]> git.ipfire.org Git - people/ms/linux.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c
Don't reset ->total_link_count on nested calls of vfs_path_lookup()
[people/ms/linux.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28 #include <drm/drmP.h>
29 #include <drm/amdgpu_drm.h>
30 #include "amdgpu.h"
31 #include "amdgpu_trace.h"
32
33 /*
34 * GPUVM
35 * GPUVM is similar to the legacy gart on older asics, however
36 * rather than there being a single global gart table
37 * for the entire GPU, there are multiple VM page tables active
38 * at any given time. The VM page tables can contain a mix
39 * vram pages and system memory pages and system memory pages
40 * can be mapped as snooped (cached system pages) or unsnooped
41 * (uncached system pages).
42 * Each VM has an ID associated with it and there is a page table
43 * associated with each VMID. When execting a command buffer,
44 * the kernel tells the the ring what VMID to use for that command
45 * buffer. VMIDs are allocated dynamically as commands are submitted.
46 * The userspace drivers maintain their own address space and the kernel
47 * sets up their pages tables accordingly when they submit their
48 * command buffers and a VMID is assigned.
49 * Cayman/Trinity support up to 8 active VMs at any given time;
50 * SI supports 16.
51 */
52
53 /**
54 * amdgpu_vm_num_pde - return the number of page directory entries
55 *
56 * @adev: amdgpu_device pointer
57 *
58 * Calculate the number of page directory entries (cayman+).
59 */
60 static unsigned amdgpu_vm_num_pdes(struct amdgpu_device *adev)
61 {
62 return adev->vm_manager.max_pfn >> amdgpu_vm_block_size;
63 }
64
65 /**
66 * amdgpu_vm_directory_size - returns the size of the page directory in bytes
67 *
68 * @adev: amdgpu_device pointer
69 *
70 * Calculate the size of the page directory in bytes (cayman+).
71 */
72 static unsigned amdgpu_vm_directory_size(struct amdgpu_device *adev)
73 {
74 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_pdes(adev) * 8);
75 }
76
77 /**
78 * amdgpu_vm_get_bos - add the vm BOs to a validation list
79 *
80 * @vm: vm providing the BOs
81 * @head: head of validation list
82 *
83 * Add the page directory to the list of BOs to
84 * validate for command submission (cayman+).
85 */
86 struct amdgpu_bo_list_entry *amdgpu_vm_get_bos(struct amdgpu_device *adev,
87 struct amdgpu_vm *vm,
88 struct list_head *head)
89 {
90 struct amdgpu_bo_list_entry *list;
91 unsigned i, idx;
92
93 list = drm_malloc_ab(vm->max_pde_used + 2,
94 sizeof(struct amdgpu_bo_list_entry));
95 if (!list) {
96 return NULL;
97 }
98
99 /* add the vm page table to the list */
100 list[0].robj = vm->page_directory;
101 list[0].prefered_domains = AMDGPU_GEM_DOMAIN_VRAM;
102 list[0].allowed_domains = AMDGPU_GEM_DOMAIN_VRAM;
103 list[0].priority = 0;
104 list[0].tv.bo = &vm->page_directory->tbo;
105 list[0].tv.shared = true;
106 list_add(&list[0].tv.head, head);
107
108 for (i = 0, idx = 1; i <= vm->max_pde_used; i++) {
109 if (!vm->page_tables[i].bo)
110 continue;
111
112 list[idx].robj = vm->page_tables[i].bo;
113 list[idx].prefered_domains = AMDGPU_GEM_DOMAIN_VRAM;
114 list[idx].allowed_domains = AMDGPU_GEM_DOMAIN_VRAM;
115 list[idx].priority = 0;
116 list[idx].tv.bo = &list[idx].robj->tbo;
117 list[idx].tv.shared = true;
118 list_add(&list[idx++].tv.head, head);
119 }
120
121 return list;
122 }
123
124 /**
125 * amdgpu_vm_grab_id - allocate the next free VMID
126 *
127 * @vm: vm to allocate id for
128 * @ring: ring we want to submit job to
129 * @sync: sync object where we add dependencies
130 *
131 * Allocate an id for the vm, adding fences to the sync obj as necessary.
132 *
133 * Global mutex must be locked!
134 */
135 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
136 struct amdgpu_sync *sync)
137 {
138 struct fence *best[AMDGPU_MAX_RINGS] = {};
139 struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx];
140 struct amdgpu_device *adev = ring->adev;
141
142 unsigned choices[2] = {};
143 unsigned i;
144
145 /* check if the id is still valid */
146 if (vm_id->id) {
147 unsigned id = vm_id->id;
148 long owner;
149
150 owner = atomic_long_read(&adev->vm_manager.ids[id].owner);
151 if (owner == (long)vm) {
152 trace_amdgpu_vm_grab_id(vm_id->id, ring->idx);
153 return 0;
154 }
155 }
156
157 /* we definately need to flush */
158 vm_id->pd_gpu_addr = ~0ll;
159
160 /* skip over VMID 0, since it is the system VM */
161 for (i = 1; i < adev->vm_manager.nvm; ++i) {
162 struct fence *fence = adev->vm_manager.ids[i].active;
163 struct amdgpu_ring *fring;
164
165 if (fence == NULL) {
166 /* found a free one */
167 vm_id->id = i;
168 trace_amdgpu_vm_grab_id(i, ring->idx);
169 return 0;
170 }
171
172 fring = amdgpu_ring_from_fence(fence);
173 if (best[fring->idx] == NULL ||
174 fence_is_later(best[fring->idx], fence)) {
175 best[fring->idx] = fence;
176 choices[fring == ring ? 0 : 1] = i;
177 }
178 }
179
180 for (i = 0; i < 2; ++i) {
181 if (choices[i]) {
182 struct fence *fence;
183
184 fence = adev->vm_manager.ids[choices[i]].active;
185 vm_id->id = choices[i];
186
187 trace_amdgpu_vm_grab_id(choices[i], ring->idx);
188 return amdgpu_sync_fence(ring->adev, sync, fence);
189 }
190 }
191
192 /* should never happen */
193 BUG();
194 return -EINVAL;
195 }
196
197 /**
198 * amdgpu_vm_flush - hardware flush the vm
199 *
200 * @ring: ring to use for flush
201 * @vm: vm we want to flush
202 * @updates: last vm update that we waited for
203 *
204 * Flush the vm (cayman+).
