]> git.ipfire.org Git - people/ms/linux.git/blob - drivers/net/wireless/ath/ath10k/mac.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[people/ms/linux.git] / drivers / net / wireless / ath / ath10k / mac.c
1 /*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include "mac.h"
19
20 #include <net/mac80211.h>
21 #include <linux/etherdevice.h>
22
23 #include "hif.h"
24 #include "core.h"
25 #include "debug.h"
26 #include "wmi.h"
27 #include "htt.h"
28 #include "txrx.h"
29 #include "testmode.h"
30 #include "wmi.h"
31 #include "wmi-tlv.h"
32 #include "wmi-ops.h"
33 #include "wow.h"
34
35 /*********/
36 /* Rates */
37 /*********/
38
39 static struct ieee80211_rate ath10k_rates[] = {
40 { .bitrate = 10,
41 .hw_value = ATH10K_HW_RATE_CCK_LP_1M },
42 { .bitrate = 20,
43 .hw_value = ATH10K_HW_RATE_CCK_LP_2M,
44 .hw_value_short = ATH10K_HW_RATE_CCK_SP_2M,
45 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
46 { .bitrate = 55,
47 .hw_value = ATH10K_HW_RATE_CCK_LP_5_5M,
48 .hw_value_short = ATH10K_HW_RATE_CCK_SP_5_5M,
49 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
50 { .bitrate = 110,
51 .hw_value = ATH10K_HW_RATE_CCK_LP_11M,
52 .hw_value_short = ATH10K_HW_RATE_CCK_SP_11M,
53 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
54
55 { .bitrate = 60, .hw_value = ATH10K_HW_RATE_OFDM_6M },
56 { .bitrate = 90, .hw_value = ATH10K_HW_RATE_OFDM_9M },
57 { .bitrate = 120, .hw_value = ATH10K_HW_RATE_OFDM_12M },
58 { .bitrate = 180, .hw_value = ATH10K_HW_RATE_OFDM_18M },
59 { .bitrate = 240, .hw_value = ATH10K_HW_RATE_OFDM_24M },
60 { .bitrate = 360, .hw_value = ATH10K_HW_RATE_OFDM_36M },
61 { .bitrate = 480, .hw_value = ATH10K_HW_RATE_OFDM_48M },
62 { .bitrate = 540, .hw_value = ATH10K_HW_RATE_OFDM_54M },
63 };
64
65 #define ATH10K_MAC_FIRST_OFDM_RATE_IDX 4
66
67 #define ath10k_a_rates (ath10k_rates + ATH10K_MAC_FIRST_OFDM_RATE_IDX)
68 #define ath10k_a_rates_size (ARRAY_SIZE(ath10k_rates) - \
69 ATH10K_MAC_FIRST_OFDM_RATE_IDX)
70 #define ath10k_g_rates (ath10k_rates + 0)
71 #define ath10k_g_rates_size (ARRAY_SIZE(ath10k_rates))
72
73 static bool ath10k_mac_bitrate_is_cck(int bitrate)
74 {
75 switch (bitrate) {
76 case 10:
77 case 20:
78 case 55:
79 case 110:
80 return true;
81 }
82
83 return false;
84 }
85
86 static u8 ath10k_mac_bitrate_to_rate(int bitrate)
87 {
88 return DIV_ROUND_UP(bitrate, 5) |
89 (ath10k_mac_bitrate_is_cck(bitrate) ? BIT(7) : 0);
90 }
91
92 u8 ath10k_mac_hw_rate_to_idx(const struct ieee80211_supported_band *sband,
93 u8 hw_rate)
94 {
95 const struct ieee80211_rate *rate;
96 int i;
97
98 for (i = 0; i < sband->n_bitrates; i++) {
99 rate = &sband->bitrates[i];
100
101 if (rate->hw_value == hw_rate)
102 return i;
103 else if (rate->flags & IEEE80211_RATE_SHORT_PREAMBLE &&
104 rate->hw_value_short == hw_rate)
105 return i;
106 }
107
108 return 0;
109 }
110
111 u8 ath10k_mac_bitrate_to_idx(const struct ieee80211_supported_band *sband,
112 u32 bitrate)
113 {
114 int i;
115
116 for (i = 0; i < sband->n_bitrates; i++)
117 if (sband->bitrates[i].bitrate == bitrate)
118 return i;
119
120 return 0;
121 }
122
123 static int ath10k_mac_get_max_vht_mcs_map(u16 mcs_map, int nss)
124 {
125 switch ((mcs_map >> (2 * nss)) & 0x3) {
126 case IEEE80211_VHT_MCS_SUPPORT_0_7: return BIT(8) - 1;
127 case IEEE80211_VHT_MCS_SUPPORT_0_8: return BIT(9) - 1;
128 case IEEE80211_VHT_MCS_SUPPORT_0_9: return BIT(10) - 1;
129 }
130 return 0;
131 }
132
133 static u32
134 ath10k_mac_max_ht_nss(const u8 ht_mcs_mask[IEEE80211_HT_MCS_MASK_LEN])
135 {
136 int nss;
137
138 for (nss = IEEE80211_HT_MCS_MASK_LEN - 1; nss >= 0; nss--)
139 if (ht_mcs_mask[nss])
140 return nss + 1;
141
142 return 1;
143 }
144
145 static u32
146 ath10k_mac_max_vht_nss(const u16 vht_mcs_mask[NL80211_VHT_NSS_MAX])
147 {
148 int nss;
149
150 for (nss = NL80211_VHT_NSS_MAX - 1; nss >= 0; nss--)
151 if (vht_mcs_mask[nss])
152 return nss + 1;
153
154 return 1;
155 }
156
157 /**********/
158 /* Crypto */
159 /**********/
160
161 static int ath10k_send_key(struct ath10k_vif *arvif,
162 struct ieee80211_key_conf *key,
163 enum set_key_cmd cmd,
164 const u8 *macaddr, u32 flags)
165 {
166 struct ath10k *ar = arvif->ar;
167 struct wmi_vdev_install_key_arg arg = {
168 .vdev_id = arvif->vdev_id,
169 .key_idx = key->keyidx,
170 .key_len = key->keylen,
171 .key_data = key->key,
172 .key_flags = flags,
173 .macaddr = macaddr,
174 };
175
176 lockdep_assert_held(&arvif->ar->conf_mutex);
177
178 switch (key->cipher) {
179 case WLAN_CIPHER_SUITE_CCMP:
180 arg.key_cipher = WMI_CIPHER_AES_CCM;
181 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV_MGMT;
182 break;
183 case WLAN_CIPHER_SUITE_TKIP:
184 arg.key_cipher = WMI_CIPHER_TKIP;
185 arg.key_txmic_len = 8;
186 arg.key_rxmic_len = 8;
187 break;
188 case WLAN_CIPHER_SUITE_WEP40:
189 case WLAN_CIPHER_SUITE_WEP104:
190 arg.key_cipher = WMI_CIPHER_WEP;
191 break;
192 case WLAN_CIPHER_SUITE_AES_CMAC:
193 WARN_ON(1);
194 return -EINVAL;
195 default:
196 ath10k_warn(ar, "cipher %d is not supported\n", key->cipher);
197 return -EOPNOTSUPP;
198 }
199
200 if (test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags))
201 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
202
203 if (cmd == DISABLE_KEY) {
204 arg.key_cipher = WMI_CIPHER_NONE;
205 arg.key_data = NULL;
206 }
207
208 return ath10k_wmi_vdev_install_key(arvif->ar, &arg);
209 }
210
211 static int ath10k_install_key(struct ath10k_vif *arvif,
212 struct ieee80211_key_conf *key,
213 enum set_key_cmd cmd,
214 const u8 *macaddr, u32 flags)
215 {
216 struct ath10k *ar = arvif->ar;
217 int ret;
218 unsigned long time_left;
219
220 lockdep_assert_held(&ar->conf_mutex);
221
222 reinit_completion(&ar->install_key_done);
223
224 if (arvif->nohwcrypt)
225 return 1;
226
227 ret = ath10k_send_key(arvif, key, cmd, macaddr, flags);
228 if (ret)
229 return ret;
230
231 time_left = wait_for_completion_timeout(&ar->install_key_done, 3 * HZ);
232 if (time_left == 0)
233 return -ETIMEDOUT;
234
235 return 0;
236 }
237
238 static int ath10k_install_peer_wep_keys(struct ath10k_vif *arvif,
239 const u8 *addr)
240 {
241 struct ath10k *ar = arvif->ar;
242 struct ath10k_peer *peer;
243 int ret;
244 int i;
245 u32 flags;
246
247 lockdep_assert_held(&ar->conf_mutex);
248
249 if (WARN_ON(arvif->vif->type != NL80211_IFTYPE_AP &&
250 arvif->vif->type != NL80211_IFTYPE_ADHOC))
251 return -EINVAL;
252
253 spin_lock_bh(&ar->data_lock);
254 peer = ath10k_peer_find(ar, arvif->vdev_id, addr);
255 spin_unlock_bh(&ar->data_lock);
256
257 if (!peer)
258 return -ENOENT;
259
260 for (i = 0; i < ARRAY_SIZE(arvif->wep_keys); i++) {
261 if (arvif->wep_keys[i] == NULL)
262 continue;
263
264 switch (arvif->vif->type) {
265 case NL80211_IFTYPE_AP:
266 flags = WMI_KEY_PAIRWISE;
267
268 if (arvif->def_wep_key_idx == i)
269 flags |= WMI_KEY_TX_USAGE;
270
271 ret = ath10k_install_key(arvif, arvif->wep_keys[i],
272 SET_KEY, addr, flags);
273 if (ret < 0)
274 return ret;
275 break;
276 case NL80211_IFTYPE_ADHOC:
277 ret = ath10k_install_key(arvif, arvif->wep_keys[i],
278 SET_KEY, addr,
279 WMI_KEY_PAIRWISE);
280 if (ret < 0)
281 return ret;
282
283 ret = ath10k_install_key(arvif, arvif->wep_keys[i],
284 SET_KEY, addr, WMI_KEY_GROUP);
285 if (ret < 0)
286 return ret;
287 break;
288 default:
289 WARN_ON(1);
290 return -EINVAL;
291 }
292
293 spin_lock_bh(&ar->data_lock);
294 peer->keys[i] = arvif->wep_keys[i];
295 spin_unlock_bh(&ar->data_lock);
296 }
297
298 /* In some cases (notably with static WEP IBSS with multiple keys)
299 * multicast Tx becomes broken. Both pairwise and groupwise keys are
300 * installed already. Using WMI_KEY_TX_USAGE in different combinations
301 * didn't seem help. Using def_keyid vdev parameter seems to be
302 * effective so use that.
303 *
304 * FIXME: Revisit. Perhaps this can be done in a less hacky way.
305 */
306 if (arvif->vif->type != NL80211_IFTYPE_ADHOC)
307 return 0;
308
309 if (arvif->def_wep_key_idx == -1)
310 return 0;
311
312 ret = ath10k_wmi_vdev_set_param(arvif->ar,
313 arvif->vdev_id,
314 arvif->ar->wmi.vdev_param->def_keyid,
315 arvif->def_wep_key_idx);
316 if (ret) {
317 ath10k_warn(ar, "failed to re-set def wpa key idxon vdev %i: %d\n",
318 arvif->vdev_id, ret);
319 return ret;
320 }
321
322 return 0;
323 }
324
325 static int ath10k_clear_peer_keys(struct ath10k_vif *arvif,
326 const u8 *addr)
327 {
328 struct ath10k *ar = arvif->ar;
329 struct ath10k_peer *peer;
330 int first_errno = 0;
331 int ret;
332 int i;
333 u32 flags = 0;
334
335 lockdep_assert_held(&ar->conf_mutex);
336
337 spin_lock_bh(&ar->data_lock);
338 peer = ath10k_peer_find(ar, arvif->vdev_id, addr);
339 spin_unlock_bh(&ar->data_lock);
340
341 if (!peer)
342 return -ENOENT;
343
344 for (i = 0; i < ARRAY_SIZE(peer->keys); i++) {
345 if (peer->keys[i] == NULL)
346 continue;
347
348 /* key flags are not required to delete the key */
349 ret = ath10k_install_key(arvif, peer->keys[i],
350 DISABLE_KEY, addr, flags);
351 if (ret < 0 && first_errno == 0)
352 first_errno = ret;
353
354 if (ret < 0)
355 ath10k_warn(ar, "failed to remove peer wep key %d: %d\n",
356 i, ret);
357
358 spin_lock_bh(&ar->data_lock);
359 peer->keys[i] = NULL;
360 spin_unlock_bh(&ar->data_lock);
361 }
362
363 return first_errno;
364 }
365
366 bool ath10k_mac_is_peer_wep_key_set(struct ath10k *ar, const u8 *addr,
367 u8 keyidx)
368 {
369 struct ath10k_peer *peer;
370 int i;
371
372 lockdep_assert_held(&ar->data_lock);
373
374 /* We don't know which vdev this peer belongs to,
375 * since WMI doesn't give us that information.
376 *
377 * FIXME: multi-bss needs to be handled.
378 */
379 peer = ath10k_peer_find(ar, 0, addr);
380 if (!peer)
381 return false;
382
383 for (i = 0; i < ARRAY_SIZE(peer->keys); i++) {
384 if (peer->keys[i] && peer->keys[i]->keyidx == keyidx)
385 return true;
386 }
387
388 return false;
389 }
390
391 static int ath10k_clear_vdev_key(struct ath10k_vif *arvif,
392 struct ieee80211_key_conf *key)
393 {
394 struct ath10k *ar = arvif->ar;
395 struct ath10k_peer *peer;
396 u8 addr[ETH_ALEN];
397 int first_errno = 0;
398 int ret;
399 int i;
400 u32 flags = 0;
401
402 lockdep_assert_held(&ar->conf_mutex);
403
404 for (;;) {
405 /* since ath10k_install_key we can't hold data_lock all the
406 * time, so we try to remove the keys incrementally */
407 spin_lock_bh(&ar->data_lock);
408 i = 0;
409 list_for_each_entry(peer, &ar->peers, list) {
410 for (i = 0; i < ARRAY_SIZE(peer->keys); i++) {
411 if (peer->keys[i] == key) {
412 ether_addr_copy(addr, peer->addr);
413 peer->keys[i] = NULL;
414 break;
415 }
416 }
417
418 if (i < ARRAY_SIZE(peer->keys))
419 break;
420 }
421 spin_unlock_bh(&ar->data_lock);
422
423 if (i == ARRAY_SIZE(peer->keys))
424 break;
425 /* key flags are not required to delete the key */
426 ret = ath10k_install_key(arvif, key, DISABLE_KEY, addr, flags);
427 if (ret < 0 && first_errno == 0)
428 first_errno = ret;
429
430 if (ret)
431 ath10k_warn(ar, "failed to remove key for %pM: %d\n",
432 addr, ret);
433 }
434
435 return first_errno;
436 }
437
438 static int ath10k_mac_vif_update_wep_key(struct ath10k_vif *arvif,
439 struct ieee80211_key_conf *key)
440 {
441 struct ath10k *ar = arvif->ar;
442 struct ath10k_peer *peer;
443 int ret;
444
445 lockdep_assert_held(&ar->conf_mutex);
446
447 list_for_each_entry(peer, &ar->peers, list) {
448 if (!memcmp(peer->addr, arvif->vif->addr, ETH_ALEN))
449 continue;
450
451 if (!memcmp(peer->addr, arvif->bssid, ETH_ALEN))
452 continue;
453
454 if (peer->keys[key->keyidx] == key)
455 continue;
456
457 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vif vdev %i update key %i needs update\n",
458 arvif->vdev_id, key->keyidx);
459
460 ret = ath10k_install_peer_wep_keys(arvif, peer->addr);
461 if (ret) {
462 ath10k_warn(ar, "failed to update wep keys on vdev %i for peer %pM: %d\n",
463 arvif->vdev_id, peer->addr, ret);
464 return ret;
465 }
466 }
467
468 return 0;
469 }
470
471 /*********************/
472 /* General utilities */
473 /*********************/
474
475 static inline enum wmi_phy_mode
476 chan_to_phymode(const struct cfg80211_chan_def *chandef)
477 {
478 enum wmi_phy_mode phymode = MODE_UNKNOWN;
479
480 switch (chandef->chan->band) {
481 case IEEE80211_BAND_2GHZ:
482 switch (chandef->width) {
483 case NL80211_CHAN_WIDTH_20_NOHT:
484 if (chandef->chan->flags & IEEE80211_CHAN_NO_OFDM)
485 phymode = MODE_11B;
486 else
487 phymode = MODE_11G;
488 break;
489 case NL80211_CHAN_WIDTH_20:
490 phymode = MODE_11NG_HT20;
491 break;
492 case NL80211_CHAN_WIDTH_40:
493 phymode = MODE_11NG_HT40;
494 break;
495 case NL80211_CHAN_WIDTH_5:
496 case NL80211_CHAN_WIDTH_10:
497 case NL80211_CHAN_WIDTH_80:
498 case NL80211_CHAN_WIDTH_80P80:
499 case NL80211_CHAN_WIDTH_160:
500 phymode = MODE_UNKNOWN;
501 break;
502 }
503 break;
504 case IEEE80211_BAND_5GHZ:
505 switch (chandef->width) {
506 case NL80211_CHAN_WIDTH_20_NOHT:
507 phymode = MODE_11A;
508 break;
509 case NL80211_CHAN_WIDTH_20:
510 phymode = MODE_11NA_HT20;
511 break;
512 case NL80211_CHAN_WIDTH_40:
513 phymode = MODE_11NA_HT40;
514 break;
515 case NL80211_CHAN_WIDTH_80:
516 phymode = MODE_11AC_VHT80;
517 break;
518 case NL80211_CHAN_WIDTH_5:
519 case NL80211_CHAN_WIDTH_10:
520 case NL80211_CHAN_WIDTH_80P80:
521 case NL80211_CHAN_WIDTH_160:
522 phymode = MODE_UNKNOWN;
523 break;
524 }
525 break;
526 default:
527 break;
528 }
529
530 WARN_ON(phymode == MODE_UNKNOWN);
531 return phymode;
532 }
533
534 static u8 ath10k_parse_mpdudensity(u8 mpdudensity)
535 {
536 /*
537 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
538 * 0 for no restriction
539 * 1 for 1/4 us
540 * 2 for 1/2 us
541 * 3 for 1 us
542 * 4 for 2 us
543 * 5 for 4 us
544 * 6 for 8 us
545 * 7 for 16 us
546 */
547 switch (mpdudensity) {
548 case 0:
549 return 0;
550 case 1:
551 case 2:
552 case 3:
553 /* Our lower layer calculations limit our precision to
554 1 microsecond */
555 return 1;
556 case 4:
557 return 2;
558 case 5:
559 return 4;
560 case 6:
561 return 8;
562 case 7:
563 return 16;
564 default:
565 return 0;
566 }
567 }
568
569 int ath10k_mac_vif_chan(struct ieee80211_vif *vif,
570 struct cfg80211_chan_def *def)
571 {
572 struct ieee80211_chanctx_conf *conf;
573
574 rcu_read_lock();
575 conf = rcu_dereference(vif->chanctx_conf);
576 if (!conf) {
577 rcu_read_unlock();
578 return -ENOENT;
579 }
580
581 *def = conf->def;
582 rcu_read_unlock();
583
584 return 0;
585 }
586
587 static void ath10k_mac_num_chanctxs_iter(struct ieee80211_hw *hw,
588 struct ieee80211_chanctx_conf *conf,
589 void *data)
590 {
591 int *num = data;
592
593 (*num)++;
594 }
595
596 static int ath10k_mac_num_chanctxs(struct ath10k *ar)
597 {
598 int num = 0;
599
600 ieee80211_iter_chan_contexts_atomic(ar->hw,
601 ath10k_mac_num_chanctxs_iter,
602 &num);
603
604 return num;
605 }
606
607 static void
608 ath10k_mac_get_any_chandef_iter(struct ieee80211_hw *hw,
609 struct ieee80211_chanctx_conf *conf,
610 void *data)
611 {
612 struct cfg80211_chan_def **def = data;
613
614 *def = &conf->def;
615 }
616
617 static int ath10k_peer_create(struct ath10k *ar, u32 vdev_id, const u8 *addr,
618 enum wmi_peer_type peer_type)
619 {
620 struct ath10k_vif *arvif;
621 int num_peers = 0;
622 int ret;
623
624 lockdep_assert_held(&ar->conf_mutex);
625
626 num_peers = ar->num_peers;
627
628 /* Each vdev consumes a peer entry as well */
629 list_for_each_entry(arvif, &ar->arvifs, list)
630 num_peers++;
631
632 if (num_peers >= ar->max_num_peers)
633 return -ENOBUFS;
634
635 ret = ath10k_wmi_peer_create(ar, vdev_id, addr, peer_type);
636 if (ret) {
637 ath10k_warn(ar, "failed to create wmi peer %pM on vdev %i: %i\n",
638 addr, vdev_id, ret);
639 return ret;
640 }
641
642 ret = ath10k_wait_for_peer_created(ar, vdev_id, addr);
643 if (ret) {
644 ath10k_warn(ar, "failed to wait for created wmi peer %pM on vdev %i: %i\n",
645 addr, vdev_id, ret);
646 return ret;
647 }
648
649 ar->num_peers++;
650
651 return 0;
652 }
653
654 static int ath10k_mac_set_kickout(struct ath10k_vif *arvif)
655 {
656 struct ath10k *ar = arvif->ar;
657 u32 param;
658 int ret;
659
660 param = ar->wmi.pdev_param->sta_kickout_th;
661 ret = ath10k_wmi_pdev_set_param(ar, param,
662 ATH10K_KICKOUT_THRESHOLD);
663 if (ret) {
664 ath10k_warn(ar, "failed to set kickout threshold on vdev %i: %d\n",
665 arvif->vdev_id, ret);
666 return ret;
667 }
668
669 param = ar->wmi.vdev_param->ap_keepalive_min_idle_inactive_time_secs;
670 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param,
671 ATH10K_KEEPALIVE_MIN_IDLE);
672 if (ret) {
673 ath10k_warn(ar, "failed to set keepalive minimum idle time on vdev %i: %d\n",
674 arvif->vdev_id, ret);
675 return ret;
676 }
677
678 param = ar->wmi.vdev_param->ap_keepalive_max_idle_inactive_time_secs;
679 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param,
680 ATH10K_KEEPALIVE_MAX_IDLE);
681 if (ret) {
682 ath10k_warn(ar, "failed to set keepalive maximum idle time on vdev %i: %d\n",
683 arvif->vdev_id, ret);
684 return ret;
685 }
686
687 param = ar->wmi.vdev_param->ap_keepalive_max_unresponsive_time_secs;
688 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param,
689 ATH10K_KEEPALIVE_MAX_UNRESPONSIVE);
690 if (ret) {
691 ath10k_warn(ar, "failed to set keepalive maximum unresponsive time on vdev %i: %d\n",
692 arvif->vdev_id, ret);
693 return ret;
694 }
695
696 return 0;
697 }
698
699 static int ath10k_mac_set_rts(struct ath10k_vif *arvif, u32 value)
700 {
701 struct ath10k *ar = arvif->ar;
702 u32 vdev_param;
703
704 vdev_param = ar->wmi.vdev_param->rts_threshold;
705 return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, value);
706 }
707
708 static int ath10k_peer_delete(struct ath10k *ar, u32 vdev_id, const u8 *addr)
709 {
710 int ret;
711
712 lockdep_assert_held(&ar->conf_mutex);
713
714 ret = ath10k_wmi_peer_delete(ar, vdev_id, addr);
715 if (ret)
716 return ret;
717
718 ret = ath10k_wait_for_peer_deleted(ar, vdev_id, addr);
719 if (ret)
720 return ret;
721
722 ar->num_peers--;
723
724 return 0;
725 }
726
727 static void ath10k_peer_cleanup(struct ath10k *ar, u32 vdev_id)
728 {
729 struct ath10k_peer *peer, *tmp;
730
731 lockdep_assert_held(&ar->conf_mutex);
732
733 spin_lock_bh(&ar->data_lock);
734 list_for_each_entry_safe(peer, tmp, &ar->peers, list) {
735 if (peer->vdev_id != vdev_id)
736 continue;
737
738 ath10k_warn(ar, "removing stale peer %pM from vdev_id %d\n",
739 peer->addr, vdev_id);
740
741 list_del(&peer->list);
742 kfree(peer);
743 ar->num_peers--;
744 }
745 spin_unlock_bh(&ar->data_lock);
746 }
747
748 static void ath10k_peer_cleanup_all(struct ath10k *ar)
749 {
750 struct ath10k_peer *peer, *tmp;
751
752 lockdep_assert_held(&ar->conf_mutex);
753
754 spin_lock_bh(&ar->data_lock);
755 list_for_each_entry_safe(peer, tmp, &ar->peers, list) {
756 list_del(&peer->list);
757 kfree(peer);
758 }
759 spin_unlock_bh(&ar->data_lock);
760
761 ar->num_peers = 0;
762 ar->num_stations = 0;
763 }
764
765 static int ath10k_mac_tdls_peer_update(struct ath10k *ar, u32 vdev_id,
766 struct ieee80211_sta *sta,
767 enum wmi_tdls_peer_state state)
768 {
769 int ret;
770 struct wmi_tdls_peer_update_cmd_arg arg = {};
771 struct wmi_tdls_peer_capab_arg cap = {};
772 struct wmi_channel_arg chan_arg = {};
773
774 lockdep_assert_held(&ar->conf_mutex);
775
776 arg.vdev_id = vdev_id;
777 arg.peer_state = state;
778 ether_addr_copy(arg.addr, sta->addr);
779
780 cap.peer_max_sp = sta->max_sp;
781 cap.peer_uapsd_queues = sta->uapsd_queues;
782
783 if (state == WMI_TDLS_PEER_STATE_CONNECTED &&
784 !sta->tdls_initiator)
785 cap.is_peer_responder = 1;
786
787 ret = ath10k_wmi_tdls_peer_update(ar, &arg, &cap, &chan_arg);
788 if (ret) {
789 ath10k_warn(ar, "failed to update tdls peer %pM on vdev %i: %i\n",
790 arg.addr, vdev_id, ret);
791 return ret;
792 }
793
794 return 0;
795 }
796
797 /************************/
798 /* Interface management */
799 /************************/
800
801 void ath10k_mac_vif_beacon_free(struct ath10k_vif *arvif)
802 {
803 struct ath10k *ar = arvif->ar;
804
805 lockdep_assert_held(&ar->data_lock);
806
807 if (!arvif->beacon)
808 return;
