]> git.ipfire.org Git - people/ms/linux.git/blob - drivers/net/ethernet/freescale/gianfar.c
Don't reset ->total_link_count on nested calls of vfs_path_lookup()
[people/ms/linux.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2 *
3 * Gianfar Ethernet Driver
4 * This driver is designed for the non-CPM ethernet controllers
5 * on the 85xx and 83xx family of integrated processors
6 * Based on 8260_io/fcc_enet.c
7 *
8 * Author: Andy Fleming
9 * Maintainer: Kumar Gala
10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11 *
12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13 * Copyright 2007 MontaVista Software, Inc.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
25 *
26 * Theory of operation
27 *
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
30 *
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
36 *
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
52 * skb.
53 *
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
62 */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107
108 #include "gianfar.h"
109
110 #define TX_TIMEOUT (5*HZ)
111
112 const char gfar_driver_version[] = "2.0";
113
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
120 int alloc_cnt);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
145 static void gfar_halt_nodisable(struct gfar_private *priv);
146 static void gfar_clear_exact_match(struct net_device *dev);
147 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
148 const u8 *addr);
149 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
150
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
154
155 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
156 dma_addr_t buf)
157 {
158 u32 lstatus;
159
160 bdp->bufPtr = cpu_to_be32(buf);
161
162 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
163 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
164 lstatus |= BD_LFLAG(RXBD_WRAP);
165
166 gfar_wmb();
167
168 bdp->lstatus = cpu_to_be32(lstatus);
169 }
170
171 static void gfar_init_bds(struct net_device *ndev)
172 {
173 struct gfar_private *priv = netdev_priv(ndev);
174 struct gfar __iomem *regs = priv->gfargrp[0].regs;
175 struct gfar_priv_tx_q *tx_queue = NULL;
176 struct gfar_priv_rx_q *rx_queue = NULL;
177 struct txbd8 *txbdp;
178 u32 __iomem *rfbptr;
179 int i, j;
180
181 for (i = 0; i < priv->num_tx_queues; i++) {
182 tx_queue = priv->tx_queue[i];
183 /* Initialize some variables in our dev structure */
184 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
185 tx_queue->dirty_tx = tx_queue->tx_bd_base;
186 tx_queue->cur_tx = tx_queue->tx_bd_base;
187 tx_queue->skb_curtx = 0;
188 tx_queue->skb_dirtytx = 0;
189
190 /* Initialize Transmit Descriptor Ring */
191 txbdp = tx_queue->tx_bd_base;
192 for (j = 0; j < tx_queue->tx_ring_size; j++) {
193 txbdp->lstatus = 0;
194 txbdp->bufPtr = 0;
195 txbdp++;
196 }
197
198 /* Set the last descriptor in the ring to indicate wrap */
199 txbdp--;
200 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
201 TXBD_WRAP);
202 }
203
204 rfbptr = &regs->rfbptr0;
205 for (i = 0; i < priv->num_rx_queues; i++) {
206 rx_queue = priv->rx_queue[i];
207
208 rx_queue->next_to_clean = 0;
209 rx_queue->next_to_use = 0;
210 rx_queue->next_to_alloc = 0;
211
212 /* make sure next_to_clean != next_to_use after this
213 * by leaving at least 1 unused descriptor
214 */
215 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
216
217 rx_queue->rfbptr = rfbptr;
218 rfbptr += 2;
219 }
220 }
221
222 static int gfar_alloc_skb_resources(struct net_device *ndev)
223 {
224 void *vaddr;
225 dma_addr_t addr;
226 int i, j;
227 struct gfar_private *priv = netdev_priv(ndev);
228 struct device *dev = priv->dev;
229 struct gfar_priv_tx_q *tx_queue = NULL;
230 struct gfar_priv_rx_q *rx_queue = NULL;
231
232 priv->total_tx_ring_size = 0;
233 for (i = 0; i < priv->num_tx_queues; i++)
234 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
235
236 priv->total_rx_ring_size = 0;
237 for (i = 0; i < priv->num_rx_queues; i++)
238 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
239
240 /* Allocate memory for the buffer descriptors */
241 vaddr = dma_alloc_coherent(dev,
242 (priv->total_tx_ring_size *
243 sizeof(struct txbd8)) +
244 (priv->total_rx_ring_size *
245 sizeof(struct rxbd8)),
246 &addr, GFP_KERNEL);
247 if (!vaddr)
248 return -ENOMEM;
249
250 for (i = 0; i < priv->num_tx_queues; i++) {
251 tx_queue = priv->tx_queue[i];
252 tx_queue->tx_bd_base = vaddr;
253 tx_queue->tx_bd_dma_base = addr;
254 tx_queue->dev = ndev;
255 /* enet DMA only understands physical addresses */
256 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
257 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
258 }
259
260 /* Start the rx descriptor ring where the tx ring leaves off */
261 for (i = 0; i < priv->num_rx_queues; i++) {
262 rx_queue = priv->rx_queue[i];
263 rx_queue->rx_bd_base = vaddr;
264 rx_queue->rx_bd_dma_base = addr;
265 rx_queue->ndev = ndev;
266 rx_queue->dev = dev;
267 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
268 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
269 }
270
271 /* Setup the skbuff rings */
272 for (i = 0; i < priv->num_tx_queues; i++) {
273 tx_queue = priv->tx_queue[i];
274 tx_queue->tx_skbuff =
275 kmalloc_array(tx_queue->tx_ring_size,
276 sizeof(*tx_queue->tx_skbuff),
277 GFP_KERNEL);
278 if (!tx_queue->tx_skbuff)
279 goto cleanup;
280
281 for (j = 0; j < tx_queue->tx_ring_size; j++)
282 tx_queue->tx_skbuff[j] = NULL;
283 }
284
285 for (i = 0; i < priv->num_rx_queues; i++) {
286 rx_queue = priv->rx_queue[i];
287 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
288 sizeof(*rx_queue->rx_buff),
289 GFP_KERNEL);
290 if (!rx_queue->rx_buff)
291 goto cleanup;
292 }
293
294 gfar_init_bds(ndev);
295
296 return 0;
297
298 cleanup:
299 free_skb_resources(priv);
300 return -ENOMEM;
301 }
302
303 static void gfar_init_tx_rx_base(struct gfar_private *priv)
304 {
305 struct gfar __iomem *regs = priv->gfargrp[0].regs;
306 u32 __iomem *baddr;
307 int i;
308
309 baddr = &regs->tbase0;
310 for (i = 0; i < priv->num_tx_queues; i++) {
311 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
312 baddr += 2;
313 }
314
315 baddr = &regs->rbase0;
316 for (i = 0; i < priv->num_rx_queues; i++) {
317 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
318 baddr += 2;
319 }
320 }
321
322 static void gfar_init_rqprm(struct gfar_private *priv)
323 {
324 struct gfar __iomem *regs = priv->gfargrp[0].regs;
325 u32 __iomem *baddr;
326 int i;
327
328 baddr = &regs->rqprm0;
329 for (i = 0; i < priv->num_rx_queues; i++) {
330 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
331 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
332 baddr++;
333 }
334 }
335
336 static void gfar_rx_offload_en(struct gfar_private *priv)
337 {
338 /* set this when rx hw offload (TOE) functions are being used */
339 priv->uses_rxfcb = 0;
340
341 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
342 priv->uses_rxfcb = 1;
343
344 if (priv->hwts_rx_en || priv->rx_filer_enable)
345 priv->uses_rxfcb = 1;
346 }
347
348 static void gfar_mac_rx_config(struct gfar_private *priv)
349 {
350 struct gfar __iomem *regs = priv->gfargrp[0].regs;
351 u32 rctrl = 0;
352
353 if (priv->rx_filer_enable) {
354 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
355 /* Program the RIR0 reg with the required distribution */
356 if (priv->poll_mode == GFAR_SQ_POLLING)
357 gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
358 else /* GFAR_MQ_POLLING */
359 gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
360 }
361
362 /* Restore PROMISC mode */
363 if (priv->ndev->flags & IFF_PROMISC)
364 rctrl |= RCTRL_PROM;
365
366 if (priv->ndev->features & NETIF_F_RXCSUM)
367 rctrl |= RCTRL_CHECKSUMMING;
368
369 if (priv->extended_hash)
370 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
371
372 if (priv->padding) {
373 rctrl &= ~RCTRL_PAL_MASK;
374 rctrl |= RCTRL_PADDING(priv->padding);
375 }
376
377 /* Enable HW time stamping if requested from user space */
378 if (priv->hwts_rx_en)
379 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
380
381 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
382 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
383
384 /* Clear the LFC bit */
385 gfar_write(&regs->rctrl, rctrl);
386 /* Init flow control threshold values */
387 gfar_init_rqprm(priv);
388 gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
389 rctrl |= RCTRL_LFC;
390
391 /* Init rctrl based on our settings */
392 gfar_write(&regs->rctrl, rctrl);
393 }
394
395 static void gfar_mac_tx_config(struct gfar_private *priv)
396 {
397 struct gfar __iomem *regs = priv->gfargrp[0].regs;
398 u32 tctrl = 0;
399
400 if (priv->ndev->features & NETIF_F_IP_CSUM)
401 tctrl |= TCTRL_INIT_CSUM;
402
403 if (priv->prio_sched_en)
404 tctrl |= TCTRL_TXSCHED_PRIO;
405 else {
406 tctrl |= TCTRL_TXSCHED_WRRS;
407 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
408 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
409 }
410
411 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
412 tctrl |= TCTRL_VLINS;
413
414 gfar_write(&regs->tctrl, tctrl);
415 }
416
417 static void gfar_configure_coalescing(struct gfar_private *priv,
418 unsigned long tx_mask, unsigned long rx_mask)
419 {
420 struct gfar __iomem *regs = priv->gfargrp[0].regs;
421 u32 __iomem *baddr;
422
423 if (priv->mode == MQ_MG_MODE) {
424 int i = 0;
425
426 baddr = &regs->txic0;
427 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
428 gfar_write(baddr + i, 0);
429 if (likely(priv->tx_queue[i]->txcoalescing))
430 gfar_write(baddr + i, priv->tx_queue[i]->txic);
431 }
432
433 baddr = &regs->rxic0;
434 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
435 gfar_write(baddr + i, 0);
436 if (likely(priv->rx_queue[i]->rxcoalescing))
437 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
438 }
439 } else {
440 /* Backward compatible case -- even if we enable
441 * multiple queues, there's only single reg to program
442 */
443 gfar_write(&regs->txic, 0);
444 if (likely(priv->tx_queue[0]->txcoalescing))
445 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
446
447 gfar_write(&regs->rxic, 0);
448 if (unlikely(priv->rx_queue[0]->rxcoalescing))
449 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
450 }
451 }
452
453 void gfar_configure_coalescing_all(struct gfar_private *priv)
454 {
455 gfar_configure_coalescing(priv, 0xFF, 0xFF);
456 }
457
458 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
459 {
460 struct gfar_private *priv = netdev_priv(dev);
461 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
462 unsigned long tx_packets = 0, tx_bytes = 0;
463 int i;
464
465 for (i = 0; i < priv->num_rx_queues; i++) {
466 rx_packets += priv->rx_queue[i]->stats.rx_packets;
467 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
468 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
469 }
470
471 dev->stats.rx_packets = rx_packets;
472 dev->stats.rx_bytes = rx_bytes;
473 dev->stats.rx_dropped = rx_dropped;
474
475 for (i = 0; i < priv->num_tx_queues; i++) {
476 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
477 tx_packets += priv->tx_queue[i]->stats.tx_packets;
478 }
479
480 dev->stats.tx_bytes = tx_bytes;
481 dev->stats.tx_packets = tx_packets;
482
483 return &dev->stats;
484 }
485
486 static int gfar_set_mac_addr(struct net_device *dev, void *p)
487 {
488 eth_mac_addr(dev, p);
489
490 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
491
492 return 0;
493 }
494
495 static const struct net_device_ops gfar_netdev_ops = {
496 .ndo_open = gfar_enet_open,
497 .ndo_start_xmit = gfar_start_xmit,
498 .ndo_stop = gfar_close,
499 .ndo_change_mtu = gfar_change_mtu,
500 .ndo_set_features = gfar_set_features,
501 .ndo_set_rx_mode = gfar_set_multi,
502 .ndo_tx_timeout = gfar_timeout,
503 .ndo_do_ioctl = gfar_ioctl,
504 .ndo_get_stats = gfar_get_stats,
505 .ndo_set_mac_address = gfar_set_mac_addr,
506 .ndo_validate_addr = eth_validate_addr,
507 #ifdef CONFIG_NET_POLL_CONTROLLER
508 .ndo_poll_controller = gfar_netpoll,
509 #endif
510 };
511
512 static void gfar_ints_disable(struct gfar_private *priv)
513 {
514 int i;
515 for (i = 0; i < priv->num_grps; i++) {
516 struct gfar __iomem *regs = priv->gfargrp[i].regs;
517 /* Clear IEVENT */
518 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
519
520 /* Initialize IMASK */
521 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
522 }
523 }
524
525 static void gfar_ints_enable(struct gfar_private *priv)
526 {
527 int i;
528 for (i = 0; i < priv->num_grps; i++) {
529 struct gfar __iomem *regs = priv->gfargrp[i].regs;
530 /* Unmask the interrupts we look for */
531 gfar_write(&regs->imask, IMASK_DEFAULT);
532 }
533 }
534
535 static int gfar_alloc_tx_queues(struct gfar_private *priv)
536 {
537 int i;
538
539 for (i = 0; i < priv->num_tx_queues; i++) {
540 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
541 GFP_KERNEL);
542 if (!priv->tx_queue[i])
543 return -ENOMEM;
544
545 priv->tx_queue[i]->tx_skbuff = NULL;
546 priv->tx_queue[i]->qindex = i;
547 priv->tx_queue[i]->dev = priv->ndev;
548 spin_lock_init(&(priv->tx_queue[i]->txlock));
549 }
550 return 0;
551 }
552
553 static int gfar_alloc_rx_queues(struct gfar_private *priv)
554 {
555 int i;
556
557 for (i = 0; i < priv->num_rx_queues; i++) {
558 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
559 GFP_KERNEL);
560 if (!priv->rx_queue[i])
561 return -ENOMEM;
562
563 priv->rx_queue[i]->qindex = i;
564 priv->rx_queue[i]->ndev = priv->ndev;
565 }
566 return 0;
567 }
568
569 static void gfar_free_tx_queues(struct gfar_private *priv)
570 {
571 int i;
572
573 for (i = 0; i < priv->num_tx_queues; i++)
574 kfree(priv->tx_queue[i]);
575 }
576
577 static void gfar_free_rx_queues(struct gfar_private *priv)
578 {
579 int i;
580
581 for (i = 0; i < priv->num_rx_queues; i++)
582 kfree(priv->rx_queue[i]);
583 }
584
585 static void unmap_group_regs(struct gfar_private *priv)
586 {
587 int i;
588
589 for (i = 0; i < MAXGROUPS; i++)
590 if (priv->gfargrp[i].regs)
591 iounmap(priv->gfargrp[i].regs);
592 }
593
594 static void free_gfar_dev(struct gfar_private *priv)
595 {
596 int i, j;
597
598 for (i = 0; i < priv->num_grps; i++)
599 for (j = 0; j < GFAR_NUM_IRQS; j++) {
600 kfree(priv->gfargrp[i].irqinfo[j]);
601 priv->gfargrp[i].irqinfo[j] = NULL;
602 }
603
604 free_netdev(priv->ndev);
605 }
606
607 static void disable_napi(struct gfar_private *priv)
608 {
609 int i;
610
611 for (i = 0; i < priv->num_grps; i++) {
612 napi_disable(&priv->gfargrp[i].napi_rx);
613 napi_disable(&priv->gfargrp[i].napi_tx);
614 }
615 }
616
617 static void enable_napi(struct gfar_private *priv)
618 {
619 int i;
620
621 for (i = 0; i < priv->num_grps; i++) {
622 napi_enable(&priv->gfargrp[i].napi_rx);
623 napi_enable(&priv->gfargrp[i].napi_tx);
624 }
625 }
626
627 static int gfar_parse_group(struct device_node *np,
628 struct gfar_private *priv, const char *model)
629 {
630 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
631 int i;
632
633 for (i = 0; i < GFAR_NUM_IRQS; i++) {
634 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
635 GFP_KERNEL);
636 if (!grp->irqinfo[i])
637 return -ENOMEM;
638 }
639
640 grp->regs = of_iomap(np, 0);
641 if (!grp->regs)
642 return -ENOMEM;
643
644 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
645
646 /* If we aren't the FEC we have multiple interrupts */
647 if (model && strcasecmp(model, "FEC")) {
648 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
649 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
650 if (gfar_irq(grp, TX)->irq == NO_IRQ ||
651 gfar_irq(grp, RX)->irq == NO_IRQ ||
652 gfar_irq(grp, ER)->irq == NO_IRQ)
653 return -EINVAL;
654 }
655
656 grp->priv = priv;
657 spin_lock_init(&grp->grplock);
658 if (priv->mode == MQ_MG_MODE) {
659 u32 rxq_mask, txq_mask;
660 int ret;
661
662 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
663 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
664
665 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
666 if (!ret) {
667 grp->rx_bit_map = rxq_mask ?