205 *
206 * Global and local mutex must be locked!
207 */
208 void amdgpu_vm_flush(struct amdgpu_ring *ring,
209 struct amdgpu_vm *vm,
210 struct fence *updates)
211 {
212 uint64_t pd_addr = amdgpu_bo_gpu_offset(vm->page_directory);
213 struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx];
214 struct fence *flushed_updates = vm_id->flushed_updates;
215 bool is_later;
216
217 if (!flushed_updates)
218 is_later = true;
219 else if (!updates)
220 is_later = false;
221 else
222 is_later = fence_is_later(updates, flushed_updates);
223
224 if (pd_addr != vm_id->pd_gpu_addr || is_later) {
225 trace_amdgpu_vm_flush(pd_addr, ring->idx, vm_id->id);
226 if (is_later) {
227 vm_id->flushed_updates = fence_get(updates);
228 fence_put(flushed_updates);
229 }
230 vm_id->pd_gpu_addr = pd_addr;
231 amdgpu_ring_emit_vm_flush(ring, vm_id->id, vm_id->pd_gpu_addr);
232 }
233 }
234
235 /**
236 * amdgpu_vm_fence - remember fence for vm
237 *
238 * @adev: amdgpu_device pointer
239 * @vm: vm we want to fence
240 * @fence: fence to remember
241 *
242 * Fence the vm (cayman+).
243 * Set the fence used to protect page table and id.
244 *
245 * Global and local mutex must be locked!
246 */
247 void amdgpu_vm_fence(struct amdgpu_device *adev,
248 struct amdgpu_vm *vm,
249 struct fence *fence)
250 {
251 struct amdgpu_ring *ring = amdgpu_ring_from_fence(fence);
252 unsigned vm_id = vm->ids[ring->idx].id;
253
254 fence_put(adev->vm_manager.ids[vm_id].active);
255 adev->vm_manager.ids[vm_id].active = fence_get(fence);
256 atomic_long_set(&adev->vm_manager.ids[vm_id].owner, (long)vm);
257 }
258
259 /**
260 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
261 *
262 * @vm: requested vm
263 * @bo: requested buffer object
264 *
265 * Find @bo inside the requested vm (cayman+).
266 * Search inside the @bos vm list for the requested vm
267 * Returns the found bo_va or NULL if none is found
268 *
269 * Object has to be reserved!
270 */
271 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
272 struct amdgpu_bo *bo)
273 {
274 struct amdgpu_bo_va *bo_va;
275
276 list_for_each_entry(bo_va, &bo->va, bo_list) {
277 if (bo_va->vm == vm) {
278 return bo_va;
279 }
280 }
281 return NULL;
282 }
283
284 /**
285 * amdgpu_vm_update_pages - helper to call the right asic function
286 *
287 * @adev: amdgpu_device pointer
288 * @ib: indirect buffer to fill with commands
289 * @pe: addr of the page entry
290 * @addr: dst addr to write into pe
291 * @count: number of page entries to update
292 * @incr: increase next addr by incr bytes
293 * @flags: hw access flags
294 * @gtt_flags: GTT hw access flags
295 *
296 * Traces the parameters and calls the right asic functions
297 * to setup the page table using the DMA.
298 */
299 static void amdgpu_vm_update_pages(struct amdgpu_device *adev,
300 struct amdgpu_ib *ib,
301 uint64_t pe, uint64_t addr,
302 unsigned count, uint32_t incr,
303 uint32_t flags, uint32_t gtt_flags)
304 {
305 trace_amdgpu_vm_set_page(pe, addr, count, incr, flags);
306
307 if ((flags & AMDGPU_PTE_SYSTEM) && (flags == gtt_flags)) {
308 uint64_t src = adev->gart.table_addr + (addr >> 12) * 8;
309 amdgpu_vm_copy_pte(adev, ib, pe, src, count);
310
311 } else if ((flags & AMDGPU_PTE_SYSTEM) || (count < 3)) {
312 amdgpu_vm_write_pte(adev, ib, pe, addr,
313 count, incr, flags);
314
315 } else {
316 amdgpu_vm_set_pte_pde(adev, ib, pe, addr,
317 count, incr, flags);
318 }
319 }
320
321 int amdgpu_vm_free_job(struct amdgpu_job *job)
322 {
323 int i;
324 for (i = 0; i < job->num_ibs; i++)
325 amdgpu_ib_free(job->adev, &job->ibs[i]);
326 kfree(job->ibs);
327 return 0;
328 }
329
330 /**
331 * amdgpu_vm_clear_bo - initially clear the page dir/table
332 *
333 * @adev: amdgpu_device pointer
334 * @bo: bo to clear
335 *
336 * need to reserve bo first before calling it.