809
810 if (!arvif->beacon_buf)
811 dma_unmap_single(ar->dev, ATH10K_SKB_CB(arvif->beacon)->paddr,
812 arvif->beacon->len, DMA_TO_DEVICE);
813
814 if (WARN_ON(arvif->beacon_state != ATH10K_BEACON_SCHEDULED &&
815 arvif->beacon_state != ATH10K_BEACON_SENT))
816 return;
817
818 dev_kfree_skb_any(arvif->beacon);
819
820 arvif->beacon = NULL;
821 arvif->beacon_state = ATH10K_BEACON_SCHEDULED;
822 }
823
824 static void ath10k_mac_vif_beacon_cleanup(struct ath10k_vif *arvif)
825 {
826 struct ath10k *ar = arvif->ar;
827
828 lockdep_assert_held(&ar->data_lock);
829
830 ath10k_mac_vif_beacon_free(arvif);
831
832 if (arvif->beacon_buf) {
833 dma_free_coherent(ar->dev, IEEE80211_MAX_FRAME_LEN,
834 arvif->beacon_buf, arvif->beacon_paddr);
835 arvif->beacon_buf = NULL;
836 }
837 }
838
839 static inline int ath10k_vdev_setup_sync(struct ath10k *ar)
840 {
841 unsigned long time_left;
842
843 lockdep_assert_held(&ar->conf_mutex);
844
845 if (test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags))
846 return -ESHUTDOWN;
847
848 time_left = wait_for_completion_timeout(&ar->vdev_setup_done,
849 ATH10K_VDEV_SETUP_TIMEOUT_HZ);
850 if (time_left == 0)
851 return -ETIMEDOUT;
852
853 return 0;
854 }
855
856 static int ath10k_monitor_vdev_start(struct ath10k *ar, int vdev_id)
857 {
858 struct cfg80211_chan_def *chandef = NULL;
859 struct ieee80211_channel *channel = NULL;
860 struct wmi_vdev_start_request_arg arg = {};
861 int ret = 0;
862
863 lockdep_assert_held(&ar->conf_mutex);
864
865 ieee80211_iter_chan_contexts_atomic(ar->hw,
866 ath10k_mac_get_any_chandef_iter,
867 &chandef);
868 if (WARN_ON_ONCE(!chandef))
869 return -ENOENT;
870
871 channel = chandef->chan;
872
873 arg.vdev_id = vdev_id;
874 arg.channel.freq = channel->center_freq;
875 arg.channel.band_center_freq1 = chandef->center_freq1;
876
877 /* TODO setup this dynamically, what in case we
878 don't have any vifs? */
879 arg.channel.mode = chan_to_phymode(chandef);
880 arg.channel.chan_radar =
881 !!(channel->flags & IEEE80211_CHAN_RADAR);
882
883 arg.channel.min_power = 0;
884 arg.channel.max_power = channel->max_power * 2;
885 arg.channel.max_reg_power = channel->max_reg_power * 2;
886 arg.channel.max_antenna_gain = channel->max_antenna_gain * 2;
887
888 reinit_completion(&ar->vdev_setup_done);
889
890 ret = ath10k_wmi_vdev_start(ar, &arg);
891 if (ret) {
892 ath10k_warn(ar, "failed to request monitor vdev %i start: %d\n",
893 vdev_id, ret);
894 return ret;
895 }
896
897 ret = ath10k_vdev_setup_sync(ar);
898 if (ret) {
899 ath10k_warn(ar, "failed to synchronize setup for monitor vdev %i start: %d\n",
900 vdev_id, ret);
901 return ret;
902 }
903
904 ret = ath10k_wmi_vdev_up(ar, vdev_id, 0, ar->mac_addr);
905 if (ret) {
906 ath10k_warn(ar, "failed to put up monitor vdev %i: %d\n",
907 vdev_id, ret);
908 goto vdev_stop;
909 }
910
911 ar->monitor_vdev_id = vdev_id;
912
913 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %i started\n",
914 ar->monitor_vdev_id);
915 return 0;
916
917 vdev_stop:
918 ret = ath10k_wmi_vdev_stop(ar, ar->monitor_vdev_id);
919 if (ret)
920 ath10k_warn(ar, "failed to stop monitor vdev %i after start failure: %d\n",
921 ar->monitor_vdev_id, ret);
922
923 return ret;
924 }
925
926 static int ath10k_monitor_vdev_stop(struct ath10k *ar)
927 {
928 int ret = 0;
929
930 lockdep_assert_held(&ar->conf_mutex);
931
932 ret = ath10k_wmi_vdev_down(ar, ar->monitor_vdev_id);
933 if (ret)
934 ath10k_warn(ar, "failed to put down monitor vdev %i: %d\n",
935 ar->monitor_vdev_id, ret);
936
937 reinit_completion(&ar->vdev_setup_done);
938
939 ret = ath10k_wmi_vdev_stop(ar, ar->monitor_vdev_id);
940 if (ret)
941 ath10k_warn(ar, "failed to to request monitor vdev %i stop: %d\n",
942 ar->monitor_vdev_id, ret);
943
944 ret = ath10k_vdev_setup_sync(ar);
945 if (ret)
946 ath10k_warn(ar, "failed to synchronize monitor vdev %i stop: %d\n",
947 ar->monitor_vdev_id, ret);
948
949 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %i stopped\n",
950 ar->monitor_vdev_id);
951 return ret;
952 }
953
954 static int ath10k_monitor_vdev_create(struct ath10k *ar)
955 {
956 int bit, ret = 0;
957
958 lockdep_assert_held(&ar->conf_mutex);
959
960 if (ar->free_vdev_map == 0) {
961 ath10k_warn(ar, "failed to find free vdev id for monitor vdev\n");
962 return -ENOMEM;
963 }
964
965 bit = __ffs64(ar->free_vdev_map);
966
967 ar->monitor_vdev_id = bit;
968
969 ret = ath10k_wmi_vdev_create(ar, ar->monitor_vdev_id,
970 WMI_VDEV_TYPE_MONITOR,
971 0, ar->mac_addr);
972 if (ret) {
973 ath10k_warn(ar, "failed to request monitor vdev %i creation: %d\n",
974 ar->monitor_vdev_id, ret);
975 return ret;
976 }
977
978 ar->free_vdev_map &= ~(1LL << ar->monitor_vdev_id);
979 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %d created\n",
980 ar->monitor_vdev_id);
981
982 return 0;
983 }
984
985 static int ath10k_monitor_vdev_delete(struct ath10k *ar)
986 {
987 int ret = 0;
988
989 lockdep_assert_held(&ar->conf_mutex);
990
991 ret = ath10k_wmi_vdev_delete(ar, ar->monitor_vdev_id);
992 if (ret) {
993 ath10k_warn(ar, "failed to request wmi monitor vdev %i removal: %d\n",
994 ar->monitor_vdev_id, ret);
995 return ret;
996 }
997
998 ar->free_vdev_map |= 1LL << ar->monitor_vdev_id;
999
1000 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %d deleted\n",
1001 ar->monitor_vdev_id);
1002 return ret;
1003 }
1004
1005 static int ath10k_monitor_start(struct ath10k *ar)
1006 {
1007 int ret;
1008
1009 lockdep_assert_held(&ar->conf_mutex);
1010
1011 ret = ath10k_monitor_vdev_create(ar);
1012 if (ret) {
1013 ath10k_warn(ar, "failed to create monitor vdev: %d\n", ret);
1014 return ret;
1015 }
1016
1017 ret = ath10k_monitor_vdev_start(ar, ar->monitor_vdev_id);
1018 if (ret) {
1019 ath10k_warn(ar, "failed to start monitor vdev: %d\n", ret);
1020 ath10k_monitor_vdev_delete(ar);
1021 return ret;
1022 }
1023
1024 ar->monitor_started = true;
1025 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor started\n");
1026
1027 return 0;
1028 }
1029
1030 static int ath10k_monitor_stop(struct ath10k *ar)
1031 {
1032 int ret;
1033
1034 lockdep_assert_held(&ar->conf_mutex);
1035
1036 ret = ath10k_monitor_vdev_stop(ar);
1037 if (ret) {
1038 ath10k_warn(ar, "failed to stop monitor vdev: %d\n", ret);
1039 return ret;
1040 }
1041
1042 ret = ath10k_monitor_vdev_delete(ar);
1043 if (ret) {
1044 ath10k_warn(ar, "failed to delete monitor vdev: %d\n", ret);
1045 return ret;
1046 }
1047
1048 ar->monitor_started = false;
1049 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor stopped\n");
1050
1051 return 0;
1052 }
1053
1054 static bool ath10k_mac_monitor_vdev_is_needed(struct ath10k *ar)
1055 {
1056 int num_ctx;
1057
1058 /* At least one chanctx is required to derive a channel to start
1059 * monitor vdev on.
1060 */
1061 num_ctx = ath10k_mac_num_chanctxs(ar);
1062 if (num_ctx == 0)
1063 return false;
1064
1065 /* If there's already an existing special monitor interface then don't
1066 * bother creating another monitor vdev.
1067 */
1068 if (ar->monitor_arvif)
1069 return false;
1070
1071 return ar->monitor ||
1072 ar->filter_flags & FIF_OTHER_BSS ||
1073 test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
1074 }
1075
1076 static bool ath10k_mac_monitor_vdev_is_allowed(struct ath10k *ar)
1077 {
1078 int num_ctx;
1079
1080 num_ctx = ath10k_mac_num_chanctxs(ar);
1081
1082 /* FIXME: Current interface combinations and cfg80211/mac80211 code
1083 * shouldn't allow this but make sure to prevent handling the following
1084 * case anyway since multi-channel DFS hasn't been tested at all.
1085 */
1086 if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags) && num_ctx > 1)
1087 return false;
1088
1089 return true;
1090 }
1091
1092 static int ath10k_monitor_recalc(struct ath10k *ar)
1093 {
1094 bool needed;
1095 bool allowed;
1096 int ret;
1097
1098 lockdep_assert_held(&ar->conf_mutex);
1099
1100 needed = ath10k_mac_monitor_vdev_is_needed(ar);
1101 allowed = ath10k_mac_monitor_vdev_is_allowed(ar);
1102
1103 ath10k_dbg(ar, ATH10K_DBG_MAC,
1104 "mac monitor recalc started? %d needed? %d allowed? %d\n",
1105 ar->monitor_started, needed, allowed);
1106
1107 if (WARN_ON(needed && !allowed)) {
1108 if (ar->monitor_started) {
1109 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor stopping disallowed monitor\n");
1110
1111 ret = ath10k_monitor_stop(ar);
1112 if (ret)
1113 ath10k_warn(ar, "failed to stop disallowed monitor: %d\n",
1114 ret);
1115 /* not serious */
1116 }
1117
1118 return -EPERM;
1119 }
1120
1121 if (needed == ar->monitor_started)
1122 return 0;
1123
1124 if (needed)
1125 return ath10k_monitor_start(ar);
1126 else
1127 return ath10k_monitor_stop(ar);
1128 }
1129
1130 static int ath10k_recalc_rtscts_prot(struct ath10k_vif *arvif)
1131 {
1132 struct ath10k *ar = arvif->ar;
1133 u32 vdev_param, rts_cts = 0;
1134
1135 lockdep_assert_held(&ar->conf_mutex);
1136
1137 vdev_param = ar->wmi.vdev_param->enable_rtscts;
1138
1139 rts_cts |= SM(WMI_RTSCTS_ENABLED, WMI_RTSCTS_SET);
1140
1141 if (arvif->num_legacy_stations > 0)
1142 rts_cts |= SM(WMI_RTSCTS_ACROSS_SW_RETRIES,
1143 WMI_RTSCTS_PROFILE);
1144 else
1145 rts_cts |= SM(WMI_RTSCTS_FOR_SECOND_RATESERIES,
1146 WMI_RTSCTS_PROFILE);
1147
1148 return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
1149 rts_cts);
1150 }
1151
1152 static int ath10k_start_cac(struct ath10k *ar)
1153 {
1154 int ret;
1155
1156 lockdep_assert_held(&ar->conf_mutex);
1157
1158 set_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
1159
1160 ret = ath10k_monitor_recalc(ar);
1161 if (ret) {
1162 ath10k_warn(ar, "failed to start monitor (cac): %d\n", ret);
1163 clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
1164 return ret;
1165 }
1166
1167 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac cac start monitor vdev %d\n",
1168 ar->monitor_vdev_id);
1169
1170 return 0;
1171 }
1172
1173 static int ath10k_stop_cac(struct ath10k *ar)
1174 {
1175 lockdep_assert_held(&ar->conf_mutex);
1176
1177 /* CAC is not running - do nothing */
1178 if (!test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags))
1179 return 0;
1180
1181 clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
1182 ath10k_monitor_stop(ar);
1183
1184 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac cac finished\n");
1185
1186 return 0;
1187 }
1188
1189 static void ath10k_mac_has_radar_iter(struct ieee80211_hw *hw,
1190 struct ieee80211_chanctx_conf *conf,
1191 void *data)
1192 {
1193 bool *ret = data;
1194
1195 if (!*ret && conf->radar_enabled)
1196 *ret = true;
1197 }
1198
1199 static bool ath10k_mac_has_radar_enabled(struct ath10k *ar)
1200 {
1201 bool has_radar = false;
1202
1203 ieee80211_iter_chan_contexts_atomic(ar->hw,
1204 ath10k_mac_has_radar_iter,
1205 &has_radar);
1206
1207 return has_radar;
1208 }
1209
1210 static void ath10k_recalc_radar_detection(struct ath10k *ar)
1211 {
1212 int ret;
1213
1214 lockdep_assert_held(&ar->conf_mutex);
1215
1216 ath10k_stop_cac(ar);
1217
1218 if (!ath10k_mac_has_radar_enabled(ar))
1219 return;
1220
1221 if (ar->num_started_vdevs > 0)
1222 return;
1223
1224 ret = ath10k_start_cac(ar);
1225 if (ret) {
1226 /*
1227 * Not possible to start CAC on current channel so starting
1228 * radiation is not allowed, make this channel DFS_UNAVAILABLE
1229 * by indicating that radar was detected.
1230 */
1231 ath10k_warn(ar, "failed to start CAC: %d\n", ret);
1232 ieee80211_radar_detected(ar->hw);
1233 }
1234 }
1235
1236 static int ath10k_vdev_stop(struct ath10k_vif *arvif)
1237 {
1238 struct ath10k *ar = arvif->ar;
1239 int ret;
1240
1241 lockdep_assert_held(&ar->conf_mutex);
1242
1243 reinit_completion(&ar->vdev_setup_done);
1244
1245 ret = ath10k_wmi_vdev_stop(ar, arvif->vdev_id);
1246 if (ret) {
1247 ath10k_warn(ar, "failed to stop WMI vdev %i: %d\n",
1248 arvif->vdev_id, ret);
1249 return ret;
1250 }
1251
1252 ret = ath10k_vdev_setup_sync(ar);
1253 if (ret) {
1254 ath10k_warn(ar, "failed to syncronise setup for vdev %i: %d\n",
1255 arvif->vdev_id, ret);
1256 return ret;
1257 }
1258
1259 WARN_ON(ar->num_started_vdevs == 0);
1260
1261 if (ar->num_started_vdevs != 0) {
1262 ar->num_started_vdevs--;
1263 ath10k_recalc_radar_detection(ar);
1264 }
1265
1266 return ret;
1267 }
1268
1269 static int ath10k_vdev_start_restart(struct ath10k_vif *arvif,
1270 const struct cfg80211_chan_def *chandef,
1271 bool restart)
1272 {
1273 struct ath10k *ar = arvif->ar;
1274 struct wmi_vdev_start_request_arg arg = {};
1275 int ret = 0;
1276
1277 lockdep_assert_held(&ar->conf_mutex);
1278
1279 reinit_completion(&ar->vdev_setup_done);
1280
1281 arg.vdev_id = arvif->vdev_id;
1282 arg.dtim_period = arvif->dtim_period;
1283 arg.bcn_intval = arvif->beacon_interval;
1284
1285 arg.channel.freq = chandef->chan->center_freq;
1286 arg.channel.band_center_freq1 = chandef->center_freq1;
1287 arg.channel.mode = chan_to_phymode(chandef);
1288
1289 arg.channel.min_power = 0;
1290 arg.channel.max_power = chandef->chan->max_power * 2;
1291 arg.channel.max_reg_power = chandef->chan->max_reg_power * 2;
1292 arg.channel.max_antenna_gain = chandef->chan->max_antenna_gain * 2;
1293
1294 if (arvif->vdev_type == WMI_VDEV_TYPE_AP) {
1295 arg.ssid = arvif->u.ap.ssid;
1296 arg.ssid_len = arvif->u.ap.ssid_len;
1297 arg.hidden_ssid = arvif->u.ap.hidden_ssid;
1298
1299 /* For now allow DFS for AP mode */
1300 arg.channel.chan_radar =
1301 !!(chandef->chan->flags & IEEE80211_CHAN_RADAR);
1302 } else if (arvif->vdev_type == WMI_VDEV_TYPE_IBSS) {
1303 arg.ssid = arvif->vif->bss_conf.ssid;
1304 arg.ssid_len = arvif->vif->bss_conf.ssid_len;
1305 }
1306
1307 ath10k_dbg(ar, ATH10K_DBG_MAC,
1308 "mac vdev %d start center_freq %d phymode %s\n",
1309 arg.vdev_id, arg.channel.freq,
1310 ath10k_wmi_phymode_str(arg.channel.mode));
1311
1312 if (restart)
1313 ret = ath10k_wmi_vdev_restart(ar, &arg);
1314 else
1315 ret = ath10k_wmi_vdev_start(ar, &arg);
1316
1317 if (ret) {
1318 ath10k_warn(ar, "failed to start WMI vdev %i: %d\n",
1319 arg.vdev_id, ret);
1320 return ret;
1321 }
1322
1323 ret = ath10k_vdev_setup_sync(ar);
1324 if (ret) {
1325 ath10k_warn(ar,
1326 "failed to synchronize setup for vdev %i restart %d: %d\n",
1327 arg.vdev_id, restart, ret);
1328 return ret;
1329 }
1330
1331 ar->num_started_vdevs++;
1332 ath10k_recalc_radar_detection(ar);
1333
1334 return ret;
1335 }
1336
1337 static int ath10k_vdev_start(struct ath10k_vif *arvif,
1338 const struct cfg80211_chan_def *def)
1339 {
1340 return ath10k_vdev_start_restart(arvif, def, false);
1341 }
1342
1343 static int ath10k_vdev_restart(struct ath10k_vif *arvif,
1344 const struct cfg80211_chan_def *def)
1345 {
1346 return ath10k_vdev_start_restart(arvif, def, true);
1347 }
1348
1349 static int ath10k_mac_setup_bcn_p2p_ie(struct ath10k_vif *arvif,
1350 struct sk_buff *bcn)
1351 {
1352 struct ath10k *ar = arvif->ar;
1353 struct ieee80211_mgmt *mgmt;
1354 const u8 *p2p_ie;
1355 int ret;
1356
1357 if (arvif->vdev_type != WMI_VDEV_TYPE_AP)
1358 return 0;
1359
1360 if (arvif->vdev_subtype != WMI_VDEV_SUBTYPE_P2P_GO)
1361 return 0;
1362
1363 mgmt = (void *)bcn->data;
1364 p2p_ie = cfg80211_find_vendor_ie(WLAN_OUI_WFA, WLAN_OUI_TYPE_WFA_P2P,
1365 mgmt->u.beacon.variable,
1366 bcn->len - (mgmt->u.beacon.variable -
1367 bcn->data));
1368 if (!p2p_ie)
1369 return -ENOENT;
1370
1371 ret = ath10k_wmi_p2p_go_bcn_ie(ar, arvif->vdev_id, p2p_ie);
1372 if (ret) {
1373 ath10k_warn(ar, "failed to submit p2p go bcn ie for vdev %i: %d\n",
1374 arvif->vdev_id, ret);
1375 return ret;
1376 }
1377
1378 return 0;
1379 }
1380
1381 static int ath10k_mac_remove_vendor_ie(struct sk_buff *skb, unsigned int oui,
1382 u8 oui_type, size_t ie_offset)
1383 {
1384 size_t len;
1385 const u8 *next;
1386 const u8 *end;
1387 u8 *ie;
1388
1389 if (WARN_ON(skb->len < ie_offset))
1390 return -EINVAL;
1391
1392 ie = (u8 *)cfg80211_find_vendor_ie(oui, oui_type,
1393 skb->data + ie_offset,
1394 skb->len - ie_offset);
1395 if (!ie)
1396 return -ENOENT;
1397
1398 len = ie[1] + 2;
1399 end = skb->data + skb->len;
1400 next = ie + len;
1401
1402 if (WARN_ON(next > end))
1403 return -EINVAL;
1404
1405 memmove(ie, next, end - next);
1406 skb_trim(skb, skb->len - len);
1407
1408 return 0;
1409 }
1410
1411 static int ath10k_mac_setup_bcn_tmpl(struct ath10k_vif *arvif)
1412 {
1413 struct ath10k *ar = arvif->ar;
1414 struct ieee80211_hw *hw = ar->hw;
1415 struct ieee80211_vif *vif = arvif->vif;
1416 struct ieee80211_mutable_offsets offs = {};
1417 struct sk_buff *bcn;
1418 int ret;
1419
1420 if (!test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map))
1421 return 0;
1422
1423 if (arvif->vdev_type != WMI_VDEV_TYPE_AP &&
1424 arvif->vdev_type != WMI_VDEV_TYPE_IBSS)
1425 return 0;
1426
1427 bcn = ieee80211_beacon_get_template(hw, vif, &offs);
1428 if (!bcn) {
1429 ath10k_warn(ar, "failed to get beacon template from mac80211\n");
1430 return -EPERM;
1431 }
1432
1433 ret = ath10k_mac_setup_bcn_p2p_ie(arvif, bcn);
1434 if (ret) {
1435 ath10k_warn(ar, "failed to setup p2p go bcn ie: %d\n", ret);
1436 kfree_skb(bcn);
1437 return ret;
1438 }
1439
1440 /* P2P IE is inserted by firmware automatically (as configured above)
1441 * so remove it from the base beacon template to avoid duplicate P2P
1442 * IEs in beacon frames.
1443 */
1444 ath10k_mac_remove_vendor_ie(bcn, WLAN_OUI_WFA, WLAN_OUI_TYPE_WFA_P2P,
1445 offsetof(struct ieee80211_mgmt,
1446 u.beacon.variable));
1447
1448 ret = ath10k_wmi_bcn_tmpl(ar, arvif->vdev_id, offs.tim_offset, bcn, 0,
1449 0, NULL, 0);
1450 kfree_skb(bcn);
1451
1452 if (ret) {
1453 ath10k_warn(ar, "failed to submit beacon template command: %d\n",
1454 ret);
1455 return ret;
1456 }
1457
1458 return 0;
1459 }
1460
1461 static int ath10k_mac_setup_prb_tmpl(struct ath10k_vif *arvif)
1462 {
1463 struct ath10k *ar = arvif->ar;
1464 struct ieee80211_hw *hw = ar->hw;
1465 struct ieee80211_vif *vif = arvif->vif;
1466 struct sk_buff *prb;
1467 int ret;
1468
1469 if (!test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map))
1470 return 0;
1471
1472 if (arvif->vdev_type != WMI_VDEV_TYPE_AP)
1473 return 0;
1474
1475 prb = ieee80211_proberesp_get(hw, vif);
1476 if (!prb) {
1477 ath10k_warn(ar, "failed to get probe resp template from mac80211\n");
1478 return -EPERM;
1479 }
1480
1481 ret = ath10k_wmi_prb_tmpl(ar, arvif->vdev_id, prb);
1482 kfree_skb(prb);
1483
1484 if (ret) {
1485 ath10k_warn(ar, "failed to submit probe resp template command: %d\n",
1486 ret);
1487 return ret;
1488 }
1489
1490 return 0;
1491 }
1492
1493 static int ath10k_mac_vif_fix_hidden_ssid(struct ath10k_vif *arvif)
1494 {
1495 struct ath10k *ar = arvif->ar;
1496 struct cfg80211_chan_def def;
1497 int ret;
1498
1499 /* When originally vdev is started during assign_vif_chanctx() some
1500 * information is missing, notably SSID. Firmware revisions with beacon
1501 * offloading require the SSID to be provided during vdev (re)start to
1502 * handle hidden SSID properly.
1503 *
1504 * Vdev restart must be done after vdev has been both started and
1505 * upped. Otherwise some firmware revisions (at least 10.2) fail to
1506 * deliver vdev restart response event causing timeouts during vdev
1507 * syncing in ath10k.
1508 *
1509 * Note: The vdev down/up and template reinstallation could be skipped
1510 * since only wmi-tlv firmware are known to have beacon offload and
1511 * wmi-tlv doesn't seem to misbehave like 10.2 wrt vdev restart
1512 * response delivery. It's probably more robust to keep it as is.
1513 */
1514 if (!test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map))
1515 return 0;
1516
1517 if (WARN_ON(!arvif->is_started))
1518 return -EINVAL;
1519
1520 if (WARN_ON(!arvif->is_up))
1521 return -EINVAL;
1522
1523 if (WARN_ON(ath10k_mac_vif_chan(arvif->vif, &def)))
1524 return -EINVAL;
1525
1526 ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id);
1527 if (ret) {
1528 ath10k_warn(ar, "failed to bring down ap vdev %i: %d\n",
1529 arvif->vdev_id, ret);
1530 return ret;
1531 }
1532
1533 /* Vdev down reset beacon & presp templates. Reinstall them. Otherwise
1534 * firmware will crash upon vdev up.