668 rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
669 }
670
671 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
672 if (!ret) {
673 grp->tx_bit_map = txq_mask ?
674 txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
675 }
676
677 if (priv->poll_mode == GFAR_SQ_POLLING) {
678 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
679 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
680 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
681 }
682 } else {
683 grp->rx_bit_map = 0xFF;
684 grp->tx_bit_map = 0xFF;
685 }
686
687 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
688 * right to left, so we need to revert the 8 bits to get the q index
689 */
690 grp->rx_bit_map = bitrev8(grp->rx_bit_map);
691 grp->tx_bit_map = bitrev8(grp->tx_bit_map);
692
693 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
694 * also assign queues to groups
695 */
696 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
697 if (!grp->rx_queue)
698 grp->rx_queue = priv->rx_queue[i];
699 grp->num_rx_queues++;
700 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
701 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
702 priv->rx_queue[i]->grp = grp;
703 }
704
705 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
706 if (!grp->tx_queue)
707 grp->tx_queue = priv->tx_queue[i];
708 grp->num_tx_queues++;
709 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
710 priv->tqueue |= (TQUEUE_EN0 >> i);
711 priv->tx_queue[i]->grp = grp;
712 }
713
714 priv->num_grps++;
715
716 return 0;
717 }
718
719 static int gfar_of_group_count(struct device_node *np)
720 {
721 struct device_node *child;
722 int num = 0;
723
724 for_each_available_child_of_node(np, child)
725 if (!of_node_cmp(child->name, "queue-group"))
726 num++;
727
728 return num;
729 }
730
731 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
732 {
733 const char *model;
734 const char *ctype;
735 const void *mac_addr;
736 int err = 0, i;
737 struct net_device *dev = NULL;
738 struct gfar_private *priv = NULL;
739 struct device_node *np = ofdev->dev.of_node;
740 struct device_node *child = NULL;
741 struct property *stash;
742 u32 stash_len = 0;
743 u32 stash_idx = 0;
744 unsigned int num_tx_qs, num_rx_qs;
745 unsigned short mode, poll_mode;
746
747 if (!np)
748 return -ENODEV;
749
750 if (of_device_is_compatible(np, "fsl,etsec2")) {
751 mode = MQ_MG_MODE;
752 poll_mode = GFAR_SQ_POLLING;
753 } else {
754 mode = SQ_SG_MODE;
755 poll_mode = GFAR_SQ_POLLING;
756 }
757
758 if (mode == SQ_SG_MODE) {
759 num_tx_qs = 1;
760 num_rx_qs = 1;
761 } else { /* MQ_MG_MODE */
762 /* get the actual number of supported groups */
763 unsigned int num_grps = gfar_of_group_count(np);
764
765 if (num_grps == 0 || num_grps > MAXGROUPS) {
766 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
767 num_grps);
768 pr_err("Cannot do alloc_etherdev, aborting\n");
769 return -EINVAL;
770 }
771
772 if (poll_mode == GFAR_SQ_POLLING) {
773 num_tx_qs = num_grps; /* one txq per int group */
774 num_rx_qs = num_grps; /* one rxq per int group */
775 } else { /* GFAR_MQ_POLLING */
776 u32 tx_queues, rx_queues;
777 int ret;
778
779 /* parse the num of HW tx and rx queues */
780 ret = of_property_read_u32(np, "fsl,num_tx_queues",
781 &tx_queues);
782 num_tx_qs = ret ? 1 : tx_queues;
783
784 ret = of_property_read_u32(np, "fsl,num_rx_queues",
785 &rx_queues);
786 num_rx_qs = ret ? 1 : rx_queues;
787 }
788 }
789
790 if (num_tx_qs > MAX_TX_QS) {
791 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
792 num_tx_qs, MAX_TX_QS);
793 pr_err("Cannot do alloc_etherdev, aborting\n");
794 return -EINVAL;
795 }
796
797 if (num_rx_qs > MAX_RX_QS) {
798 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
799 num_rx_qs, MAX_RX_QS);
800 pr_err("Cannot do alloc_etherdev, aborting\n");
801 return -EINVAL;
802 }
803
804 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
805 dev = *pdev;
806 if (NULL == dev)
807 return -ENOMEM;
808
809 priv = netdev_priv(dev);
810 priv->ndev = dev;
811
812 priv->mode = mode;
813 priv->poll_mode = poll_mode;
814
815 priv->num_tx_queues = num_tx_qs;
816 netif_set_real_num_rx_queues(dev, num_rx_qs);
817 priv->num_rx_queues = num_rx_qs;
818
819 err = gfar_alloc_tx_queues(priv);
820 if (err)
821 goto tx_alloc_failed;
822
823 err = gfar_alloc_rx_queues(priv);
824 if (err)
825 goto rx_alloc_failed;
826
827 err = of_property_read_string(np, "model", &model);
828 if (err) {
829 pr_err("Device model property missing, aborting\n");
830 goto rx_alloc_failed;
831 }
832
833 /* Init Rx queue filer rule set linked list */
834 INIT_LIST_HEAD(&priv->rx_list.list);
835 priv->rx_list.count = 0;
836 mutex_init(&priv->rx_queue_access);
837
838 for (i = 0; i < MAXGROUPS; i++)
839 priv->gfargrp[i].regs = NULL;
840
841 /* Parse and initialize group specific information */
842 if (priv->mode == MQ_MG_MODE) {
843 for_each_available_child_of_node(np, child) {
844 if (of_node_cmp(child->name, "queue-group"))
845 continue;
846
847 err = gfar_parse_group(child, priv, model);
848 if (err)
849 goto err_grp_init;
850 }
851 } else { /* SQ_SG_MODE */
852 err = gfar_parse_group(np, priv, model);
853 if (err)
854 goto err_grp_init;
855 }
856
857 stash = of_find_property(np, "bd-stash", NULL);
858
859 if (stash) {
860 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
861 priv->bd_stash_en = 1;
862 }
863
864 err = of_property_read_u32(np, "rx-stash-len", &stash_len);
865
866 if (err == 0)
867 priv->rx_stash_size = stash_len;
868
869 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
870
871 if (err == 0)
872 priv->rx_stash_index = stash_idx;
873
874 if (stash_len || stash_idx)
875 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
876
877 mac_addr = of_get_mac_address(np);
878
879 if (mac_addr)
880 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
881
882 if (model && !strcasecmp(model, "TSEC"))
883 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
884 FSL_GIANFAR_DEV_HAS_COALESCE |
885 FSL_GIANFAR_DEV_HAS_RMON |
886 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
887
888 if (model && !strcasecmp(model, "eTSEC"))
889 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
890 FSL_GIANFAR_DEV_HAS_COALESCE |
891 FSL_GIANFAR_DEV_HAS_RMON |
892 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
893 FSL_GIANFAR_DEV_HAS_CSUM |
894 FSL_GIANFAR_DEV_HAS_VLAN |
895 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
896 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
897 FSL_GIANFAR_DEV_HAS_TIMER;
898
899 err = of_property_read_string(np, "phy-connection-type", &ctype);
900
901 /* We only care about rgmii-id. The rest are autodetected */
902 if (err == 0 && !strcmp(ctype, "rgmii-id"))
903 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
904 else
905 priv->interface = PHY_INTERFACE_MODE_MII;
906
907 if (of_find_property(np, "fsl,magic-packet", NULL))
908 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
909
910 if (of_get_property(np, "fsl,wake-on-filer", NULL))
911 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
912
913 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
914
915 /* In the case of a fixed PHY, the DT node associated
916 * to the PHY is the Ethernet MAC DT node.
917 */
918 if (!priv->phy_node && of_phy_is_fixed_link(np)) {
919 err = of_phy_register_fixed_link(np);
920 if (err)
921 goto err_grp_init;
922
923 priv->phy_node = of_node_get(np);
924 }
925
926 /* Find the TBI PHY. If it's not there, we don't support SGMII */
927 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
928
929 return 0;
930
931 err_grp_init:
932 unmap_group_regs(priv);
933 rx_alloc_failed:
934 gfar_free_rx_queues(priv);
935 tx_alloc_failed:
936 gfar_free_tx_queues(priv);
937 free_gfar_dev(priv);
938 return err;
939 }
940
941 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
942 {
943 struct hwtstamp_config config;
944 struct gfar_private *priv = netdev_priv(netdev);
945
946 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
947 return -EFAULT;
948
949 /* reserved for future extensions */
950 if (config.flags)
951 return -EINVAL;
952
953 switch (config.tx_type) {
954 case HWTSTAMP_TX_OFF:
955 priv->hwts_tx_en = 0;
956 break;
957 case HWTSTAMP_TX_ON:
958 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
959 return -ERANGE;
960 priv->hwts_tx_en = 1;
961 break;
962 default:
963 return -ERANGE;
964 }
965
966 switch (config.rx_filter) {
967 case HWTSTAMP_FILTER_NONE:
968 if (priv->hwts_rx_en) {
969 priv->hwts_rx_en = 0;
970 reset_gfar(netdev);
971 }
972 break;
973 default:
974 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
975 return -ERANGE;
976 if (!priv->hwts_rx_en) {
977 priv->hwts_rx_en = 1;
978 reset_gfar(netdev);
979 }
980 config.rx_filter = HWTSTAMP_FILTER_ALL;
981 break;
982 }
983
984 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
985 -EFAULT : 0;
986 }
987
988 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
989 {
990 struct hwtstamp_config config;
991 struct gfar_private *priv = netdev_priv(netdev);
992
993 config.flags = 0;
994 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
995 config.rx_filter = (priv->hwts_rx_en ?