337 */
338 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
339 struct amdgpu_bo *bo)
340 {
341 struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
342 struct fence *fence = NULL;
343 struct amdgpu_ib *ib;
344 unsigned entries;
345 uint64_t addr;
346 int r;
347
348 r = reservation_object_reserve_shared(bo->tbo.resv);
349 if (r)
350 return r;
351
352 r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
353 if (r)
354 goto error;
355
356 addr = amdgpu_bo_gpu_offset(bo);
357 entries = amdgpu_bo_size(bo) / 8;
358
359 ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
360 if (!ib)
361 goto error;
362
363 r = amdgpu_ib_get(ring, NULL, entries * 2 + 64, ib);
364 if (r)
365 goto error_free;
366
367 ib->length_dw = 0;
368
369 amdgpu_vm_update_pages(adev, ib, addr, 0, entries, 0, 0, 0);
370 amdgpu_vm_pad_ib(adev, ib);
371 WARN_ON(ib->length_dw > 64);
372 r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
373 &amdgpu_vm_free_job,
374 AMDGPU_FENCE_OWNER_VM,
375 &fence);
376 if (!r)
377 amdgpu_bo_fence(bo, fence, true);
378 fence_put(fence);
379 if (amdgpu_enable_scheduler)
380 return 0;
381
382 error_free:
383 amdgpu_ib_free(adev, ib);
384 kfree(ib);
385
386 error:
387 return r;
388 }
389
390 /**
391 * amdgpu_vm_map_gart - get the physical address of a gart page
392 *
393 * @adev: amdgpu_device pointer
394 * @addr: the unmapped addr
395 *
396 * Look up the physical address of the page that the pte resolves
397 * to (cayman+).
398 * Returns the physical address of the page.
399 */
400 uint64_t amdgpu_vm_map_gart(struct amdgpu_device *adev, uint64_t addr)
401 {
402 uint64_t result;
403
404 /* page table offset */
405 result = adev->gart.pages_addr[addr >> PAGE_SHIFT];
406
407 /* in case cpu page size != gpu page size*/
408 result |= addr & (~PAGE_MASK);
409
410 return result;
411 }
412
413 /**
414 * amdgpu_vm_update_pdes - make sure that page directory is valid
415 *
416 * @adev: amdgpu_device pointer
417 * @vm: requested vm
418 * @start: start of GPU address range
419 * @end: end of GPU address range
420 *
421 * Allocates new page tables if necessary
422 * and updates the page directory (cayman+).
423 * Returns 0 for success, error for failure.
424 *
425 * Global and local mutex must be locked!
426 */
427 int amdgpu_vm_update_page_directory(struct amdgpu_device *adev,
428 struct amdgpu_vm *vm)
429 {
430 struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
431 struct amdgpu_bo *pd = vm->page_directory;
432 uint64_t pd_addr = amdgpu_bo_gpu_offset(pd);
433 uint32_t incr = AMDGPU_VM_PTE_COUNT * 8;
434 uint64_t last_pde = ~0, last_pt = ~0;
435 unsigned count = 0, pt_idx, ndw;
436 struct amdgpu_ib *ib;
437 struct fence *fence = NULL;
438
439 int r;
440
441 /* padding, etc. */
442 ndw = 64;
443
444 /* assume the worst case */
445 ndw += vm->max_pde_used * 6;
446
447 /* update too big for an IB */
448 if (ndw > 0xfffff)
449 return -ENOMEM;
450
451 ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
452 if (!ib)
453 return -ENOMEM;
454
455 r = amdgpu_ib_get(ring, NULL, ndw * 4, ib);
456 if (r) {
457 kfree(ib);
458 return r;
459 }
460 ib->length_dw = 0;
461
462 /* walk over the address space and update the page directory */
463 for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
464 struct amdgpu_bo *bo = vm->page_tables[pt_idx].bo;
465 uint64_t pde, pt;
466
467 if (bo == NULL)
468 continue;
469
470 pt = amdgpu_bo_gpu_offset(bo);
471 if (vm->page_tables[pt_idx].addr == pt)
472 continue;
473 vm->page_tables[pt_idx].addr = pt;
474
475 pde = pd_addr + pt_idx * 8;
476 if (((last_pde + 8 * count) != pde) ||
477 ((last_pt + incr * count) != pt)) {
478
479 if (count) {
480 amdgpu_vm_update_pages(adev, ib, last_pde,
481 last_pt, count, incr,
482 AMDGPU_PTE_VALID, 0);
483 }
484
485 count = 1;
486 last_pde = pde;
487 last_pt = pt;
488 } else {
489 ++count;
490 }
491 }
492
493 if (count)
494 amdgpu_vm_update_pages(adev, ib, last_pde, last_pt, count,
495 incr, AMDGPU_PTE_VALID, 0);
496
497 if (ib->length_dw != 0) {
498 amdgpu_vm_pad_ib(adev, ib);
499 amdgpu_sync_resv(adev, &ib->sync, pd->tbo.resv, AMDGPU_FENCE_OWNER_VM);
500 WARN_ON(ib->length_dw > ndw);
501 r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
502 &amdgpu_vm_free_job,
503 AMDGPU_FENCE_OWNER_VM,
504 &fence);
505 if (r)
506 goto error_free;
507
508 amdgpu_bo_fence(pd, fence, true);
509 fence_put(vm->page_directory_fence);
510 vm->page_directory_fence = fence_get(fence);
511 fence_put(fence);
512 }
513
514 if (!amdgpu_enable_scheduler || ib->length_dw == 0) {
515 amdgpu_ib_free(adev, ib);
516 kfree(ib);
517 }
518
519 return 0;
520
521 error_free:
522 amdgpu_ib_free(adev, ib);
523 kfree(ib);
524 return r;
525 }
526
527 /**
528 * amdgpu_vm_frag_ptes - add fragment information to PTEs
529 *
530 * @adev: amdgpu_device pointer
531 * @ib: IB for the update
532 * @pe_start: first PTE to handle
533 * @pe_end: last PTE to handle
534 * @addr: addr those PTEs should point to
535 * @flags: hw mapping flags
536 * @gtt_flags: GTT hw mapping flags
537 *
538 * Global and local mutex must be locked!
