_ALGAPI
1395 select CRYPTO_TWOFISH_COMMON
1396 help
1397 Twofish cipher algorithm.
1398
1399 Twofish was submitted as an AES (Advanced Encryption Standard)
1400 candidate cipher by researchers at CounterPane Systems. It is a
1401 16 round block cipher supporting key sizes of 128, 192, and 256
1402 bits.
1403
1404 See also:
1405 <http://www.schneier.com/twofish.html>
1406
1407 config CRYPTO_TWOFISH_COMMON
1408 tristate
1409 help
1410 Common parts of the Twofish cipher algorithm shared by the
1411 generic c and the assembler implementations.
1412
1413 config CRYPTO_TWOFISH_586
1414 tristate "Twofish cipher algorithms (i586)"
1415 depends on (X86 || UML_X86) && !64BIT
1416 select CRYPTO_ALGAPI
1417 select CRYPTO_TWOFISH_COMMON
1418 help
1419 Twofish cipher algorithm.
1420
1421 Twofish was submitted as an AES (Advanced Encryption Standard)
1422 candidate cipher by researchers at CounterPane Systems. It is a
1423 16 round block cipher supporting key sizes of 128, 192, and 256
1424 bits.
1425
1426 See also:
1427 <http://www.schneier.com/twofish.html>
1428
1429 config CRYPTO_TWOFISH_X86_64
1430 tristate "Twofish cipher algorithm (x86_64)"
1431 depends on (X86 || UML_X86) && 64BIT
1432 select CRYPTO_ALGAPI
1433 select CRYPTO_TWOFISH_COMMON
1434 help
1435 Twofish cipher algorithm (x86_64).
1436
1437 Twofish was submitted as an AES (Advanced Encryption Standard)
1438 candidate cipher by researchers at CounterPane Systems. It is a
1439 16 round block cipher supporting key sizes of 128, 192, and 256
1440 bits.
1441
1442 See also:
1443 <http://www.schneier.com/twofish.html>
1444
1445 config CRYPTO_TWOFISH_X86_64_3WAY
1446 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1447 depends on X86 && 64BIT
1448 select CRYPTO_ALGAPI
1449 select CRYPTO_TWOFISH_COMMON
1450 select CRYPTO_TWOFISH_X86_64
1451 select CRYPTO_GLUE_HELPER_X86
1452 select CRYPTO_LRW
1453 select CRYPTO_XTS
1454 help
1455 Twofish cipher algorithm (x86_64, 3-way parallel).
1456
1457 Twofish was submitted as an AES (Advanced Encryption Standard)
1458 candidate cipher by researchers at CounterPane Systems. It is a
1459 16 round block cipher supporting key sizes of 128, 192, and 256
1460 bits.
1461
1462 This module provides Twofish cipher algorithm that processes three
1463 blocks parallel, utilizing resources of out-of-order CPUs better.
1464
1465 See also:
1466 <http://www.schneier.com/twofish.html>
1467
1468 config CRYPTO_TWOFISH_AVX_X86_64
1469 tristate "Twofish cipher algorithm (x86_64/AVX)"
1470 depends on X86 && 64BIT
1471 select CRYPTO_ALGAPI
1472 select CRYPTO_CRYPTD
1473 select CRYPTO_ABLK_HELPER
1474 select CRYPTO_GLUE_HELPER_X86
1475 select CRYPTO_TWOFISH_COMMON
1476 select CRYPTO_TWOFISH_X86_64
1477 select CRYPTO_TWOFISH_X86_64_3WAY
1478 select CRYPTO_LRW
1479 select CRYPTO_XTS
1480 help
1481 Twofish cipher algorithm (x86_64/AVX).
1482
1483 Twofish was submitted as an AES (Advanced Encryption Standard)
1484 candidate cipher by researchers at CounterPane Systems. It is a
1485 16 round block cipher supporting key sizes of 128, 192, and 256
1486 bits.
1487
1488 This module provides the Twofish cipher algorithm that processes
1489 eight blocks parallel using the AVX Instruction Set.
1490
1491 See also:
1492 <http://www.schneier.com/twofish.html>
1493
1494 comment "Compression"
1495
1496 config CRYPTO_DEFLATE
1497 tristate "Deflate compression algorithm"
1498 select CRYPTO_ALGAPI
1499 select ZLIB_INFLATE
1500 select ZLIB_DEFLATE
1501 help
1502 This is the Deflate algorithm (RFC1951), specified for use in
1503 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1504
1505 You will most probably want this if using IPSec.
1506
1507 config CRYPTO_ZLIB
1508 tristate "Zlib compression algorithm"