996 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
997
998 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
999 -EFAULT : 0;
1000 }
1001
1002 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1003 {
1004 struct gfar_private *priv = netdev_priv(dev);
1005
1006 if (!netif_running(dev))
1007 return -EINVAL;
1008
1009 if (cmd == SIOCSHWTSTAMP)
1010 return gfar_hwtstamp_set(dev, rq);
1011 if (cmd == SIOCGHWTSTAMP)
1012 return gfar_hwtstamp_get(dev, rq);
1013
1014 if (!priv->phydev)
1015 return -ENODEV;
1016
1017 return phy_mii_ioctl(priv->phydev, rq, cmd);
1018 }
1019
1020 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1021 u32 class)
1022 {
1023 u32 rqfpr = FPR_FILER_MASK;
1024 u32 rqfcr = 0x0;
1025
1026 rqfar--;
1027 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1028 priv->ftp_rqfpr[rqfar] = rqfpr;
1029 priv->ftp_rqfcr[rqfar] = rqfcr;
1030 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1031
1032 rqfar--;
1033 rqfcr = RQFCR_CMP_NOMATCH;
1034 priv->ftp_rqfpr[rqfar] = rqfpr;
1035 priv->ftp_rqfcr[rqfar] = rqfcr;
1036 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1037
1038 rqfar--;
1039 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1040 rqfpr = class;
1041 priv->ftp_rqfcr[rqfar] = rqfcr;
1042 priv->ftp_rqfpr[rqfar] = rqfpr;
1043 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1044
1045 rqfar--;
1046 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1047 rqfpr = class;
1048 priv->ftp_rqfcr[rqfar] = rqfcr;
1049 priv->ftp_rqfpr[rqfar] = rqfpr;
1050 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1051
1052 return rqfar;
1053 }
1054
1055 static void gfar_init_filer_table(struct gfar_private *priv)
1056 {
1057 int i = 0x0;
1058 u32 rqfar = MAX_FILER_IDX;
1059 u32 rqfcr = 0x0;
1060 u32 rqfpr = FPR_FILER_MASK;
1061
1062 /* Default rule */
1063 rqfcr = RQFCR_CMP_MATCH;
1064 priv->ftp_rqfcr[rqfar] = rqfcr;
1065 priv->ftp_rqfpr[rqfar] = rqfpr;
1066 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1067
1068 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1069 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1070 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1071 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1072 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1073 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1074
1075 /* cur_filer_idx indicated the first non-masked rule */
1076 priv->cur_filer_idx = rqfar;
1077
1078 /* Rest are masked rules */
1079 rqfcr = RQFCR_CMP_NOMATCH;
1080 for (i = 0; i < rqfar; i++) {
1081 priv->ftp_rqfcr[i] = rqfcr;
1082 priv->ftp_rqfpr[i] = rqfpr;
1083 gfar_write_filer(priv, i, rqfcr, rqfpr);
1084 }
1085 }
1086
1087 #ifdef CONFIG_PPC
1088 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1089 {
1090 unsigned int pvr = mfspr(SPRN_PVR);
1091 unsigned int svr = mfspr(SPRN_SVR);
1092 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1093 unsigned int rev = svr & 0xffff;
1094
1095 /* MPC8313 Rev 2.0 and higher; All MPC837x */
1096 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1097 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1098 priv->errata |= GFAR_ERRATA_74;
1099
1100 /* MPC8313 and MPC837x all rev */
1101 if ((pvr == 0x80850010 && mod == 0x80b0) ||
1102 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1103 priv->errata |= GFAR_ERRATA_76;
1104
1105 /* MPC8313 Rev < 2.0 */
1106 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1107 priv->errata |= GFAR_ERRATA_12;
1108 }
1109
1110 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1111 {
1112 unsigned int svr = mfspr(SPRN_SVR);
1113
1114 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1115 priv->errata |= GFAR_ERRATA_12;
1116 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1117 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1118 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1119 }
1120 #endif
1121
1122 static void gfar_detect_errata(struct gfar_private *priv)
1123 {
1124 struct device *dev = &priv->ofdev->dev;
1125
1126 /* no plans to fix */
1127 priv->errata |= GFAR_ERRATA_A002;
1128
1129 #ifdef CONFIG_PPC
1130 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1131 __gfar_detect_errata_85xx(priv);
1132 else /* non-mpc85xx parts, i.e. e300 core based */
1133 __gfar_detect_errata_83xx(priv);
1134 #endif
1135
1136 if (priv->errata)
1137 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1138 priv->errata);
1139 }
1140
1141 void gfar_mac_reset(struct gfar_private *priv)
1142 {
1143 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1144 u32 tempval;
1145
1146 /* Reset MAC layer */
1147 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1148
1149 /* We need to delay at least 3 TX clocks */
1150 udelay(3);
1151
1152 /* the soft reset bit is not self-resetting, so we need to
1153 * clear it before resuming normal operation
1154 */
1155 gfar_write(&regs->maccfg1, 0);
1156
1157 udelay(3);
1158
1159 gfar_rx_offload_en(priv);
1160
1161 /* Initialize the max receive frame/buffer lengths */
1162 gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1163 gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1164
1165 /* Initialize the Minimum Frame Length Register */
1166 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1167
1168 /* Initialize MACCFG2. */
1169 tempval = MACCFG2_INIT_SETTINGS;
1170
1171 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1172 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1,
1173 * and by checking RxBD[LG] and discarding larger than MAXFRM.
1174 */
1175 if (gfar_has_errata(priv, GFAR_ERRATA_74))
1176 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1177
1178 gfar_write(&regs->maccfg2, tempval);
1179
1180 /* Clear mac addr hash registers */
1181 gfar_write(&regs->igaddr0, 0);
1182 gfar_write(&regs->igaddr1, 0);
1183 gfar_write(&regs->igaddr2, 0);
1184 gfar_write(&regs->igaddr3, 0);
1185 gfar_write(&regs->igaddr4, 0);
1186 gfar_write(&regs->igaddr5, 0);
1187 gfar_write(&regs->igaddr6, 0);
1188 gfar_write(&regs->igaddr7, 0);
1189
1190 gfar_write(&regs->gaddr0, 0);
1191 gfar_write(&regs->gaddr1, 0);
1192 gfar_write(&regs->gaddr2, 0);
1193 gfar_write(&regs->gaddr3, 0);
1194 gfar_write(&regs->gaddr4, 0);
1195 gfar_write(&regs->gaddr5, 0);
1196 gfar_write(&regs->gaddr6, 0);
1197 gfar_write(&regs->gaddr7, 0);
1198
1199 if (priv->extended_hash)
1200 gfar_clear_exact_match(priv->ndev);
1201
1202 gfar_mac_rx_config(priv);
1203
1204 gfar_mac_tx_config(priv);
1205
1206 gfar_set_mac_address(priv->ndev);
1207
1208 gfar_set_multi(priv->ndev);
1209
1210 /* clear ievent and imask before configuring coalescing */
1211 gfar_ints_disable(priv);
1212
1213 /* Configure the coalescing support */
1214 gfar_configure_coalescing_all(priv);
1215 }
1216
1217 static void gfar_hw_init(struct gfar_private *priv)
1218 {
1219 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1220 u32 attrs;
1221
1222 /* Stop the DMA engine now, in case it was running before
1223 * (The firmware could have used it, and left it running).
1224 */
1225 gfar_halt(priv);
1226
1227 gfar_mac_reset(priv);
1228
1229 /* Zero out the rmon mib registers if it has them */
1230 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1231 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1232
1233 /* Mask off the CAM interrupts */
1234 gfar_write(&regs->rmon.cam1, 0xffffffff);
1235 gfar_write(&regs->rmon.cam2, 0xffffffff);
1236 }
1237
1238 /* Initialize ECNTRL */
1239 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1240
1241 /* Set the extraction length and index */
1242 attrs = ATTRELI_EL(priv->rx_stash_size) |
1243 ATTRELI_EI(priv->rx_stash_index);
1244
1245 gfar_write(&regs->attreli, attrs);
1246
1247 /* Start with defaults, and add stashing
1248 * depending on driver parameters
1249 */
1250 attrs = ATTR_INIT_SETTINGS;
1251
1252 if (priv->bd_stash_en)
1253 attrs |= ATTR_BDSTASH;
1254
1255 if (priv->rx_stash_size != 0)
1256 attrs |= ATTR_BUFSTASH;
1257
1258 gfar_write(&regs->attr, attrs);
1259
1260 /* FIFO configs */
1261 gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1262 gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1263 gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1264
1265 /* Program the interrupt steering regs, only for MG devices */
1266 if (priv->num_grps > 1)
1267 gfar_write_isrg(priv);
1268 }
1269
1270 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1271 {
1272 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1273
1274 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1275 priv->extended_hash = 1;
1276 priv->hash_width = 9;
1277
1278 priv->hash_regs[0] = &regs->igaddr0;
1279 priv->hash_regs[1] = &regs->igaddr1;
1280 priv->hash_regs[2] = &regs->igaddr2;
1281 priv->hash_regs[3] = &regs->igaddr3;
1282 priv->hash_regs[4] = &regs->igaddr4;
1283 priv->hash_regs[5] = &regs->igaddr5;
1284 priv->hash_regs[6] = &regs->igaddr6;
1285 priv->hash_regs[7] = &regs->igaddr7;
1286 priv->hash_regs[8] = &regs->gaddr0;
1287 priv->hash_regs[9] = &regs->gaddr1;
1288 priv->hash_regs[10] = &regs->gaddr2;
1289 priv->hash_regs[11] = &regs->gaddr3;
1290 priv->hash_regs[12] = &regs->gaddr4;
1291 priv->hash_regs[13] = &regs->gaddr5;
1292 priv->hash_regs[14] = &regs->gaddr6;
1293 priv->hash_regs[15] = &regs->gaddr7;
1294
1295 } else {
1296 priv->extended_hash = 0;
1297 priv->hash_width = 8;
1298
1299 priv->hash_regs[0] = &regs->gaddr0;
1300 priv->hash_regs[1] = &regs->gaddr1;
1301 priv->hash_regs[2] = &regs->gaddr2;
1302 priv->hash_regs[3] = &regs->gaddr3;
1303 priv->hash_regs[4] = &regs->gaddr4;
1304 priv->hash_regs[5] = &regs->gaddr5;
1305 priv->hash_regs[6] = &regs->gaddr6;
1306 priv->hash_regs[7] = &regs->gaddr7;
1307 }
1308 }
1309
1310 /* Set up the ethernet device structure, private data,
1311 * and anything else we need before we start
1312 */
1313 static int gfar_probe(struct platform_device *ofdev)
1314 {
1315 struct net_device *dev = NULL;
1316 struct gfar_private *priv = NULL;
1317 int err = 0, i;
1318
1319 err = gfar_of_init(ofdev, &dev);
1320
1321 if (err)
1322 return err;
1323
1324 priv = netdev_priv(dev);
1325 priv->ndev = dev;
1326 priv->ofdev = ofdev;
1327 priv->dev = &ofdev->dev;
1328 SET_NETDEV_DEV(dev, &ofdev->dev);
1329
1330 INIT_WORK(&priv->reset_task, gfar_reset_task);
1331
1332 platform_set_drvdata(ofdev, priv);
1333
1334 gfar_detect_errata(priv);
1335
1336 /* Set the dev->base_addr to the gfar reg region */
1337 dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1338
1339 /* Fill in the dev structure */
1340 dev->watchdog_timeo = TX_TIMEOUT;
1341 dev->mtu = 1500;
1342 dev->netdev_ops = &gfar_netdev_ops;
1343 dev->ethtool_ops = &gfar_ethtool_ops;
1344
1345 /* Register for napi ...We are registering NAPI for each grp */
1346 for (i = 0; i < priv->num_grps; i++) {
1347 if (priv->poll_mode == GFAR_SQ_POLLING) {
1348 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1349 gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1350 netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1351 gfar_poll_tx_sq, 2);
1352 } else {
1353 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1354 gfar_poll_rx, GFAR_DEV_WEIGHT);
1355 netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1356 gfar_poll_tx, 2);
1357 }
1358 }
1359
1360 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1361 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1362 NETIF_F_RXCSUM;
1363 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1364 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1365 }
1366
1367 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1368 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1369 NETIF_F_HW_VLAN_CTAG_RX;
1370 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1371 }
1372
1373 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1374
1375 gfar_init_addr_hash_table(priv);
1376
1377 /* Insert receive time stamps into padding alignment bytes */
1378 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1379 priv->padding = 8;
1380
1381 if (dev->features & NETIF_F_IP_CSUM ||
1382 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1383 dev->needed_headroom = GMAC_FCB_LEN;
1384
1385 /* Initializing some of the rx/tx queue level parameters */
1386 for (i = 0; i < priv->num_tx_queues; i++) {
1387 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1388 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1389 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1390 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1391 }
1392
1393 for (i = 0; i < priv->num_rx_queues; i++) {
1394 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1395 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1396 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1397 }
1398
1399 /* always enable rx filer */
1400 priv->rx_filer_enable = 1;
1401 /* Enable most messages by default */
1402 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1403 /* use pritority h/w tx queue scheduling for single queue devices */
1404 if (priv->num_tx_queues == 1)
1405 priv->prio_sched_en = 1;
1406
1407 set_bit(GFAR_DOWN, &priv->state);
1408
1409 gfar_hw_init(priv);
1410
1411 /* Carrier starts down, phylib will bring it up */
1412 netif_carrier_off(dev);
1413
1414 err = register_netdev(dev);
1415
1416 if (err) {
1417 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1418 goto register_fail;
1419 }
1420
1421 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1422 priv->wol_supported |= GFAR_WOL_MAGIC;
1423
1424 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1425 priv->rx_filer_enable)
1426 priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1427
1428 device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1429
1430 /* fill out IRQ number and name fields */
1431 for (i = 0; i < priv->num_grps; i++) {
1432 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1433 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1434 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1435 dev->name, "_g", '0' + i, "_tx");
1436 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1437 dev->name, "_g", '0' + i, "_rx");
1438 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1439 dev->name, "_g", '0' + i, "_er");
1440 } else
1441 strcpy(gfar_irq(grp, TX)->name, dev->name);
1442 }
1443
1444 /* Initialize the filer table */
1445 gfar_init_filer_table(priv);
1446
1447 /* Print out the device info */
1448 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1449
1450 /* Even more device info helps when determining which kernel
1451 * provided which set of benchmarks.