539 */
540 static void amdgpu_vm_frag_ptes(struct amdgpu_device *adev,
541 struct amdgpu_ib *ib,
542 uint64_t pe_start, uint64_t pe_end,
543 uint64_t addr, uint32_t flags,
544 uint32_t gtt_flags)
545 {
546 /**
547 * The MC L1 TLB supports variable sized pages, based on a fragment
548 * field in the PTE. When this field is set to a non-zero value, page
549 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
550 * flags are considered valid for all PTEs within the fragment range
551 * and corresponding mappings are assumed to be physically contiguous.
552 *
553 * The L1 TLB can store a single PTE for the whole fragment,
554 * significantly increasing the space available for translation
555 * caching. This leads to large improvements in throughput when the
556 * TLB is under pressure.
557 *
558 * The L2 TLB distributes small and large fragments into two
559 * asymmetric partitions. The large fragment cache is significantly
560 * larger. Thus, we try to use large fragments wherever possible.
561 * Userspace can support this by aligning virtual base address and
562 * allocation size to the fragment size.
563 */
564
565 /* SI and newer are optimized for 64KB */
566 uint64_t frag_flags = AMDGPU_PTE_FRAG_64KB;
567 uint64_t frag_align = 0x80;
568
569 uint64_t frag_start = ALIGN(pe_start, frag_align);
570 uint64_t frag_end = pe_end & ~(frag_align - 1);
571
572 unsigned count;
573
574 /* system pages are non continuously */
575 if ((flags & AMDGPU_PTE_SYSTEM) || !(flags & AMDGPU_PTE_VALID) ||
576 (frag_start >= frag_end)) {
577
578 count = (pe_end - pe_start) / 8;
579 amdgpu_vm_update_pages(adev, ib, pe_start, addr, count,
580 AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags);
581 return;
582 }
583
584 /* handle the 4K area at the beginning */
585 if (pe_start != frag_start) {
586 count = (frag_start - pe_start) / 8;
587 amdgpu_vm_update_pages(adev, ib, pe_start, addr, count,
588 AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags);
589 addr += AMDGPU_GPU_PAGE_SIZE * count;
590 }
591
592 /* handle the area in the middle */
593 count = (frag_end - frag_start) / 8;
594 amdgpu_vm_update_pages(adev, ib, frag_start, addr, count,
595 AMDGPU_GPU_PAGE_SIZE, flags | frag_flags,
596 gtt_flags);
597
598 /* handle the 4K area at the end */
599 if (frag_end != pe_end) {
600 addr += AMDGPU_GPU_PAGE_SIZE * count;
601 count = (pe_end - frag_end) / 8;
602 amdgpu_vm_update_pages(adev, ib, frag_end, addr, count,
603 AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags);
604 }
605 }
606
607 /**
608 * amdgpu_vm_update_ptes - make sure that page tables are valid
609 *
610 * @adev: amdgpu_device pointer
611 * @vm: requested vm
612 * @start: start of GPU address range
613 * @end: end of GPU address range
614 * @dst: destination address to map to
615 * @flags: mapping flags
616 *
617 * Update the page tables in the range @start - @end (cayman+).
618 *
619 * Global and local mutex must be locked!
620 */
621 static int amdgpu_vm_update_ptes(struct amdgpu_device *adev,
622 struct amdgpu_vm *vm,
623 struct amdgpu_ib *ib,
624 uint64_t start, uint64_t end,
625 uint64_t dst, uint32_t flags,
626 uint32_t gtt_flags)
627 {
628 uint64_t mask = AMDGPU_VM_PTE_COUNT - 1;
629 uint64_t last_pte = ~0, last_dst = ~0;
630 void *owner = AMDGPU_FENCE_OWNER_VM;
631 unsigned count = 0;
632 uint64_t addr;
633
634 /* sync to everything on unmapping */
635 if (!(flags & AMDGPU_PTE_VALID))
636 owner = AMDGPU_FENCE_OWNER_UNDEFINED;
637
638 /* walk over the address space and update the page tables */
639 for (addr = start; addr < end; ) {
640 uint64_t pt_idx = addr >> amdgpu_vm_block_size;
641 struct amdgpu_bo *pt = vm->page_tables[pt_idx].bo;
642 unsigned nptes;
643 uint64_t pte;
644 int r;
645
646 amdgpu_sync_resv(adev, &ib->sync, pt->tbo.resv, owner);
647 r = reservation_object_reserve_shared(pt->tbo.resv);
648 if (r)
649 return r;
650
651 if ((addr & ~mask) == (end & ~mask))
652 nptes = end - addr;
653 else
654 nptes = AMDGPU_VM_PTE_COUNT - (addr & mask);
655
656 pte = amdgpu_bo_gpu_offset(pt);
657 pte += (addr & mask) * 8;
658
659 if ((last_pte + 8 * count) != pte) {
660
661 if (count) {
662 amdgpu_vm_frag_ptes(adev, ib, last_pte,
663 last_pte + 8 * count,
664 last_dst, flags,
665 gtt_flags);
666 }
667
668 count = nptes;
669 last_pte = pte;
670 last_dst = dst;
671 } else {
672 count += nptes;
673 }
674
675 addr += nptes;
676 dst += nptes * AMDGPU_GPU_PAGE_SIZE;
677 }
678
679 if (count) {
680 amdgpu_vm_frag_ptes(adev, ib, last_pte,
681 last_pte + 8 * count,
682 last_dst, flags, gtt_flags);
683 }
684
685 return 0;
686 }
687
688 /**
689 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
690 *
691 * @adev: amdgpu_device pointer
692 * @vm: requested vm
693 * @mapping: mapped range and flags to use for the update
694 * @addr: addr to set the area to
695 * @gtt_flags: flags as they are used for GTT
696 * @fence: optional resulting fence
697 *
698 * Fill in the page table entries for @mapping.