1535 */
1536
1537 ret = ath10k_mac_setup_bcn_tmpl(arvif);
1538 if (ret) {
1539 ath10k_warn(ar, "failed to update beacon template: %d\n", ret);
1540 return ret;
1541 }
1542
1543 ret = ath10k_mac_setup_prb_tmpl(arvif);
1544 if (ret) {
1545 ath10k_warn(ar, "failed to update presp template: %d\n", ret);
1546 return ret;
1547 }
1548
1549 ret = ath10k_vdev_restart(arvif, &def);
1550 if (ret) {
1551 ath10k_warn(ar, "failed to restart ap vdev %i: %d\n",
1552 arvif->vdev_id, ret);
1553 return ret;
1554 }
1555
1556 ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid,
1557 arvif->bssid);
1558 if (ret) {
1559 ath10k_warn(ar, "failed to bring up ap vdev %i: %d\n",
1560 arvif->vdev_id, ret);
1561 return ret;
1562 }
1563
1564 return 0;
1565 }
1566
1567 static void ath10k_control_beaconing(struct ath10k_vif *arvif,
1568 struct ieee80211_bss_conf *info)
1569 {
1570 struct ath10k *ar = arvif->ar;
1571 int ret = 0;
1572
1573 lockdep_assert_held(&arvif->ar->conf_mutex);
1574
1575 if (!info->enable_beacon) {
1576 ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id);
1577 if (ret)
1578 ath10k_warn(ar, "failed to down vdev_id %i: %d\n",
1579 arvif->vdev_id, ret);
1580
1581 arvif->is_up = false;
1582
1583 spin_lock_bh(&arvif->ar->data_lock);
1584 ath10k_mac_vif_beacon_free(arvif);
1585 spin_unlock_bh(&arvif->ar->data_lock);
1586
1587 return;
1588 }
1589
1590 arvif->tx_seq_no = 0x1000;
1591
1592 arvif->aid = 0;
1593 ether_addr_copy(arvif->bssid, info->bssid);
1594
1595 ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid,
1596 arvif->bssid);
1597 if (ret) {
1598 ath10k_warn(ar, "failed to bring up vdev %d: %i\n",
1599 arvif->vdev_id, ret);
1600 return;
1601 }
1602
1603 arvif->is_up = true;
1604
1605 ret = ath10k_mac_vif_fix_hidden_ssid(arvif);
1606 if (ret) {
1607 ath10k_warn(ar, "failed to fix hidden ssid for vdev %i, expect trouble: %d\n",
1608 arvif->vdev_id, ret);
1609 return;
1610 }
1611
1612 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d up\n", arvif->vdev_id);
1613 }
1614
1615 static void ath10k_control_ibss(struct ath10k_vif *arvif,
1616 struct ieee80211_bss_conf *info,
1617 const u8 self_peer[ETH_ALEN])
1618 {
1619 struct ath10k *ar = arvif->ar;
1620 u32 vdev_param;
1621 int ret = 0;
1622
1623 lockdep_assert_held(&arvif->ar->conf_mutex);
1624
1625 if (!info->ibss_joined) {
1626 if (is_zero_ether_addr(arvif->bssid))
1627 return;
1628
1629 eth_zero_addr(arvif->bssid);
1630
1631 return;
1632 }
1633
1634 vdev_param = arvif->ar->wmi.vdev_param->atim_window;
1635 ret = ath10k_wmi_vdev_set_param(arvif->ar, arvif->vdev_id, vdev_param,
1636 ATH10K_DEFAULT_ATIM);
1637 if (ret)
1638 ath10k_warn(ar, "failed to set IBSS ATIM for vdev %d: %d\n",
1639 arvif->vdev_id, ret);
1640 }
1641
1642 static int ath10k_mac_vif_recalc_ps_wake_threshold(struct ath10k_vif *arvif)
1643 {
1644 struct ath10k *ar = arvif->ar;
1645 u32 param;
1646 u32 value;
1647 int ret;
1648
1649 lockdep_assert_held(&arvif->ar->conf_mutex);
1650
1651 if (arvif->u.sta.uapsd)
1652 value = WMI_STA_PS_TX_WAKE_THRESHOLD_NEVER;
1653 else
1654 value = WMI_STA_PS_TX_WAKE_THRESHOLD_ALWAYS;
1655
1656 param = WMI_STA_PS_PARAM_TX_WAKE_THRESHOLD;
1657 ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param, value);
1658 if (ret) {
1659 ath10k_warn(ar, "failed to submit ps wake threshold %u on vdev %i: %d\n",
1660 value, arvif->vdev_id, ret);
1661 return ret;
1662 }
1663
1664 return 0;
1665 }
1666
1667 static int ath10k_mac_vif_recalc_ps_poll_count(struct ath10k_vif *arvif)
1668 {
1669 struct ath10k *ar = arvif->ar;
1670 u32 param;
1671 u32 value;
1672 int ret;
1673
1674 lockdep_assert_held(&arvif->ar->conf_mutex);
1675
1676 if (arvif->u.sta.uapsd)
1677 value = WMI_STA_PS_PSPOLL_COUNT_UAPSD;
1678 else
1679 value = WMI_STA_PS_PSPOLL_COUNT_NO_MAX;
1680
1681 param = WMI_STA_PS_PARAM_PSPOLL_COUNT;
1682 ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
1683 param, value);
1684 if (ret) {
1685 ath10k_warn(ar, "failed to submit ps poll count %u on vdev %i: %d\n",
1686 value, arvif->vdev_id, ret);
1687 return ret;
1688 }
1689
1690 return 0;
1691 }
1692
1693 static int ath10k_mac_num_vifs_started(struct ath10k *ar)
1694 {
1695 struct ath10k_vif *arvif;
1696 int num = 0;
1697
1698 lockdep_assert_held(&ar->conf_mutex);
1699
1700 list_for_each_entry(arvif, &ar->arvifs, list)
1701 if (arvif->is_started)
1702 num++;
1703
1704 return num;
1705 }
1706
1707 static int ath10k_mac_vif_setup_ps(struct ath10k_vif *arvif)
1708 {
1709 struct ath10k *ar = arvif->ar;
1710 struct ieee80211_vif *vif = arvif->vif;
1711 struct ieee80211_conf *conf = &ar->hw->conf;
1712 enum wmi_sta_powersave_param param;
1713 enum wmi_sta_ps_mode psmode;
1714 int ret;
1715 int ps_timeout;
1716 bool enable_ps;
1717
1718 lockdep_assert_held(&arvif->ar->conf_mutex);
1719
1720 if (arvif->vif->type != NL80211_IFTYPE_STATION)
1721 return 0;
1722
1723 enable_ps = arvif->ps;
1724
1725 if (enable_ps && ath10k_mac_num_vifs_started(ar) > 1 &&
1726 !test_bit(ATH10K_FW_FEATURE_MULTI_VIF_PS_SUPPORT,
1727 ar->fw_features)) {
1728 ath10k_warn(ar, "refusing to enable ps on vdev %i: not supported by fw\n",
1729 arvif->vdev_id);
1730 enable_ps = false;
1731 }
1732
1733 if (!arvif->is_started) {
1734 /* mac80211 can update vif powersave state while disconnected.
1735 * Firmware doesn't behave nicely and consumes more power than
1736 * necessary if PS is disabled on a non-started vdev. Hence
1737 * force-enable PS for non-running vdevs.
1738 */
1739 psmode = WMI_STA_PS_MODE_ENABLED;
1740 } else if (enable_ps) {
1741 psmode = WMI_STA_PS_MODE_ENABLED;
1742 param = WMI_STA_PS_PARAM_INACTIVITY_TIME;
1743
1744 ps_timeout = conf->dynamic_ps_timeout;
1745 if (ps_timeout == 0) {
1746 /* Firmware doesn't like 0 */
1747 ps_timeout = ieee80211_tu_to_usec(
1748 vif->bss_conf.beacon_int) / 1000;
1749 }
1750
1751 ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param,
1752 ps_timeout);
1753 if (ret) {
1754 ath10k_warn(ar, "failed to set inactivity time for vdev %d: %i\n",
1755 arvif->vdev_id, ret);
1756 return ret;
1757 }
1758 } else {
1759 psmode = WMI_STA_PS_MODE_DISABLED;
1760 }
1761
1762 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d psmode %s\n",
1763 arvif->vdev_id, psmode ? "enable" : "disable");
1764
1765 ret = ath10k_wmi_set_psmode(ar, arvif->vdev_id, psmode);
1766 if (ret) {
1767 ath10k_warn(ar, "failed to set PS Mode %d for vdev %d: %d\n",
1768 psmode, arvif->vdev_id, ret);
1769 return ret;
1770 }
1771
1772 return 0;
1773 }
1774
1775 static int ath10k_mac_vif_disable_keepalive(struct ath10k_vif *arvif)
1776 {
1777 struct ath10k *ar = arvif->ar;
1778 struct wmi_sta_keepalive_arg arg = {};
1779 int ret;
1780
1781 lockdep_assert_held(&arvif->ar->conf_mutex);
1782
1783 if (arvif->vdev_type != WMI_VDEV_TYPE_STA)
1784 return 0;
1785
1786 if (!test_bit(WMI_SERVICE_STA_KEEP_ALIVE, ar->wmi.svc_map))
1787 return 0;
1788
1789 /* Some firmware revisions have a bug and ignore the `enabled` field.
1790 * Instead use the interval to disable the keepalive.
1791 */
1792 arg.vdev_id = arvif->vdev_id;
1793 arg.enabled = 1;
1794 arg.method = WMI_STA_KEEPALIVE_METHOD_NULL_FRAME;
1795 arg.interval = WMI_STA_KEEPALIVE_INTERVAL_DISABLE;
1796
1797 ret = ath10k_wmi_sta_keepalive(ar, &arg);
1798 if (ret) {
1799 ath10k_warn(ar, "failed to submit keepalive on vdev %i: %d\n",
1800 arvif->vdev_id, ret);
1801 return ret;
1802 }
1803
1804 return 0;
1805 }
1806
1807 static void ath10k_mac_vif_ap_csa_count_down(struct ath10k_vif *arvif)
1808 {
1809 struct ath10k *ar = arvif->ar;
1810 struct ieee80211_vif *vif = arvif->vif;
1811 int ret;
1812
1813 lockdep_assert_held(&arvif->ar->conf_mutex);
1814
1815 if (WARN_ON(!test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map)))
1816 return;
1817
1818 if (arvif->vdev_type != WMI_VDEV_TYPE_AP)
1819 return;
1820
1821 if (!vif->csa_active)
1822 return;
1823
1824 if (!arvif->is_up)
1825 return;
1826
1827 if (!ieee80211_csa_is_complete(vif)) {
1828 ieee80211_csa_update_counter(vif);
1829
1830 ret = ath10k_mac_setup_bcn_tmpl(arvif);
1831 if (ret)
1832 ath10k_warn(ar, "failed to update bcn tmpl during csa: %d\n",
1833 ret);
1834
1835 ret = ath10k_mac_setup_prb_tmpl(arvif);
1836 if (ret)
1837 ath10k_warn(ar, "failed to update prb tmpl during csa: %d\n",
1838 ret);
1839 } else {
1840 ieee80211_csa_finish(vif);
1841 }
1842 }
1843
1844 static void ath10k_mac_vif_ap_csa_work(struct work_struct *work)
1845 {
1846 struct ath10k_vif *arvif = container_of(work, struct ath10k_vif,
1847 ap_csa_work);
1848 struct ath10k *ar = arvif->ar;
1849
1850 mutex_lock(&ar->conf_mutex);
1851 ath10k_mac_vif_ap_csa_count_down(arvif);
1852 mutex_unlock(&ar->conf_mutex);
1853 }
1854
1855 static void ath10k_mac_handle_beacon_iter(void *data, u8 *mac,
1856 struct ieee80211_vif *vif)
1857 {
1858 struct sk_buff *skb = data;
1859 struct ieee80211_mgmt *mgmt = (void *)skb->data;
1860 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
1861
1862 if (vif->type != NL80211_IFTYPE_STATION)
1863 return;
1864
1865 if (!ether_addr_equal(mgmt->bssid, vif->bss_conf.bssid))
1866 return;
1867
1868 cancel_delayed_work(&arvif->connection_loss_work);
1869 }
1870
1871 void ath10k_mac_handle_beacon(struct ath10k *ar, struct sk_buff *skb)
1872 {
1873 ieee80211_iterate_active_interfaces_atomic(ar->hw,
1874 IEEE80211_IFACE_ITER_NORMAL,
1875 ath10k_mac_handle_beacon_iter,
1876 skb);
1877 }
1878
1879 static void ath10k_mac_handle_beacon_miss_iter(void *data, u8 *mac,
1880 struct ieee80211_vif *vif)
1881 {
1882 u32 *vdev_id = data;
1883 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
1884 struct ath10k *ar = arvif->ar;
1885 struct ieee80211_hw *hw = ar->hw;
1886
1887 if (arvif->vdev_id != *vdev_id)
1888 return;
1889
1890 if (!arvif->is_up)
1891 return;
1892
1893 ieee80211_beacon_loss(vif);
1894
1895 /* Firmware doesn't report beacon loss events repeatedly. If AP probe
1896 * (done by mac80211) succeeds but beacons do not resume then it
1897 * doesn't make sense to continue operation. Queue connection loss work
1898 * which can be cancelled when beacon is received.
1899 */
1900 ieee80211_queue_delayed_work(hw, &arvif->connection_loss_work,
1901 ATH10K_CONNECTION_LOSS_HZ);
1902 }
1903
1904 void ath10k_mac_handle_beacon_miss(struct ath10k *ar, u32 vdev_id)
1905 {
1906 ieee80211_iterate_active_interfaces_atomic(ar->hw,
1907 IEEE80211_IFACE_ITER_NORMAL,
1908 ath10k_mac_handle_beacon_miss_iter,
1909 &vdev_id);
1910 }
1911
1912 static void ath10k_mac_vif_sta_connection_loss_work(struct work_struct *work)
1913 {
1914 struct ath10k_vif *arvif = container_of(work, struct ath10k_vif,
1915 connection_loss_work.work);
1916 struct ieee80211_vif *vif = arvif->vif;
1917
1918 if (!arvif->is_up)
1919 return;
1920
1921 ieee80211_connection_loss(vif);
1922 }
1923
1924 /**********************/
1925 /* Station management */
1926 /**********************/
1927
1928 static u32 ath10k_peer_assoc_h_listen_intval(struct ath10k *ar,
1929 struct ieee80211_vif *vif)
1930 {
1931 /* Some firmware revisions have unstable STA powersave when listen
1932 * interval is set too high (e.g. 5). The symptoms are firmware doesn't
1933 * generate NullFunc frames properly even if buffered frames have been
1934 * indicated in Beacon TIM. Firmware would seldom wake up to pull
1935 * buffered frames. Often pinging the device from AP would simply fail.
1936 *
1937 * As a workaround set it to 1.
1938 */
1939 if (vif->type == NL80211_IFTYPE_STATION)
1940 return 1;
1941
1942 return ar->hw->conf.listen_interval;
1943 }
1944
1945 static void ath10k_peer_assoc_h_basic(struct ath10k *ar,
1946 struct ieee80211_vif *vif,
1947 struct ieee80211_sta *sta,
1948 struct wmi_peer_assoc_complete_arg *arg)
1949 {
1950 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
1951 u32 aid;
1952
1953 lockdep_assert_held(&ar->conf_mutex);
1954
1955 if (vif->type == NL80211_IFTYPE_STATION)
1956 aid = vif->bss_conf.aid;
1957 else
1958 aid = sta->aid;
1959
1960 ether_addr_copy(arg->addr, sta->addr);
1961 arg->vdev_id = arvif->vdev_id;
1962 arg->peer_aid = aid;
1963 arg->peer_flags |= WMI_PEER_AUTH;
1964 arg->peer_listen_intval = ath10k_peer_assoc_h_listen_intval(ar, vif);
1965 arg->peer_num_spatial_streams = 1;
1966 arg->peer_caps = vif->bss_conf.assoc_capability;
1967 }
1968
1969 static void ath10k_peer_assoc_h_crypto(struct ath10k *ar,
1970 struct ieee80211_vif *vif,
1971 struct wmi_peer_assoc_complete_arg *arg)
1972 {
1973 struct ieee80211_bss_conf *info = &vif->bss_conf;
1974 struct cfg80211_chan_def def;
1975 struct cfg80211_bss *bss;
1976 const u8 *rsnie = NULL;
1977 const u8 *wpaie = NULL;
1978
1979 lockdep_assert_held(&ar->conf_mutex);
1980
1981 if (WARN_ON(ath10k_mac_vif_chan(vif, &def)))
1982 return;
1983
1984 bss = cfg80211_get_bss(ar->hw->wiphy, def.chan, info->bssid, NULL, 0,
1985 IEEE80211_BSS_TYPE_ANY, IEEE80211_PRIVACY_ANY);
1986 if (bss) {
1987 const struct cfg80211_bss_ies *ies;
1988
1989 rcu_read_lock();
1990 rsnie = ieee80211_bss_get_ie(bss, WLAN_EID_RSN);
1991
1992 ies = rcu_dereference(bss->ies);
1993
1994 wpaie = cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT,
1995 WLAN_OUI_TYPE_MICROSOFT_WPA,
1996 ies->data,
1997 ies->len);
1998 rcu_read_unlock();
1999 cfg80211_put_bss(ar->hw->wiphy, bss);
2000 }
2001
2002 /* FIXME: base on RSN IE/WPA IE is a correct idea? */
2003 if (rsnie || wpaie) {
2004 ath10k_dbg(ar, ATH10K_DBG_WMI, "%s: rsn ie found\n", __func__);
2005 arg->peer_flags |= WMI_PEER_NEED_PTK_4_WAY;
2006 }
2007
2008 if (wpaie) {
2009 ath10k_dbg(ar, ATH10K_DBG_WMI, "%s: wpa ie found\n", __func__);
2010 arg->peer_flags |= WMI_PEER_NEED_GTK_2_WAY;
2011 }
2012 }
2013
2014 static void ath10k_peer_assoc_h_rates(struct ath10k *ar,
2015 struct ieee80211_vif *vif,
2016 struct ieee80211_sta *sta,
2017 struct wmi_peer_assoc_complete_arg *arg)
2018 {
2019 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
2020 struct wmi_rate_set_arg *rateset = &arg->peer_legacy_rates;
2021 struct cfg80211_chan_def def;
2022 const struct ieee80211_supported_band *sband;
2023 const struct ieee80211_rate *rates;
2024 enum ieee80211_band band;
2025 u32 ratemask;
2026 u8 rate;
2027 int i;
2028
2029 lockdep_assert_held(&ar->conf_mutex);
2030
2031 if (WARN_ON(ath10k_mac_vif_chan(vif, &def)))
2032 return;
2033
2034 band = def.chan->band;
2035 sband = ar->hw->wiphy->bands[band];
2036 ratemask = sta->supp_rates[band];
2037 ratemask &= arvif->bitrate_mask.control[band].legacy;
2038 rates = sband->bitrates;
2039
2040 rateset->num_rates = 0;
2041
2042 for (i = 0; i < 32; i++, ratemask >>= 1, rates++) {
2043 if (!(ratemask & 1))
2044 continue;
2045
2046 rate = ath10k_mac_bitrate_to_rate(rates->bitrate);
2047 rateset->rates[rateset->num_rates] = rate;
2048 rateset->num_rates++;
2049 }
2050 }
2051
2052 static bool
2053 ath10k_peer_assoc_h_ht_masked(const u8 ht_mcs_mask[IEEE80211_HT_MCS_MASK_LEN])
2054 {
2055 int nss;
2056
2057 for (nss = 0; nss < IEEE80211_HT_MCS_MASK_LEN; nss++)
2058 if (ht_mcs_mask[nss])
2059 return false;
2060
2061 return true;
2062 }
2063
2064 static bool
2065 ath10k_peer_assoc_h_vht_masked(const u16 vht_mcs_mask[NL80211_VHT_NSS_MAX])
2066 {
2067 int nss;
2068
2069 for (nss = 0; nss < NL80211_VHT_NSS_MAX; nss++)
2070 if (vht_mcs_mask[nss])
2071 return false;
2072
2073 return true;
2074 }
2075
2076 static void ath10k_peer_assoc_h_ht(struct ath10k *ar,
2077 struct ieee80211_vif *vif,
2078 struct ieee80211_sta *sta,
2079 struct wmi_peer_assoc_complete_arg *arg)
2080 {
2081 const struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap;
2082 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
2083 struct cfg80211_chan_def def;
2084 enum ieee80211_band band;
2085 const u8 *ht_mcs_mask;
2086 const u16 *vht_mcs_mask;
2087 int i, n;
2088 u8 max_nss;
2089 u32 stbc;
2090
2091 lockdep_assert_held(&ar->conf_mutex);
2092
2093 if (WARN_ON(ath10k_mac_vif_chan(vif, &def)))
2094 return;
2095
2096 if (!ht_cap->ht_supported)
2097 return;
2098
2099 band = def.chan->band;
2100 ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs;
2101 vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs;
2102
2103 if (ath10k_peer_assoc_h_ht_masked(ht_mcs_mask) &&
2104 ath10k_peer_assoc_h_vht_masked(vht_mcs_mask))
2105 return;
2106
2107 arg->peer_flags |= WMI_PEER_HT;
2108 arg->peer_max_mpdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
2109 ht_cap->ampdu_factor)) - 1;
2110
2111 arg->peer_mpdu_density =
2112 ath10k_parse_mpdudensity(ht_cap->ampdu_density);
2113
2114 arg->peer_ht_caps = ht_cap->cap;
2115 arg->peer_rate_caps |= WMI_RC_HT_FLAG;
2116
2117 if (ht_cap->cap & IEEE80211_HT_CAP_LDPC_CODING)
2118 arg->peer_flags |= WMI_PEER_LDPC;
2119
2120 if (sta->bandwidth >= IEEE80211_STA_RX_BW_40) {
2121 arg->peer_flags |= WMI_PEER_40MHZ;
2122 arg->peer_rate_caps |= WMI_RC_CW40_FLAG;
2123 }
2124
2125 if (arvif->bitrate_mask.control[band].gi != NL80211_TXRATE_FORCE_LGI) {
2126 if (ht_cap->cap & IEEE80211_HT_CAP_SGI_20)
2127 arg->peer_rate_caps |= WMI_RC_SGI_FLAG;
2128
2129 if (ht_cap->cap & IEEE80211_HT_CAP_SGI_40)
2130 arg->peer_rate_caps |= WMI_RC_SGI_FLAG;
2131 }
2132
2133 if (ht_cap->cap & IEEE80211_HT_CAP_TX_STBC) {
2134 arg->peer_rate_caps |= WMI_RC_TX_STBC_FLAG;
2135 arg->peer_flags |= WMI_PEER_STBC;
2136 }
2137
2138 if (ht_cap->cap & IEEE80211_HT_CAP_RX_STBC) {
2139 stbc = ht_cap->cap & IEEE80211_HT_CAP_RX_STBC;
2140 stbc = stbc >> IEEE80211_HT_CAP_RX_STBC_SHIFT;
2141 stbc = stbc << WMI_RC_RX_STBC_FLAG_S;
2142 arg->peer_rate_caps |= stbc;
2143 arg->peer_flags |= WMI_PEER_STBC;
2144 }
2145
2146 if (ht_cap->mcs.rx_mask[1] && ht_cap->mcs.rx_mask[2])
2147 arg->peer_rate_caps |= WMI_RC_TS_FLAG;
2148 else if (ht_cap->mcs.rx_mask[1])
2149 arg->peer_rate_caps |= WMI_RC_DS_FLAG;
2150
2151 for (i = 0, n = 0, max_nss = 0; i < IEEE80211_HT_MCS_MASK_LEN * 8; i++)
2152 if ((ht_cap->mcs.rx_mask[i / 8] & BIT(i % 8)) &&
2153 (ht_mcs_mask[i / 8] & BIT(i % 8))) {
2154 max_nss = (i / 8) + 1;
2155 arg->peer_ht_rates.rates[n++] = i;
2156 }
2157
2158 /*
2159 * This is a workaround for HT-enabled STAs which break the spec
2160 * and have no HT capabilities RX mask (no HT RX MCS map).
2161 *
2162 * As per spec, in section 20.3.5 Modulation and coding scheme (MCS),
2163 * MCS 0 through 7 are mandatory in 20MHz with 800 ns GI at all STAs.
2164 *
2165 * Firmware asserts if such situation occurs.
2166 */
2167 if (n == 0) {
2168 arg->peer_ht_rates.num_rates = 8;
2169 for (i = 0; i < arg->peer_ht_rates.num_rates; i++)
2170 arg->peer_ht_rates.rates[i] = i;
2171 } else {
2172 arg->peer_ht_rates.num_rates = n;
2173 arg->peer_num_spatial_streams = min(sta->rx_nss, max_nss);
2174 }
2175
2176 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac ht peer %pM mcs cnt %d nss %d\n",
2177 arg->addr,
2178 arg->peer_ht_rates.num_rates,
2179 arg->peer_num_spatial_streams);
2180 }
2181
2182 static int ath10k_peer_assoc_qos_ap(struct ath10k *ar,
2183 struct ath10k_vif *arvif,
2184 struct ieee80211_sta *sta)
2185 {
2186 u32 uapsd = 0;
2187 u32 max_sp = 0;
2188 int ret = 0;
2189
2190 lockdep_assert_held(&ar->conf_mutex);
2191
2192 if (sta->wme && sta->uapsd_queues) {
2193 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac uapsd_queues 0x%x max_sp %d\n",
2194 sta->uapsd_queues, sta->max_sp);
2195
2196 if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO)
2197 uapsd |= WMI_AP_PS_UAPSD_AC3_DELIVERY_EN |
2198 WMI_AP_PS_UAPSD_AC3_TRIGGER_EN;
2199 if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VI)
2200 uapsd |= WMI_AP_PS_UAPSD_AC2_DELIVERY_EN |
2201 WMI_AP_PS_UAPSD_AC2_TRIGGER_EN;
2202 if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BK)
2203 uapsd |= WMI_AP_PS_UAPSD_AC1_DELIVERY_EN |
2204 WMI_AP_PS_UAPSD_AC1_TRIGGER_EN;
2205 if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BE)
2206 uapsd |= WMI_AP_PS_UAPSD_AC0_DELIVERY_EN |
2207 WMI_AP_PS_UAPSD_AC0_TRIGGER_EN;
2208
2209 if (sta->max_sp < MAX_WMI_AP_PS_PEER_PARAM_MAX_SP)
2210 max_sp = sta->max_sp;
2211
2212 ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id,
2213 sta->addr,
2214 WMI_AP_PS_PEER_PARAM_UAPSD,
2215 uapsd);
2216 if (ret) {
2217 ath10k_warn(ar, "failed to set ap ps peer param uapsd for vdev %i: %d\n",
2218 arvif->vdev_id, ret);
2219 return ret;
2220 }
2221
2222 ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id,
2223 sta->addr,
2224 WMI_AP_PS_PEER_PARAM_MAX_SP,
2225 max_sp);
2226 if (ret) {
2227 ath10k_warn(ar, "failed to set ap ps peer param max sp for vdev %i: %d\n",
2228 arvif->vdev_id, ret);
2229 return ret;
2230 }
2231
2232 /* TODO setup this based on STA listen interval and
2233 beacon interval. Currently we don't know
2234 sta->listen_interval - mac80211 patch required.