1452 */
1453 netdev_info(dev, "Running with NAPI enabled\n");
1454 for (i = 0; i < priv->num_rx_queues; i++)
1455 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1456 i, priv->rx_queue[i]->rx_ring_size);
1457 for (i = 0; i < priv->num_tx_queues; i++)
1458 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1459 i, priv->tx_queue[i]->tx_ring_size);
1460
1461 return 0;
1462
1463 register_fail:
1464 unmap_group_regs(priv);
1465 gfar_free_rx_queues(priv);
1466 gfar_free_tx_queues(priv);
1467 of_node_put(priv->phy_node);
1468 of_node_put(priv->tbi_node);
1469 free_gfar_dev(priv);
1470 return err;
1471 }
1472
1473 static int gfar_remove(struct platform_device *ofdev)
1474 {
1475 struct gfar_private *priv = platform_get_drvdata(ofdev);
1476
1477 of_node_put(priv->phy_node);
1478 of_node_put(priv->tbi_node);
1479
1480 unregister_netdev(priv->ndev);
1481 unmap_group_regs(priv);
1482 gfar_free_rx_queues(priv);
1483 gfar_free_tx_queues(priv);
1484 free_gfar_dev(priv);
1485
1486 return 0;
1487 }
1488
1489 #ifdef CONFIG_PM
1490
1491 static void __gfar_filer_disable(struct gfar_private *priv)
1492 {
1493 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1494 u32 temp;
1495
1496 temp = gfar_read(&regs->rctrl);
1497 temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1498 gfar_write(&regs->rctrl, temp);
1499 }
1500
1501 static void __gfar_filer_enable(struct gfar_private *priv)
1502 {
1503 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1504 u32 temp;
1505
1506 temp = gfar_read(&regs->rctrl);
1507 temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1508 gfar_write(&regs->rctrl, temp);
1509 }
1510
1511 /* Filer rules implementing wol capabilities */
1512 static void gfar_filer_config_wol(struct gfar_private *priv)
1513 {
1514 unsigned int i;
1515 u32 rqfcr;
1516
1517 __gfar_filer_disable(priv);
1518
1519 /* clear the filer table, reject any packet by default */
1520 rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1521 for (i = 0; i <= MAX_FILER_IDX; i++)
1522 gfar_write_filer(priv, i, rqfcr, 0);
1523
1524 i = 0;
1525 if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1526 /* unicast packet, accept it */
1527 struct net_device *ndev = priv->ndev;
1528 /* get the default rx queue index */
1529 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1530 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1531 (ndev->dev_addr[1] << 8) |
1532 ndev->dev_addr[2];
1533
1534 rqfcr = (qindex << 10) | RQFCR_AND |
1535 RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1536
1537 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1538
1539 dest_mac_addr = (ndev->dev_addr[3] << 16) |
1540 (ndev->dev_addr[4] << 8) |
1541 ndev->dev_addr[5];
1542 rqfcr = (qindex << 10) | RQFCR_GPI |
1543 RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1544 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1545 }
1546
1547 __gfar_filer_enable(priv);
1548 }
1549
1550 static void gfar_filer_restore_table(struct gfar_private *priv)
1551 {
1552 u32 rqfcr, rqfpr;
1553 unsigned int i;
1554
1555 __gfar_filer_disable(priv);
1556
1557 for (i = 0; i <= MAX_FILER_IDX; i++) {
1558 rqfcr = priv->ftp_rqfcr[i];
1559 rqfpr = priv->ftp_rqfpr[i];
1560 gfar_write_filer(priv, i, rqfcr, rqfpr);
1561 }
1562
1563 __gfar_filer_enable(priv);
1564 }
1565
1566 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1567 static void gfar_start_wol_filer(struct gfar_private *priv)
1568 {
1569 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1570 u32 tempval;
1571 int i = 0;
1572
1573 /* Enable Rx hw queues */
1574 gfar_write(&regs->rqueue, priv->rqueue);
1575
1576 /* Initialize DMACTRL to have WWR and WOP */
1577 tempval = gfar_read(&regs->dmactrl);
1578 tempval |= DMACTRL_INIT_SETTINGS;
1579 gfar_write(&regs->dmactrl, tempval);
1580
1581 /* Make sure we aren't stopped */
1582 tempval = gfar_read(&regs->dmactrl);
1583 tempval &= ~DMACTRL_GRS;
1584 gfar_write(&regs->dmactrl, tempval);
1585
1586 for (i = 0; i < priv->num_grps; i++) {
1587 regs = priv->gfargrp[i].regs;
1588 /* Clear RHLT, so that the DMA starts polling now */
1589 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1590 /* enable the Filer General Purpose Interrupt */
1591 gfar_write(&regs->imask, IMASK_FGPI);
1592 }
1593
1594 /* Enable Rx DMA */
1595 tempval = gfar_read(&regs->maccfg1);
1596 tempval |= MACCFG1_RX_EN;
1597 gfar_write(&regs->maccfg1, tempval);
1598 }
1599
1600 static int gfar_suspend(struct device *dev)
1601 {
1602 struct gfar_private *priv = dev_get_drvdata(dev);
1603 struct net_device *ndev = priv->ndev;
1604 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1605 u32 tempval;
1606 u16 wol = priv->wol_opts;
1607
1608 if (!netif_running(ndev))
1609 return 0;
1610
1611 disable_napi(priv);
1612 netif_tx_lock(ndev);
1613 netif_device_detach(ndev);
1614 netif_tx_unlock(ndev);
1615
1616 gfar_halt(priv);
1617
1618 if (wol & GFAR_WOL_MAGIC) {
1619 /* Enable interrupt on Magic Packet */
1620 gfar_write(&regs->imask, IMASK_MAG);
1621
1622 /* Enable Magic Packet mode */
1623 tempval = gfar_read(&regs->maccfg2);
1624 tempval |= MACCFG2_MPEN;
1625 gfar_write(&regs->maccfg2, tempval);
1626
1627 /* re-enable the Rx block */
1628 tempval = gfar_read(&regs->maccfg1);
1629 tempval |= MACCFG1_RX_EN;
1630 gfar_write(&regs->maccfg1, tempval);
1631
1632 } else if (wol & GFAR_WOL_FILER_UCAST) {
1633 gfar_filer_config_wol(priv);
1634 gfar_start_wol_filer(priv);
1635
1636 } else {
1637 phy_stop(priv->phydev);
1638 }
1639
1640 return 0;
1641 }
1642
1643 static int gfar_resume(struct device *dev)
1644 {
1645 struct gfar_private *priv = dev_get_drvdata(dev);
1646 struct net_device *ndev = priv->ndev;
1647 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1648 u32 tempval;
1649 u16 wol = priv->wol_opts;
1650
1651 if (!netif_running(ndev))
1652 return 0;
1653
1654 if (wol & GFAR_WOL_MAGIC) {
1655 /* Disable Magic Packet mode */
1656 tempval = gfar_read(&regs->maccfg2);
1657 tempval &= ~MACCFG2_MPEN;
1658 gfar_write(&regs->maccfg2, tempval);
1659
1660 } else if (wol & GFAR_WOL_FILER_UCAST) {
1661 /* need to stop rx only, tx is already down */
1662 gfar_halt(priv);
1663 gfar_filer_restore_table(priv);
1664
1665 } else {
1666 phy_start(priv->phydev);
1667 }
1668
1669 gfar_start(priv);
1670
1671 netif_device_attach(ndev);
1672 enable_napi(priv);
1673
1674 return 0;
1675 }
1676
1677 static int gfar_restore(struct device *dev)
1678 {
1679 struct gfar_private *priv = dev_get_drvdata(dev);
1680 struct net_device *ndev = priv->ndev;
1681
1682 if (!netif_running(ndev)) {
1683 netif_device_attach(ndev);
1684
1685 return 0;
1686 }
1687
1688 gfar_init_bds(ndev);
1689
1690 gfar_mac_reset(priv);
1691
1692 gfar_init_tx_rx_base(priv);
1693
1694 gfar_start(priv);
1695
1696 priv->oldlink = 0;
1697 priv->oldspeed = 0;
1698 priv->oldduplex = -1;
1699
1700 if (priv->phydev)
1701 phy_start(priv->phydev);
1702
1703 netif_device_attach(ndev);
1704 enable_napi(priv);
1705
1706 return 0;
1707 }
1708
1709 static struct dev_pm_ops gfar_pm_ops = {
1710 .suspend = gfar_suspend,
1711 .resume = gfar_resume,
1712 .freeze = gfar_suspend,
1713 .thaw = gfar_resume,
1714 .restore = gfar_restore,
1715 };
1716
1717 #define GFAR_PM_OPS (&gfar_pm_ops)
1718
1719 #else
1720
1721 #define GFAR_PM_OPS NULL
1722
1723 #endif
1724
1725 /* Reads the controller's registers to determine what interface
1726 * connects it to the PHY.
1727 */
1728 static phy_interface_t gfar_get_interface(struct net_device *dev)
1729 {
1730 struct gfar_private *priv = netdev_priv(dev);
1731 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1732 u32 ecntrl;
1733
1734 ecntrl = gfar_read(&regs->ecntrl);
1735
1736 if (ecntrl & ECNTRL_SGMII_MODE)
1737 return PHY_INTERFACE_MODE_SGMII;
1738
1739 if (ecntrl & ECNTRL_TBI_MODE) {
1740 if (ecntrl & ECNTRL_REDUCED_MODE)
1741 return PHY_INTERFACE_MODE_RTBI;
1742 else
1743 return PHY_INTERFACE_MODE_TBI;
1744 }
1745
1746 if (ecntrl & ECNTRL_REDUCED_MODE) {
1747 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1748 return PHY_INTERFACE_MODE_RMII;
1749 }
1750 else {
1751 phy_interface_t interface = priv->interface;
1752
1753 /* This isn't autodetected right now, so it must
1754 * be set by the device tree or platform code.
1755 */
1756 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1757 return PHY_INTERFACE_MODE_RGMII_ID;
1758
1759 return PHY_INTERFACE_MODE_RGMII;
1760 }
1761 }
1762
1763 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1764 return PHY_INTERFACE_MODE_GMII;
1765
1766 return PHY_INTERFACE_MODE_MII;
1767 }
1768
1769
1770 /* Initializes driver's PHY state, and attaches to the PHY.
1771 * Returns 0 on success.
1772 */
1773 static int init_phy(struct net_device *dev)
1774 {
1775 struct gfar_private *priv = netdev_priv(dev);
1776 uint gigabit_support =
1777 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1778 GFAR_SUPPORTED_GBIT : 0;
1779 phy_interface_t interface;
1780
1781 priv->oldlink = 0;
1782 priv->oldspeed = 0;
1783 priv->oldduplex = -1;
1784
1785 interface = gfar_get_interface(dev);
1786
1787 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1788 interface);
1789 if (!priv->phydev) {
1790 dev_err(&dev->dev, "could not attach to PHY\n");
1791 return -ENODEV;
1792 }
1793
1794 if (interface == PHY_INTERFACE_MODE_SGMII)
1795 gfar_configure_serdes(dev);
1796
1797 /* Remove any features not supported by the controller */
1798 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1799 priv->phydev->advertising = priv->phydev->supported;
1800
1801 /* Add support for flow control, but don't advertise it by default */
1802 priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1803
1804 return 0;
1805 }
1806
1807 /* Initialize TBI PHY interface for communicating with the
1808 * SERDES lynx PHY on the chip. We communicate with this PHY
1809 * through the MDIO bus on each controller, treating it as a
1810 * "normal" PHY at the address found in the TBIPA register. We assume
1811 * that the TBIPA register is valid. Either the MDIO bus code will set
1812 * it to a value that doesn't conflict with other PHYs on the bus, or the
1813 * value doesn't matter, as there are no other PHYs on the bus.
1814 */
1815 static void gfar_configure_serdes(struct net_device *dev)
1816 {
1817 struct gfar_private *priv = netdev_priv(dev);
1818 struct phy_device *tbiphy;
1819
1820 if (!priv->tbi_node) {
1821 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1822 "device tree specify a tbi-handle\n");
1823 return;
1824 }
1825
1826 tbiphy = of_phy_find_device(priv->tbi_node);
1827 if (!tbiphy) {
1828 dev_err(&dev->dev, "error: Could not get TBI device\n");
1829 return;
1830 }
1831
1832 /* If the link is already up, we must already be ok, and don't need to
1833 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1834 * everything for us? Resetting it takes the link down and requires
1835 * several seconds for it to come back.
1836 */
1837 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1838 put_device(&tbiphy->dev);
1839 return;
1840 }
1841
1842 /* Single clk mode, mii mode off(for serdes communication) */
1843 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1844
1845 phy_write(tbiphy, MII_ADVERTISE,
1846 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1847 ADVERTISE_1000XPSE_ASYM);
1848
1849 phy_write(tbiphy, MII_BMCR,
1850 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1851 BMCR_SPEED1000);
1852
1853 put_device(&tbiphy->dev);
1854 }
1855
1856 static int __gfar_is_rx_idle(struct gfar_private *priv)
1857 {
1858 u32 res;
1859
1860 /* Normaly TSEC should not hang on GRS commands, so we should
1861 * actually wait for IEVENT_GRSC flag.
1862 */
1863 if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1864 return 0;
1865
1866 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1867 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1868 * and the Rx can be safely reset.
1869 */
1870 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1871 res &= 0x7f807f80;
1872 if ((res & 0xffff) == (res >> 16))
1873 return 1;
1874
1875 return 0;
1876 }
1877
1878 /* Halt the receive and transmit queues */
1879 static void gfar_halt_nodisable(struct gfar_private *priv)
1880 {
1881 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1882 u32 tempval;
1883 unsigned int timeout;
1884 int stopped;
1885
1886 gfar_ints_disable(priv);
1887
1888 if (gfar_is_dma_stopped(priv))
1889 return;
1890
1891 /* Stop the DMA, and wait for it to stop */
1892 tempval = gfar_read(&regs->dmactrl);
1893 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1894 gfar_write(&regs->dmactrl, tempval);
1895
1896 retry:
1897 timeout = 1000;
1898 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1899 cpu_relax();
1900 timeout--;
1901 }
1902
1903 if (!timeout)
1904 stopped = gfar_is_dma_stopped(priv);
1905
1906 if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1907 !__gfar_is_rx_idle(priv))
1908 goto retry;
1909 }
1910
1911 /* Halt the receive and transmit queues */
1912 void gfar_halt(struct gfar_private *priv)
1913 {
1914 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1915 u32 tempval;
1916
1917 /* Dissable the Rx/Tx hw queues */
1918 gfar_write(&regs->rqueue, 0);
1919 gfar_write(&regs->tqueue, 0);
1920
1921 mdelay(10);
1922
1923 gfar_halt_nodisable(priv);
1924
1925 /* Disable Rx/Tx DMA */
1926 tempval = gfar_read(&regs->maccfg1);
1927 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1928 gfar_write(&regs->maccfg1, tempval);
1929 }
1930
1931 void stop_gfar(struct net_device *dev)
1932 {
1933 struct gfar_private *priv = netdev_priv(dev);
1934
1935 netif_tx_stop_all_queues(dev);
1936
1937 smp_mb__before_atomic();
1938 set_bit(GFAR_DOWN, &priv->state);
1939 smp_mb__after_atomic();
1940
1941 disable_napi(priv);
1942
1943 /* disable ints and gracefully shut down Rx/Tx DMA */
1944 gfar_halt(priv);
1945
1946 phy_stop(priv->phydev);
1947
1948 free_skb_resources(priv);
1949 }
1950
1951 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1952 {
1953 struct txbd8 *txbdp;
1954 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1955 int i, j;
1956
1957 txbdp = tx_queue->tx_bd_base;
1958
1959 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1960 if (!tx_queue->tx_skbuff[i])
1961 continue;
1962
1963 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1964 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1965 txbdp->lstatus = 0;
1966 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1967 j++) {
1968 txbdp++;
1969 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1970 be16_to_cpu(txbdp->length),
1971 DMA_TO_DEVICE);
1972 }
1973 txbdp++;
1974 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1975 tx_queue->tx_skbuff[i] = NULL;
1976 }
1977 kfree(tx_queue->tx_skbuff);
1978 tx_queue->tx_skbuff = NULL;
1979 }
1980
1981 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1982 {
1983 int i;
1984
1985 struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1986
1987 if (rx_queue->skb)
1988 dev_kfree_skb(rx_queue->skb);
1989
1990 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1991 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1992
1993 rxbdp->lstatus = 0;
1994 rxbdp->bufPtr = 0;
1995 rxbdp++;
1996
1997 if (!rxb->page)
1998 continue;
1999
2000 dma_unmap_single(rx_queue->dev, rxb->dma,
2001 PAGE_SIZE, DMA_FROM_DEVICE);
2002 __free_page(rxb->page);
2003
2004 rxb->page = NULL;
2005 }
2006
2007 kfree(rx_queue->rx_buff);
2008 rx_queue->rx_buff = NULL;
2009 }
2010
2011 /* If there are any tx skbs or rx skbs still around, free them.