699 * Returns 0 for success, -EINVAL for failure.
700 *
701 * Object have to be reserved and mutex must be locked!
702 */
703 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
704 struct amdgpu_vm *vm,
705 struct amdgpu_bo_va_mapping *mapping,
706 uint64_t addr, uint32_t gtt_flags,
707 struct fence **fence)
708 {
709 struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
710 unsigned nptes, ncmds, ndw;
711 uint32_t flags = gtt_flags;
712 struct amdgpu_ib *ib;
713 struct fence *f = NULL;
714 int r;
715
716 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
717 * but in case of something, we filter the flags in first place
718 */
719 if (!(mapping->flags & AMDGPU_PTE_READABLE))
720 flags &= ~AMDGPU_PTE_READABLE;
721 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
722 flags &= ~AMDGPU_PTE_WRITEABLE;
723
724 trace_amdgpu_vm_bo_update(mapping);
725
726 nptes = mapping->it.last - mapping->it.start + 1;
727
728 /*
729 * reserve space for one command every (1 << BLOCK_SIZE)
730 * entries or 2k dwords (whatever is smaller)
731 */
732 ncmds = (nptes >> min(amdgpu_vm_block_size, 11)) + 1;
733
734 /* padding, etc. */
735 ndw = 64;
736
737 if ((flags & AMDGPU_PTE_SYSTEM) && (flags == gtt_flags)) {
738 /* only copy commands needed */
739 ndw += ncmds * 7;
740
741 } else if (flags & AMDGPU_PTE_SYSTEM) {
742 /* header for write data commands */
743 ndw += ncmds * 4;
744
745 /* body of write data command */
746 ndw += nptes * 2;
747
748 } else {
749 /* set page commands needed */
750 ndw += ncmds * 10;
751
752 /* two extra commands for begin/end of fragment */
753 ndw += 2 * 10;
754 }
755
756 /* update too big for an IB */
757 if (ndw > 0xfffff)
758 return -ENOMEM;
759
760 ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
761 if (!ib)
762 return -ENOMEM;
763
764 r = amdgpu_ib_get(ring, NULL, ndw * 4, ib);
765 if (r) {
766 kfree(ib);
767 return r;
768 }
769
770 ib->length_dw = 0;
771
772 r = amdgpu_vm_update_ptes(adev, vm, ib, mapping->it.start,
773 mapping->it.last + 1, addr + mapping->offset,
774 flags, gtt_flags);
775
776 if (r) {
777 amdgpu_ib_free(adev, ib);
778 kfree(ib);
779 return r;
780 }
781
782 amdgpu_vm_pad_ib(adev, ib);
783 WARN_ON(ib->length_dw > ndw);
784 r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
785 &amdgpu_vm_free_job,
786 AMDGPU_FENCE_OWNER_VM,
787 &f);
788 if (r)
789 goto error_free;
790
791 amdgpu_bo_fence(vm->page_directory, f, true);
792 if (fence) {
793 fence_put(*fence);
794 *fence = fence_get(f);
795 }
796 fence_put(f);
797 if (!amdgpu_enable_scheduler) {
798 amdgpu_ib_free(adev, ib);
799 kfree(ib);
800 }
801 return 0;
802
803 error_free:
804 amdgpu_ib_free(adev, ib);
805 kfree(ib);
806 return r;
807 }
808
809 /**
810 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
811 *
812 * @adev: amdgpu_device pointer
813 * @bo_va: requested BO and VM object
814 * @mem: ttm mem
815 *
816 * Fill in the page table entries for @bo_va.
817 * Returns 0 for success, -EINVAL for failure.
818 *
819 * Object have to be reserved and mutex must be locked!
820 */
821 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
822 struct amdgpu_bo_va *bo_va,
823 struct ttm_mem_reg *mem)
824 {
825 struct amdgpu_vm *vm = bo_va->vm;
826 struct amdgpu_bo_va_mapping *mapping;
827 uint32_t flags;
828 uint64_t addr;
829 int r;
830
831 if (mem) {
832 addr = (u64)mem->start << PAGE_SHIFT;
833 if (mem->mem_type != TTM_PL_TT)
834 addr += adev->vm_manager.vram_base_offset;
835 } else {
836 addr = 0;
837 }
838
839 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
840
841 spin_lock(&vm->status_lock);
842 if (!list_empty(&bo_va->vm_status))
843 list_splice_init(&bo_va->valids, &bo_va->invalids);
844 spin_unlock(&vm->status_lock);
845
846 list_for_each_entry(mapping, &bo_va->invalids, list) {
847 r = amdgpu_vm_bo_update_mapping(adev, vm, mapping, addr,
848 flags, &bo_va->last_pt_update);
849 if (r)
850 return r;
851 }
852
853 if (trace_amdgpu_vm_bo_mapping_enabled()) {
854 list_for_each_entry(mapping, &bo_va->valids, list)
855 trace_amdgpu_vm_bo_mapping(mapping);
856
857 list_for_each_entry(mapping, &bo_va->invalids, list)
858 trace_amdgpu_vm_bo_mapping(mapping);
859 }
860
861 spin_lock(&vm->status_lock);
862 list_splice_init(&bo_va->invalids, &bo_va->valids);
863 list_del_init(&bo_va->vm_status);
864 if (!mem)
865 list_add(&bo_va->vm_status, &vm->cleared);
866 spin_unlock(&vm->status_lock);
867
868 return 0;
869 }
870
871 /**
872 * amdgpu_vm_clear_freed - clear freed BOs in the PT
873 *
874 * @adev: amdgpu_device pointer
875 * @vm: requested vm
876 *
877 * Make sure all freed BOs are cleared in the PT.