2235 Currently use 10 seconds */
2236 ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id, sta->addr,
2237 WMI_AP_PS_PEER_PARAM_AGEOUT_TIME,
2238 10);
2239 if (ret) {
2240 ath10k_warn(ar, "failed to set ap ps peer param ageout time for vdev %i: %d\n",
2241 arvif->vdev_id, ret);
2242 return ret;
2243 }
2244 }
2245
2246 return 0;
2247 }
2248
2249 static u16
2250 ath10k_peer_assoc_h_vht_limit(u16 tx_mcs_set,
2251 const u16 vht_mcs_limit[NL80211_VHT_NSS_MAX])
2252 {
2253 int idx_limit;
2254 int nss;
2255 u16 mcs_map;
2256 u16 mcs;
2257
2258 for (nss = 0; nss < NL80211_VHT_NSS_MAX; nss++) {
2259 mcs_map = ath10k_mac_get_max_vht_mcs_map(tx_mcs_set, nss) &
2260 vht_mcs_limit[nss];
2261
2262 if (mcs_map)
2263 idx_limit = fls(mcs_map) - 1;
2264 else
2265 idx_limit = -1;
2266
2267 switch (idx_limit) {
2268 case 0: /* fall through */
2269 case 1: /* fall through */
2270 case 2: /* fall through */
2271 case 3: /* fall through */
2272 case 4: /* fall through */
2273 case 5: /* fall through */
2274 case 6: /* fall through */
2275 default:
2276 /* see ath10k_mac_can_set_bitrate_mask() */
2277 WARN_ON(1);
2278 /* fall through */
2279 case -1:
2280 mcs = IEEE80211_VHT_MCS_NOT_SUPPORTED;
2281 break;
2282 case 7:
2283 mcs = IEEE80211_VHT_MCS_SUPPORT_0_7;
2284 break;
2285 case 8:
2286 mcs = IEEE80211_VHT_MCS_SUPPORT_0_8;
2287 break;
2288 case 9:
2289 mcs = IEEE80211_VHT_MCS_SUPPORT_0_9;
2290 break;
2291 }
2292
2293 tx_mcs_set &= ~(0x3 << (nss * 2));
2294 tx_mcs_set |= mcs << (nss * 2);
2295 }
2296
2297 return tx_mcs_set;
2298 }
2299
2300 static void ath10k_peer_assoc_h_vht(struct ath10k *ar,
2301 struct ieee80211_vif *vif,
2302 struct ieee80211_sta *sta,
2303 struct wmi_peer_assoc_complete_arg *arg)
2304 {
2305 const struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap;
2306 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
2307 struct cfg80211_chan_def def;
2308 enum ieee80211_band band;
2309 const u16 *vht_mcs_mask;
2310 u8 ampdu_factor;
2311
2312 if (WARN_ON(ath10k_mac_vif_chan(vif, &def)))
2313 return;
2314
2315 if (!vht_cap->vht_supported)
2316 return;
2317
2318 band = def.chan->band;
2319 vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs;
2320
2321 if (ath10k_peer_assoc_h_vht_masked(vht_mcs_mask))
2322 return;
2323
2324 arg->peer_flags |= WMI_PEER_VHT;
2325
2326 if (def.chan->band == IEEE80211_BAND_2GHZ)
2327 arg->peer_flags |= WMI_PEER_VHT_2G;
2328
2329 arg->peer_vht_caps = vht_cap->cap;
2330
2331 ampdu_factor = (vht_cap->cap &
2332 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK) >>
2333 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
2334
2335 /* Workaround: Some Netgear/Linksys 11ac APs set Rx A-MPDU factor to
2336 * zero in VHT IE. Using it would result in degraded throughput.
2337 * arg->peer_max_mpdu at this point contains HT max_mpdu so keep
2338 * it if VHT max_mpdu is smaller. */
2339 arg->peer_max_mpdu = max(arg->peer_max_mpdu,
2340 (1U << (IEEE80211_HT_MAX_AMPDU_FACTOR +
2341 ampdu_factor)) - 1);
2342
2343 if (sta->bandwidth == IEEE80211_STA_RX_BW_80)
2344 arg->peer_flags |= WMI_PEER_80MHZ;
2345
2346 arg->peer_vht_rates.rx_max_rate =
2347 __le16_to_cpu(vht_cap->vht_mcs.rx_highest);
2348 arg->peer_vht_rates.rx_mcs_set =
2349 __le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map);
2350 arg->peer_vht_rates.tx_max_rate =
2351 __le16_to_cpu(vht_cap->vht_mcs.tx_highest);
2352 arg->peer_vht_rates.tx_mcs_set = ath10k_peer_assoc_h_vht_limit(
2353 __le16_to_cpu(vht_cap->vht_mcs.tx_mcs_map), vht_mcs_mask);
2354
2355 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vht peer %pM max_mpdu %d flags 0x%x\n",
2356 sta->addr, arg->peer_max_mpdu, arg->peer_flags);
2357 }
2358
2359 static void ath10k_peer_assoc_h_qos(struct ath10k *ar,
2360 struct ieee80211_vif *vif,
2361 struct ieee80211_sta *sta,
2362 struct wmi_peer_assoc_complete_arg *arg)
2363 {
2364 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
2365
2366 switch (arvif->vdev_type) {
2367 case WMI_VDEV_TYPE_AP:
2368 if (sta->wme)
2369 arg->peer_flags |= WMI_PEER_QOS;
2370
2371 if (sta->wme && sta->uapsd_queues) {
2372 arg->peer_flags |= WMI_PEER_APSD;
2373 arg->peer_rate_caps |= WMI_RC_UAPSD_FLAG;
2374 }
2375 break;
2376 case WMI_VDEV_TYPE_STA:
2377 if (vif->bss_conf.qos)
2378 arg->peer_flags |= WMI_PEER_QOS;
2379 break;
2380 case WMI_VDEV_TYPE_IBSS:
2381 if (sta->wme)
2382 arg->peer_flags |= WMI_PEER_QOS;
2383 break;
2384 default:
2385 break;
2386 }
2387
2388 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac peer %pM qos %d\n",
2389 sta->addr, !!(arg->peer_flags & WMI_PEER_QOS));
2390 }
2391
2392 static bool ath10k_mac_sta_has_ofdm_only(struct ieee80211_sta *sta)
2393 {
2394 return sta->supp_rates[IEEE80211_BAND_2GHZ] >>
2395 ATH10K_MAC_FIRST_OFDM_RATE_IDX;
2396 }
2397
2398 static void ath10k_peer_assoc_h_phymode(struct ath10k *ar,
2399 struct ieee80211_vif *vif,
2400 struct ieee80211_sta *sta,
2401 struct wmi_peer_assoc_complete_arg *arg)
2402 {
2403 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
2404 struct cfg80211_chan_def def;
2405 enum ieee80211_band band;
2406 const u8 *ht_mcs_mask;
2407 const u16 *vht_mcs_mask;
2408 enum wmi_phy_mode phymode = MODE_UNKNOWN;
2409
2410 if (WARN_ON(ath10k_mac_vif_chan(vif, &def)))
2411 return;
2412
2413 band = def.chan->band;
2414 ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs;
2415 vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs;
2416
2417 switch (band) {
2418 case IEEE80211_BAND_2GHZ:
2419 if (sta->vht_cap.vht_supported &&
2420 !ath10k_peer_assoc_h_vht_masked(vht_mcs_mask)) {
2421 if (sta->bandwidth == IEEE80211_STA_RX_BW_40)
2422 phymode = MODE_11AC_VHT40;
2423 else
2424 phymode = MODE_11AC_VHT20;
2425 } else if (sta->ht_cap.ht_supported &&
2426 !ath10k_peer_assoc_h_ht_masked(ht_mcs_mask)) {
2427 if (sta->bandwidth == IEEE80211_STA_RX_BW_40)
2428 phymode = MODE_11NG_HT40;
2429 else
2430 phymode = MODE_11NG_HT20;
2431 } else if (ath10k_mac_sta_has_ofdm_only(sta)) {
2432 phymode = MODE_11G;
2433 } else {
2434 phymode = MODE_11B;
2435 }
2436
2437 break;
2438 case IEEE80211_BAND_5GHZ:
2439 /*
2440 * Check VHT first.
2441 */
2442 if (sta->vht_cap.vht_supported &&
2443 !ath10k_peer_assoc_h_vht_masked(vht_mcs_mask)) {
2444 if (sta->bandwidth == IEEE80211_STA_RX_BW_80)
2445 phymode = MODE_11AC_VHT80;
2446 else if (sta->bandwidth == IEEE80211_STA_RX_BW_40)
2447 phymode = MODE_11AC_VHT40;
2448 else if (sta->bandwidth == IEEE80211_STA_RX_BW_20)
2449 phymode = MODE_11AC_VHT20;
2450 } else if (sta->ht_cap.ht_supported &&
2451 !ath10k_peer_assoc_h_ht_masked(ht_mcs_mask)) {
2452 if (sta->bandwidth >= IEEE80211_STA_RX_BW_40)
2453 phymode = MODE_11NA_HT40;
2454 else
2455 phymode = MODE_11NA_HT20;
2456 } else {
2457 phymode = MODE_11A;
2458 }
2459
2460 break;
2461 default:
2462 break;
2463 }
2464
2465 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac peer %pM phymode %s\n",
2466 sta->addr, ath10k_wmi_phymode_str(phymode));
2467
2468 arg->peer_phymode = phymode;
2469 WARN_ON(phymode == MODE_UNKNOWN);
2470 }
2471
2472 static int ath10k_peer_assoc_prepare(struct ath10k *ar,
2473 struct ieee80211_vif *vif,
2474 struct ieee80211_sta *sta,
2475 struct wmi_peer_assoc_complete_arg *arg)
2476 {
2477 lockdep_assert_held(&ar->conf_mutex);
2478
2479 memset(arg, 0, sizeof(*arg));
2480
2481 ath10k_peer_assoc_h_basic(ar, vif, sta, arg);
2482 ath10k_peer_assoc_h_crypto(ar, vif, arg);
2483 ath10k_peer_assoc_h_rates(ar, vif, sta, arg);
2484 ath10k_peer_assoc_h_ht(ar, vif, sta, arg);
2485 ath10k_peer_assoc_h_vht(ar, vif, sta, arg);
2486 ath10k_peer_assoc_h_qos(ar, vif, sta, arg);
2487 ath10k_peer_assoc_h_phymode(ar, vif, sta, arg);
2488
2489 return 0;
2490 }
2491
2492 static const u32 ath10k_smps_map[] = {
2493 [WLAN_HT_CAP_SM_PS_STATIC] = WMI_PEER_SMPS_STATIC,
2494 [WLAN_HT_CAP_SM_PS_DYNAMIC] = WMI_PEER_SMPS_DYNAMIC,
2495 [WLAN_HT_CAP_SM_PS_INVALID] = WMI_PEER_SMPS_PS_NONE,
2496 [WLAN_HT_CAP_SM_PS_DISABLED] = WMI_PEER_SMPS_PS_NONE,
2497 };
2498
2499 static int ath10k_setup_peer_smps(struct ath10k *ar, struct ath10k_vif *arvif,
2500 const u8 *addr,
2501 const struct ieee80211_sta_ht_cap *ht_cap)
2502 {
2503 int smps;
2504
2505 if (!ht_cap->ht_supported)
2506 return 0;
2507
2508 smps = ht_cap->cap & IEEE80211_HT_CAP_SM_PS;
2509 smps >>= IEEE80211_HT_CAP_SM_PS_SHIFT;
2510
2511 if (smps >= ARRAY_SIZE(ath10k_smps_map))
2512 return -EINVAL;
2513
2514 return ath10k_wmi_peer_set_param(ar, arvif->vdev_id, addr,
2515 WMI_PEER_SMPS_STATE,
2516 ath10k_smps_map[smps]);
2517 }
2518
2519 static int ath10k_mac_vif_recalc_txbf(struct ath10k *ar,
2520 struct ieee80211_vif *vif,
2521 struct ieee80211_sta_vht_cap vht_cap)
2522 {
2523 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
2524 int ret;
2525 u32 param;
2526 u32 value;
2527
2528 if (ath10k_wmi_get_txbf_conf_scheme(ar) != WMI_TXBF_CONF_AFTER_ASSOC)
2529 return 0;
2530
2531 if (!(ar->vht_cap_info &
2532 (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
2533 IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
2534 IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
2535 IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE)))
2536 return 0;
2537
2538 param = ar->wmi.vdev_param->txbf;
2539 value = 0;
2540
2541 if (WARN_ON(param == WMI_VDEV_PARAM_UNSUPPORTED))
2542 return 0;
2543
2544 /* The following logic is correct. If a remote STA advertises support
2545 * for being a beamformer then we should enable us being a beamformee.
2546 */
2547
2548 if (ar->vht_cap_info &
2549 (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
2550 IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE)) {
2551 if (vht_cap.cap & IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE)
2552 value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFEE;
2553
2554 if (vht_cap.cap & IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE)
2555 value |= WMI_VDEV_PARAM_TXBF_MU_TX_BFEE;
2556 }
2557
2558 if (ar->vht_cap_info &
2559 (IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
2560 IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE)) {
2561 if (vht_cap.cap & IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE)
2562 value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFER;
2563
2564 if (vht_cap.cap & IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE)
2565 value |= WMI_VDEV_PARAM_TXBF_MU_TX_BFER;
2566 }
2567
2568 if (value & WMI_VDEV_PARAM_TXBF_MU_TX_BFEE)
2569 value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFEE;
2570
2571 if (value & WMI_VDEV_PARAM_TXBF_MU_TX_BFER)
2572 value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFER;
2573
2574 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param, value);
2575 if (ret) {
2576 ath10k_warn(ar, "failed to submit vdev param txbf 0x%x: %d\n",
2577 value, ret);
2578 return ret;
2579 }
2580
2581 return 0;
2582 }
2583
2584 /* can be called only in mac80211 callbacks due to `key_count` usage */
2585 static void ath10k_bss_assoc(struct ieee80211_hw *hw,
2586 struct ieee80211_vif *vif,
2587 struct ieee80211_bss_conf *bss_conf)
2588 {
2589 struct ath10k *ar = hw->priv;
2590 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
2591 struct ieee80211_sta_ht_cap ht_cap;
2592 struct ieee80211_sta_vht_cap vht_cap;
2593 struct wmi_peer_assoc_complete_arg peer_arg;
2594 struct ieee80211_sta *ap_sta;
2595 int ret;
2596
2597 lockdep_assert_held(&ar->conf_mutex);
2598
2599 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i assoc bssid %pM aid %d\n",
2600 arvif->vdev_id, arvif->bssid, arvif->aid);
2601
2602 rcu_read_lock();
2603
2604 ap_sta = ieee80211_find_sta(vif, bss_conf->bssid);
2605 if (!ap_sta) {
2606 ath10k_warn(ar, "failed to find station entry for bss %pM vdev %i\n",
2607 bss_conf->bssid, arvif->vdev_id);
2608 rcu_read_unlock();
2609 return;
2610 }
2611
2612 /* ap_sta must be accessed only within rcu section which must be left
2613 * before calling ath10k_setup_peer_smps() which might sleep. */
2614 ht_cap = ap_sta->ht_cap;
2615 vht_cap = ap_sta->vht_cap;
2616
2617 ret = ath10k_peer_assoc_prepare(ar, vif, ap_sta, &peer_arg);
2618 if (ret) {
2619 ath10k_warn(ar, "failed to prepare peer assoc for %pM vdev %i: %d\n",
2620 bss_conf->bssid, arvif->vdev_id, ret);
2621 rcu_read_unlock();
2622 return;
2623 }
2624
2625 rcu_read_unlock();
2626
2627 ret = ath10k_wmi_peer_assoc(ar, &peer_arg);
2628 if (ret) {
2629 ath10k_warn(ar, "failed to run peer assoc for %pM vdev %i: %d\n",
2630 bss_conf->bssid, arvif->vdev_id, ret);
2631 return;
2632 }
2633
2634 ret = ath10k_setup_peer_smps(ar, arvif, bss_conf->bssid, &ht_cap);
2635 if (ret) {
2636 ath10k_warn(ar, "failed to setup peer SMPS for vdev %i: %d\n",
2637 arvif->vdev_id, ret);
2638 return;
2639 }
2640
2641 ret = ath10k_mac_vif_recalc_txbf(ar, vif, vht_cap);
2642 if (ret) {
2643 ath10k_warn(ar, "failed to recalc txbf for vdev %i on bss %pM: %d\n",
2644 arvif->vdev_id, bss_conf->bssid, ret);
2645 return;
2646 }
2647
2648 ath10k_dbg(ar, ATH10K_DBG_MAC,
2649 "mac vdev %d up (associated) bssid %pM aid %d\n",
2650 arvif->vdev_id, bss_conf->bssid, bss_conf->aid);
2651
2652 WARN_ON(arvif->is_up);
2653
2654 arvif->aid = bss_conf->aid;
2655 ether_addr_copy(arvif->bssid, bss_conf->bssid);
2656
2657 ret = ath10k_wmi_vdev_up(ar, arvif->vdev_id, arvif->aid, arvif->bssid);
2658 if (ret) {
2659 ath10k_warn(ar, "failed to set vdev %d up: %d\n",
2660 arvif->vdev_id, ret);
2661 return;
2662 }
2663
2664 arvif->is_up = true;
2665
2666 /* Workaround: Some firmware revisions (tested with qca6174
2667 * WLAN.RM.2.0-00073) have buggy powersave state machine and must be
2668 * poked with peer param command.
2669 */
2670 ret = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, arvif->bssid,
2671 WMI_PEER_DUMMY_VAR, 1);
2672 if (ret) {
2673 ath10k_warn(ar, "failed to poke peer %pM param for ps workaround on vdev %i: %d\n",
2674 arvif->bssid, arvif->vdev_id, ret);
2675 return;
2676 }
2677 }
2678
2679 static void ath10k_bss_disassoc(struct ieee80211_hw *hw,
2680 struct ieee80211_vif *vif)
2681 {
2682 struct ath10k *ar = hw->priv;
2683 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
2684 struct ieee80211_sta_vht_cap vht_cap = {};
2685 int ret;
2686
2687 lockdep_assert_held(&ar->conf_mutex);
2688
2689 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i disassoc bssid %pM\n",
2690 arvif->vdev_id, arvif->bssid);
2691
2692 ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id);
2693 if (ret)
2694 ath10k_warn(ar, "faield to down vdev %i: %d\n",
2695 arvif->vdev_id, ret);
2696
2697 arvif->def_wep_key_idx = -1;
2698
2699 ret = ath10k_mac_vif_recalc_txbf(ar, vif, vht_cap);
2700 if (ret) {
2701 ath10k_warn(ar, "failed to recalc txbf for vdev %i: %d\n",
2702 arvif->vdev_id, ret);
2703 return;
2704 }
2705
2706 arvif->is_up = false;
2707
2708 cancel_delayed_work_sync(&arvif->connection_loss_work);
2709 }
2710
2711 static int ath10k_station_assoc(struct ath10k *ar,
2712 struct ieee80211_vif *vif,
2713 struct ieee80211_sta *sta,
2714 bool reassoc)
2715 {
2716 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
2717 struct wmi_peer_assoc_complete_arg peer_arg;
2718 int ret = 0;
2719
2720 lockdep_assert_held(&ar->conf_mutex);
2721
2722 ret = ath10k_peer_assoc_prepare(ar, vif, sta, &peer_arg);
2723 if (ret) {
2724 ath10k_warn(ar, "failed to prepare WMI peer assoc for %pM vdev %i: %i\n",
2725 sta->addr, arvif->vdev_id, ret);
2726 return ret;
2727 }
2728
2729 ret = ath10k_wmi_peer_assoc(ar, &peer_arg);
2730 if (ret) {
2731 ath10k_warn(ar, "failed to run peer assoc for STA %pM vdev %i: %d\n",
2732 sta->addr, arvif->vdev_id, ret);
2733 return ret;
2734 }
2735
2736 /* Re-assoc is run only to update supported rates for given station. It
2737 * doesn't make much sense to reconfigure the peer completely.