2012 * Then free tx_skbuff and rx_skbuff
2013 */
2014 static void free_skb_resources(struct gfar_private *priv)
2015 {
2016 struct gfar_priv_tx_q *tx_queue = NULL;
2017 struct gfar_priv_rx_q *rx_queue = NULL;
2018 int i;
2019
2020 /* Go through all the buffer descriptors and free their data buffers */
2021 for (i = 0; i < priv->num_tx_queues; i++) {
2022 struct netdev_queue *txq;
2023
2024 tx_queue = priv->tx_queue[i];
2025 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2026 if (tx_queue->tx_skbuff)
2027 free_skb_tx_queue(tx_queue);
2028 netdev_tx_reset_queue(txq);
2029 }
2030
2031 for (i = 0; i < priv->num_rx_queues; i++) {
2032 rx_queue = priv->rx_queue[i];
2033 if (rx_queue->rx_buff)
2034 free_skb_rx_queue(rx_queue);
2035 }
2036
2037 dma_free_coherent(priv->dev,
2038 sizeof(struct txbd8) * priv->total_tx_ring_size +
2039 sizeof(struct rxbd8) * priv->total_rx_ring_size,
2040 priv->tx_queue[0]->tx_bd_base,
2041 priv->tx_queue[0]->tx_bd_dma_base);
2042 }
2043
2044 void gfar_start(struct gfar_private *priv)
2045 {
2046 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2047 u32 tempval;
2048 int i = 0;
2049
2050 /* Enable Rx/Tx hw queues */
2051 gfar_write(&regs->rqueue, priv->rqueue);
2052 gfar_write(&regs->tqueue, priv->tqueue);
2053
2054 /* Initialize DMACTRL to have WWR and WOP */
2055 tempval = gfar_read(&regs->dmactrl);
2056 tempval |= DMACTRL_INIT_SETTINGS;
2057 gfar_write(&regs->dmactrl, tempval);
2058
2059 /* Make sure we aren't stopped */
2060 tempval = gfar_read(&regs->dmactrl);
2061 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2062 gfar_write(&regs->dmactrl, tempval);
2063
2064 for (i = 0; i < priv->num_grps; i++) {
2065 regs = priv->gfargrp[i].regs;
2066 /* Clear THLT/RHLT, so that the DMA starts polling now */
2067 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2068 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2069 }
2070
2071 /* Enable Rx/Tx DMA */
2072 tempval = gfar_read(&regs->maccfg1);
2073 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2074 gfar_write(&regs->maccfg1, tempval);
2075
2076 gfar_ints_enable(priv);
2077
2078 priv->ndev->trans_start = jiffies; /* prevent tx timeout */
2079 }
2080
2081 static void free_grp_irqs(struct gfar_priv_grp *grp)
2082 {
2083 free_irq(gfar_irq(grp, TX)->irq, grp);
2084 free_irq(gfar_irq(grp, RX)->irq, grp);
2085 free_irq(gfar_irq(grp, ER)->irq, grp);
2086 }
2087
2088 static int register_grp_irqs(struct gfar_priv_grp *grp)
2089 {
2090 struct gfar_private *priv = grp->priv;
2091 struct net_device *dev = priv->ndev;
2092 int err;
2093
2094 /* If the device has multiple interrupts, register for
2095 * them. Otherwise, only register for the one
2096 */
2097 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2098 /* Install our interrupt handlers for Error,
2099 * Transmit, and Receive
2100 */
2101 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2102 gfar_irq(grp, ER)->name, grp);
2103 if (err < 0) {
2104 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2105 gfar_irq(grp, ER)->irq);
2106
2107 goto err_irq_fail;
2108 }
2109 enable_irq_wake(gfar_irq(grp, ER)->irq);
2110
2111 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2112 gfar_irq(grp, TX)->name, grp);
2113 if (err < 0) {
2114 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2115 gfar_irq(grp, TX)->irq);
2116 goto tx_irq_fail;
2117 }
2118 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2119 gfar_irq(grp, RX)->name, grp);
2120 if (err < 0) {
2121 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2122 gfar_irq(grp, RX)->irq);
2123 goto rx_irq_fail;
2124 }
2125 enable_irq_wake(gfar_irq(grp, RX)->irq);
2126
2127 } else {
2128 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2129 gfar_irq(grp, TX)->name, grp);
2130 if (err < 0) {
2131 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2132 gfar_irq(grp, TX)->irq);
2133 goto err_irq_fail;
2134 }
2135 enable_irq_wake(gfar_irq(grp, TX)->irq);
2136 }
2137
2138 return 0;
2139
2140 rx_irq_fail:
2141 free_irq(gfar_irq(grp, TX)->irq, grp);
2142 tx_irq_fail:
2143 free_irq(gfar_irq(grp, ER)->irq, grp);
2144 err_irq_fail:
2145 return err;
2146
2147 }
2148
2149 static void gfar_free_irq(struct gfar_private *priv)
2150 {
2151 int i;
2152
2153 /* Free the IRQs */
2154 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2155 for (i = 0; i < priv->num_grps; i++)
2156 free_grp_irqs(&priv->gfargrp[i]);
2157 } else {
2158 for (i = 0; i < priv->num_grps; i++)
2159 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2160 &priv->gfargrp[i]);
2161 }
2162 }
2163
2164 static int gfar_request_irq(struct gfar_private *priv)
2165 {
2166 int err, i, j;
2167
2168 for (i = 0; i < priv->num_grps; i++) {
2169 err = register_grp_irqs(&priv->gfargrp[i]);
2170 if (err) {
2171 for (j = 0; j < i; j++)
2172 free_grp_irqs(&priv->gfargrp[j]);
2173 return err;
2174 }
2175 }
2176
2177 return 0;
2178 }
2179
2180 /* Bring the controller up and running */
2181 int startup_gfar(struct net_device *ndev)
2182 {
2183 struct gfar_private *priv = netdev_priv(ndev);
2184 int err;
2185
2186 gfar_mac_reset(priv);
2187
2188 err = gfar_alloc_skb_resources(ndev);
2189 if (err)
2190 return err;
2191
2192 gfar_init_tx_rx_base(priv);
2193
2194 smp_mb__before_atomic();
2195 clear_bit(GFAR_DOWN, &priv->state);
2196 smp_mb__after_atomic();
2197
2198 /* Start Rx/Tx DMA and enable the interrupts */
2199 gfar_start(priv);
2200
2201 /* force link state update after mac reset */
2202 priv->oldlink = 0;
2203 priv->oldspeed = 0;
2204 priv->oldduplex = -1;
2205
2206 phy_start(priv->phydev);
2207
2208 enable_napi(priv);
2209
2210 netif_tx_wake_all_queues(ndev);
2211
2212 return 0;
2213 }
2214
2215 /* Called when something needs to use the ethernet device
2216 * Returns 0 for success.
2217 */
2218 static int gfar_enet_open(struct net_device *dev)
2219 {
2220 struct gfar_private *priv = netdev_priv(dev);
2221 int err;
2222
2223 err = init_phy(dev);
2224 if (err)
2225 return err;
2226
2227 err = gfar_request_irq(priv);
2228 if (err)
2229 return err;
2230
2231 err = startup_gfar(dev);
2232 if (err)
2233 return err;
2234
2235 return err;
2236 }
2237
2238 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2239 {
2240 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2241
2242 memset(fcb, 0, GMAC_FCB_LEN);
2243
2244 return fcb;
2245 }
2246
2247 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2248 int fcb_length)
2249 {
2250 /* If we're here, it's a IP packet with a TCP or UDP
2251 * payload. We set it to checksum, using a pseudo-header
2252 * we provide
2253 */
2254 u8 flags = TXFCB_DEFAULT;
2255
2256 /* Tell the controller what the protocol is
2257 * And provide the already calculated phcs
2258 */
2259 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2260 flags |= TXFCB_UDP;
2261 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2262 } else
2263 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2264
2265 /* l3os is the distance between the start of the
2266 * frame (skb->data) and the start of the IP hdr.
2267 * l4os is the distance between the start of the
2268 * l3 hdr and the l4 hdr
2269 */
2270 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2271 fcb->l4os = skb_network_header_len(skb);
2272
2273 fcb->flags = flags;
2274 }
2275
2276 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2277 {
2278 fcb->flags |= TXFCB_VLN;
2279 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2280 }
2281
2282 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2283 struct txbd8 *base, int ring_size)
2284 {
2285 struct txbd8 *new_bd = bdp + stride;
2286
2287 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2288 }
2289
2290 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2291 int ring_size)
2292 {
2293 return skip_txbd(bdp, 1, base, ring_size);
2294 }
2295
2296 /* eTSEC12: csum generation not supported for some fcb offsets */
2297 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2298 unsigned long fcb_addr)
2299 {
2300 return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2301 (fcb_addr % 0x20) > 0x18);
2302 }
2303
2304 /* eTSEC76: csum generation for frames larger than 2500 may
2305 * cause excess delays before start of transmission
2306 */
2307 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2308 unsigned int len)
2309 {
2310 return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2311 (len > 2500));
2312 }
2313
2314 /* This is called by the kernel when a frame is ready for transmission.
2315 * It is pointed to by the dev->hard_start_xmit function pointer
2316 */
2317 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2318 {
2319 struct gfar_private *priv = netdev_priv(dev);
2320 struct gfar_priv_tx_q *tx_queue = NULL;
2321 struct netdev_queue *txq;
2322 struct gfar __iomem *regs = NULL;
2323 struct txfcb *fcb = NULL;
2324 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2325 u32 lstatus;
2326 int i, rq = 0;
2327 int do_tstamp, do_csum, do_vlan;
2328 u32 bufaddr;
2329 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2330
2331 rq = skb->queue_mapping;
2332 tx_queue = priv->tx_queue[rq];
2333 txq = netdev_get_tx_queue(dev, rq);
2334 base = tx_queue->tx_bd_base;
2335 regs = tx_queue->grp->regs;
2336
2337 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2338 do_vlan = skb_vlan_tag_present(skb);
2339 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2340 priv->hwts_tx_en;
2341
2342 if (do_csum || do_vlan)
2343 fcb_len = GMAC_FCB_LEN;
2344
2345 /* check if time stamp should be generated */
2346 if (unlikely(do_tstamp))
2347 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2348
2349 /* make space for additional header when fcb is needed */
2350 if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2351 struct sk_buff *skb_new;
2352
2353 skb_new = skb_realloc_headroom(skb, fcb_len);
2354 if (!skb_new) {
2355 dev->stats.tx_errors++;
2356 dev_kfree_skb_any(skb);
2357 return NETDEV_TX_OK;
2358 }
2359
2360 if (skb->sk)
2361 skb_set_owner_w(skb_new, skb->sk);
2362 dev_consume_skb_any(skb);
2363 skb = skb_new;
2364 }
2365
2366 /* total number of fragments in the SKB */
2367 nr_frags = skb_shinfo(skb)->nr_frags;
2368
2369 /* calculate the required number of TxBDs for this skb */
2370 if (unlikely(do_tstamp))
2371 nr_txbds = nr_frags + 2;
2372 else
2373 nr_txbds = nr_frags + 1;
2374
2375 /* check if there is space to queue this packet */
2376 if (nr_txbds > tx_queue->num_txbdfree) {
2377 /* no space, stop the queue */
2378 netif_tx_stop_queue(txq);
2379 dev->stats.tx_fifo_errors++;
2380 return NETDEV_TX_BUSY;
2381 }
2382
2383 /* Update transmit stats */
2384 bytes_sent = skb->len;
2385 tx_queue->stats.tx_bytes += bytes_sent;
2386 /* keep Tx bytes on wire for BQL accounting */
2387 GFAR_CB(skb)->bytes_sent = bytes_sent;
2388 tx_queue->stats.tx_packets++;
2389
2390 txbdp = txbdp_start = tx_queue->cur_tx;
2391 lstatus = be32_to_cpu(txbdp->lstatus);
2392
2393 /* Time stamp insertion requires one additional TxBD */
2394 if (unlikely(do_tstamp))
2395 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2396 tx_queue->tx_ring_size);
2397
2398 if (nr_frags == 0) {
2399 if (unlikely(do_tstamp)) {
2400 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2401
2402 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2403 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2404 } else {
2405 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2406 }
2407 } else {
2408 /* Place the fragment addresses and lengths into the TxBDs */
2409 for (i = 0; i < nr_frags; i++) {
2410 unsigned int frag_len;
2411 /* Point at the next BD, wrapping as needed */
2412 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2413
2414 frag_len = skb_shinfo(skb)->frags[i].size;
2415
2416 lstatus = be32_to_cpu(txbdp->lstatus) | frag_len |
2417 BD_LFLAG(TXBD_READY);
2418
2419 /* Handle the last BD specially */
2420 if (i == nr_frags - 1)
2421 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2422
2423 bufaddr = skb_frag_dma_map(priv->dev,
2424 &skb_shinfo(skb)->frags[i],
2425 0,
2426 frag_len,
2427 DMA_TO_DEVICE);
2428 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2429 goto dma_map_err;
2430
2431 /* set the TxBD length and buffer pointer */
2432 txbdp->bufPtr = cpu_to_be32(bufaddr);
2433 txbdp->lstatus = cpu_to_be32(lstatus);
2434 }
2435
2436 lstatus = be32_to_cpu(txbdp_start->lstatus);
2437 }
2438
2439 /* Add TxPAL between FCB and frame if required */
2440 if (unlikely(do_tstamp)) {
2441 skb_push(skb, GMAC_TXPAL_LEN);
2442 memset(skb->data, 0, GMAC_TXPAL_LEN);
2443 }
2444
2445 /* Add TxFCB if required */
2446 if (fcb_len) {
2447 fcb = gfar_add_fcb(skb);
2448 lstatus |= BD_LFLAG(TXBD_TOE);
2449 }
2450
2451 /* Set up checksumming */
2452 if (do_csum) {
2453 gfar_tx_checksum(skb, fcb, fcb_len);
2454
2455 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2456 unlikely(gfar_csum_errata_76(priv, skb->len))) {
2457 __skb_pull(skb, GMAC_FCB_LEN);
2458 skb_checksum_help(skb);
2459 if (do_vlan || do_tstamp) {
2460 /* put back a new fcb for vlan/tstamp TOE */
2461 fcb = gfar_add_fcb(skb);
2462 } else {
2463 /* Tx TOE not used */
2464 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2465 fcb = NULL;
2466 }
2467 }
2468 }
2469
2470 if (do_vlan)
2471 gfar_tx_vlan(skb, fcb);
2472
2473 /* Setup tx hardware time stamping if requested */
2474 if (unlikely(do_tstamp)) {
2475 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2476 fcb->ptp = 1;
2477 }
2478
2479 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2480 DMA_TO_DEVICE);
2481 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2482 goto dma_map_err;
2483
2484 txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2485
2486 /* If time stamping is requested one additional TxBD must be set up. The
2487 * first TxBD points to the FCB and must have a data length of
2488 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2489 * the full frame length.