1509 select CRYPTO_PCOMP
1510 select ZLIB_INFLATE
1511 select ZLIB_DEFLATE
1512 select NLATTR
1513 help
1514 This is the zlib algorithm.
1515
1516 config CRYPTO_LZO
1517 tristate "LZO compression algorithm"
1518 select CRYPTO_ALGAPI
1519 select LZO_COMPRESS
1520 select LZO_DECOMPRESS
1521 help
1522 This is the LZO algorithm.
1523
1524 config CRYPTO_842
1525 tristate "842 compression algorithm"
1526 select CRYPTO_ALGAPI
1527 select 842_COMPRESS
1528 select 842_DECOMPRESS
1529 help
1530 This is the 842 algorithm.
1531
1532 config CRYPTO_LZ4
1533 tristate "LZ4 compression algorithm"
1534 select CRYPTO_ALGAPI
1535 select LZ4_COMPRESS
1536 select LZ4_DECOMPRESS
1537 help
1538 This is the LZ4 algorithm.
1539
1540 config CRYPTO_LZ4HC
1541 tristate "LZ4HC compression algorithm"
1542 select CRYPTO_ALGAPI
1543 select LZ4HC_COMPRESS
1544 select LZ4_DECOMPRESS
1545 help
1546 This is the LZ4 high compression mode algorithm.
1547
1548 comment "Random Number Generation"
1549
1550 config CRYPTO_ANSI_CPRNG
1551 tristate "Pseudo Random Number Generation for Cryptographic modules"
1552 select CRYPTO_AES
1553 select CRYPTO_RNG
1554 help
1555 This option enables the generic pseudo random number generator
1556 for cryptographic modules. Uses the Algorithm specified in
1557 ANSI X9.31 A.2.4. Note that this option must be enabled if
1558 CRYPTO_FIPS is selected
1559
1560 menuconfig CRYPTO_DRBG_MENU
1561 tristate "NIST SP800-90A DRBG"
1562 help
1563 NIST SP800-90A compliant DRBG. In the following submenu, one or
1564 more of the DRBG types must be selected.
1565
1566 if CRYPTO_DRBG_MENU
1567
1568 config CRYPTO_DRBG_HMAC
1569 bool
1570 default y
1571 select CRYPTO_HMAC
1572 select CRYPTO_SHA256
1573
1574 config CRYPTO_DRBG_HASH
1575 bool "Enable Hash DRBG"
1576 select CRYPTO_SHA256
1577 help
1578 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1579
1580 config CRYPTO_DRBG_CTR
1581 bool "Enable CTR DRBG"
1582 select CRYPTO_AES
1583 help
1584 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1585
1586 config CRYPTO_DRBG
1587 tristate
1588 default CRYPTO_DRBG_MENU
1589 select CRYPTO_RNG
1590 select CRYPTO_JITTERENTROPY
1591
1592 endif # if CRYPTO_DRBG_MENU
1593
1594 config CRYPTO_JITTERENTROPY
1595 tristate "Jitterentropy Non-Deterministic Random Number Generator"
1596 help
1597 The Jitterentropy RNG is a noise that is intended
1598 to provide seed to another RNG. The RNG does not
1599 perform any cryptographic whitening of the generated
1600 random numbers. This Jitterentropy RNG registers with
1601 the kernel crypto API and can be used by any caller.
1602
1603 config CRYPTO_USER_API
1604 tristate
1605
1606 config CRYPTO_USER_API_HASH
1607 tristate "User-space interface for hash algorithms"
1608 depends on NET
1609 select CRYPTO_HASH
1610 select CRYPTO_USER_API
1611 help
1612 This option enables the user-spaces interface for hash
1613 algorithms.
1614
1615 config CRYPTO_USER_API_SKCIPHER
1616 tristate "User-space interface for symmetric key cipher algorithms"
1617 depends on NET
1618 select CRYPTO_BLKCIPHER
1619 select CRYPTO_USER_API
1620 help
1621 This option enables the user-spaces interface for symmetric
1622 key cipher algorithms.
1623
1624 config CRYPTO_USER_API_RNG
1625 tristate "User-space interface for random number generator algorithms"
1626 depends on NET
1627 select CRYPTO_RNG
1628 select CRYPTO_USER_API
1629 help
1630 This option enables the user-spaces interface for random
1631 number generator algorithms.
1632
1633 config CRYPTO_USER_API_AEAD
1634 tristate "User-space interface for AEAD cipher algorithms"
1635 depends on NET
1636 select CRYPTO_AEAD
1637 select CRYPTO_USER_API
1638 help
1639 This option enables the user-spaces interface for AEAD
1640 cipher algorithms.
1641
1642 config CRYPTO_HASH_INFO
1643 bool
1644
1645 source "drivers/crypto/Kconfig"
1646 source crypto/asymmetric_keys/Kconfig
1647 source certs/Kconfig
1648
1649 endif # if CRYPTO