2738 */
2739 if (!reassoc) {
2740 ret = ath10k_setup_peer_smps(ar, arvif, sta->addr,
2741 &sta->ht_cap);
2742 if (ret) {
2743 ath10k_warn(ar, "failed to setup peer SMPS for vdev %d: %d\n",
2744 arvif->vdev_id, ret);
2745 return ret;
2746 }
2747
2748 ret = ath10k_peer_assoc_qos_ap(ar, arvif, sta);
2749 if (ret) {
2750 ath10k_warn(ar, "failed to set qos params for STA %pM for vdev %i: %d\n",
2751 sta->addr, arvif->vdev_id, ret);
2752 return ret;
2753 }
2754
2755 if (!sta->wme) {
2756 arvif->num_legacy_stations++;
2757 ret = ath10k_recalc_rtscts_prot(arvif);
2758 if (ret) {
2759 ath10k_warn(ar, "failed to recalculate rts/cts prot for vdev %d: %d\n",
2760 arvif->vdev_id, ret);
2761 return ret;
2762 }
2763 }
2764
2765 /* Plumb cached keys only for static WEP */
2766 if (arvif->def_wep_key_idx != -1) {
2767 ret = ath10k_install_peer_wep_keys(arvif, sta->addr);
2768 if (ret) {
2769 ath10k_warn(ar, "failed to install peer wep keys for vdev %i: %d\n",
2770 arvif->vdev_id, ret);
2771 return ret;
2772 }
2773 }
2774 }
2775
2776 return ret;
2777 }
2778
2779 static int ath10k_station_disassoc(struct ath10k *ar,
2780 struct ieee80211_vif *vif,
2781 struct ieee80211_sta *sta)
2782 {
2783 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
2784 int ret = 0;
2785
2786 lockdep_assert_held(&ar->conf_mutex);
2787
2788 if (!sta->wme) {
2789 arvif->num_legacy_stations--;
2790 ret = ath10k_recalc_rtscts_prot(arvif);
2791 if (ret) {
2792 ath10k_warn(ar, "failed to recalculate rts/cts prot for vdev %d: %d\n",
2793 arvif->vdev_id, ret);
2794 return ret;
2795 }
2796 }
2797
2798 ret = ath10k_clear_peer_keys(arvif, sta->addr);
2799 if (ret) {
2800 ath10k_warn(ar, "failed to clear all peer wep keys for vdev %i: %d\n",
2801 arvif->vdev_id, ret);
2802 return ret;
2803 }
2804
2805 return ret;
2806 }
2807
2808 /**************/
2809 /* Regulatory */
2810 /**************/
2811
2812 static int ath10k_update_channel_list(struct ath10k *ar)
2813 {
2814 struct ieee80211_hw *hw = ar->hw;
2815 struct ieee80211_supported_band **bands;
2816 enum ieee80211_band band;
2817 struct ieee80211_channel *channel;
2818 struct wmi_scan_chan_list_arg arg = {0};
2819 struct wmi_channel_arg *ch;
2820 bool passive;
2821 int len;
2822 int ret;
2823 int i;
2824
2825 lockdep_assert_held(&ar->conf_mutex);
2826
2827 bands = hw->wiphy->bands;
2828 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2829 if (!bands[band])
2830 continue;
2831
2832 for (i = 0; i < bands[band]->n_channels; i++) {
2833 if (bands[band]->channels[i].flags &
2834 IEEE80211_CHAN_DISABLED)
2835 continue;
2836
2837 arg.n_channels++;
2838 }
2839 }
2840
2841 len = sizeof(struct wmi_channel_arg) * arg.n_channels;
2842 arg.channels = kzalloc(len, GFP_KERNEL);
2843 if (!arg.channels)
2844 return -ENOMEM;
2845
2846 ch = arg.channels;
2847 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2848 if (!bands[band])
2849 continue;
2850
2851 for (i = 0; i < bands[band]->n_channels; i++) {
2852 channel = &bands[band]->channels[i];
2853
2854 if (channel->flags & IEEE80211_CHAN_DISABLED)
2855 continue;
2856
2857 ch->allow_ht = true;
2858
2859 /* FIXME: when should we really allow VHT? */
2860 ch->allow_vht = true;
2861
2862 ch->allow_ibss =
2863 !(channel->flags & IEEE80211_CHAN_NO_IR);
2864
2865 ch->ht40plus =
2866 !(channel->flags & IEEE80211_CHAN_NO_HT40PLUS);
2867
2868 ch->chan_radar =
2869 !!(channel->flags & IEEE80211_CHAN_RADAR);
2870
2871 passive = channel->flags & IEEE80211_CHAN_NO_IR;
2872 ch->passive = passive;
2873
2874 ch->freq = channel->center_freq;
2875 ch->band_center_freq1 = channel->center_freq;
2876 ch->min_power = 0;
2877 ch->max_power = channel->max_power * 2;
2878 ch->max_reg_power = channel->max_reg_power * 2;
2879 ch->max_antenna_gain = channel->max_antenna_gain * 2;
2880 ch->reg_class_id = 0; /* FIXME */
2881
2882 /* FIXME: why use only legacy modes, why not any
2883 * HT/VHT modes? Would that even make any
2884 * difference? */
2885 if (channel->band == IEEE80211_BAND_2GHZ)
2886 ch->mode = MODE_11G;
2887 else
2888 ch->mode = MODE_11A;
2889
2890 if (WARN_ON_ONCE(ch->mode == MODE_UNKNOWN))
2891 continue;
2892
2893 ath10k_dbg(ar, ATH10K_DBG_WMI,
2894 "mac channel [%zd/%d] freq %d maxpower %d regpower %d antenna %d mode %d\n",
2895 ch - arg.channels, arg.n_channels,
2896 ch->freq, ch->max_power, ch->max_reg_power,
2897 ch->max_antenna_gain, ch->mode);
2898
2899 ch++;
2900 }
2901 }
2902
2903 ret = ath10k_wmi_scan_chan_list(ar, &arg);
2904 kfree(arg.channels);
2905
2906 return ret;
2907 }
2908
2909 static enum wmi_dfs_region
2910 ath10k_mac_get_dfs_region(enum nl80211_dfs_regions dfs_region)
2911 {
2912 switch (dfs_region) {
2913 case NL80211_DFS_UNSET:
2914 return WMI_UNINIT_DFS_DOMAIN;
2915 case NL80211_DFS_FCC:
2916 return WMI_FCC_DFS_DOMAIN;
2917 case NL80211_DFS_ETSI:
2918 return WMI_ETSI_DFS_DOMAIN;
2919 case NL80211_DFS_JP:
2920 return WMI_MKK4_DFS_DOMAIN;
2921 }
2922 return WMI_UNINIT_DFS_DOMAIN;
2923 }
2924
2925 static void ath10k_regd_update(struct ath10k *ar)
2926 {
2927 struct reg_dmn_pair_mapping *regpair;
2928 int ret;
2929 enum wmi_dfs_region wmi_dfs_reg;
2930 enum nl80211_dfs_regions nl_dfs_reg;
2931
2932 lockdep_assert_held(&ar->conf_mutex);
2933
2934 ret = ath10k_update_channel_list(ar);
2935 if (ret)
2936 ath10k_warn(ar, "failed to update channel list: %d\n", ret);
2937
2938 regpair = ar->ath_common.regulatory.regpair;
2939
2940 if (config_enabled(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) {
2941 nl_dfs_reg = ar->dfs_detector->region;
2942 wmi_dfs_reg = ath10k_mac_get_dfs_region(nl_dfs_reg);
2943 } else {
2944 wmi_dfs_reg = WMI_UNINIT_DFS_DOMAIN;
2945 }
2946
2947 /* Target allows setting up per-band regdomain but ath_common provides
2948 * a combined one only */
2949 ret = ath10k_wmi_pdev_set_regdomain(ar,
2950 regpair->reg_domain,
2951 regpair->reg_domain, /* 2ghz */
2952 regpair->reg_domain, /* 5ghz */
2953 regpair->reg_2ghz_ctl,
2954 regpair->reg_5ghz_ctl,
2955 wmi_dfs_reg);
2956 if (ret)
2957 ath10k_warn(ar, "failed to set pdev regdomain: %d\n", ret);
2958 }
2959
2960 static void ath10k_reg_notifier(struct wiphy *wiphy,
2961 struct regulatory_request *request)
2962 {
2963 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
2964 struct ath10k *ar = hw->priv;
2965 bool result;
2966
2967 ath_reg_notifier_apply(wiphy, request, &ar->ath_common.regulatory);
2968
2969 if (config_enabled(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) {
2970 ath10k_dbg(ar, ATH10K_DBG_REGULATORY, "dfs region 0x%x\n",
2971 request->dfs_region);
2972 result = ar->dfs_detector->set_dfs_domain(ar->dfs_detector,
2973 request->dfs_region);
2974 if (!result)
2975 ath10k_warn(ar, "DFS region 0x%X not supported, will trigger radar for every pulse\n",
2976 request->dfs_region);
2977 }
2978
2979 mutex_lock(&ar->conf_mutex);
2980 if (ar->state == ATH10K_STATE_ON)
2981 ath10k_regd_update(ar);
2982 mutex_unlock(&ar->conf_mutex);
2983 }
2984
2985 /***************/
2986 /* TX handlers */
2987 /***************/
2988
2989 void ath10k_mac_tx_lock(struct ath10k *ar, int reason)
2990 {
2991 lockdep_assert_held(&ar->htt.tx_lock);
2992
2993 WARN_ON(reason >= ATH10K_TX_PAUSE_MAX);
2994 ar->tx_paused |= BIT(reason);
2995 ieee80211_stop_queues(ar->hw);
2996 }
2997
2998 static void ath10k_mac_tx_unlock_iter(void *data, u8 *mac,
2999 struct ieee80211_vif *vif)
3000 {
3001 struct ath10k *ar = data;
3002 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
3003
3004 if (arvif->tx_paused)
3005 return;
3006
3007 ieee80211_wake_queue(ar->hw, arvif->vdev_id);
3008 }
3009
3010 void ath10k_mac_tx_unlock(struct ath10k *ar, int reason)
3011 {
3012 lockdep_assert_held(&ar->htt.tx_lock);
3013
3014 WARN_ON(reason >= ATH10K_TX_PAUSE_MAX);
3015 ar->tx_paused &= ~BIT(reason);
3016
3017 if (ar->tx_paused)
3018 return;
3019
3020 ieee80211_iterate_active_interfaces_atomic(ar->hw,
3021 IEEE80211_IFACE_ITER_RESUME_ALL,
3022 ath10k_mac_tx_unlock_iter,
3023 ar);
3024
3025 ieee80211_wake_queue(ar->hw, ar->hw->offchannel_tx_hw_queue);
3026 }
3027
3028 void ath10k_mac_vif_tx_lock(struct ath10k_vif *arvif, int reason)
3029 {
3030 struct ath10k *ar = arvif->ar;
3031
3032 lockdep_assert_held(&ar->htt.tx_lock);
3033
3034 WARN_ON(reason >= BITS_PER_LONG);
3035 arvif->tx_paused |= BIT(reason);
3036 ieee80211_stop_queue(ar->hw, arvif->vdev_id);
3037 }
3038
3039 void ath10k_mac_vif_tx_unlock(struct ath10k_vif *arvif, int reason)
3040 {
3041 struct ath10k *ar = arvif->ar;
3042
3043 lockdep_assert_held(&ar->htt.tx_lock);
3044
3045 WARN_ON(reason >= BITS_PER_LONG);
3046 arvif->tx_paused &= ~BIT(reason);
3047
3048 if (ar->tx_paused)
3049 return;
3050
3051 if (arvif->tx_paused)
3052 return;
3053
3054 ieee80211_wake_queue(ar->hw, arvif->vdev_id);
3055 }
3056
3057 static void ath10k_mac_vif_handle_tx_pause(struct ath10k_vif *arvif,
3058 enum wmi_tlv_tx_pause_id pause_id,
3059 enum wmi_tlv_tx_pause_action action)
3060 {
3061 struct ath10k *ar = arvif->ar;
3062
3063 lockdep_assert_held(&ar->htt.tx_lock);
3064
3065 switch (action) {
3066 case WMI_TLV_TX_PAUSE_ACTION_STOP:
3067 ath10k_mac_vif_tx_lock(arvif, pause_id);
3068 break;
3069 case WMI_TLV_TX_PAUSE_ACTION_WAKE:
3070 ath10k_mac_vif_tx_unlock(arvif, pause_id);
3071 break;
3072 default:
3073 ath10k_warn(ar, "received unknown tx pause action %d on vdev %i, ignoring\n",
3074 action, arvif->vdev_id);
3075 break;
3076 }
3077 }
3078
3079 struct ath10k_mac_tx_pause {
3080 u32 vdev_id;
3081 enum wmi_tlv_tx_pause_id pause_id;
3082 enum wmi_tlv_tx_pause_action action;
3083 };
3084
3085 static void ath10k_mac_handle_tx_pause_iter(void *data, u8 *mac,
3086 struct ieee80211_vif *vif)
3087 {
3088 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
3089 struct ath10k_mac_tx_pause *arg = data;
3090
3091 if (arvif->vdev_id != arg->vdev_id)
3092 return;
3093
3094 ath10k_mac_vif_handle_tx_pause(arvif, arg->pause_id, arg->action);
3095 }
3096
3097 void ath10k_mac_handle_tx_pause_vdev(struct ath10k *ar, u32 vdev_id,
3098 enum wmi_tlv_tx_pause_id pause_id,
3099 enum wmi_tlv_tx_pause_action action)
3100 {
3101 struct ath10k_mac_tx_pause arg = {
3102 .vdev_id = vdev_id,
3103 .pause_id = pause_id,
3104 .action = action,
3105 };
3106
3107 spin_lock_bh(&ar->htt.tx_lock);
3108 ieee80211_iterate_active_interfaces_atomic(ar->hw,
3109 IEEE80211_IFACE_ITER_RESUME_ALL,
3110 ath10k_mac_handle_tx_pause_iter,
3111 &arg);
3112 spin_unlock_bh(&ar->htt.tx_lock);
3113 }
3114
3115 static u8 ath10k_tx_h_get_tid(struct ieee80211_hdr *hdr)
3116 {
3117 if (ieee80211_is_mgmt(hdr->frame_control))
3118 return HTT_DATA_TX_EXT_TID_MGMT;
3119
3120 if (!ieee80211_is_data_qos(hdr->frame_control))
3121 return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST;
3122
3123 if (!is_unicast_ether_addr(ieee80211_get_DA(hdr)))
3124 return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST;
3125
3126 return ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
3127 }
3128
3129 static u8 ath10k_tx_h_get_vdev_id(struct ath10k *ar, struct ieee80211_vif *vif)
3130 {
3131 if (vif)
3132 return ath10k_vif_to_arvif(vif)->vdev_id;
3133
3134 if (ar->monitor_started)
3135 return ar->monitor_vdev_id;
3136
3137 ath10k_warn(ar, "failed to resolve vdev id\n");
3138 return 0;
3139 }
3140
3141 static enum ath10k_hw_txrx_mode
3142 ath10k_tx_h_get_txmode(struct ath10k *ar, struct ieee80211_vif *vif,
3143 struct ieee80211_sta *sta, struct sk_buff *skb)
3144 {
3145 const struct ieee80211_hdr *hdr = (void *)skb->data;
3146 __le16 fc = hdr->frame_control;
3147
3148 if (!vif || vif->type == NL80211_IFTYPE_MONITOR)
3149 return ATH10K_HW_TXRX_RAW;
3150
3151 if (ieee80211_is_mgmt(fc))
3152 return ATH10K_HW_TXRX_MGMT;
3153
3154 /* Workaround:
3155 *
3156 * NullFunc frames are mostly used to ping if a client or AP are still
3157 * reachable and responsive. This implies tx status reports must be
3158 * accurate - otherwise either mac80211 or userspace (e.g. hostapd) can
3159 * come to a conclusion that the other end disappeared and tear down
3160 * BSS connection or it can never disconnect from BSS/client (which is
3161 * the case).
3162 *
3163 * Firmware with HTT older than 3.0 delivers incorrect tx status for
3164 * NullFunc frames to driver. However there's a HTT Mgmt Tx command
3165 * which seems to deliver correct tx reports for NullFunc frames. The
3166 * downside of using it is it ignores client powersave state so it can
3167 * end up disconnecting sleeping clients in AP mode. It should fix STA
3168 * mode though because AP don't sleep.
3169 */
3170 if (ar->htt.target_version_major < 3 &&
3171 (ieee80211_is_nullfunc(fc) || ieee80211_is_qos_nullfunc(fc)) &&
3172 !test_bit(ATH10K_FW_FEATURE_HAS_WMI_MGMT_TX, ar->fw_features))
3173 return ATH10K_HW_TXRX_MGMT;
3174
3175 /* Workaround:
3176 *
3177 * Some wmi-tlv firmwares for qca6174 have broken Tx key selection for
3178 * NativeWifi txmode - it selects AP key instead of peer key. It seems
3179 * to work with Ethernet txmode so use it.
3180 *
3181 * FIXME: Check if raw mode works with TDLS.
3182 */
3183 if (ieee80211_is_data_present(fc) && sta && sta->tdls)
3184 return ATH10K_HW_TXRX_ETHERNET;
3185
3186 if (test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags))
3187 return ATH10K_HW_TXRX_RAW;
3188
3189 return ATH10K_HW_TXRX_NATIVE_WIFI;
3190 }
3191
3192 static bool ath10k_tx_h_use_hwcrypto(struct ieee80211_vif *vif,
3193 struct sk_buff *skb) {
3194 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
3195 const u32 mask = IEEE80211_TX_INTFL_DONT_ENCRYPT |
3196 IEEE80211_TX_CTL_INJECTED;
3197 if ((info->flags & mask) == mask)
3198 return false;
3199 if (vif)
3200 return !ath10k_vif_to_arvif(vif)->nohwcrypt;
3201 return true;
3202 }
3203
3204 /* HTT Tx uses Native Wifi tx mode which expects 802.11 frames without QoS
3205 * Control in the header.
3206 */
3207 static void ath10k_tx_h_nwifi(struct ieee80211_hw *hw, struct sk_buff *skb)
3208 {
3209 struct ieee80211_hdr *hdr = (void *)skb->data;
3210 struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
3211 u8 *qos_ctl;
3212
3213 if (!ieee80211_is_data_qos(hdr->frame_control))
3214 return;
3215
3216 qos_ctl = ieee80211_get_qos_ctl(hdr);
3217 memmove(skb->data + IEEE80211_QOS_CTL_LEN,
3218 skb->data, (void *)qos_ctl - (void *)skb->data);
3219 skb_pull(skb, IEEE80211_QOS_CTL_LEN);
3220
3221 /* Some firmware revisions don't handle sending QoS NullFunc well.
3222 * These frames are mainly used for CQM purposes so it doesn't really
3223 * matter whether QoS NullFunc or NullFunc are sent.
3224 */
3225 hdr = (void *)skb->data;
3226 if (ieee80211_is_qos_nullfunc(hdr->frame_control))
3227 cb->htt.tid = HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST;
3228
3229 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
3230 }
3231
3232 static void ath10k_tx_h_8023(struct sk_buff *skb)
3233 {
3234 struct ieee80211_hdr *hdr;
3235 struct rfc1042_hdr *rfc1042;
3236 struct ethhdr *eth;
3237 size_t hdrlen;
3238 u8 da[ETH_ALEN];
3239 u8 sa[ETH_ALEN];
3240 __be16 type;
3241
3242 hdr = (void *)skb->data;
3243 hdrlen = ieee80211_hdrlen(hdr->frame_control);
3244 rfc1042 = (void *)skb->data + hdrlen;
3245
3246 ether_addr_copy(da, ieee80211_get_DA(hdr));
3247 ether_addr_copy(sa, ieee80211_get_SA(hdr));
3248 type = rfc1042->snap_type;
3249
3250 skb_pull(skb, hdrlen + sizeof(*rfc1042));
3251 skb_push(skb, sizeof(*eth));
3252
3253 eth = (void *)skb->data;
3254 ether_addr_copy(eth->h_dest, da);
3255 ether_addr_copy(eth->h_source, sa);
3256 eth->h_proto = type;
3257 }
3258
3259 static void ath10k_tx_h_add_p2p_noa_ie(struct ath10k *ar,
3260 struct ieee80211_vif *vif,
3261 struct sk_buff *skb)
3262 {
3263 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
3264 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
3265
3266 /* This is case only for P2P_GO */
3267 if (arvif->vdev_type != WMI_VDEV_TYPE_AP ||
3268 arvif->vdev_subtype != WMI_VDEV_SUBTYPE_P2P_GO)
3269 return;
3270
3271 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control))) {
3272 spin_lock_bh(&ar->data_lock);
3273 if (arvif->u.ap.noa_data)
3274 if (!pskb_expand_head(skb, 0, arvif->u.ap.noa_len,
3275 GFP_ATOMIC))
3276 memcpy(skb_put(skb, arvif->u.ap.noa_len),
3277 arvif->u.ap.noa_data,
3278 arvif->u.ap.noa_len);
3279 spin_unlock_bh(&ar->data_lock);
3280 }
3281 }
3282
3283 static bool ath10k_mac_need_offchan_tx_work(struct ath10k *ar)
3284 {
3285 /* FIXME: Not really sure since when the behaviour changed. At some
3286 * point new firmware stopped requiring creation of peer entries for
3287 * offchannel tx (and actually creating them causes issues with wmi-htc
3288 * tx credit replenishment and reliability). Assuming it's at least 3.4
3289 * because that's when the `freq` was introduced to TX_FRM HTT command.
3290 */
3291 return !(ar->htt.target_version_major >= 3 &&
3292 ar->htt.target_version_minor >= 4);
3293 }
3294
3295 static int ath10k_mac_tx_wmi_mgmt(struct ath10k *ar, struct sk_buff *skb)
3296 {
3297 struct sk_buff_head *q = &ar->wmi_mgmt_tx_queue;
3298 int ret = 0;
3299
3300 spin_lock_bh(&ar->data_lock);
3301
3302 if (skb_queue_len(q) == ATH10K_MAX_NUM_MGMT_PENDING) {
3303 ath10k_warn(ar, "wmi mgmt tx queue is full\n");
3304 ret = -ENOSPC;
3305 goto unlock;
3306 }
3307
3308 __skb_queue_tail(q, skb);
3309 ieee80211_queue_work(ar->hw, &ar->wmi_mgmt_tx_work);
3310
3311 unlock:
3312 spin_unlock_bh(&ar->data_lock);
3313
3314 return ret;
3315 }
3316
3317 static void ath10k_mac_tx(struct ath10k *ar, struct sk_buff *skb)
3318 {
3319 struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
3320 struct ath10k_htt *htt = &ar->htt;
3321 int ret = 0;
3322
3323 switch (cb->txmode) {
3324 case ATH10K_HW_TXRX_RAW:
3325 case ATH10K_HW_TXRX_NATIVE_WIFI:
3326 case ATH10K_HW_TXRX_ETHERNET:
3327 ret = ath10k_htt_tx(htt, skb);
3328 break;
3329 case ATH10K_HW_TXRX_MGMT:
3330 if (test_bit(ATH10K_FW_FEATURE_HAS_WMI_MGMT_TX,
3331 ar->fw_features))
3332 ret = ath10k_mac_tx_wmi_mgmt(ar, skb);
3333 else if (ar->htt.target_version_major >= 3)
3334 ret = ath10k_htt_tx(htt, skb);
3335 else
3336 ret = ath10k_htt_mgmt_tx(htt, skb);
3337 break;
3338 }
3339
3340 if (ret) {
3341 ath10k_warn(ar, "failed to transmit packet, dropping: %d\n",
3342 ret);
3343 ieee80211_free_txskb(ar->hw, skb);
3344 }
3345 }
3346
3347 void ath10k_offchan_tx_purge(struct ath10k *ar)
3348 {
3349 struct sk_buff *skb;
3350
3351 for (;;) {
3352 skb = skb_dequeue(&ar->offchan_tx_queue);
3353 if (!skb)
3354 break;
3355
3356 ieee80211_free_txskb(ar->hw, skb);
3357 }
3358 }
3359
3360 void ath10k_offchan_tx_work(struct work_struct *work)
3361 {
3362 struct ath10k *ar = container_of(work, struct ath10k, offchan_tx_work);
3363 struct ath10k_peer *peer;
3364 struct ieee80211_hdr *hdr;
3365 struct sk_buff *skb;
3366 const u8 *peer_addr;
3367 int vdev_id;
3368 int ret;
3369 unsigned long time_left;
3370 bool tmp_peer_created = false;
3371
3372 /* FW requirement: We must create a peer before FW will send out
3373 * an offchannel frame. Otherwise the frame will be stuck and
3374 * never transmitted. We delete the peer upon tx completion.
3375 * It is unlikely that a peer for offchannel tx will already be
3376 * present. However it may be in some rare cases so account for that.
3377 * Otherwise we might remove a legitimate peer and break stuff. */
3378
3379 for (;;) {
3380 skb = skb_dequeue(&ar->offchan_tx_queue);
3381 if (!skb)
3382 break;
3383
3384 mutex_lock(&ar->conf_mutex);
3385
3386 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac offchannel skb %p\n",
3387 skb);
3388
3389 hdr = (struct ieee80211_hdr *)skb->data;
3390 peer_addr = ieee80211_get_DA(hdr);
3391 vdev_id = ATH10K_SKB_CB(skb)->vdev_id;
3392
3393 spin_lock_bh(&ar->data_lock);
3394 peer = ath10k_peer_find(ar, vdev_id, peer_addr);
3395 spin_unlock_bh(&ar->data_lock);
3396
3397 if (peer)
3398 /* FIXME: should this use ath10k_warn()? */
3399 ath10k_dbg(ar, ATH10K_DBG_MAC, "peer %pM on vdev %d already present\n",
3400 peer_addr, vdev_id);
3401
3402 if (!peer) {
3403 ret = ath10k_peer_create(ar, vdev_id, peer_addr,
3404 WMI_PEER_TYPE_DEFAULT);
3405 if (ret)
3406 ath10k_warn(ar, "failed to create peer %pM on vdev %d: %d\n",
3407 peer_addr, vdev_id, ret);
3408 tmp_peer_created = (ret == 0);
3409 }
3410
3411 spin_lock_bh(&ar->data_lock);
3412 reinit_completion(&ar->offchan_tx_completed);
3413 ar->offchan_tx_skb = skb;
3414 spin_unlock_bh(&ar->data_lock);
3415
3416 ath10k_mac_tx(ar, skb);
3417
3418 time_left =
3419 wait_for_completion_timeout(&ar->offchan_tx_completed, 3 * HZ);
3420 if (time_left == 0)
3421 ath10k_warn(ar, "timed out waiting for offchannel skb %p\n",
3422 skb);
3423
3424 if (!peer && tmp_peer_created) {
3425 ret = ath10k_peer_delete(ar, vdev_id, peer_addr);
3426 if (ret)
3427 ath10k_warn(ar, "failed to delete peer %pM on vdev %d: %d\n",
3428 peer_addr, vdev_id, ret);
3429 }
3430
3431 mutex_unlock(&ar->conf_mutex);
3432 }
3433 }
3434
3435 void ath10k_mgmt_over_wmi_tx_purge(struct ath10k *ar)
3436 {
3437 struct sk_buff *skb;
3438
3439 for (;;) {
3440 skb = skb_dequeue(&ar->wmi_mgmt_tx_queue);
3441 if (!skb)
3442 break;
3443
3444 ieee80211_free_txskb(ar->hw, skb);
3445 }
3446 }
3447
3448 void ath10k_mgmt_over_wmi_tx_work(struct work_struct *work)
3449 {
3450 struct ath10k *ar = container_of(work, struct ath10k, wmi_mgmt_tx_work);
3451 struct sk_buff *skb;
3452 int ret;
3453
3454 for (;;) {
3455 skb = skb_dequeue(&ar->wmi_mgmt_tx_queue);
3456 if (!skb)
3457 break;
3458
3459 ret = ath10k_wmi_mgmt_tx(ar, skb);
3460 if (ret) {
3461 ath10k_warn(ar, "failed to transmit management frame via WMI: %d\n",
3462 ret);
3463 ieee80211_free_txskb(ar->hw, skb);
3464 }
3465 }
3466 }
3467
3468 /************/
3469 /* Scanning */
3470 /************/
3471
3472 void __ath10k_scan_finish(struct ath10k *ar)
3473 {
3474 lockdep_assert_held(&ar->data_lock);
3475
3476 switch (ar->scan.state) {
3477 case ATH10K_SCAN_IDLE:
3478 break;
3479 case ATH10K_SCAN_RUNNING:
3480 case ATH10K_SCAN_ABORTING:
3481 if (!ar->scan.is_roc)
3482 ieee80211_scan_completed(ar->hw,
3483 (ar->scan.state ==
3484 ATH10K_SCAN_ABORTING));
3485 else if (ar->scan.roc_notify)
3486 ieee80211_remain_on_channel_expired(ar->hw);
3487 /* fall through */
3488 case ATH10K_SCAN_STARTING:
3489 ar->scan.state = ATH10K_SCAN_IDLE;
3490 ar->scan_channel = NULL;
3491 ath10k_offchan_tx_purge(ar);
3492 cancel_delayed_work(&ar->scan.timeout);
3493 complete_all(&ar->scan.completed);
3494 break;
3495 }
3496 }
3497
3498 void ath10k_scan_finish(struct ath10k *ar)
3499 {
3500 spin_lock_bh(&ar->data_lock);
3501 __ath10k_scan_finish(ar);
3502 spin_unlock_bh(&ar->data_lock);
3503 }
3504
3505 static int ath10k_scan_stop(struct ath10k *ar)
3506 {
3507 struct wmi_stop_scan_arg arg = {
3508 .req_id = 1, /* FIXME */
3509 .req_type = WMI_SCAN_STOP_ONE,
3510 .u.scan_id = ATH10K_SCAN_ID,
3511 };
3512 int ret;
3513
3514 lockdep_assert_held(&ar->conf_mutex);
3515
3516 ret = ath10k_wmi_stop_scan(ar, &arg);
3517 if (ret) {
3518 ath10k_warn(ar, "failed to stop wmi scan: %d\n", ret);
3519 goto out;
3520 }
3521
3522 ret = wait_for_completion_timeout(&ar->scan.completed, 3*HZ);
3523 if (ret == 0) {
3524 ath10k_warn(ar, "failed to receive scan abortion completion: timed out\n");
3525 ret = -ETIMEDOUT;
3526 } else if (ret > 0) {
3527 ret = 0;
3528 }
3529
3530 out:
3531 /* Scan state should be updated upon scan completion but in case
3532 * firmware fails to deliver the event (for whatever reason) it is
3533 * desired to clean up scan state anyway. Firmware may have just
3534 * dropped the scan completion event delivery due to transport pipe
3535 * being overflown with data and/or it can recover on its own before
3536 * next scan request is submitted.
3537 */
3538 spin_lock_bh(&ar->data_lock);
3539 if (ar->scan.state != ATH10K_SCAN_IDLE)
3540 __ath10k_scan_finish(ar);
3541 spin_unlock_bh(&ar->data_lock);
3542
3543 return ret;
3544 }
3545
3546 static void ath10k_scan_abort(struct ath10k *ar)
3547 {
3548 int ret;
3549
3550 lockdep_assert_held(&ar->conf_mutex);
3551
3552 spin_lock_bh(&ar->data_lock);
3553
3554 switch (ar->scan.state) {
3555 case ATH10K_SCAN_IDLE:
3556 /* This can happen if timeout worker kicked in and called
3557 * abortion while scan completion was being processed.
3558 */
3559 break;
3560 case ATH10K_SCAN_STARTING:
3561 case ATH10K_SCAN_ABORTING:
3562 ath10k_warn(ar, "refusing scan abortion due to invalid scan state: %s (%d)\n",
3563 ath10k_scan_state_str(ar->scan.state),
3564 ar->scan.state);
3565 break;
3566 case ATH10K_SCAN_RUNNING:
3567 ar->scan.state = ATH10K_SCAN_ABORTING;
3568 spin_unlock_bh(&ar->data_lock);
3569
3570 ret = ath10k_scan_stop(ar);
3571 if (ret)
3572 ath10k_warn(ar, "failed to abort scan: %d\n", ret);
3573
3574 spin_lock_bh(&ar->data_lock);
3575 break;
3576 }
3577
3578 spin_unlock_bh(&ar->data_lock);
3579 }
3580
3581 void ath10k_scan_timeout_work(struct work_struct *work)
3582 {
3583 struct ath10k *ar = container_of(work, struct ath10k,
3584 scan.timeout.work);
3585
3586 mutex_lock(&ar->conf_mutex);
3587 ath10k_scan_abort(ar);
3588 mutex_unlock(&ar->conf_mutex);
3589 }
3590
3591 static int ath10k_start_scan(struct ath10k *ar,
3592 const struct wmi_start_scan_arg *arg)
3593 {
3594 int ret;
3595
3596 lockdep_assert_held(&ar->conf_mutex);
3597
3598 ret = ath10k_wmi_start_scan(ar, arg);
3599 if (ret)
3600 return ret;
3601
3602 ret = wait_for_completion_timeout(&ar->scan.started, 1*HZ);
3603 if (ret == 0) {
3604 ret = ath10k_scan_stop(ar);
3605 if (ret)
3606 ath10k_warn(ar, "failed to stop scan: %d\n", ret);
3607
3608 return -ETIMEDOUT;
3609 }
3610
3611 /* If we failed to start the scan, return error code at
3612 * this point. This is probably due to some issue in the
3613 * firmware, but no need to wedge the driver due to that...