2490 */
2491 if (unlikely(do_tstamp)) {
2492 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2493
2494 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2495 bufaddr += fcb_len;
2496 lstatus_ts |= BD_LFLAG(TXBD_READY) |
2497 (skb_headlen(skb) - fcb_len);
2498
2499 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2500 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2501 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2502 } else {
2503 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2504 }
2505
2506 netdev_tx_sent_queue(txq, bytes_sent);
2507
2508 gfar_wmb();
2509
2510 txbdp_start->lstatus = cpu_to_be32(lstatus);
2511
2512 gfar_wmb(); /* force lstatus write before tx_skbuff */
2513
2514 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2515
2516 /* Update the current skb pointer to the next entry we will use
2517 * (wrapping if necessary)
2518 */
2519 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2520 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2521
2522 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2523
2524 /* We can work in parallel with gfar_clean_tx_ring(), except
2525 * when modifying num_txbdfree. Note that we didn't grab the lock
2526 * when we were reading the num_txbdfree and checking for available
2527 * space, that's because outside of this function it can only grow.
2528 */
2529 spin_lock_bh(&tx_queue->txlock);
2530 /* reduce TxBD free count */
2531 tx_queue->num_txbdfree -= (nr_txbds);
2532 spin_unlock_bh(&tx_queue->txlock);
2533
2534 /* If the next BD still needs to be cleaned up, then the bds
2535 * are full. We need to tell the kernel to stop sending us stuff.
2536 */
2537 if (!tx_queue->num_txbdfree) {
2538 netif_tx_stop_queue(txq);
2539
2540 dev->stats.tx_fifo_errors++;
2541 }
2542
2543 /* Tell the DMA to go go go */
2544 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2545
2546 return NETDEV_TX_OK;
2547
2548 dma_map_err:
2549 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2550 if (do_tstamp)
2551 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2552 for (i = 0; i < nr_frags; i++) {
2553 lstatus = be32_to_cpu(txbdp->lstatus);
2554 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2555 break;
2556
2557 lstatus &= ~BD_LFLAG(TXBD_READY);
2558 txbdp->lstatus = cpu_to_be32(lstatus);
2559 bufaddr = be32_to_cpu(txbdp->bufPtr);
2560 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2561 DMA_TO_DEVICE);
2562 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2563 }
2564 gfar_wmb();
2565 dev_kfree_skb_any(skb);
2566 return NETDEV_TX_OK;
2567 }
2568
2569 /* Stops the kernel queue, and halts the controller */
2570 static int gfar_close(struct net_device *dev)
2571 {
2572 struct gfar_private *priv = netdev_priv(dev);
2573
2574 cancel_work_sync(&priv->reset_task);
2575 stop_gfar(dev);
2576
2577 /* Disconnect from the PHY */
2578 phy_disconnect(priv->phydev);
2579 priv->phydev = NULL;
2580
2581 gfar_free_irq(priv);
2582
2583 return 0;
2584 }
2585
2586 /* Changes the mac address if the controller is not running. */
2587 static int gfar_set_mac_address(struct net_device *dev)
2588 {
2589 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2590
2591 return 0;
2592 }
2593
2594 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2595 {
2596 struct gfar_private *priv = netdev_priv(dev);
2597 int frame_size = new_mtu + ETH_HLEN;
2598
2599 if ((frame_size < 64) || (frame_size > GFAR_JUMBO_FRAME_SIZE)) {
2600 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2601 return -EINVAL;
2602 }
2603
2604 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2605 cpu_relax();
2606
2607 if (dev->flags & IFF_UP)
2608 stop_gfar(dev);
2609
2610 dev->mtu = new_mtu;
2611
2612 if (dev->flags & IFF_UP)
2613 startup_gfar(dev);
2614
2615 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2616
2617 return 0;
2618 }
2619
2620 void reset_gfar(struct net_device *ndev)
2621 {
2622 struct gfar_private *priv = netdev_priv(ndev);
2623
2624 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2625 cpu_relax();
2626
2627 stop_gfar(ndev);
2628 startup_gfar(ndev);
2629
2630 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2631 }
2632
2633 /* gfar_reset_task gets scheduled when a packet has not been
2634 * transmitted after a set amount of time.
2635 * For now, assume that clearing out all the structures, and
2636 * starting over will fix the problem.
2637 */
2638 static void gfar_reset_task(struct work_struct *work)
2639 {
2640 struct gfar_private *priv = container_of(work, struct gfar_private,
2641 reset_task);
2642 reset_gfar(priv->ndev);
2643 }
2644
2645 static void gfar_timeout(struct net_device *dev)
2646 {
2647 struct gfar_private *priv = netdev_priv(dev);
2648
2649 dev->stats.tx_errors++;
2650 schedule_work(&priv->reset_task);
2651 }
2652
2653 /* Interrupt Handler for Transmit complete */
2654 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2655 {
2656 struct net_device *dev = tx_queue->dev;
2657 struct netdev_queue *txq;
2658 struct gfar_private *priv = netdev_priv(dev);
2659 struct txbd8 *bdp, *next = NULL;
2660 struct txbd8 *lbdp = NULL;
2661 struct txbd8 *base = tx_queue->tx_bd_base;
2662 struct sk_buff *skb;
2663 int skb_dirtytx;
2664 int tx_ring_size = tx_queue->tx_ring_size;
2665 int frags = 0, nr_txbds = 0;
2666 int i;
2667 int howmany = 0;
2668 int tqi = tx_queue->qindex;
2669 unsigned int bytes_sent = 0;
2670 u32 lstatus;
2671 size_t buflen;
2672
2673 txq = netdev_get_tx_queue(dev, tqi);
2674 bdp = tx_queue->dirty_tx;
2675 skb_dirtytx = tx_queue->skb_dirtytx;
2676
2677 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2678
2679 frags = skb_shinfo(skb)->nr_frags;
2680
2681 /* When time stamping, one additional TxBD must be freed.
2682 * Also, we need to dma_unmap_single() the TxPAL.
2683 */
2684 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2685 nr_txbds = frags + 2;
2686 else
2687 nr_txbds = frags + 1;
2688
2689 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2690
2691 lstatus = be32_to_cpu(lbdp->lstatus);
2692
2693 /* Only clean completed frames */
2694 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2695 (lstatus & BD_LENGTH_MASK))
2696 break;
2697
2698 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2699 next = next_txbd(bdp, base, tx_ring_size);
2700 buflen = be16_to_cpu(next->length) +
2701 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2702 } else
2703 buflen = be16_to_cpu(bdp->length);
2704
2705 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2706 buflen, DMA_TO_DEVICE);
2707
2708 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2709 struct skb_shared_hwtstamps shhwtstamps;
2710 u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2711 ~0x7UL);
2712
2713 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2714 shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2715 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2716 skb_tstamp_tx(skb, &shhwtstamps);
2717 gfar_clear_txbd_status(bdp);
2718 bdp = next;
2719 }
2720
2721 gfar_clear_txbd_status(bdp);
2722 bdp = next_txbd(bdp, base, tx_ring_size);
2723
2724 for (i = 0; i < frags; i++) {
2725 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2726 be16_to_cpu(bdp->length),
2727 DMA_TO_DEVICE);
2728 gfar_clear_txbd_status(bdp);
2729 bdp = next_txbd(bdp, base, tx_ring_size);
2730 }
2731
2732 bytes_sent += GFAR_CB(skb)->bytes_sent;
2733
2734 dev_kfree_skb_any(skb);
2735
2736 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2737
2738 skb_dirtytx = (skb_dirtytx + 1) &
2739 TX_RING_MOD_MASK(tx_ring_size);
2740
2741 howmany++;
2742 spin_lock(&tx_queue->txlock);
2743 tx_queue->num_txbdfree += nr_txbds;
2744 spin_unlock(&tx_queue->txlock);
2745 }
2746
2747 /* If we freed a buffer, we can restart transmission, if necessary */
2748 if (tx_queue->num_txbdfree &&
2749 netif_tx_queue_stopped(txq) &&
2750 !(test_bit(GFAR_DOWN, &priv->state)))
2751 netif_wake_subqueue(priv->ndev, tqi);
2752
2753 /* Update dirty indicators */
2754 tx_queue->skb_dirtytx = skb_dirtytx;
2755 tx_queue->dirty_tx = bdp;
2756
2757 netdev_tx_completed_queue(txq, howmany, bytes_sent);
2758 }
2759
2760 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2761 {
2762 struct page *page;
2763 dma_addr_t addr;
2764
2765 page = dev_alloc_page();
2766 if (unlikely(!page))
2767 return false;
2768
2769 addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2770 if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2771 __free_page(page);
2772
2773 return false;
2774 }
2775
2776 rxb->dma = addr;
2777 rxb->page = page;
2778 rxb->page_offset = 0;
2779
2780 return true;
2781 }
2782
2783 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2784 {
2785 struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2786 struct gfar_extra_stats *estats = &priv->extra_stats;
2787
2788 netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2789 atomic64_inc(&estats->rx_alloc_err);
2790 }
2791
2792 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2793 int alloc_cnt)
2794 {
2795 struct rxbd8 *bdp;
2796 struct gfar_rx_buff *rxb;
2797 int i;
2798
2799 i = rx_queue->next_to_use;
2800 bdp = &rx_queue->rx_bd_base[i];
2801 rxb = &rx_queue->rx_buff[i];
2802
2803 while (alloc_cnt--) {
2804 /* try reuse page */
2805 if (unlikely(!rxb->page)) {
2806 if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2807 gfar_rx_alloc_err(rx_queue);
2808 break;
2809 }
2810 }
2811
2812 /* Setup the new RxBD */
2813 gfar_init_rxbdp(rx_queue, bdp,
2814 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2815
2816 /* Update to the next pointer */
2817 bdp++;
2818 rxb++;
2819
2820 if (unlikely(++i == rx_queue->rx_ring_size)) {
2821 i = 0;
2822 bdp = rx_queue->rx_bd_base;
2823 rxb = rx_queue->rx_buff;
2824 }
2825 }
2826
2827 rx_queue->next_to_use = i;
2828 rx_queue->next_to_alloc = i;
2829 }
2830
2831 static void count_errors(u32 lstatus, struct net_device *ndev)
2832 {
2833 struct gfar_private *priv = netdev_priv(ndev);
2834 struct net_device_stats *stats = &ndev->stats;
2835 struct gfar_extra_stats *estats = &priv->extra_stats;
2836
2837 /* If the packet was truncated, none of the other errors matter */
2838 if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2839 stats->rx_length_errors++;
2840
2841 atomic64_inc(&estats->rx_trunc);
2842
2843 return;
2844 }
2845 /* Count the errors, if there were any */
2846 if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2847 stats->rx_length_errors++;
2848
2849 if (lstatus & BD_LFLAG(RXBD_LARGE))
2850 atomic64_inc(&estats->rx_large);
2851 else
2852 atomic64_inc(&estats->rx_short);
2853 }
2854 if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2855 stats->rx_frame_errors++;
2856 atomic64_inc(&estats->rx_nonoctet);
2857 }
2858 if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2859 atomic64_inc(&estats->rx_crcerr);
2860 stats->rx_crc_errors++;
2861 }
2862 if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2863 atomic64_inc(&estats->rx_overrun);
2864 stats->rx_over_errors++;
2865 }
2866 }
2867
2868 irqreturn_t gfar_receive(int irq, void *grp_id)
2869 {
2870 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2871 unsigned long flags;
2872 u32 imask, ievent;
2873
2874 ievent = gfar_read(&grp->regs->ievent);
2875
2876 if (unlikely(ievent & IEVENT_FGPI)) {
2877 gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2878 return IRQ_HANDLED;
2879 }
2880
2881 if (likely(napi_schedule_prep(&grp->napi_rx))) {
2882 spin_lock_irqsave(&grp->grplock, flags);
2883 imask = gfar_read(&grp->regs->imask);
2884 imask &= IMASK_RX_DISABLED;
2885 gfar_write(&grp->regs->imask, imask);
2886 spin_unlock_irqrestore(&grp->grplock, flags);
2887 __napi_schedule(&grp->napi_rx);
2888 } else {
2889 /* Clear IEVENT, so interrupts aren't called again
2890 * because of the packets that have already arrived.
2891 */
2892 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2893 }
2894
2895 return IRQ_HANDLED;
2896 }
2897
2898 /* Interrupt Handler for Transmit complete */
2899 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2900 {
2901 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2902 unsigned long flags;
2903 u32 imask;
2904
2905 if (likely(napi_schedule_prep(&grp->napi_tx))) {
2906 spin_lock_irqsave(&grp->grplock, flags);
2907 imask = gfar_read(&grp->regs->imask);
2908 imask &= IMASK_TX_DISABLED;
2909 gfar_write(&grp->regs->imask, imask);
2910 spin_unlock_irqrestore(&grp->grplock, flags);
2911 __napi_schedule(&grp->napi_tx);
2912 } else {
2913 /* Clear IEVENT, so interrupts aren't called again
2914 * because of the packets that have already arrived.