878 * Returns 0 for success.
879 *
880 * PTs have to be reserved and mutex must be locked!
881 */
882 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
883 struct amdgpu_vm *vm)
884 {
885 struct amdgpu_bo_va_mapping *mapping;
886 int r;
887
888 while (!list_empty(&vm->freed)) {
889 mapping = list_first_entry(&vm->freed,
890 struct amdgpu_bo_va_mapping, list);
891 list_del(&mapping->list);
892
893 r = amdgpu_vm_bo_update_mapping(adev, vm, mapping, 0, 0, NULL);
894 kfree(mapping);
895 if (r)
896 return r;
897
898 }
899 return 0;
900
901 }
902
903 /**
904 * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
905 *
906 * @adev: amdgpu_device pointer
907 * @vm: requested vm
908 *
909 * Make sure all invalidated BOs are cleared in the PT.
910 * Returns 0 for success.
911 *
912 * PTs have to be reserved and mutex must be locked!
913 */
914 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
915 struct amdgpu_vm *vm, struct amdgpu_sync *sync)
916 {
917 struct amdgpu_bo_va *bo_va = NULL;
918 int r = 0;
919
920 spin_lock(&vm->status_lock);
921 while (!list_empty(&vm->invalidated)) {
922 bo_va = list_first_entry(&vm->invalidated,
923 struct amdgpu_bo_va, vm_status);
924 spin_unlock(&vm->status_lock);
925 mutex_lock(&bo_va->mutex);
926 r = amdgpu_vm_bo_update(adev, bo_va, NULL);
927 mutex_unlock(&bo_va->mutex);
928 if (r)
929 return r;
930
931 spin_lock(&vm->status_lock);
932 }
933 spin_unlock(&vm->status_lock);
934
935 if (bo_va)
936 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
937
938 return r;
939 }
940
941 /**
942 * amdgpu_vm_bo_add - add a bo to a specific vm
943 *
944 * @adev: amdgpu_device pointer
945 * @vm: requested vm
946 * @bo: amdgpu buffer object
947 *
948 * Add @bo into the requested vm (cayman+).
949 * Add @bo to the list of bos associated with the vm
950 * Returns newly added bo_va or NULL for failure
951 *
952 * Object has to be reserved!
953 */
954 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
955 struct amdgpu_vm *vm,
956 struct amdgpu_bo *bo)
957 {
958 struct amdgpu_bo_va *bo_va;
959
960 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
961 if (bo_va == NULL) {
962 return NULL;
963 }
964 bo_va->vm = vm;
965 bo_va->bo = bo;
966 bo_va->ref_count = 1;
967 INIT_LIST_HEAD(&bo_va->bo_list);
968 INIT_LIST_HEAD(&bo_va->valids);
969 INIT_LIST_HEAD(&bo_va->invalids);
970 INIT_LIST_HEAD(&bo_va->vm_status);
971 mutex_init(&bo_va->mutex);
972 list_add_tail(&bo_va->bo_list, &bo->va);
973
974 return bo_va;
975 }
976
977 /**
978 * amdgpu_vm_bo_map - map bo inside a vm
979 *
980 * @adev: amdgpu_device pointer
981 * @bo_va: bo_va to store the address
982 * @saddr: where to map the BO
983 * @offset: requested offset in the BO
984 * @flags: attributes of pages (read/write/valid/etc.)
985 *
986 * Add a mapping of the BO at the specefied addr into the VM.
987 * Returns 0 for success, error for failure.
988 *
989 * Object has to be reserved and unreserved outside!