3614 */
3615 spin_lock_bh(&ar->data_lock);
3616 if (ar->scan.state == ATH10K_SCAN_IDLE) {
3617 spin_unlock_bh(&ar->data_lock);
3618 return -EINVAL;
3619 }
3620 spin_unlock_bh(&ar->data_lock);
3621
3622 return 0;
3623 }
3624
3625 /**********************/
3626 /* mac80211 callbacks */
3627 /**********************/
3628
3629 static void ath10k_tx(struct ieee80211_hw *hw,
3630 struct ieee80211_tx_control *control,
3631 struct sk_buff *skb)
3632 {
3633 struct ath10k *ar = hw->priv;
3634 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
3635 struct ieee80211_vif *vif = info->control.vif;
3636 struct ieee80211_sta *sta = control->sta;
3637 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
3638 __le16 fc = hdr->frame_control;
3639
3640 /* We should disable CCK RATE due to P2P */
3641 if (info->flags & IEEE80211_TX_CTL_NO_CCK_RATE)
3642 ath10k_dbg(ar, ATH10K_DBG_MAC, "IEEE80211_TX_CTL_NO_CCK_RATE\n");
3643
3644 ATH10K_SKB_CB(skb)->htt.is_offchan = false;
3645 ATH10K_SKB_CB(skb)->htt.freq = 0;
3646 ATH10K_SKB_CB(skb)->htt.tid = ath10k_tx_h_get_tid(hdr);
3647 ATH10K_SKB_CB(skb)->htt.nohwcrypt = !ath10k_tx_h_use_hwcrypto(vif, skb);
3648 ATH10K_SKB_CB(skb)->vdev_id = ath10k_tx_h_get_vdev_id(ar, vif);
3649 ATH10K_SKB_CB(skb)->txmode = ath10k_tx_h_get_txmode(ar, vif, sta, skb);
3650 ATH10K_SKB_CB(skb)->is_protected = ieee80211_has_protected(fc);
3651
3652 switch (ATH10K_SKB_CB(skb)->txmode) {
3653 case ATH10K_HW_TXRX_MGMT:
3654 case ATH10K_HW_TXRX_NATIVE_WIFI:
3655 ath10k_tx_h_nwifi(hw, skb);
3656 ath10k_tx_h_add_p2p_noa_ie(ar, vif, skb);
3657 ath10k_tx_h_seq_no(vif, skb);
3658 break;
3659 case ATH10K_HW_TXRX_ETHERNET:
3660 ath10k_tx_h_8023(skb);
3661 break;
3662 case ATH10K_HW_TXRX_RAW:
3663 if (!test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) {
3664 WARN_ON_ONCE(1);
3665 ieee80211_free_txskb(hw, skb);
3666 return;
3667 }
3668 }
3669
3670 if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) {
3671 spin_lock_bh(&ar->data_lock);
3672 ATH10K_SKB_CB(skb)->htt.freq = ar->scan.roc_freq;
3673 ATH10K_SKB_CB(skb)->vdev_id = ar->scan.vdev_id;
3674 spin_unlock_bh(&ar->data_lock);
3675
3676 if (ath10k_mac_need_offchan_tx_work(ar)) {
3677 ATH10K_SKB_CB(skb)->htt.freq = 0;
3678 ATH10K_SKB_CB(skb)->htt.is_offchan = true;
3679
3680 ath10k_dbg(ar, ATH10K_DBG_MAC, "queued offchannel skb %p\n",
3681 skb);
3682
3683 skb_queue_tail(&ar->offchan_tx_queue, skb);
3684 ieee80211_queue_work(hw, &ar->offchan_tx_work);
3685 return;
3686 }
3687 }
3688
3689 ath10k_mac_tx(ar, skb);
3690 }
3691
3692 /* Must not be called with conf_mutex held as workers can use that also. */
3693 void ath10k_drain_tx(struct ath10k *ar)
3694 {
3695 /* make sure rcu-protected mac80211 tx path itself is drained */
3696 synchronize_net();
3697
3698 ath10k_offchan_tx_purge(ar);
3699 ath10k_mgmt_over_wmi_tx_purge(ar);
3700
3701 cancel_work_sync(&ar->offchan_tx_work);
3702 cancel_work_sync(&ar->wmi_mgmt_tx_work);
3703 }
3704
3705 void ath10k_halt(struct ath10k *ar)
3706 {
3707 struct ath10k_vif *arvif;
3708
3709 lockdep_assert_held(&ar->conf_mutex);
3710
3711 clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags);
3712 ar->filter_flags = 0;
3713 ar->monitor = false;
3714 ar->monitor_arvif = NULL;
3715
3716 if (ar->monitor_started)
3717 ath10k_monitor_stop(ar);
3718
3719 ar->monitor_started = false;
3720 ar->tx_paused = 0;
3721
3722 ath10k_scan_finish(ar);
3723 ath10k_peer_cleanup_all(ar);
3724 ath10k_core_stop(ar);
3725 ath10k_hif_power_down(ar);
3726
3727 spin_lock_bh(&ar->data_lock);
3728 list_for_each_entry(arvif, &ar->arvifs, list)
3729 ath10k_mac_vif_beacon_cleanup(arvif);
3730 spin_unlock_bh(&ar->data_lock);
3731 }
3732
3733 static int ath10k_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant)
3734 {
3735 struct ath10k *ar = hw->priv;
3736
3737 mutex_lock(&ar->conf_mutex);
3738
3739 *tx_ant = ar->cfg_tx_chainmask;
3740 *rx_ant = ar->cfg_rx_chainmask;
3741
3742 mutex_unlock(&ar->conf_mutex);
3743
3744 return 0;
3745 }
3746
3747 static void ath10k_check_chain_mask(struct ath10k *ar, u32 cm, const char *dbg)
3748 {
3749 /* It is not clear that allowing gaps in chainmask
3750 * is helpful. Probably it will not do what user
3751 * is hoping for, so warn in that case.
3752 */
3753 if (cm == 15 || cm == 7 || cm == 3 || cm == 1 || cm == 0)
3754 return;
3755
3756 ath10k_warn(ar, "mac %s antenna chainmask may be invalid: 0x%x. Suggested values: 15, 7, 3, 1 or 0.\n",
3757 dbg, cm);
3758 }
3759
3760 static int ath10k_mac_get_vht_cap_bf_sts(struct ath10k *ar)
3761 {
3762 int nsts = ar->vht_cap_info;
3763
3764 nsts &= IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK;
3765 nsts >>= IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT;
3766
3767 /* If firmware does not deliver to host number of space-time
3768 * streams supported, assume it support up to 4 BF STS and return
3769 * the value for VHT CAP: nsts-1)
3770 */
3771 if (nsts == 0)
3772 return 3;
3773
3774 return nsts;
3775 }
3776
3777 static int ath10k_mac_get_vht_cap_bf_sound_dim(struct ath10k *ar)
3778 {
3779 int sound_dim = ar->vht_cap_info;
3780
3781 sound_dim &= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK;
3782 sound_dim >>= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT;
3783
3784 /* If the sounding dimension is not advertised by the firmware,
3785 * let's use a default value of 1
3786 */
3787 if (sound_dim == 0)
3788 return 1;
3789
3790 return sound_dim;
3791 }
3792
3793 static struct ieee80211_sta_vht_cap ath10k_create_vht_cap(struct ath10k *ar)
3794 {
3795 struct ieee80211_sta_vht_cap vht_cap = {0};
3796 u16 mcs_map;
3797 u32 val;
3798 int i;
3799
3800 vht_cap.vht_supported = 1;
3801 vht_cap.cap = ar->vht_cap_info;
3802
3803 if (ar->vht_cap_info & (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
3804 IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE)) {
3805 val = ath10k_mac_get_vht_cap_bf_sts(ar);
3806 val <<= IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT;
3807 val &= IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK;
3808
3809 vht_cap.cap |= val;
3810 }
3811
3812 if (ar->vht_cap_info & (IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
3813 IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE)) {
3814 val = ath10k_mac_get_vht_cap_bf_sound_dim(ar);
3815 val <<= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT;
3816 val &= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK;
3817
3818 vht_cap.cap |= val;
3819 }
3820
3821 mcs_map = 0;
3822 for (i = 0; i < 8; i++) {
3823 if ((i < ar->num_rf_chains) && (ar->cfg_tx_chainmask & BIT(i)))
3824 mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << (i * 2);
3825 else
3826 mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << (i * 2);
3827 }
3828
3829 vht_cap.vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
3830 vht_cap.vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
3831
3832 return vht_cap;
3833 }
3834
3835 static struct ieee80211_sta_ht_cap ath10k_get_ht_cap(struct ath10k *ar)
3836 {
3837 int i;
3838 struct ieee80211_sta_ht_cap ht_cap = {0};
3839
3840 if (!(ar->ht_cap_info & WMI_HT_CAP_ENABLED))
3841 return ht_cap;
3842
3843 ht_cap.ht_supported = 1;
3844 ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
3845 ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
3846 ht_cap.cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
3847 ht_cap.cap |= IEEE80211_HT_CAP_DSSSCCK40;
3848 ht_cap.cap |= WLAN_HT_CAP_SM_PS_STATIC << IEEE80211_HT_CAP_SM_PS_SHIFT;
3849
3850 if (ar->ht_cap_info & WMI_HT_CAP_HT20_SGI)
3851 ht_cap.cap |= IEEE80211_HT_CAP_SGI_20;
3852
3853 if (ar->ht_cap_info & WMI_HT_CAP_HT40_SGI)
3854 ht_cap.cap |= IEEE80211_HT_CAP_SGI_40;
3855
3856 if (ar->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS) {
3857 u32 smps;
3858
3859 smps = WLAN_HT_CAP_SM_PS_DYNAMIC;
3860 smps <<= IEEE80211_HT_CAP_SM_PS_SHIFT;
3861
3862 ht_cap.cap |= smps;
3863 }
3864
3865 if (ar->ht_cap_info & WMI_HT_CAP_TX_STBC)
3866 ht_cap.cap |= IEEE80211_HT_CAP_TX_STBC;
3867
3868 if (ar->ht_cap_info & WMI_HT_CAP_RX_STBC) {
3869 u32 stbc;
3870
3871 stbc = ar->ht_cap_info;
3872 stbc &= WMI_HT_CAP_RX_STBC;
3873 stbc >>= WMI_HT_CAP_RX_STBC_MASK_SHIFT;
3874 stbc <<= IEEE80211_HT_CAP_RX_STBC_SHIFT;
3875 stbc &= IEEE80211_HT_CAP_RX_STBC;
3876
3877 ht_cap.cap |= stbc;
3878 }
3879
3880 if (ar->ht_cap_info & WMI_HT_CAP_LDPC)
3881 ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING;
3882
3883 if (ar->ht_cap_info & WMI_HT_CAP_L_SIG_TXOP_PROT)
3884 ht_cap.cap |= IEEE80211_HT_CAP_LSIG_TXOP_PROT;
3885
3886 /* max AMSDU is implicitly taken from vht_cap_info */
3887 if (ar->vht_cap_info & WMI_VHT_CAP_MAX_MPDU_LEN_MASK)
3888 ht_cap.cap |= IEEE80211_HT_CAP_MAX_AMSDU;
3889
3890 for (i = 0; i < ar->num_rf_chains; i++) {
3891 if (ar->cfg_rx_chainmask & BIT(i))
3892 ht_cap.mcs.rx_mask[i] = 0xFF;
3893 }
3894
3895 ht_cap.mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
3896
3897 return ht_cap;
3898 }
3899
3900 static void ath10k_mac_setup_ht_vht_cap(struct ath10k *ar)
3901 {
3902 struct ieee80211_supported_band *band;
3903 struct ieee80211_sta_vht_cap vht_cap;
3904 struct ieee80211_sta_ht_cap ht_cap;
3905
3906 ht_cap = ath10k_get_ht_cap(ar);
3907 vht_cap = ath10k_create_vht_cap(ar);
3908
3909 if (ar->phy_capability & WHAL_WLAN_11G_CAPABILITY) {
3910 band = &ar->mac.sbands[IEEE80211_BAND_2GHZ];
3911 band->ht_cap = ht_cap;
3912
3913 /* Enable the VHT support at 2.4 GHz */
3914 band->vht_cap = vht_cap;
3915 }
3916 if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY) {
3917 band = &ar->mac.sbands[IEEE80211_BAND_5GHZ];
3918 band->ht_cap = ht_cap;
3919 band->vht_cap = vht_cap;
3920 }
3921 }
3922
3923 static int __ath10k_set_antenna(struct ath10k *ar, u32 tx_ant, u32 rx_ant)
3924 {
3925 int ret;
3926
3927 lockdep_assert_held(&ar->conf_mutex);
3928
3929 ath10k_check_chain_mask(ar, tx_ant, "tx");
3930 ath10k_check_chain_mask(ar, rx_ant, "rx");
3931
3932 ar->cfg_tx_chainmask = tx_ant;
3933 ar->cfg_rx_chainmask = rx_ant;
3934
3935 if ((ar->state != ATH10K_STATE_ON) &&
3936 (ar->state != ATH10K_STATE_RESTARTED))
3937 return 0;
3938
3939 ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->tx_chain_mask,
3940 tx_ant);
3941 if (ret) {
3942 ath10k_warn(ar, "failed to set tx-chainmask: %d, req 0x%x\n",
3943 ret, tx_ant);
3944 return ret;
3945 }
3946
3947 ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->rx_chain_mask,
3948 rx_ant);
3949 if (ret) {
3950 ath10k_warn(ar, "failed to set rx-chainmask: %d, req 0x%x\n",
3951 ret, rx_ant);
3952 return ret;
3953 }
3954
3955 /* Reload HT/VHT capability */
3956 ath10k_mac_setup_ht_vht_cap(ar);
3957
3958 return 0;
3959 }
3960
3961 static int ath10k_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant)
3962 {
3963 struct ath10k *ar = hw->priv;
3964 int ret;
3965
3966 mutex_lock(&ar->conf_mutex);
3967 ret = __ath10k_set_antenna(ar, tx_ant, rx_ant);
3968 mutex_unlock(&ar->conf_mutex);
3969 return ret;
3970 }
3971
3972 static int ath10k_start(struct ieee80211_hw *hw)
3973 {
3974 struct ath10k *ar = hw->priv;
3975 u32 burst_enable;
3976 int ret = 0;
3977
3978 /*
3979 * This makes sense only when restarting hw. It is harmless to call
3980 * uncoditionally. This is necessary to make sure no HTT/WMI tx
3981 * commands will be submitted while restarting.
3982 */
3983 ath10k_drain_tx(ar);
3984
3985 mutex_lock(&ar->conf_mutex);
3986
3987 switch (ar->state) {
3988 case ATH10K_STATE_OFF:
3989 ar->state = ATH10K_STATE_ON;
3990 break;
3991 case ATH10K_STATE_RESTARTING:
3992 ath10k_halt(ar);
3993 ar->state = ATH10K_STATE_RESTARTED;
3994 break;
3995 case ATH10K_STATE_ON:
3996 case ATH10K_STATE_RESTARTED:
3997 case ATH10K_STATE_WEDGED:
3998 WARN_ON(1);
3999 ret = -EINVAL;
4000 goto err;
4001 case ATH10K_STATE_UTF:
4002 ret = -EBUSY;
4003 goto err;
4004 }
4005
4006 ret = ath10k_hif_power_up(ar);
4007 if (ret) {
4008 ath10k_err(ar, "Could not init hif: %d\n", ret);
4009 goto err_off;
4010 }
4011
4012 ret = ath10k_core_start(ar, ATH10K_FIRMWARE_MODE_NORMAL);
4013 if (ret) {
4014 ath10k_err(ar, "Could not init core: %d\n", ret);
4015 goto err_power_down;
4016 }
4017
4018 ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->pmf_qos, 1);
4019 if (ret) {
4020 ath10k_warn(ar, "failed to enable PMF QOS: %d\n", ret);
4021 goto err_core_stop;
4022 }
4023
4024 ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->dynamic_bw, 1);
4025 if (ret) {
4026 ath10k_warn(ar, "failed to enable dynamic BW: %d\n", ret);
4027 goto err_core_stop;
4028 }
4029
4030 if (test_bit(WMI_SERVICE_ADAPTIVE_OCS, ar->wmi.svc_map)) {
4031 ret = ath10k_wmi_adaptive_qcs(ar, true);
4032 if (ret) {
4033 ath10k_warn(ar, "failed to enable adaptive qcs: %d\n",
4034 ret);
4035 goto err_core_stop;
4036 }
4037 }
4038
4039 if (test_bit(WMI_SERVICE_BURST, ar->wmi.svc_map)) {
4040 burst_enable = ar->wmi.pdev_param->burst_enable;
4041 ret = ath10k_wmi_pdev_set_param(ar, burst_enable, 0);
4042 if (ret) {
4043 ath10k_warn(ar, "failed to disable burst: %d\n", ret);
4044 goto err_core_stop;
4045 }
4046 }
4047
4048 __ath10k_set_antenna(ar, ar->cfg_tx_chainmask, ar->cfg_rx_chainmask);
4049
4050 /*
4051 * By default FW set ARP frames ac to voice (6). In that case ARP
4052 * exchange is not working properly for UAPSD enabled AP. ARP requests
4053 * which arrives with access category 0 are processed by network stack
4054 * and send back with access category 0, but FW changes access category
4055 * to 6. Set ARP frames access category to best effort (0) solves
4056 * this problem.
4057 */
4058
4059 ret = ath10k_wmi_pdev_set_param(ar,
4060 ar->wmi.pdev_param->arp_ac_override, 0);
4061 if (ret) {
4062 ath10k_warn(ar, "failed to set arp ac override parameter: %d\n",
4063 ret);
4064 goto err_core_stop;
4065 }
4066
4067 if (test_bit(ATH10K_FW_FEATURE_SUPPORTS_ADAPTIVE_CCA,
4068 ar->fw_features)) {
4069 ret = ath10k_wmi_pdev_enable_adaptive_cca(ar, 1,
4070 WMI_CCA_DETECT_LEVEL_AUTO,
4071 WMI_CCA_DETECT_MARGIN_AUTO);
4072 if (ret) {
4073 ath10k_warn(ar, "failed to enable adaptive cca: %d\n",
4074 ret);
4075 goto err_core_stop;
4076 }
4077 }
4078
4079 ret = ath10k_wmi_pdev_set_param(ar,
4080 ar->wmi.pdev_param->ani_enable, 1);
4081 if (ret) {
4082 ath10k_warn(ar, "failed to enable ani by default: %d\n",
4083 ret);
4084 goto err_core_stop;
4085 }
4086
4087 ar->ani_enabled = true;
4088
4089 ar->num_started_vdevs = 0;
4090 ath10k_regd_update(ar);
4091
4092 ath10k_spectral_start(ar);
4093 ath10k_thermal_set_throttling(ar);
4094
4095 mutex_unlock(&ar->conf_mutex);
4096 return 0;
4097
4098 err_core_stop:
4099 ath10k_core_stop(ar);
4100
4101 err_power_down:
4102 ath10k_hif_power_down(ar);
4103
4104 err_off:
4105 ar->state = ATH10K_STATE_OFF;
4106
4107 err:
4108 mutex_unlock(&ar->conf_mutex);
4109 return ret;
4110 }
4111
4112 static void ath10k_stop(struct ieee80211_hw *hw)
4113 {
4114 struct ath10k *ar = hw->priv;
4115
4116 ath10k_drain_tx(ar);
4117
4118 mutex_lock(&ar->conf_mutex);
4119 if (ar->state != ATH10K_STATE_OFF) {
4120 ath10k_halt(ar);
4121 ar->state = ATH10K_STATE_OFF;
4122 }
4123 mutex_unlock(&ar->conf_mutex);
4124
4125 cancel_delayed_work_sync(&ar->scan.timeout);
4126 cancel_work_sync(&ar->restart_work);
4127 }
4128
4129 static int ath10k_config_ps(struct ath10k *ar)
4130 {
4131 struct ath10k_vif *arvif;
4132 int ret = 0;
4133
4134 lockdep_assert_held(&ar->conf_mutex);
4135
4136 list_for_each_entry(arvif, &ar->arvifs, list) {
4137 ret = ath10k_mac_vif_setup_ps(arvif);
4138 if (ret) {
4139 ath10k_warn(ar, "failed to setup powersave: %d\n", ret);
4140 break;
4141 }
4142 }
4143
4144 return ret;
4145 }
4146
4147 static int ath10k_mac_txpower_setup(struct ath10k *ar, int txpower)
4148 {
4149 int ret;
4150 u32 param;
4151
4152 lockdep_assert_held(&ar->conf_mutex);
4153
4154 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac txpower %d\n", txpower);
4155
4156 param = ar->wmi.pdev_param->txpower_limit2g;
4157 ret = ath10k_wmi_pdev_set_param(ar, param, txpower * 2);
4158 if (ret) {
4159 ath10k_warn(ar, "failed to set 2g txpower %d: %d\n",
4160 txpower, ret);
4161 return ret;
4162 }
4163
4164 param = ar->wmi.pdev_param->txpower_limit5g;
4165 ret = ath10k_wmi_pdev_set_param(ar, param, txpower * 2);
4166 if (ret) {
4167 ath10k_warn(ar, "failed to set 5g txpower %d: %d\n",
4168 txpower, ret);
4169 return ret;
4170 }
4171
4172 return 0;
4173 }
4174
4175 static int ath10k_mac_txpower_recalc(struct ath10k *ar)
4176 {
4177 struct ath10k_vif *arvif;
4178 int ret, txpower = -1;
4179
4180 lockdep_assert_held(&ar->conf_mutex);
4181
4182 list_for_each_entry(arvif, &ar->arvifs, list) {
4183 WARN_ON(arvif->txpower < 0);
4184
4185 if (txpower == -1)
4186 txpower = arvif->txpower;
4187 else
4188 txpower = min(txpower, arvif->txpower);
4189 }
4190
4191 if (WARN_ON(txpower == -1))
4192 return -EINVAL;
4193
4194 ret = ath10k_mac_txpower_setup(ar, txpower);
4195 if (ret) {
4196 ath10k_warn(ar, "failed to setup tx power %d: %d\n",
4197 txpower, ret);
4198 return ret;
4199 }
4200
4201 return 0;
4202 }
4203
4204 static int ath10k_config(struct ieee80211_hw *hw, u32 changed)
4205 {
4206 struct ath10k *ar = hw->priv;
4207 struct ieee80211_conf *conf = &hw->conf;
4208 int ret = 0;
4209
4210 mutex_lock(&ar->conf_mutex);
4211
4212 if (changed & IEEE80211_CONF_CHANGE_PS)
4213 ath10k_config_ps(ar);
4214
4215 if (changed & IEEE80211_CONF_CHANGE_MONITOR) {
4216 ar->monitor = conf->flags & IEEE80211_CONF_MONITOR;
4217 ret = ath10k_monitor_recalc(ar);
4218 if (ret)
4219 ath10k_warn(ar, "failed to recalc monitor: %d\n", ret);
4220 }
4221
4222 mutex_unlock(&ar->conf_mutex);
4223 return ret;
4224 }
4225
4226 static u32 get_nss_from_chainmask(u16 chain_mask)
4227 {
4228 if ((chain_mask & 0xf) == 0xf)
4229 return 4;
4230 else if ((chain_mask & 0x7) == 0x7)
4231 return 3;
4232 else if ((chain_mask & 0x3) == 0x3)
4233 return 2;
4234 return 1;
4235 }
4236
4237 static int ath10k_mac_set_txbf_conf(struct ath10k_vif *arvif)
4238 {
4239 u32 value = 0;
4240 struct ath10k *ar = arvif->ar;
4241 int nsts;
4242 int sound_dim;
4243
4244 if (ath10k_wmi_get_txbf_conf_scheme(ar) != WMI_TXBF_CONF_BEFORE_ASSOC)
4245 return 0;
4246
4247 nsts = ath10k_mac_get_vht_cap_bf_sts(ar);
4248 if (ar->vht_cap_info & (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
4249 IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE))
4250 value |= SM(nsts, WMI_TXBF_STS_CAP_OFFSET);
4251
4252 sound_dim = ath10k_mac_get_vht_cap_bf_sound_dim(ar);
4253 if (ar->vht_cap_info & (IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
4254 IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE))
4255 value |= SM(sound_dim, WMI_BF_SOUND_DIM_OFFSET);
4256
4257 if (!value)
4258 return 0;
4259
4260 if (ar->vht_cap_info & IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE)
4261 value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFER;
4262
4263 if (ar->vht_cap_info & IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE)
4264 value |= (WMI_VDEV_PARAM_TXBF_MU_TX_BFER |
4265 WMI_VDEV_PARAM_TXBF_SU_TX_BFER);
4266
4267 if (ar->vht_cap_info & IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE)
4268 value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFEE;
4269
4270 if (ar->vht_cap_info & IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE)
4271 value |= (WMI_VDEV_PARAM_TXBF_MU_TX_BFEE |
4272 WMI_VDEV_PARAM_TXBF_SU_TX_BFEE);
4273
4274 return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id,
4275 ar->wmi.vdev_param->txbf, value);
4276 }
4277
4278 /*
4279 * TODO:
4280 * Figure out how to handle WMI_VDEV_SUBTYPE_P2P_DEVICE,
4281 * because we will send mgmt frames without CCK. This requirement
4282 * for P2P_FIND/GO_NEG should be handled by checking CCK flag
4283 * in the TX packet.
4284 */
4285 static int ath10k_add_interface(struct ieee80211_hw *hw,
4286 struct ieee80211_vif *vif)
4287 {
4288 struct ath10k *ar = hw->priv;
4289 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
4290 enum wmi_sta_powersave_param param;
4291 int ret = 0;
4292 u32 value;
4293 int bit;
4294 int i;
4295 u32 vdev_param;
4296
4297 vif->driver_flags |= IEEE80211_VIF_SUPPORTS_UAPSD;
4298
4299 mutex_lock(&ar->conf_mutex);
4300
4301 memset(arvif, 0, sizeof(*arvif));
4302
4303 arvif->ar = ar;
4304 arvif->vif = vif;
4305
4306 INIT_LIST_HEAD(&arvif->list);
4307 INIT_WORK(&arvif->ap_csa_work, ath10k_mac_vif_ap_csa_work);
4308 INIT_DELAYED_WORK(&arvif->connection_loss_work,
4309 ath10k_mac_vif_sta_connection_loss_work);
4310
4311 for (i = 0; i < ARRAY_SIZE(arvif->bitrate_mask.control); i++) {
4312 arvif->bitrate_mask.control[i].legacy = 0xffffffff;
4313 memset(arvif->bitrate_mask.control[i].ht_mcs, 0xff,
4314 sizeof(arvif->bitrate_mask.control[i].ht_mcs));
4315 memset(arvif->bitrate_mask.control[i].vht_mcs, 0xff,
4316 sizeof(arvif->bitrate_mask.control[i].vht_mcs));
4317 }
4318
4319 if (ar->num_peers >= ar->max_num_peers) {
4320 ath10k_warn(ar, "refusing vdev creation due to insufficient peer entry resources in firmware\n");
4321 ret = -ENOBUFS;
4322 goto err;
4323 }
4324
4325 if (ar->free_vdev_map == 0) {
4326 ath10k_warn(ar, "Free vdev map is empty, no more interfaces allowed.\n");
4327 ret = -EBUSY;
4328 goto err;
4329 }
4330 bit = __ffs64(ar->free_vdev_map);
4331
4332 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac create vdev %i map %llx\n",
4333 bit, ar->free_vdev_map);
4334
4335 arvif->vdev_id = bit;
4336 arvif->vdev_subtype = WMI_VDEV_SUBTYPE_NONE;
4337
4338 switch (vif->type) {
4339 case NL80211_IFTYPE_P2P_DEVICE:
4340 arvif->vdev_type = WMI_VDEV_TYPE_STA;
4341 arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_DEVICE;
4342 break;
4343 case NL80211_IFTYPE_UNSPECIFIED:
4344 case NL80211_IFTYPE_STATION:
4345 arvif->vdev_type = WMI_VDEV_TYPE_STA;
4346 if (vif->p2p)
4347 arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_CLIENT;
4348 break;
4349 case NL80211_IFTYPE_ADHOC:
4350 arvif->vdev_type = WMI_VDEV_TYPE_IBSS;
4351 break;
4352 case NL80211_IFTYPE_MESH_POINT:
4353 if (!test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) {
4354 ret = -EINVAL;
4355 ath10k_warn(ar, "must load driver with rawmode=1 to add mesh interfaces\n");
4356 goto err;
4357 }
4358 arvif->vdev_type = WMI_VDEV_TYPE_AP;
4359 break;
4360 case NL80211_IFTYPE_AP:
4361 arvif->vdev_type = WMI_VDEV_TYPE_AP;
4362
4363 if (vif->p2p)
4364 arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_GO;
4365 break;
4366 case NL80211_IFTYPE_MONITOR:
4367 arvif->vdev_type = WMI_VDEV_TYPE_MONITOR;
4368 break;
4369 default:
4370 WARN_ON(1);
4371 break;
4372 }
4373
4374 /* Using vdev_id as queue number will make it very easy to do per-vif
4375 * tx queue locking. This shouldn't wrap due to interface combinations
4376 * but do a modulo for correctness sake and prevent using offchannel tx
4377 * queues for regular vif tx.