2915 */
2916 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2917 }
2918
2919 return IRQ_HANDLED;
2920 }
2921
2922 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2923 struct sk_buff *skb, bool first)
2924 {
2925 unsigned int size = lstatus & BD_LENGTH_MASK;
2926 struct page *page = rxb->page;
2927
2928 /* Remove the FCS from the packet length */
2929 if (likely(lstatus & BD_LFLAG(RXBD_LAST)))
2930 size -= ETH_FCS_LEN;
2931
2932 if (likely(first))
2933 skb_put(skb, size);
2934 else
2935 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2936 rxb->page_offset + RXBUF_ALIGNMENT,
2937 size, GFAR_RXB_TRUESIZE);
2938
2939 /* try reuse page */
2940 if (unlikely(page_count(page) != 1))
2941 return false;
2942
2943 /* change offset to the other half */
2944 rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2945
2946 atomic_inc(&page->_count);
2947
2948 return true;
2949 }
2950
2951 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2952 struct gfar_rx_buff *old_rxb)
2953 {
2954 struct gfar_rx_buff *new_rxb;
2955 u16 nta = rxq->next_to_alloc;
2956
2957 new_rxb = &rxq->rx_buff[nta];
2958
2959 /* find next buf that can reuse a page */
2960 nta++;
2961 rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2962
2963 /* copy page reference */
2964 *new_rxb = *old_rxb;
2965
2966 /* sync for use by the device */
2967 dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2968 old_rxb->page_offset,
2969 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2970 }
2971
2972 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2973 u32 lstatus, struct sk_buff *skb)
2974 {
2975 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2976 struct page *page = rxb->page;
2977 bool first = false;
2978
2979 if (likely(!skb)) {
2980 void *buff_addr = page_address(page) + rxb->page_offset;
2981
2982 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2983 if (unlikely(!skb)) {
2984 gfar_rx_alloc_err(rx_queue);
2985 return NULL;
2986 }
2987 skb_reserve(skb, RXBUF_ALIGNMENT);
2988 first = true;
2989 }
2990
2991 dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2992 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2993
2994 if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2995 /* reuse the free half of the page */
2996 gfar_reuse_rx_page(rx_queue, rxb);
2997 } else {
2998 /* page cannot be reused, unmap it */
2999 dma_unmap_page(rx_queue->dev, rxb->dma,
3000 PAGE_SIZE, DMA_FROM_DEVICE);
3001 }
3002
3003 /* clear rxb content */
3004 rxb->page = NULL;
3005
3006 return skb;
3007 }
3008
3009 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3010 {
3011 /* If valid headers were found, and valid sums
3012 * were verified, then we tell the kernel that no
3013 * checksumming is necessary. Otherwise, it is [FIXME]
3014 */
3015 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3016 (RXFCB_CIP | RXFCB_CTU))
3017 skb->ip_summed = CHECKSUM_UNNECESSARY;
3018 else
3019 skb_checksum_none_assert(skb);
3020 }
3021
3022 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3023 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3024 {
3025 struct gfar_private *priv = netdev_priv(ndev);
3026 struct rxfcb *fcb = NULL;
3027
3028 /* fcb is at the beginning if exists */
3029 fcb = (struct rxfcb *)skb->data;
3030
3031 /* Remove the FCB from the skb
3032 * Remove the padded bytes, if there are any
3033 */
3034 if (priv->uses_rxfcb)
3035 skb_pull(skb, GMAC_FCB_LEN);
3036
3037 /* Get receive timestamp from the skb */
3038 if (priv->hwts_rx_en) {
3039 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3040 u64 *ns = (u64 *) skb->data;
3041
3042 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3043 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
3044 }
3045
3046 if (priv->padding)
3047 skb_pull(skb, priv->padding);
3048
3049 if (ndev->features & NETIF_F_RXCSUM)
3050 gfar_rx_checksum(skb, fcb);
3051
3052 /* Tell the skb what kind of packet this is */
3053 skb->protocol = eth_type_trans(skb, ndev);
3054
3055 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3056 * Even if vlan rx accel is disabled, on some chips
3057 * RXFCB_VLN is pseudo randomly set.
3058 */
3059 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3060 be16_to_cpu(fcb->flags) & RXFCB_VLN)
3061 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3062 be16_to_cpu(fcb->vlctl));
3063 }
3064
3065 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3066 * until the budget/quota has been reached. Returns the number
3067 * of frames handled
3068 */
3069 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3070 {
3071 struct net_device *ndev = rx_queue->ndev;
3072 struct gfar_private *priv = netdev_priv(ndev);
3073 struct rxbd8 *bdp;
3074 int i, howmany = 0;
3075 struct sk_buff *skb = rx_queue->skb;
3076 int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3077 unsigned int total_bytes = 0, total_pkts = 0;
3078
3079 /* Get the first full descriptor */
3080 i = rx_queue->next_to_clean;
3081
3082 while (rx_work_limit--) {
3083 u32 lstatus;
3084
3085 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3086 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3087 cleaned_cnt = 0;
3088 }
3089
3090 bdp = &rx_queue->rx_bd_base[i];
3091 lstatus = be32_to_cpu(bdp->lstatus);
3092 if (lstatus & BD_LFLAG(RXBD_EMPTY))
3093 break;
3094
3095 /* order rx buffer descriptor reads */
3096 rmb();
3097
3098 /* fetch next to clean buffer from the ring */
3099 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3100 if (unlikely(!skb))
3101 break;
3102
3103 cleaned_cnt++;
3104 howmany++;
3105
3106 if (unlikely(++i == rx_queue->rx_ring_size))
3107 i = 0;
3108
3109 rx_queue->next_to_clean = i;
3110
3111 /* fetch next buffer if not the last in frame */
3112 if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3113 continue;
3114
3115 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3116 count_errors(lstatus, ndev);
3117
3118 /* discard faulty buffer */
3119 dev_kfree_skb(skb);
3120 skb = NULL;
3121 rx_queue->stats.rx_dropped++;
3122 continue;
3123 }
3124
3125 /* Increment the number of packets */
3126 total_pkts++;
3127 total_bytes += skb->len;
3128
3129 skb_record_rx_queue(skb, rx_queue->qindex);
3130
3131 gfar_process_frame(ndev, skb);
3132
3133 /* Send the packet up the stack */
3134 napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3135
3136 skb = NULL;
3137 }
3138
3139 /* Store incomplete frames for completion */
3140 rx_queue->skb = skb;
3141
3142 rx_queue->stats.rx_packets += total_pkts;
3143 rx_queue->stats.rx_bytes += total_bytes;
3144
3145 if (cleaned_cnt)
3146 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3147
3148 /* Update Last Free RxBD pointer for LFC */
3149 if (unlikely(priv->tx_actual_en)) {
3150 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3151
3152 gfar_write(rx_queue->rfbptr, bdp_dma);
3153 }
3154
3155 return howmany;
3156 }
3157
3158 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3159 {
3160 struct gfar_priv_grp *gfargrp =
3161 container_of(napi, struct gfar_priv_grp, napi_rx);
3162 struct gfar __iomem *regs = gfargrp->regs;
3163 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3164 int work_done = 0;
3165
3166 /* Clear IEVENT, so interrupts aren't called again
3167 * because of the packets that have already arrived
3168 */
3169 gfar_write(&regs->ievent, IEVENT_RX_MASK);
3170
3171 work_done = gfar_clean_rx_ring(rx_queue, budget);
3172
3173 if (work_done < budget) {
3174 u32 imask;
3175 napi_complete(napi);
3176 /* Clear the halt bit in RSTAT */
3177 gfar_write(&regs->rstat, gfargrp->rstat);
3178
3179 spin_lock_irq(&gfargrp->grplock);
3180 imask = gfar_read(&regs->imask);
3181 imask |= IMASK_RX_DEFAULT;
3182 gfar_write(&regs->imask, imask);
3183 spin_unlock_irq(&gfargrp->grplock);
3184 }
3185
3186 return work_done;
3187 }
3188
3189 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3190 {
3191 struct gfar_priv_grp *gfargrp =
3192 container_of(napi, struct gfar_priv_grp, napi_tx);
3193 struct gfar __iomem *regs = gfargrp->regs;
3194 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3195 u32 imask;
3196
3197 /* Clear IEVENT, so interrupts aren't called again
3198 * because of the packets that have already arrived
3199 */
3200 gfar_write(&regs->ievent, IEVENT_TX_MASK);
3201
3202 /* run Tx cleanup to completion */
3203 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3204 gfar_clean_tx_ring(tx_queue);
3205
3206 napi_complete(napi);
3207
3208 spin_lock_irq(&gfargrp->grplock);
3209 imask = gfar_read(&regs->imask);
3210 imask |= IMASK_TX_DEFAULT;
3211 gfar_write(&regs->imask, imask);
3212 spin_unlock_irq(&gfargrp->grplock);
3213
3214 return 0;
3215 }
3216
3217 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3218 {
3219 struct gfar_priv_grp *gfargrp =
3220 container_of(napi, struct gfar_priv_grp, napi_rx);
3221 struct gfar_private *priv = gfargrp->priv;
3222 struct gfar __iomem *regs = gfargrp->regs;
3223 struct gfar_priv_rx_q *rx_queue = NULL;
3224 int work_done = 0, work_done_per_q = 0;
3225 int i, budget_per_q = 0;
3226 unsigned long rstat_rxf;
3227 int num_act_queues;
3228
3229 /* Clear IEVENT, so interrupts aren't called again
3230 * because of the packets that have already arrived
3231 */
3232 gfar_write(&regs->ievent, IEVENT_RX_MASK);
3233
3234 rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3235
3236 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3237 if (num_act_queues)
3238 budget_per_q = budget/num_act_queues;
3239
3240 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3241 /* skip queue if not active */
3242 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3243 continue;
3244
3245 rx_queue = priv->rx_queue[i];
3246 work_done_per_q =
3247 gfar_clean_rx_ring(rx_queue, budget_per_q);
3248 work_done += work_done_per_q;
3249
3250 /* finished processing this queue */
3251 if (work_done_per_q < budget_per_q) {
3252 /* clear active queue hw indication */
3253 gfar_write(&regs->rstat,
3254 RSTAT_CLEAR_RXF0 >> i);
3255 num_act_queues--;
3256
3257 if (!num_act_queues)
3258 break;
3259 }
3260 }
3261
3262 if (!num_act_queues) {
3263 u32 imask;
3264 napi_complete(napi);
3265
3266 /* Clear the halt bit in RSTAT */
3267 gfar_write(&regs->rstat, gfargrp->rstat);
3268
3269 spin_lock_irq(&gfargrp->grplock);
3270 imask = gfar_read(&regs->imask);
3271 imask |= IMASK_RX_DEFAULT;
3272 gfar_write(&regs->imask, imask);
3273 spin_unlock_irq(&gfargrp->grplock);
3274 }
3275
3276 return work_done;
3277 }
3278
3279 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3280 {
3281 struct gfar_priv_grp *gfargrp =
3282 container_of(napi, struct gfar_priv_grp, napi_tx);
3283 struct gfar_private *priv = gfargrp->priv;
3284 struct gfar __iomem *regs = gfargrp->regs;
3285 struct gfar_priv_tx_q *tx_queue = NULL;
3286 int has_tx_work = 0;
3287 int i;
3288
3289 /* Clear IEVENT, so interrupts aren't called again
3290 * because of the packets that have already arrived
3291 */
3292 gfar_write(&regs->ievent, IEVENT_TX_MASK);
3293
3294 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3295 tx_queue = priv->tx_queue[i];
3296 /* run Tx cleanup to completion */
3297 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3298 gfar_clean_tx_ring(tx_queue);
3299 has_tx_work = 1;
3300 }
3301 }
3302
3303 if (!has_tx_work) {
3304 u32 imask;
3305 napi_complete(napi);
3306
3307 spin_lock_irq(&gfargrp->grplock);
3308 imask = gfar_read(&regs->imask);
3309 imask |= IMASK_TX_DEFAULT;
3310 gfar_write(&regs->imask, imask);
3311 spin_unlock_irq(&gfargrp->grplock);
3312 }
3313
3314 return 0;
3315 }
3316
3317
3318 #ifdef CONFIG_NET_POLL_CONTROLLER
3319 /* Polling 'interrupt' - used by things like netconsole to send skbs
3320 * without having to re-enable interrupts. It's not called while
3321 * the interrupt routine is executing.
3322 */
3323 static void gfar_netpoll(struct net_device *dev)
3324 {
3325 struct gfar_private *priv = netdev_priv(dev);
3326 int i;
3327
3328 /* If the device has multiple interrupts, run tx/rx */
3329 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3330 for (i = 0; i < priv->num_grps; i++) {
3331 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3332
3333 disable_irq(gfar_irq(grp, TX)->irq);
3334 disable_irq(gfar_irq(grp, RX)->irq);
3335 disable_irq(gfar_irq(grp, ER)->irq);
3336 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3337 enable_irq(gfar_irq(grp, ER)->irq);
3338 enable_irq(gfar_irq(grp, RX)->irq);
3339 enable_irq(gfar_irq(grp, TX)->irq);
3340 }
3341 } else {
3342 for (i = 0; i < priv->num_grps; i++) {
3343 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3344
3345 disable_irq(gfar_irq(grp, TX)->irq);
3346 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3347 enable_irq(gfar_irq(grp, TX)->irq);
3348 }
3349 }
3350 }
3351 #endif
3352
3353 /* The interrupt handler for devices with one interrupt */
3354 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3355 {
3356 struct gfar_priv_grp *gfargrp = grp_id;
3357
3358 /* Save ievent for future reference */
3359 u32 events = gfar_read(&gfargrp->regs->ievent);
3360
3361 /* Check for reception */
3362 if (events & IEVENT_RX_MASK)
3363 gfar_receive(irq, grp_id);
3364
3365 /* Check for transmit completion */
3366 if (events & IEVENT_TX_MASK)
3367 gfar_transmit(irq, grp_id);
3368
3369 /* Check for errors */
3370 if (events & IEVENT_ERR_MASK)
3371 gfar_error(irq, grp_id);
3372
3373 return IRQ_HANDLED;
3374 }
3375
3376 /* Called every time the controller might need to be made
3377 * aware of new link state. The PHY code conveys this
3378 * information through variables in the phydev structure, and this
3379 * function converts those variables into the appropriate
3380 * register values, and can bring down the device if needed.