990 */
991 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
992 struct amdgpu_bo_va *bo_va,
993 uint64_t saddr, uint64_t offset,
994 uint64_t size, uint32_t flags)
995 {
996 struct amdgpu_bo_va_mapping *mapping;
997 struct amdgpu_vm *vm = bo_va->vm;
998 struct interval_tree_node *it;
999 unsigned last_pfn, pt_idx;
1000 uint64_t eaddr;
1001 int r;
1002
1003 /* validate the parameters */
1004 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1005 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1006 return -EINVAL;
1007
1008 /* make sure object fit at this offset */
1009 eaddr = saddr + size;
1010 if ((saddr >= eaddr) || (offset + size > amdgpu_bo_size(bo_va->bo)))
1011 return -EINVAL;
1012
1013 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
1014 if (last_pfn > adev->vm_manager.max_pfn) {
1015 dev_err(adev->dev, "va above limit (0x%08X > 0x%08X)\n",
1016 last_pfn, adev->vm_manager.max_pfn);
1017 return -EINVAL;
1018 }
1019
1020 saddr /= AMDGPU_GPU_PAGE_SIZE;
1021 eaddr /= AMDGPU_GPU_PAGE_SIZE;
1022
1023 spin_lock(&vm->it_lock);
1024 it = interval_tree_iter_first(&vm->va, saddr, eaddr - 1);
1025 spin_unlock(&vm->it_lock);
1026 if (it) {
1027 struct amdgpu_bo_va_mapping *tmp;
1028 tmp = container_of(it, struct amdgpu_bo_va_mapping, it);
1029 /* bo and tmp overlap, invalid addr */
1030 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1031 "0x%010lx-0x%010lx\n", bo_va->bo, saddr, eaddr,
1032 tmp->it.start, tmp->it.last + 1);
1033 r = -EINVAL;
1034 goto error;
1035 }
1036
1037 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1038 if (!mapping) {
1039 r = -ENOMEM;
1040 goto error;
1041 }
1042
1043 INIT_LIST_HEAD(&mapping->list);
1044 mapping->it.start = saddr;
1045 mapping->it.last = eaddr - 1;
1046 mapping->offset = offset;
1047 mapping->flags = flags;
1048
1049 mutex_lock(&bo_va->mutex);
1050 list_add(&mapping->list, &bo_va->invalids);
1051 mutex_unlock(&bo_va->mutex);
1052 spin_lock(&vm->it_lock);
1053 interval_tree_insert(&mapping->it, &vm->va);
1054 spin_unlock(&vm->it_lock);
1055 trace_amdgpu_vm_bo_map(bo_va, mapping);
1056
1057 /* Make sure the page tables are allocated */
1058 saddr >>= amdgpu_vm_block_size;
1059 eaddr >>= amdgpu_vm_block_size;
1060
1061 BUG_ON(eaddr >= amdgpu_vm_num_pdes(adev));
1062
1063 if (eaddr > vm->max_pde_used)
1064 vm->max_pde_used = eaddr;
1065
1066 /* walk over the address space and allocate the page tables */
1067 for (pt_idx = saddr; pt_idx <= eaddr; ++pt_idx) {
1068 struct reservation_object *resv = vm->page_directory->tbo.resv;
1069 struct amdgpu_bo *pt;
1070
1071 if (vm->page_tables[pt_idx].bo)
1072 continue;
1073
1074 r = amdgpu_bo_create(adev, AMDGPU_VM_PTE_COUNT * 8,
1075 AMDGPU_GPU_PAGE_SIZE, true,
1076 AMDGPU_GEM_DOMAIN_VRAM,
1077 AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1078 NULL, resv, &pt);
1079 if (r)
1080 goto error_free;
1081
1082 r = amdgpu_vm_clear_bo(adev, pt);
1083 if (r) {
1084 amdgpu_bo_unref(&pt);
1085 goto error_free;
1086 }
1087
1088 vm->page_tables[pt_idx].addr = 0;
1089 vm->page_tables[pt_idx].bo = pt;
1090 }
1091
1092 return 0;
1093
1094 error_free:
1095 list_del(&mapping->list);
1096 spin_lock(&vm->it_lock);
1097 interval_tree_remove(&mapping->it, &vm->va);
1098 spin_unlock(&vm->it_lock);
1099 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1100 kfree(mapping);
1101
1102 error:
1103 return r;
1104 }
1105
1106 /**
1107 * amdgpu_vm_bo_unmap - remove bo mapping from vm
1108 *
1109 * @adev: amdgpu_device pointer
1110 * @bo_va: bo_va to remove the address from
1111 * @saddr: where to the BO is mapped
1112 *
1113 * Remove a mapping of the BO at the specefied addr from the VM.
1114 * Returns 0 for success, error for failure.
1115 *
1116 * Object has to be reserved and unreserved outside!
1117 */
1118 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1119 struct amdgpu_bo_va *bo_va,
1120 uint64_t saddr)
1121 {
1122 struct amdgpu_bo_va_mapping *mapping;
1123 struct amdgpu_vm *vm = bo_va->vm;
1124 bool valid = true;
1125
1126 saddr /= AMDGPU_GPU_PAGE_SIZE;
1127 mutex_lock(&bo_va->mutex);
1128 list_for_each_entry(mapping, &bo_va->valids, list) {
1129 if (mapping->it.start == saddr)
1130 break;
1131 }
1132
1133 if (&mapping->list == &bo_va->valids) {
1134 valid = false;
1135
1136 list_for_each_entry(mapping, &bo_va->invalids, list) {
1137 if (mapping->it.start == saddr)
1138 break;
1139 }
1140
1141 if (&mapping->list == &bo_va->invalids) {
1142 mutex_unlock(&bo_va->mutex);
1143 return -ENOENT;
1144 }
1145 }
1146 mutex_unlock(&bo_va->mutex);
1147 list_del(&mapping->list);
1148 spin_lock(&vm->it_lock);
1149 interval_tree_remove(&mapping->it, &vm->va);
1150 spin_unlock(&vm->it_lock);
1151 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1152
1153 if (valid)
1154 list_add(&mapping->list, &vm->freed);
1155 else
1156 kfree(mapping);
1157
1158 return 0;
1159 }
1160
1161 /**
1162 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
1163 *
1164 * @adev: amdgpu_device pointer
1165 * @bo_va: requested bo_va
1166 *
1167 * Remove @bo_va->bo from the requested vm (cayman+).
1168 *
1169 * Object have to be reserved!