4378 */
4379 vif->cab_queue = arvif->vdev_id % (IEEE80211_MAX_QUEUES - 1);
4380 for (i = 0; i < ARRAY_SIZE(vif->hw_queue); i++)
4381 vif->hw_queue[i] = arvif->vdev_id % (IEEE80211_MAX_QUEUES - 1);
4382
4383 /* Some firmware revisions don't wait for beacon tx completion before
4384 * sending another SWBA event. This could lead to hardware using old
4385 * (freed) beacon data in some cases, e.g. tx credit starvation
4386 * combined with missed TBTT. This is very very rare.
4387 *
4388 * On non-IOMMU-enabled hosts this could be a possible security issue
4389 * because hw could beacon some random data on the air. On
4390 * IOMMU-enabled hosts DMAR faults would occur in most cases and target
4391 * device would crash.
4392 *
4393 * Since there are no beacon tx completions (implicit nor explicit)
4394 * propagated to host the only workaround for this is to allocate a
4395 * DMA-coherent buffer for a lifetime of a vif and use it for all
4396 * beacon tx commands. Worst case for this approach is some beacons may
4397 * become corrupted, e.g. have garbled IEs or out-of-date TIM bitmap.
4398 */
4399 if (vif->type == NL80211_IFTYPE_ADHOC ||
4400 vif->type == NL80211_IFTYPE_MESH_POINT ||
4401 vif->type == NL80211_IFTYPE_AP) {
4402 arvif->beacon_buf = dma_zalloc_coherent(ar->dev,
4403 IEEE80211_MAX_FRAME_LEN,
4404 &arvif->beacon_paddr,
4405 GFP_ATOMIC);
4406 if (!arvif->beacon_buf) {
4407 ret = -ENOMEM;
4408 ath10k_warn(ar, "failed to allocate beacon buffer: %d\n",
4409 ret);
4410 goto err;
4411 }
4412 }
4413 if (test_bit(ATH10K_FLAG_HW_CRYPTO_DISABLED, &ar->dev_flags))
4414 arvif->nohwcrypt = true;
4415
4416 if (arvif->nohwcrypt &&
4417 !test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) {
4418 ath10k_warn(ar, "cryptmode module param needed for sw crypto\n");
4419 goto err;
4420 }
4421
4422 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev create %d (add interface) type %d subtype %d bcnmode %s\n",
4423 arvif->vdev_id, arvif->vdev_type, arvif->vdev_subtype,
4424 arvif->beacon_buf ? "single-buf" : "per-skb");
4425
4426 ret = ath10k_wmi_vdev_create(ar, arvif->vdev_id, arvif->vdev_type,
4427 arvif->vdev_subtype, vif->addr);
4428 if (ret) {
4429 ath10k_warn(ar, "failed to create WMI vdev %i: %d\n",
4430 arvif->vdev_id, ret);
4431 goto err;
4432 }
4433
4434 ar->free_vdev_map &= ~(1LL << arvif->vdev_id);
4435 list_add(&arvif->list, &ar->arvifs);
4436
4437 /* It makes no sense to have firmware do keepalives. mac80211 already
4438 * takes care of this with idle connection polling.
4439 */
4440 ret = ath10k_mac_vif_disable_keepalive(arvif);
4441 if (ret) {
4442 ath10k_warn(ar, "failed to disable keepalive on vdev %i: %d\n",
4443 arvif->vdev_id, ret);
4444 goto err_vdev_delete;
4445 }
4446
4447 arvif->def_wep_key_idx = -1;
4448
4449 vdev_param = ar->wmi.vdev_param->tx_encap_type;
4450 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
4451 ATH10K_HW_TXRX_NATIVE_WIFI);
4452 /* 10.X firmware does not support this VDEV parameter. Do not warn */
4453 if (ret && ret != -EOPNOTSUPP) {
4454 ath10k_warn(ar, "failed to set vdev %i TX encapsulation: %d\n",
4455 arvif->vdev_id, ret);
4456 goto err_vdev_delete;
4457 }
4458
4459 if (ar->cfg_tx_chainmask) {
4460 u16 nss = get_nss_from_chainmask(ar->cfg_tx_chainmask);
4461
4462 vdev_param = ar->wmi.vdev_param->nss;
4463 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
4464 nss);
4465 if (ret) {
4466 ath10k_warn(ar, "failed to set vdev %i chainmask 0x%x, nss %i: %d\n",
4467 arvif->vdev_id, ar->cfg_tx_chainmask, nss,
4468 ret);
4469 goto err_vdev_delete;
4470 }
4471 }
4472
4473 if (arvif->vdev_type == WMI_VDEV_TYPE_AP ||
4474 arvif->vdev_type == WMI_VDEV_TYPE_IBSS) {
4475 ret = ath10k_peer_create(ar, arvif->vdev_id, vif->addr,
4476 WMI_PEER_TYPE_DEFAULT);
4477 if (ret) {
4478 ath10k_warn(ar, "failed to create vdev %i peer for AP/IBSS: %d\n",
4479 arvif->vdev_id, ret);
4480 goto err_vdev_delete;
4481 }
4482 }
4483
4484 if (arvif->vdev_type == WMI_VDEV_TYPE_AP) {
4485 ret = ath10k_mac_set_kickout(arvif);
4486 if (ret) {
4487 ath10k_warn(ar, "failed to set vdev %i kickout parameters: %d\n",
4488 arvif->vdev_id, ret);
4489 goto err_peer_delete;
4490 }
4491 }
4492
4493 if (arvif->vdev_type == WMI_VDEV_TYPE_STA) {
4494 param = WMI_STA_PS_PARAM_RX_WAKE_POLICY;
4495 value = WMI_STA_PS_RX_WAKE_POLICY_WAKE;
4496 ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
4497 param, value);
4498 if (ret) {
4499 ath10k_warn(ar, "failed to set vdev %i RX wake policy: %d\n",
4500 arvif->vdev_id, ret);
4501 goto err_peer_delete;
4502 }
4503
4504 ret = ath10k_mac_vif_recalc_ps_wake_threshold(arvif);
4505 if (ret) {
4506 ath10k_warn(ar, "failed to recalc ps wake threshold on vdev %i: %d\n",
4507 arvif->vdev_id, ret);
4508 goto err_peer_delete;
4509 }
4510
4511 ret = ath10k_mac_vif_recalc_ps_poll_count(arvif);
4512 if (ret) {
4513 ath10k_warn(ar, "failed to recalc ps poll count on vdev %i: %d\n",
4514 arvif->vdev_id, ret);
4515 goto err_peer_delete;
4516 }
4517 }
4518
4519 ret = ath10k_mac_set_txbf_conf(arvif);
4520 if (ret) {
4521 ath10k_warn(ar, "failed to set txbf for vdev %d: %d\n",
4522 arvif->vdev_id, ret);
4523 goto err_peer_delete;
4524 }
4525
4526 ret = ath10k_mac_set_rts(arvif, ar->hw->wiphy->rts_threshold);
4527 if (ret) {
4528 ath10k_warn(ar, "failed to set rts threshold for vdev %d: %d\n",
4529 arvif->vdev_id, ret);
4530 goto err_peer_delete;
4531 }
4532
4533 arvif->txpower = vif->bss_conf.txpower;
4534 ret = ath10k_mac_txpower_recalc(ar);
4535 if (ret) {
4536 ath10k_warn(ar, "failed to recalc tx power: %d\n", ret);
4537 goto err_peer_delete;
4538 }
4539
4540 if (vif->type == NL80211_IFTYPE_MONITOR) {
4541 ar->monitor_arvif = arvif;
4542 ret = ath10k_monitor_recalc(ar);
4543 if (ret) {
4544 ath10k_warn(ar, "failed to recalc monitor: %d\n", ret);
4545 goto err_peer_delete;
4546 }
4547 }
4548
4549 spin_lock_bh(&ar->htt.tx_lock);
4550 if (!ar->tx_paused)
4551 ieee80211_wake_queue(ar->hw, arvif->vdev_id);
4552 spin_unlock_bh(&ar->htt.tx_lock);
4553
4554 mutex_unlock(&ar->conf_mutex);
4555 return 0;
4556
4557 err_peer_delete:
4558 if (arvif->vdev_type == WMI_VDEV_TYPE_AP ||
4559 arvif->vdev_type == WMI_VDEV_TYPE_IBSS)
4560 ath10k_wmi_peer_delete(ar, arvif->vdev_id, vif->addr);
4561
4562 err_vdev_delete:
4563 ath10k_wmi_vdev_delete(ar, arvif->vdev_id);
4564 ar->free_vdev_map |= 1LL << arvif->vdev_id;
4565 list_del(&arvif->list);
4566
4567 err:
4568 if (arvif->beacon_buf) {
4569 dma_free_coherent(ar->dev, IEEE80211_MAX_FRAME_LEN,
4570 arvif->beacon_buf, arvif->beacon_paddr);
4571 arvif->beacon_buf = NULL;
4572 }
4573
4574 mutex_unlock(&ar->conf_mutex);
4575
4576 return ret;
4577 }
4578
4579 static void ath10k_mac_vif_tx_unlock_all(struct ath10k_vif *arvif)
4580 {
4581 int i;
4582
4583 for (i = 0; i < BITS_PER_LONG; i++)
4584 ath10k_mac_vif_tx_unlock(arvif, i);
4585 }
4586
4587 static void ath10k_remove_interface(struct ieee80211_hw *hw,
4588 struct ieee80211_vif *vif)
4589 {
4590 struct ath10k *ar = hw->priv;
4591 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
4592 int ret;
4593
4594 cancel_work_sync(&arvif->ap_csa_work);
4595 cancel_delayed_work_sync(&arvif->connection_loss_work);
4596
4597 mutex_lock(&ar->conf_mutex);
4598
4599 spin_lock_bh(&ar->data_lock);
4600 ath10k_mac_vif_beacon_cleanup(arvif);
4601 spin_unlock_bh(&ar->data_lock);
4602
4603 ret = ath10k_spectral_vif_stop(arvif);
4604 if (ret)
4605 ath10k_warn(ar, "failed to stop spectral for vdev %i: %d\n",
4606 arvif->vdev_id, ret);
4607
4608 ar->free_vdev_map |= 1LL << arvif->vdev_id;
4609 list_del(&arvif->list);
4610
4611 if (arvif->vdev_type == WMI_VDEV_TYPE_AP ||
4612 arvif->vdev_type == WMI_VDEV_TYPE_IBSS) {
4613 ret = ath10k_wmi_peer_delete(arvif->ar, arvif->vdev_id,
4614 vif->addr);
4615 if (ret)
4616 ath10k_warn(ar, "failed to submit AP/IBSS self-peer removal on vdev %i: %d\n",
4617 arvif->vdev_id, ret);
4618
4619 kfree(arvif->u.ap.noa_data);
4620 }
4621
4622 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i delete (remove interface)\n",
4623 arvif->vdev_id);
4624
4625 ret = ath10k_wmi_vdev_delete(ar, arvif->vdev_id);
4626 if (ret)
4627 ath10k_warn(ar, "failed to delete WMI vdev %i: %d\n",
4628 arvif->vdev_id, ret);
4629
4630 /* Some firmware revisions don't notify host about self-peer removal
4631 * until after associated vdev is deleted.
4632 */
4633 if (arvif->vdev_type == WMI_VDEV_TYPE_AP ||
4634 arvif->vdev_type == WMI_VDEV_TYPE_IBSS) {
4635 ret = ath10k_wait_for_peer_deleted(ar, arvif->vdev_id,
4636 vif->addr);
4637 if (ret)
4638 ath10k_warn(ar, "failed to remove AP self-peer on vdev %i: %d\n",
4639 arvif->vdev_id, ret);
4640
4641 spin_lock_bh(&ar->data_lock);
4642 ar->num_peers--;
4643 spin_unlock_bh(&ar->data_lock);
4644 }
4645
4646 ath10k_peer_cleanup(ar, arvif->vdev_id);
4647
4648 if (vif->type == NL80211_IFTYPE_MONITOR) {
4649 ar->monitor_arvif = NULL;
4650 ret = ath10k_monitor_recalc(ar);
4651 if (ret)
4652 ath10k_warn(ar, "failed to recalc monitor: %d\n", ret);
4653 }
4654
4655 spin_lock_bh(&ar->htt.tx_lock);
4656 ath10k_mac_vif_tx_unlock_all(arvif);
4657 spin_unlock_bh(&ar->htt.tx_lock);
4658
4659 mutex_unlock(&ar->conf_mutex);
4660 }
4661
4662 /*
4663 * FIXME: Has to be verified.
4664 */
4665 #define SUPPORTED_FILTERS \
4666 (FIF_ALLMULTI | \
4667 FIF_CONTROL | \
4668 FIF_PSPOLL | \
4669 FIF_OTHER_BSS | \
4670 FIF_BCN_PRBRESP_PROMISC | \
4671 FIF_PROBE_REQ | \
4672 FIF_FCSFAIL)
4673
4674 static void ath10k_configure_filter(struct ieee80211_hw *hw,
4675 unsigned int changed_flags,
4676 unsigned int *total_flags,
4677 u64 multicast)
4678 {
4679 struct ath10k *ar = hw->priv;
4680 int ret;
4681
4682 mutex_lock(&ar->conf_mutex);
4683
4684 changed_flags &= SUPPORTED_FILTERS;
4685 *total_flags &= SUPPORTED_FILTERS;
4686 ar->filter_flags = *total_flags;
4687
4688 ret = ath10k_monitor_recalc(ar);
4689 if (ret)
4690 ath10k_warn(ar, "failed to recalc montior: %d\n", ret);
4691
4692 mutex_unlock(&ar->conf_mutex);
4693 }
4694
4695 static void ath10k_bss_info_changed(struct ieee80211_hw *hw,
4696 struct ieee80211_vif *vif,
4697 struct ieee80211_bss_conf *info,
4698 u32 changed)
4699 {
4700 struct ath10k *ar = hw->priv;
4701 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
4702 int ret = 0;
4703 u32 vdev_param, pdev_param, slottime, preamble;
4704
4705 mutex_lock(&ar->conf_mutex);
4706
4707 if (changed & BSS_CHANGED_IBSS)
4708 ath10k_control_ibss(arvif, info, vif->addr);
4709
4710 if (changed & BSS_CHANGED_BEACON_INT) {
4711 arvif->beacon_interval = info->beacon_int;
4712 vdev_param = ar->wmi.vdev_param->beacon_interval;
4713 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
4714 arvif->beacon_interval);
4715 ath10k_dbg(ar, ATH10K_DBG_MAC,
4716 "mac vdev %d beacon_interval %d\n",
4717 arvif->vdev_id, arvif->beacon_interval);
4718
4719 if (ret)
4720 ath10k_warn(ar, "failed to set beacon interval for vdev %d: %i\n",
4721 arvif->vdev_id, ret);
4722 }
4723
4724 if (changed & BSS_CHANGED_BEACON) {
4725 ath10k_dbg(ar, ATH10K_DBG_MAC,
4726 "vdev %d set beacon tx mode to staggered\n",
4727 arvif->vdev_id);
4728
4729 pdev_param = ar->wmi.pdev_param->beacon_tx_mode;
4730 ret = ath10k_wmi_pdev_set_param(ar, pdev_param,
4731 WMI_BEACON_STAGGERED_MODE);
4732 if (ret)
4733 ath10k_warn(ar, "failed to set beacon mode for vdev %d: %i\n",
4734 arvif->vdev_id, ret);
4735
4736 ret = ath10k_mac_setup_bcn_tmpl(arvif);
4737 if (ret)
4738 ath10k_warn(ar, "failed to update beacon template: %d\n",
4739 ret);
4740
4741 if (ieee80211_vif_is_mesh(vif)) {
4742 /* mesh doesn't use SSID but firmware needs it */
4743 strncpy(arvif->u.ap.ssid, "mesh",
4744 sizeof(arvif->u.ap.ssid));
4745 arvif->u.ap.ssid_len = 4;
4746 }
4747 }
4748
4749 if (changed & BSS_CHANGED_AP_PROBE_RESP) {
4750 ret = ath10k_mac_setup_prb_tmpl(arvif);
4751 if (ret)
4752 ath10k_warn(ar, "failed to setup probe resp template on vdev %i: %d\n",
4753 arvif->vdev_id, ret);
4754 }
4755
4756 if (changed & (BSS_CHANGED_BEACON_INFO | BSS_CHANGED_BEACON)) {
4757 arvif->dtim_period = info->dtim_period;
4758
4759 ath10k_dbg(ar, ATH10K_DBG_MAC,
4760 "mac vdev %d dtim_period %d\n",
4761 arvif->vdev_id, arvif->dtim_period);
4762
4763 vdev_param = ar->wmi.vdev_param->dtim_period;
4764 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
4765 arvif->dtim_period);
4766 if (ret)
4767 ath10k_warn(ar, "failed to set dtim period for vdev %d: %i\n",
4768 arvif->vdev_id, ret);
4769 }
4770
4771 if (changed & BSS_CHANGED_SSID &&
4772 vif->type == NL80211_IFTYPE_AP) {
4773 arvif->u.ap.ssid_len = info->ssid_len;
4774 if (info->ssid_len)
4775 memcpy(arvif->u.ap.ssid, info->ssid, info->ssid_len);
4776 arvif->u.ap.hidden_ssid = info->hidden_ssid;
4777 }
4778
4779 if (changed & BSS_CHANGED_BSSID && !is_zero_ether_addr(info->bssid))
4780 ether_addr_copy(arvif->bssid, info->bssid);
4781
4782 if (changed & BSS_CHANGED_BEACON_ENABLED)
4783 ath10k_control_beaconing(arvif, info);
4784
4785 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
4786 arvif->use_cts_prot = info->use_cts_prot;
4787 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d cts_prot %d\n",
4788 arvif->vdev_id, info->use_cts_prot);
4789
4790 ret = ath10k_recalc_rtscts_prot(arvif);
4791 if (ret)
4792 ath10k_warn(ar, "failed to recalculate rts/cts prot for vdev %d: %d\n",
4793 arvif->vdev_id, ret);
4794
4795 vdev_param = ar->wmi.vdev_param->protection_mode;
4796 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
4797 info->use_cts_prot ? 1 : 0);
4798 if (ret)
4799 ath10k_warn(ar, "failed to set protection mode %d on vdev %i: %d\n",
4800 info->use_cts_prot, arvif->vdev_id, ret);
4801 }
4802
4803 if (changed & BSS_CHANGED_ERP_SLOT) {
4804 if (info->use_short_slot)
4805 slottime = WMI_VDEV_SLOT_TIME_SHORT; /* 9us */
4806
4807 else
4808 slottime = WMI_VDEV_SLOT_TIME_LONG; /* 20us */
4809
4810 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d slot_time %d\n",
4811 arvif->vdev_id, slottime);
4812
4813 vdev_param = ar->wmi.vdev_param->slot_time;
4814 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
4815 slottime);
4816 if (ret)
4817 ath10k_warn(ar, "failed to set erp slot for vdev %d: %i\n",
4818 arvif->vdev_id, ret);
4819 }
4820
4821 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
4822 if (info->use_short_preamble)
4823 preamble = WMI_VDEV_PREAMBLE_SHORT;
4824 else
4825 preamble = WMI_VDEV_PREAMBLE_LONG;
4826
4827 ath10k_dbg(ar, ATH10K_DBG_MAC,
4828 "mac vdev %d preamble %dn",
4829 arvif->vdev_id, preamble);
4830
4831 vdev_param = ar->wmi.vdev_param->preamble;
4832 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
4833 preamble);
4834 if (ret)
4835 ath10k_warn(ar, "failed to set preamble for vdev %d: %i\n",
4836 arvif->vdev_id, ret);
4837 }
4838
4839 if (changed & BSS_CHANGED_ASSOC) {
4840 if (info->assoc) {
4841 /* Workaround: Make sure monitor vdev is not running
4842 * when associating to prevent some firmware revisions
4843 * (e.g. 10.1 and 10.2) from crashing.
4844 */
4845 if (ar->monitor_started)
4846 ath10k_monitor_stop(ar);
4847 ath10k_bss_assoc(hw, vif, info);
4848 ath10k_monitor_recalc(ar);
4849 } else {
4850 ath10k_bss_disassoc(hw, vif);
4851 }
4852 }
4853
4854 if (changed & BSS_CHANGED_TXPOWER) {
4855 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev_id %i txpower %d\n",
4856 arvif->vdev_id, info->txpower);
4857
4858 arvif->txpower = info->txpower;
4859 ret = ath10k_mac_txpower_recalc(ar);
4860 if (ret)
4861 ath10k_warn(ar, "failed to recalc tx power: %d\n", ret);
4862 }
4863
4864 if (changed & BSS_CHANGED_PS) {
4865 arvif->ps = vif->bss_conf.ps;
4866
4867 ret = ath10k_config_ps(ar);
4868 if (ret)
4869 ath10k_warn(ar, "failed to setup ps on vdev %i: %d\n",
4870 arvif->vdev_id, ret);
4871 }
4872
4873 mutex_unlock(&ar->conf_mutex);
4874 }
4875
4876 static int ath10k_hw_scan(struct ieee80211_hw *hw,
4877 struct ieee80211_vif *vif,
4878 struct ieee80211_scan_request *hw_req)
4879 {
4880 struct ath10k *ar = hw->priv;
4881 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
4882 struct cfg80211_scan_request *req = &hw_req->req;
4883 struct wmi_start_scan_arg arg;
4884 int ret = 0;
4885 int i;
4886
4887 mutex_lock(&ar->conf_mutex);
4888
4889 spin_lock_bh(&ar->data_lock);
4890 switch (ar->scan.state) {
4891 case ATH10K_SCAN_IDLE:
4892 reinit_completion(&ar->scan.started);
4893 reinit_completion(&ar->scan.completed);
4894 ar->scan.state = ATH10K_SCAN_STARTING;
4895 ar->scan.is_roc = false;
4896 ar->scan.vdev_id = arvif->vdev_id;
4897 ret = 0;
4898 break;
4899 case ATH10K_SCAN_STARTING:
4900 case ATH10K_SCAN_RUNNING:
4901 case ATH10K_SCAN_ABORTING:
4902 ret = -EBUSY;
4903 break;
4904 }
4905 spin_unlock_bh(&ar->data_lock);
4906
4907 if (ret)
4908 goto exit;
4909
4910 memset(&arg, 0, sizeof(arg));
4911 ath10k_wmi_start_scan_init(ar, &arg);
4912 arg.vdev_id = arvif->vdev_id;
4913 arg.scan_id = ATH10K_SCAN_ID;
4914
4915 if (req->ie_len) {
4916 arg.ie_len = req->ie_len;
4917 memcpy(arg.ie, req->ie, arg.ie_len);
4918 }
4919
4920 if (req->n_ssids) {
4921 arg.n_ssids = req->n_ssids;
4922 for (i = 0; i < arg.n_ssids; i++) {
4923 arg.ssids[i].len = req->ssids[i].ssid_len;
4924 arg.ssids[i].ssid = req->ssids[i].ssid;
4925 }
4926 } else {
4927 arg.scan_ctrl_flags |= WMI_SCAN_FLAG_PASSIVE;
4928 }
4929
4930 if (req->n_channels) {
4931 arg.n_channels = req->n_channels;
4932 for (i = 0; i < arg.n_channels; i++)
4933 arg.channels[i] = req->channels[i]->center_freq;
4934 }
4935
4936 ret = ath10k_start_scan(ar, &arg);
4937 if (ret) {
4938 ath10k_warn(ar, "failed to start hw scan: %d\n", ret);
4939 spin_lock_bh(&ar->data_lock);
4940 ar->scan.state = ATH10K_SCAN_IDLE;
4941 spin_unlock_bh(&ar->data_lock);
4942 }
4943
4944 /* Add a 200ms margin to account for event/command processing */
4945 ieee80211_queue_delayed_work(ar->hw, &ar->scan.timeout,
4946 msecs_to_jiffies(arg.max_scan_time +
4947 200));
4948
4949 exit:
4950 mutex_unlock(&ar->conf_mutex);
4951 return ret;
4952 }
4953
4954 static void ath10k_cancel_hw_scan(struct ieee80211_hw *hw,
4955 struct ieee80211_vif *vif)
4956 {
4957 struct ath10k *ar = hw->priv;
4958
4959 mutex_lock(&ar->conf_mutex);
4960 ath10k_scan_abort(ar);
4961 mutex_unlock(&ar->conf_mutex);
4962
4963 cancel_delayed_work_sync(&ar->scan.timeout);
4964 }
4965
4966 static void ath10k_set_key_h_def_keyidx(struct ath10k *ar,
4967 struct ath10k_vif *arvif,
4968 enum set_key_cmd cmd,
4969 struct ieee80211_key_conf *key)
4970 {
4971 u32 vdev_param = arvif->ar->wmi.vdev_param->def_keyid;
4972 int ret;
4973
4974 /* 10.1 firmware branch requires default key index to be set to group
4975 * key index after installing it. Otherwise FW/HW Txes corrupted
4976 * frames with multi-vif APs. This is not required for main firmware
4977 * branch (e.g. 636).
4978 *
4979 * This is also needed for 636 fw for IBSS-RSN to work more reliably.
4980 *
4981 * FIXME: It remains unknown if this is required for multi-vif STA
4982 * interfaces on 10.1.