3381 */
3382 static void adjust_link(struct net_device *dev)
3383 {
3384 struct gfar_private *priv = netdev_priv(dev);
3385 struct phy_device *phydev = priv->phydev;
3386
3387 if (unlikely(phydev->link != priv->oldlink ||
3388 (phydev->link && (phydev->duplex != priv->oldduplex ||
3389 phydev->speed != priv->oldspeed))))
3390 gfar_update_link_state(priv);
3391 }
3392
3393 /* Update the hash table based on the current list of multicast
3394 * addresses we subscribe to. Also, change the promiscuity of
3395 * the device based on the flags (this function is called
3396 * whenever dev->flags is changed
3397 */
3398 static void gfar_set_multi(struct net_device *dev)
3399 {
3400 struct netdev_hw_addr *ha;
3401 struct gfar_private *priv = netdev_priv(dev);
3402 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3403 u32 tempval;
3404
3405 if (dev->flags & IFF_PROMISC) {
3406 /* Set RCTRL to PROM */
3407 tempval = gfar_read(&regs->rctrl);
3408 tempval |= RCTRL_PROM;
3409 gfar_write(&regs->rctrl, tempval);
3410 } else {
3411 /* Set RCTRL to not PROM */
3412 tempval = gfar_read(&regs->rctrl);
3413 tempval &= ~(RCTRL_PROM);
3414 gfar_write(&regs->rctrl, tempval);
3415 }
3416
3417 if (dev->flags & IFF_ALLMULTI) {
3418 /* Set the hash to rx all multicast frames */
3419 gfar_write(&regs->igaddr0, 0xffffffff);
3420 gfar_write(&regs->igaddr1, 0xffffffff);
3421 gfar_write(&regs->igaddr2, 0xffffffff);
3422 gfar_write(&regs->igaddr3, 0xffffffff);
3423 gfar_write(&regs->igaddr4, 0xffffffff);
3424 gfar_write(&regs->igaddr5, 0xffffffff);
3425 gfar_write(&regs->igaddr6, 0xffffffff);
3426 gfar_write(&regs->igaddr7, 0xffffffff);
3427 gfar_write(&regs->gaddr0, 0xffffffff);
3428 gfar_write(&regs->gaddr1, 0xffffffff);
3429 gfar_write(&regs->gaddr2, 0xffffffff);
3430 gfar_write(&regs->gaddr3, 0xffffffff);
3431 gfar_write(&regs->gaddr4, 0xffffffff);
3432 gfar_write(&regs->gaddr5, 0xffffffff);
3433 gfar_write(&regs->gaddr6, 0xffffffff);
3434 gfar_write(&regs->gaddr7, 0xffffffff);
3435 } else {
3436 int em_num;
3437 int idx;
3438
3439 /* zero out the hash */
3440 gfar_write(&regs->igaddr0, 0x0);
3441 gfar_write(&regs->igaddr1, 0x0);
3442 gfar_write(&regs->igaddr2, 0x0);
3443 gfar_write(&regs->igaddr3, 0x0);
3444 gfar_write(&regs->igaddr4, 0x0);
3445 gfar_write(&regs->igaddr5, 0x0);
3446 gfar_write(&regs->igaddr6, 0x0);
3447 gfar_write(&regs->igaddr7, 0x0);
3448 gfar_write(&regs->gaddr0, 0x0);
3449 gfar_write(&regs->gaddr1, 0x0);
3450 gfar_write(&regs->gaddr2, 0x0);
3451 gfar_write(&regs->gaddr3, 0x0);
3452 gfar_write(&regs->gaddr4, 0x0);
3453 gfar_write(&regs->gaddr5, 0x0);
3454 gfar_write(&regs->gaddr6, 0x0);
3455 gfar_write(&regs->gaddr7, 0x0);
3456
3457 /* If we have extended hash tables, we need to
3458 * clear the exact match registers to prepare for
3459 * setting them
3460 */
3461 if (priv->extended_hash) {
3462 em_num = GFAR_EM_NUM + 1;
3463 gfar_clear_exact_match(dev);
3464 idx = 1;
3465 } else {
3466 idx = 0;
3467 em_num = 0;
3468 }
3469
3470 if (netdev_mc_empty(dev))
3471 return;
3472
3473 /* Parse the list, and set the appropriate bits */
3474 netdev_for_each_mc_addr(ha, dev) {
3475 if (idx < em_num) {
3476 gfar_set_mac_for_addr(dev, idx, ha->addr);
3477 idx++;
3478 } else
3479 gfar_set_hash_for_addr(dev, ha->addr);
3480 }
3481 }
3482 }
3483
3484
3485 /* Clears each of the exact match registers to zero, so they
3486 * don't interfere with normal reception
3487 */
3488 static void gfar_clear_exact_match(struct net_device *dev)
3489 {
3490 int idx;
3491 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3492
3493 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3494 gfar_set_mac_for_addr(dev, idx, zero_arr);
3495 }
3496
3497 /* Set the appropriate hash bit for the given addr */
3498 /* The algorithm works like so:
3499 * 1) Take the Destination Address (ie the multicast address), and
3500 * do a CRC on it (little endian), and reverse the bits of the
3501 * result.
3502 * 2) Use the 8 most significant bits as a hash into a 256-entry
3503 * table. The table is controlled through 8 32-bit registers:
3504 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3505 * gaddr7. This means that the 3 most significant bits in the
3506 * hash index which gaddr register to use, and the 5 other bits
3507 * indicate which bit (assuming an IBM numbering scheme, which
3508 * for PowerPC (tm) is usually the case) in the register holds
3509 * the entry.
3510 */
3511 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3512 {
3513 u32 tempval;
3514 struct gfar_private *priv = netdev_priv(dev);
3515 u32 result = ether_crc(ETH_ALEN, addr);
3516 int width = priv->hash_width;
3517 u8 whichbit = (result >> (32 - width)) & 0x1f;
3518 u8 whichreg = result >> (32 - width + 5);
3519 u32 value = (1 << (31-whichbit));
3520
3521 tempval = gfar_read(priv->hash_regs[whichreg]);
3522 tempval |= value;
3523 gfar_write(priv->hash_regs[whichreg], tempval);
3524 }
3525
3526
3527 /* There are multiple MAC Address register pairs on some controllers
3528 * This function sets the numth pair to a given address
3529 */
3530 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3531 const u8 *addr)
3532 {
3533 struct gfar_private *priv = netdev_priv(dev);
3534 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3535 u32 tempval;
3536 u32 __iomem *macptr = &regs->macstnaddr1;
3537
3538 macptr += num*2;
3539
3540 /* For a station address of 0x12345678ABCD in transmission
3541 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3542 * MACnADDR2 is set to 0x34120000.
3543 */
3544 tempval = (addr[5] << 24) | (addr[4] << 16) |
3545 (addr[3] << 8) | addr[2];
3546
3547 gfar_write(macptr, tempval);
3548
3549 tempval = (addr[1] << 24) | (addr[0] << 16);
3550
3551 gfar_write(macptr+1, tempval);
3552 }
3553
3554 /* GFAR error interrupt handler */
3555 static irqreturn_t gfar_error(int irq, void *grp_id)
3556 {
3557 struct gfar_priv_grp *gfargrp = grp_id;
3558 struct gfar __iomem *regs = gfargrp->regs;
3559 struct gfar_private *priv= gfargrp->priv;
3560 struct net_device *dev = priv->ndev;
3561
3562 /* Save ievent for future reference */
3563 u32 events = gfar_read(&regs->ievent);
3564
3565 /* Clear IEVENT */
3566 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3567
3568 /* Magic Packet is not an error. */
3569 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3570 (events & IEVENT_MAG))
3571 events &= ~IEVENT_MAG;
3572
3573 /* Hmm... */
3574 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3575 netdev_dbg(dev,
3576 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3577 events, gfar_read(&regs->imask));
3578
3579 /* Update the error counters */
3580 if (events & IEVENT_TXE) {
3581 dev->stats.tx_errors++;
3582
3583 if (events & IEVENT_LC)
3584 dev->stats.tx_window_errors++;
3585 if (events & IEVENT_CRL)
3586 dev->stats.tx_aborted_errors++;
3587 if (events & IEVENT_XFUN) {
3588 netif_dbg(priv, tx_err, dev,
3589 "TX FIFO underrun, packet dropped\n");
3590 dev->stats.tx_dropped++;
3591 atomic64_inc(&priv->extra_stats.tx_underrun);
3592
3593 schedule_work(&priv->reset_task);
3594 }
3595 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3596 }
3597 if (events & IEVENT_BSY) {
3598 dev->stats.rx_over_errors++;
3599 atomic64_inc(&priv->extra_stats.rx_bsy);
3600
3601 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3602 gfar_read(&regs->rstat));
3603 }
3604 if (events & IEVENT_BABR) {
3605 dev->stats.rx_errors++;
3606 atomic64_inc(&priv->extra_stats.rx_babr);
3607
3608 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3609 }
3610 if (events & IEVENT_EBERR) {
3611 atomic64_inc(&priv->extra_stats.eberr);
3612 netif_dbg(priv, rx_err, dev, "bus error\n");
3613 }
3614 if (events & IEVENT_RXC)
3615 netif_dbg(priv, rx_status, dev, "control frame\n");
3616
3617 if (events & IEVENT_BABT) {
3618 atomic64_inc(&priv->extra_stats.tx_babt);
3619 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3620 }
3621 return IRQ_HANDLED;
3622 }
3623
3624 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3625 {
3626 struct phy_device *phydev = priv->phydev;
3627 u32 val = 0;
3628
3629 if (!phydev->duplex)
3630 return val;
3631
3632 if (!priv->pause_aneg_en) {
3633 if (priv->tx_pause_en)
3634 val |= MACCFG1_TX_FLOW;
3635 if (priv->rx_pause_en)
3636 val |= MACCFG1_RX_FLOW;
3637 } else {
3638 u16 lcl_adv, rmt_adv;
3639 u8 flowctrl;
3640 /* get link partner capabilities */
3641 rmt_adv = 0;
3642 if (phydev->pause)
3643 rmt_adv = LPA_PAUSE_CAP;
3644 if (phydev->asym_pause)
3645 rmt_adv |= LPA_PAUSE_ASYM;
3646
3647 lcl_adv = 0;
3648 if (phydev->advertising & ADVERTISED_Pause)
3649 lcl_adv |= ADVERTISE_PAUSE_CAP;
3650 if (phydev->advertising & ADVERTISED_Asym_Pause)
3651 lcl_adv |= ADVERTISE_PAUSE_ASYM;
3652
3653 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3654 if (flowctrl & FLOW_CTRL_TX)
3655 val |= MACCFG1_TX_FLOW;
3656 if (flowctrl & FLOW_CTRL_RX)
3657 val |= MACCFG1_RX_FLOW;
3658 }
3659
3660 return val;
3661 }
3662
3663 static noinline void gfar_update_link_state(struct gfar_private *priv)
3664 {
3665 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3666 struct phy_device *phydev = priv->phydev;
3667 struct gfar_priv_rx_q *rx_queue = NULL;
3668 int i;
3669
3670 if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3671 return;
3672
3673 if (phydev->link) {
3674 u32 tempval1 = gfar_read(&regs->maccfg1);
3675 u32 tempval = gfar_read(&regs->maccfg2);
3676 u32 ecntrl = gfar_read(&regs->ecntrl);
3677 u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3678
3679 if (phydev->duplex != priv->oldduplex) {
3680 if (!(phydev->duplex))
3681 tempval &= ~(MACCFG2_FULL_DUPLEX);
3682 else
3683 tempval |= MACCFG2_FULL_DUPLEX;
3684
3685 priv->oldduplex = phydev->duplex;
3686 }
3687
3688 if (phydev->speed != priv->oldspeed) {
3689 switch (phydev->speed) {
3690 case 1000:
3691 tempval =
3692 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3693
3694 ecntrl &= ~(ECNTRL_R100);
3695 break;
3696 case 100:
3697 case 10:
3698 tempval =
3699 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3700
3701 /* Reduced mode distinguishes
3702 * between 10 and 100
3703 */
3704 if (phydev->speed == SPEED_100)
3705 ecntrl |= ECNTRL_R100;
3706 else
3707 ecntrl &= ~(ECNTRL_R100);
3708 break;
3709 default:
3710 netif_warn(priv, link, priv->ndev,
3711 "Ack! Speed (%d) is not 10/100/1000!\n",
3712 phydev->speed);
3713 break;
3714 }
3715
3716 priv->oldspeed = phydev->speed;
3717 }
3718
3719 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3720 tempval1 |= gfar_get_flowctrl_cfg(priv);
3721
3722 /* Turn last free buffer recording on */
3723 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3724 for (i = 0; i < priv->num_rx_queues; i++) {
3725 u32 bdp_dma;
3726
3727 rx_queue = priv->rx_queue[i];
3728 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3729 gfar_write(rx_queue->rfbptr, bdp_dma);
3730 }
3731
3732 priv->tx_actual_en = 1;
3733 }
3734
3735 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3736 priv->tx_actual_en = 0;
3737
3738 gfar_write(&regs->maccfg1, tempval1);
3739 gfar_write(&regs->maccfg2, tempval);
3740 gfar_write(&regs->ecntrl, ecntrl);
3741
3742 if (!priv->oldlink)
3743 priv->oldlink = 1;
3744
3745 } else if (priv->oldlink) {
3746 priv->oldlink = 0;
3747 priv->oldspeed = 0;
3748 priv->oldduplex = -1;
3749 }
3750
3751 if (netif_msg_link(priv))
3752 phy_print_status(phydev);
3753 }
3754
3755 static const struct of_device_id gfar_match[] =
3756 {
3757 {
3758 .type = "network",
3759 .compatible = "gianfar",
3760 },
3761 {
3762 .compatible = "fsl,etsec2",
3763 },
3764 {},
3765 };
3766 MODULE_DEVICE_TABLE(of, gfar_match);
3767
3768 /* Structure for a device driver */
3769 static struct platform_driver gfar_driver = {
3770 .driver = {
3771 .name = "fsl-gianfar",
3772 .pm = GFAR_PM_OPS,
3773 .of_match_table = gfar_match,
3774 },
3775 .probe = gfar_probe,
3776 .remove = gfar_remove,
3777 };
3778
3779 module_platform_driver(gfar_driver);