1170 */
1171 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
1172 struct amdgpu_bo_va *bo_va)
1173 {
1174 struct amdgpu_bo_va_mapping *mapping, *next;
1175 struct amdgpu_vm *vm = bo_va->vm;
1176
1177 list_del(&bo_va->bo_list);
1178
1179 spin_lock(&vm->status_lock);
1180 list_del(&bo_va->vm_status);
1181 spin_unlock(&vm->status_lock);
1182
1183 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
1184 list_del(&mapping->list);
1185 spin_lock(&vm->it_lock);
1186 interval_tree_remove(&mapping->it, &vm->va);
1187 spin_unlock(&vm->it_lock);
1188 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1189 list_add(&mapping->list, &vm->freed);
1190 }
1191 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
1192 list_del(&mapping->list);
1193 spin_lock(&vm->it_lock);
1194 interval_tree_remove(&mapping->it, &vm->va);
1195 spin_unlock(&vm->it_lock);
1196 kfree(mapping);
1197 }
1198 fence_put(bo_va->last_pt_update);
1199 mutex_destroy(&bo_va->mutex);
1200 kfree(bo_va);
1201 }
1202
1203 /**
1204 * amdgpu_vm_bo_invalidate - mark the bo as invalid
1205 *
1206 * @adev: amdgpu_device pointer
1207 * @vm: requested vm
1208 * @bo: amdgpu buffer object
1209 *
1210 * Mark @bo as invalid (cayman+).
1211 */
1212 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
1213 struct amdgpu_bo *bo)
1214 {
1215 struct amdgpu_bo_va *bo_va;
1216
1217 list_for_each_entry(bo_va, &bo->va, bo_list) {
1218 spin_lock(&bo_va->vm->status_lock);
1219 if (list_empty(&bo_va->vm_status))
1220 list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
1221 spin_unlock(&bo_va->vm->status_lock);
1222 }
1223 }
1224
1225 /**
1226 * amdgpu_vm_init - initialize a vm instance
1227 *
1228 * @adev: amdgpu_device pointer
1229 * @vm: requested vm
1230 *
1231 * Init @vm fields (cayman+).
1232 */
1233 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1234 {
1235 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
1236 AMDGPU_VM_PTE_COUNT * 8);
1237 unsigned pd_size, pd_entries, pts_size;
1238 int i, r;
1239
1240 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
1241 vm->ids[i].id = 0;
1242 vm->ids[i].flushed_updates = NULL;
1243 }
1244 vm->va = RB_ROOT;
1245 spin_lock_init(&vm->status_lock);
1246 INIT_LIST_HEAD(&vm->invalidated);
1247 INIT_LIST_HEAD(&vm->cleared);
1248 INIT_LIST_HEAD(&vm->freed);
1249 spin_lock_init(&vm->it_lock);
1250 pd_size = amdgpu_vm_directory_size(adev);
1251 pd_entries = amdgpu_vm_num_pdes(adev);
1252
1253 /* allocate page table array */
1254 pts_size = pd_entries * sizeof(struct amdgpu_vm_pt);
1255 vm->page_tables = kzalloc(pts_size, GFP_KERNEL);
1256 if (vm->page_tables == NULL) {
1257 DRM_ERROR("Cannot allocate memory for page table array\n");
1258 return -ENOMEM;
1259 }
1260
1261 vm->page_directory_fence = NULL;
1262
1263 r = amdgpu_bo_create(adev, pd_size, align, true,
1264 AMDGPU_GEM_DOMAIN_VRAM,
1265 AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1266 NULL, NULL, &vm->page_directory);
1267 if (r)
1268 return r;
1269 r = amdgpu_bo_reserve(vm->page_directory, false);
1270 if (r) {
1271 amdgpu_bo_unref(&vm->page_directory);
1272 vm->page_directory = NULL;
1273 return r;
1274 }
1275 r = amdgpu_vm_clear_bo(adev, vm->page_directory);
1276 amdgpu_bo_unreserve(vm->page_directory);
1277 if (r) {
1278 amdgpu_bo_unref(&vm->page_directory);
1279 vm->page_directory = NULL;
1280 return r;
1281 }
1282
1283 return 0;
1284 }
1285
1286 /**
1287 * amdgpu_vm_fini - tear down a vm instance
1288 *
1289 * @adev: amdgpu_device pointer
1290 * @vm: requested vm
1291 *
1292 * Tear down @vm (cayman+).
1293 * Unbind the VM and remove all bos from the vm bo list
1294 */
1295 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1296 {
1297 struct amdgpu_bo_va_mapping *mapping, *tmp;
1298 int i;
1299
1300 if (!RB_EMPTY_ROOT(&vm->va)) {
1301 dev_err(adev->dev, "still active bo inside vm\n");
1302 }
1303 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, it.rb) {
1304 list_del(&mapping->list);
1305 interval_tree_remove(&mapping->it, &vm->va);
1306 kfree(mapping);
1307 }
1308 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
1309 list_del(&mapping->list);
1310 kfree(mapping);
1311 }
1312
1313 for (i = 0; i < amdgpu_vm_num_pdes(adev); i++)
1314 amdgpu_bo_unref(&vm->page_tables[i].bo);
1315 kfree(vm->page_tables);
1316
1317 amdgpu_bo_unref(&vm->page_directory);
1318 fence_put(vm->page_directory_fence);
1319 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
1320 unsigned id = vm->ids[i].id;
1321
1322 atomic_long_cmpxchg(&adev->vm_manager.ids[id].owner,
1323 (long)vm, 0);
1324 fence_put(vm->ids[i].flushed_updates);
1325 }
1326
1327 }
1328
1329 /**
1330 * amdgpu_vm_manager_fini - cleanup VM manager
1331 *
1332 * @adev: amdgpu_device pointer
1333 *
1334 * Cleanup the VM manager and free resources.
1335 */
1336 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
1337 {
1338 unsigned i;
1339
1340 for (i = 0; i < AMDGPU_NUM_VM; ++i)
1341 fence_put(adev->vm_manager.ids[i].active);
1342 }