4983 */
4984
4985 if (arvif->vdev_type != WMI_VDEV_TYPE_AP &&
4986 arvif->vdev_type != WMI_VDEV_TYPE_IBSS)
4987 return;
4988
4989 if (key->cipher == WLAN_CIPHER_SUITE_WEP40)
4990 return;
4991
4992 if (key->cipher == WLAN_CIPHER_SUITE_WEP104)
4993 return;
4994
4995 if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
4996 return;
4997
4998 if (cmd != SET_KEY)
4999 return;
5000
5001 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param,
5002 key->keyidx);
5003 if (ret)
5004 ath10k_warn(ar, "failed to set vdev %i group key as default key: %d\n",
5005 arvif->vdev_id, ret);
5006 }
5007
5008 static int ath10k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
5009 struct ieee80211_vif *vif, struct ieee80211_sta *sta,
5010 struct ieee80211_key_conf *key)
5011 {
5012 struct ath10k *ar = hw->priv;
5013 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
5014 struct ath10k_peer *peer;
5015 const u8 *peer_addr;
5016 bool is_wep = key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
5017 key->cipher == WLAN_CIPHER_SUITE_WEP104;
5018 int ret = 0;
5019 int ret2;
5020 u32 flags = 0;
5021 u32 flags2;
5022
5023 /* this one needs to be done in software */
5024 if (key->cipher == WLAN_CIPHER_SUITE_AES_CMAC)
5025 return 1;
5026
5027 if (arvif->nohwcrypt)
5028 return 1;
5029
5030 if (key->keyidx > WMI_MAX_KEY_INDEX)
5031 return -ENOSPC;
5032
5033 mutex_lock(&ar->conf_mutex);
5034
5035 if (sta)
5036 peer_addr = sta->addr;
5037 else if (arvif->vdev_type == WMI_VDEV_TYPE_STA)
5038 peer_addr = vif->bss_conf.bssid;
5039 else
5040 peer_addr = vif->addr;
5041
5042 key->hw_key_idx = key->keyidx;
5043
5044 if (is_wep) {
5045 if (cmd == SET_KEY)
5046 arvif->wep_keys[key->keyidx] = key;
5047 else
5048 arvif->wep_keys[key->keyidx] = NULL;
5049 }
5050
5051 /* the peer should not disappear in mid-way (unless FW goes awry) since
5052 * we already hold conf_mutex. we just make sure its there now. */
5053 spin_lock_bh(&ar->data_lock);
5054 peer = ath10k_peer_find(ar, arvif->vdev_id, peer_addr);
5055 spin_unlock_bh(&ar->data_lock);
5056
5057 if (!peer) {
5058 if (cmd == SET_KEY) {
5059 ath10k_warn(ar, "failed to install key for non-existent peer %pM\n",
5060 peer_addr);
5061 ret = -EOPNOTSUPP;
5062 goto exit;
5063 } else {
5064 /* if the peer doesn't exist there is no key to disable
5065 * anymore */
5066 goto exit;
5067 }
5068 }
5069
5070 if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
5071 flags |= WMI_KEY_PAIRWISE;
5072 else
5073 flags |= WMI_KEY_GROUP;
5074
5075 if (is_wep) {
5076 if (cmd == DISABLE_KEY)
5077 ath10k_clear_vdev_key(arvif, key);
5078
5079 /* When WEP keys are uploaded it's possible that there are
5080 * stations associated already (e.g. when merging) without any
5081 * keys. Static WEP needs an explicit per-peer key upload.
5082 */
5083 if (vif->type == NL80211_IFTYPE_ADHOC &&
5084 cmd == SET_KEY)
5085 ath10k_mac_vif_update_wep_key(arvif, key);
5086
5087 /* 802.1x never sets the def_wep_key_idx so each set_key()
5088 * call changes default tx key.
5089 *
5090 * Static WEP sets def_wep_key_idx via .set_default_unicast_key
5091 * after first set_key().
5092 */
5093 if (cmd == SET_KEY && arvif->def_wep_key_idx == -1)
5094 flags |= WMI_KEY_TX_USAGE;
5095 }
5096
5097 ret = ath10k_install_key(arvif, key, cmd, peer_addr, flags);
5098 if (ret) {
5099 WARN_ON(ret > 0);
5100 ath10k_warn(ar, "failed to install key for vdev %i peer %pM: %d\n",
5101 arvif->vdev_id, peer_addr, ret);
5102 goto exit;
5103 }
5104
5105 /* mac80211 sets static WEP keys as groupwise while firmware requires
5106 * them to be installed twice as both pairwise and groupwise.
5107 */
5108 if (is_wep && !sta && vif->type == NL80211_IFTYPE_STATION) {
5109 flags2 = flags;
5110 flags2 &= ~WMI_KEY_GROUP;
5111 flags2 |= WMI_KEY_PAIRWISE;
5112
5113 ret = ath10k_install_key(arvif, key, cmd, peer_addr, flags2);
5114 if (ret) {
5115 WARN_ON(ret > 0);
5116 ath10k_warn(ar, "failed to install (ucast) key for vdev %i peer %pM: %d\n",
5117 arvif->vdev_id, peer_addr, ret);
5118 ret2 = ath10k_install_key(arvif, key, DISABLE_KEY,
5119 peer_addr, flags);
5120 if (ret2) {
5121 WARN_ON(ret2 > 0);
5122 ath10k_warn(ar, "failed to disable (mcast) key for vdev %i peer %pM: %d\n",
5123 arvif->vdev_id, peer_addr, ret2);
5124 }
5125 goto exit;
5126 }
5127 }
5128
5129 ath10k_set_key_h_def_keyidx(ar, arvif, cmd, key);
5130
5131 spin_lock_bh(&ar->data_lock);
5132 peer = ath10k_peer_find(ar, arvif->vdev_id, peer_addr);
5133 if (peer && cmd == SET_KEY)
5134 peer->keys[key->keyidx] = key;
5135 else if (peer && cmd == DISABLE_KEY)
5136 peer->keys[key->keyidx] = NULL;
5137 else if (peer == NULL)
5138 /* impossible unless FW goes crazy */
5139 ath10k_warn(ar, "Peer %pM disappeared!\n", peer_addr);
5140 spin_unlock_bh(&ar->data_lock);
5141
5142 exit:
5143 mutex_unlock(&ar->conf_mutex);
5144 return ret;
5145 }
5146
5147 static void ath10k_set_default_unicast_key(struct ieee80211_hw *hw,
5148 struct ieee80211_vif *vif,
5149 int keyidx)
5150 {
5151 struct ath10k *ar = hw->priv;
5152 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
5153 int ret;
5154
5155 mutex_lock(&arvif->ar->conf_mutex);
5156
5157 if (arvif->ar->state != ATH10K_STATE_ON)
5158 goto unlock;
5159
5160 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d set keyidx %d\n",
5161 arvif->vdev_id, keyidx);
5162
5163 ret = ath10k_wmi_vdev_set_param(arvif->ar,
5164 arvif->vdev_id,
5165 arvif->ar->wmi.vdev_param->def_keyid,
5166 keyidx);
5167
5168 if (ret) {
5169 ath10k_warn(ar, "failed to update wep key index for vdev %d: %d\n",
5170 arvif->vdev_id,
5171 ret);
5172 goto unlock;
5173 }
5174
5175 arvif->def_wep_key_idx = keyidx;
5176
5177 unlock:
5178 mutex_unlock(&arvif->ar->conf_mutex);
5179 }
5180
5181 static void ath10k_sta_rc_update_wk(struct work_struct *wk)
5182 {
5183 struct ath10k *ar;
5184 struct ath10k_vif *arvif;
5185 struct ath10k_sta *arsta;
5186 struct ieee80211_sta *sta;
5187 struct cfg80211_chan_def def;
5188 enum ieee80211_band band;
5189 const u8 *ht_mcs_mask;
5190 const u16 *vht_mcs_mask;
5191 u32 changed, bw, nss, smps;
5192 int err;
5193
5194 arsta = container_of(wk, struct ath10k_sta, update_wk);
5195 sta = container_of((void *)arsta, struct ieee80211_sta, drv_priv);
5196 arvif = arsta->arvif;
5197 ar = arvif->ar;
5198
5199 if (WARN_ON(ath10k_mac_vif_chan(arvif->vif, &def)))
5200 return;
5201
5202 band = def.chan->band;
5203 ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs;
5204 vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs;
5205
5206 spin_lock_bh(&ar->data_lock);
5207
5208 changed = arsta->changed;
5209 arsta->changed = 0;
5210
5211 bw = arsta->bw;
5212 nss = arsta->nss;
5213 smps = arsta->smps;
5214
5215 spin_unlock_bh(&ar->data_lock);
5216
5217 mutex_lock(&ar->conf_mutex);
5218
5219 nss = max_t(u32, 1, nss);
5220 nss = min(nss, max(ath10k_mac_max_ht_nss(ht_mcs_mask),
5221 ath10k_mac_max_vht_nss(vht_mcs_mask)));
5222
5223 if (changed & IEEE80211_RC_BW_CHANGED) {
5224 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac update sta %pM peer bw %d\n",
5225 sta->addr, bw);
5226
5227 err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
5228 WMI_PEER_CHAN_WIDTH, bw);
5229 if (err)
5230 ath10k_warn(ar, "failed to update STA %pM peer bw %d: %d\n",
5231 sta->addr, bw, err);
5232 }
5233
5234 if (changed & IEEE80211_RC_NSS_CHANGED) {
5235 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac update sta %pM nss %d\n",
5236 sta->addr, nss);
5237
5238 err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
5239 WMI_PEER_NSS, nss);
5240 if (err)
5241 ath10k_warn(ar, "failed to update STA %pM nss %d: %d\n",
5242 sta->addr, nss, err);
5243 }
5244
5245 if (changed & IEEE80211_RC_SMPS_CHANGED) {
5246 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac update sta %pM smps %d\n",
5247 sta->addr, smps);
5248
5249 err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr,
5250 WMI_PEER_SMPS_STATE, smps);
5251 if (err)
5252 ath10k_warn(ar, "failed to update STA %pM smps %d: %d\n",
5253 sta->addr, smps, err);
5254 }
5255
5256 if (changed & IEEE80211_RC_SUPP_RATES_CHANGED ||
5257 changed & IEEE80211_RC_NSS_CHANGED) {
5258 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac update sta %pM supp rates/nss\n",
5259 sta->addr);
5260
5261 err = ath10k_station_assoc(ar, arvif->vif, sta, true);
5262 if (err)
5263 ath10k_warn(ar, "failed to reassociate station: %pM\n",
5264 sta->addr);
5265 }
5266
5267 mutex_unlock(&ar->conf_mutex);
5268 }
5269
5270 static int ath10k_mac_inc_num_stations(struct ath10k_vif *arvif,
5271 struct ieee80211_sta *sta)
5272 {
5273 struct ath10k *ar = arvif->ar;
5274
5275 lockdep_assert_held(&ar->conf_mutex);
5276
5277 if (arvif->vdev_type == WMI_VDEV_TYPE_STA && !sta->tdls)
5278 return 0;
5279
5280 if (ar->num_stations >= ar->max_num_stations)
5281 return -ENOBUFS;
5282
5283 ar->num_stations++;
5284
5285 return 0;
5286 }
5287
5288 static void ath10k_mac_dec_num_stations(struct ath10k_vif *arvif,
5289 struct ieee80211_sta *sta)
5290 {
5291 struct ath10k *ar = arvif->ar;
5292
5293 lockdep_assert_held(&ar->conf_mutex);
5294
5295 if (arvif->vdev_type == WMI_VDEV_TYPE_STA && !sta->tdls)
5296 return;
5297
5298 ar->num_stations--;
5299 }
5300
5301 struct ath10k_mac_tdls_iter_data {
5302 u32 num_tdls_stations;
5303 struct ieee80211_vif *curr_vif;
5304 };
5305
5306 static void ath10k_mac_tdls_vif_stations_count_iter(void *data,
5307 struct ieee80211_sta *sta)
5308 {
5309 struct ath10k_mac_tdls_iter_data *iter_data = data;
5310 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
5311 struct ieee80211_vif *sta_vif = arsta->arvif->vif;
5312
5313 if (sta->tdls && sta_vif == iter_data->curr_vif)
5314 iter_data->num_tdls_stations++;
5315 }
5316
5317 static int ath10k_mac_tdls_vif_stations_count(struct ieee80211_hw *hw,
5318 struct ieee80211_vif *vif)
5319 {
5320 struct ath10k_mac_tdls_iter_data data = {};
5321
5322 data.curr_vif = vif;
5323
5324 ieee80211_iterate_stations_atomic(hw,
5325 ath10k_mac_tdls_vif_stations_count_iter,
5326 &data);
5327 return data.num_tdls_stations;
5328 }
5329
5330 static void ath10k_mac_tdls_vifs_count_iter(void *data, u8 *mac,
5331 struct ieee80211_vif *vif)
5332 {
5333 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
5334 int *num_tdls_vifs = data;
5335
5336 if (vif->type != NL80211_IFTYPE_STATION)
5337 return;
5338
5339 if (ath10k_mac_tdls_vif_stations_count(arvif->ar->hw, vif) > 0)
5340 (*num_tdls_vifs)++;
5341 }
5342
5343 static int ath10k_mac_tdls_vifs_count(struct ieee80211_hw *hw)
5344 {
5345 int num_tdls_vifs = 0;
5346
5347 ieee80211_iterate_active_interfaces_atomic(hw,
5348 IEEE80211_IFACE_ITER_NORMAL,
5349 ath10k_mac_tdls_vifs_count_iter,
5350 &num_tdls_vifs);
5351 return num_tdls_vifs;
5352 }
5353
5354 static int ath10k_sta_state(struct ieee80211_hw *hw,
5355 struct ieee80211_vif *vif,
5356 struct ieee80211_sta *sta,
5357 enum ieee80211_sta_state old_state,
5358 enum ieee80211_sta_state new_state)
5359 {
5360 struct ath10k *ar = hw->priv;
5361 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
5362 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
5363 int ret = 0;
5364
5365 if (old_state == IEEE80211_STA_NOTEXIST &&
5366 new_state == IEEE80211_STA_NONE) {
5367 memset(arsta, 0, sizeof(*arsta));
5368 arsta->arvif = arvif;
5369 INIT_WORK(&arsta->update_wk, ath10k_sta_rc_update_wk);
5370 }
5371
5372 /* cancel must be done outside the mutex to avoid deadlock */
5373 if ((old_state == IEEE80211_STA_NONE &&
5374 new_state == IEEE80211_STA_NOTEXIST))
5375 cancel_work_sync(&arsta->update_wk);
5376
5377 mutex_lock(&ar->conf_mutex);
5378
5379 if (old_state == IEEE80211_STA_NOTEXIST &&
5380 new_state == IEEE80211_STA_NONE) {
5381 /*
5382 * New station addition.
5383 */
5384 enum wmi_peer_type peer_type = WMI_PEER_TYPE_DEFAULT;
5385 u32 num_tdls_stations;
5386 u32 num_tdls_vifs;
5387
5388 ath10k_dbg(ar, ATH10K_DBG_MAC,
5389 "mac vdev %d peer create %pM (new sta) sta %d / %d peer %d / %d\n",
5390 arvif->vdev_id, sta->addr,
5391 ar->num_stations + 1, ar->max_num_stations,
5392 ar->num_peers + 1, ar->max_num_peers);
5393
5394 ret = ath10k_mac_inc_num_stations(arvif, sta);
5395 if (ret) {
5396 ath10k_warn(ar, "refusing to associate station: too many connected already (%d)\n",
5397 ar->max_num_stations);
5398 goto exit;
5399 }
5400
5401 if (sta->tdls)
5402 peer_type = WMI_PEER_TYPE_TDLS;
5403
5404 ret = ath10k_peer_create(ar, arvif->vdev_id, sta->addr,
5405 peer_type);
5406 if (ret) {
5407 ath10k_warn(ar, "failed to add peer %pM for vdev %d when adding a new sta: %i\n",
5408 sta->addr, arvif->vdev_id, ret);
5409 ath10k_mac_dec_num_stations(arvif, sta);
5410 goto exit;
5411 }
5412
5413 if (!sta->tdls)
5414 goto exit;
5415
5416 num_tdls_stations = ath10k_mac_tdls_vif_stations_count(hw, vif);
5417 num_tdls_vifs = ath10k_mac_tdls_vifs_count(hw);
5418
5419 if (num_tdls_vifs >= ar->max_num_tdls_vdevs &&
5420 num_tdls_stations == 0) {
5421 ath10k_warn(ar, "vdev %i exceeded maximum number of tdls vdevs %i\n",
5422 arvif->vdev_id, ar->max_num_tdls_vdevs);
5423 ath10k_peer_delete(ar, arvif->vdev_id, sta->addr);
5424 ath10k_mac_dec_num_stations(arvif, sta);
5425 ret = -ENOBUFS;
5426 goto exit;
5427 }
5428
5429 if (num_tdls_stations == 0) {
5430 /* This is the first tdls peer in current vif */
5431 enum wmi_tdls_state state = WMI_TDLS_ENABLE_ACTIVE;
5432
5433 ret = ath10k_wmi_update_fw_tdls_state(ar, arvif->vdev_id,
5434 state);
5435 if (ret) {
5436 ath10k_warn(ar, "failed to update fw tdls state on vdev %i: %i\n",
5437 arvif->vdev_id, ret);
5438 ath10k_peer_delete(ar, arvif->vdev_id,
5439 sta->addr);
5440 ath10k_mac_dec_num_stations(arvif, sta);
5441 goto exit;
5442 }
5443 }
5444
5445 ret = ath10k_mac_tdls_peer_update(ar, arvif->vdev_id, sta,
5446 WMI_TDLS_PEER_STATE_PEERING);
5447 if (ret) {
5448 ath10k_warn(ar,
5449 "failed to update tdls peer %pM for vdev %d when adding a new sta: %i\n",
5450 sta->addr, arvif->vdev_id, ret);
5451 ath10k_peer_delete(ar, arvif->vdev_id, sta->addr);
5452 ath10k_mac_dec_num_stations(arvif, sta);
5453
5454 if (num_tdls_stations != 0)
5455 goto exit;
5456 ath10k_wmi_update_fw_tdls_state(ar, arvif->vdev_id,
5457 WMI_TDLS_DISABLE);
5458 }
5459 } else if ((old_state == IEEE80211_STA_NONE &&
5460 new_state == IEEE80211_STA_NOTEXIST)) {
5461 /*
5462 * Existing station deletion.
5463 */
5464 ath10k_dbg(ar, ATH10K_DBG_MAC,
5465 "mac vdev %d peer delete %pM (sta gone)\n",
5466 arvif->vdev_id, sta->addr);
5467
5468 ret = ath10k_peer_delete(ar, arvif->vdev_id, sta->addr);
5469 if (ret)
5470 ath10k_warn(ar, "failed to delete peer %pM for vdev %d: %i\n",
5471 sta->addr, arvif->vdev_id, ret);
5472
5473 ath10k_mac_dec_num_stations(arvif, sta);
5474
5475 if (!sta->tdls)
5476 goto exit;
5477
5478 if (ath10k_mac_tdls_vif_stations_count(hw, vif))
5479 goto exit;
5480
5481 /* This was the last tdls peer in current vif */
5482 ret = ath10k_wmi_update_fw_tdls_state(ar, arvif->vdev_id,
5483 WMI_TDLS_DISABLE);
5484 if (ret) {
5485 ath10k_warn(ar, "failed to update fw tdls state on vdev %i: %i\n",
5486 arvif->vdev_id, ret);
5487 }
5488 } else if (old_state == IEEE80211_STA_AUTH &&
5489 new_state == IEEE80211_STA_ASSOC &&
5490 (vif->type == NL80211_IFTYPE_AP ||
5491 vif->type == NL80211_IFTYPE_MESH_POINT ||
5492 vif->type == NL80211_IFTYPE_ADHOC)) {
5493 /*
5494 * New association.
5495 */
5496 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac sta %pM associated\n",
5497 sta->addr);
5498
5499 ret = ath10k_station_assoc(ar, vif, sta, false);
5500 if (ret)
5501 ath10k_warn(ar, "failed to associate station %pM for vdev %i: %i\n",
5502 sta->addr, arvif->vdev_id, ret);
5503 } else if (old_state == IEEE80211_STA_ASSOC &&
5504 new_state == IEEE80211_STA_AUTHORIZED &&
5505 sta->tdls) {
5506 /*
5507 * Tdls station authorized.
5508 */
5509 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac tdls sta %pM authorized\n",
5510 sta->addr);
5511
5512 ret = ath10k_station_assoc(ar, vif, sta, false);
5513 if (ret) {
5514 ath10k_warn(ar, "failed to associate tdls station %pM for vdev %i: %i\n",
5515 sta->addr, arvif->vdev_id, ret);
5516 goto exit;
5517 }
5518
5519 ret = ath10k_mac_tdls_peer_update(ar, arvif->vdev_id, sta,
5520 WMI_TDLS_PEER_STATE_CONNECTED);
5521 if (ret)
5522 ath10k_warn(ar, "failed to update tdls peer %pM for vdev %i: %i\n",
5523 sta->addr, arvif->vdev_id, ret);
5524 } else if (old_state == IEEE80211_STA_ASSOC &&
5525 new_state == IEEE80211_STA_AUTH &&
5526 (vif->type == NL80211_IFTYPE_AP ||
5527 vif->type == NL80211_IFTYPE_MESH_POINT ||
5528 vif->type == NL80211_IFTYPE_ADHOC)) {
5529 /*
5530 * Disassociation.
5531 */
5532 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac sta %pM disassociated\n",
5533 sta->addr);
5534
5535 ret = ath10k_station_disassoc(ar, vif, sta);
5536 if (ret)
5537 ath10k_warn(ar, "failed to disassociate station: %pM vdev %i: %i\n",
5538 sta->addr, arvif->vdev_id, ret);
5539 }
5540 exit:
5541 mutex_unlock(&ar->conf_mutex);
5542 return ret;
5543 }
5544
5545 static int ath10k_conf_tx_uapsd(struct ath10k *ar, struct ieee80211_vif *vif,
5546 u16 ac, bool enable)
5547 {
5548 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
5549 struct wmi_sta_uapsd_auto_trig_arg arg = {};
5550 u32 prio = 0, acc = 0;
5551 u32 value = 0;
5552 int ret = 0;
5553
5554 lockdep_assert_held(&ar->conf_mutex);
5555
5556 if (arvif->vdev_type != WMI_VDEV_TYPE_STA)
5557 return 0;
5558
5559 switch (ac) {
5560 case IEEE80211_AC_VO:
5561 value = WMI_STA_PS_UAPSD_AC3_DELIVERY_EN |
5562 WMI_STA_PS_UAPSD_AC3_TRIGGER_EN;
5563 prio = 7;
5564 acc = 3;
5565 break;
5566 case IEEE80211_AC_VI:
5567 value = WMI_STA_PS_UAPSD_AC2_DELIVERY_EN |
5568 WMI_STA_PS_UAPSD_AC2_TRIGGER_EN;
5569 prio = 5;
5570 acc = 2;
5571 break;
5572 case IEEE80211_AC_BE:
5573 value = WMI_STA_PS_UAPSD_AC1_DELIVERY_EN |
5574 WMI_STA_PS_UAPSD_AC1_TRIGGER_EN;
5575 prio = 2;
5576 acc = 1;
5577 break;
5578 case IEEE80211_AC_BK:
5579 value = WMI_STA_PS_UAPSD_AC0_DELIVERY_EN |
5580 WMI_STA_PS_UAPSD_AC0_TRIGGER_EN;
5581 prio = 0;
5582 acc = 0;
5583 break;
5584 }
5585
5586 if (enable)
5587 arvif->u.sta.uapsd |= value;
5588 else
5589 arvif->u.sta.uapsd &= ~value;
5590
5591 ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
5592 WMI_STA_PS_PARAM_UAPSD,
5593 arvif->u.sta.uapsd);
5594 if (ret) {
5595 ath10k_warn(ar, "failed to set uapsd params: %d\n", ret);
5596 goto exit;
5597 }
5598
5599 if (arvif->u.sta.uapsd)
5600 value = WMI_STA_PS_RX_WAKE_POLICY_POLL_UAPSD;
5601 else
5602 value = WMI_STA_PS_RX_WAKE_POLICY_WAKE;
5603
5604 ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
5605 WMI_STA_PS_PARAM_RX_WAKE_POLICY,
5606 value);
5607 if (ret)
5608 ath10k_warn(ar, "failed to set rx wake param: %d\n", ret);
5609
5610 ret = ath10k_mac_vif_recalc_ps_wake_threshold(arvif);
5611 if (ret) {
5612 ath10k_warn(ar, "failed to recalc ps wake threshold on vdev %i: %d\n",
5613 arvif->vdev_id, ret);
5614 return ret;
5615 }
5616
5617 ret = ath10k_mac_vif_recalc_ps_poll_count(arvif);
5618 if (ret) {
5619 ath10k_warn(ar, "failed to recalc ps poll count on vdev %i: %d\n",
5620 arvif->vdev_id, ret);
5621 return ret;
5622 }
5623
5624 if (test_bit(WMI_SERVICE_STA_UAPSD_BASIC_AUTO_TRIG, ar->wmi.svc_map) ||
5625 test_bit(WMI_SERVICE_STA_UAPSD_VAR_AUTO_TRIG, ar->wmi.svc_map)) {
5626 /* Only userspace can make an educated decision when to send
5627 * trigger frame. The following effectively disables u-UAPSD
5628 * autotrigger in firmware (which is enabled by default
5629 * provided the autotrigger service is available).
5630 */
5631
5632 arg.wmm_ac = acc;
5633 arg.user_priority = prio;
5634 arg.service_interval = 0;
5635 arg.suspend_interval = WMI_STA_UAPSD_MAX_INTERVAL_MSEC;
5636 arg.delay_interval = WMI_STA_UAPSD_MAX_INTERVAL_MSEC;
5637
5638 ret = ath10k_wmi_vdev_sta_uapsd(ar, arvif->vdev_id,
5639 arvif->bssid, &arg, 1);
5640 if (ret) {
5641 ath10k_warn(ar, "failed to set uapsd auto trigger %d\n",
5642 ret);
5643 return ret;
5644 }
5645 }
5646
5647 exit:
5648 return ret;
5649 }
5650
5651 static int ath10k_conf_tx(struct ieee80211_hw *hw,
5652 struct ieee80211_vif *vif, u16 ac,
5653 const struct ieee80211_tx_queue_params *params)
5654 {
5655 struct ath10k *ar = hw->priv;
5656 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
5657 struct wmi_wmm_params_arg *p = NULL;
5658 int ret;
5659
5660 mutex_lock(&ar->conf_mutex);
5661
5662 switch (ac) {
5663 case IEEE80211_AC_VO:
5664 p = &arvif->wmm_params.ac_vo;
5665 break;
5666 case IEEE80211_AC_VI:
5667 p = &arvif->wmm_params.ac_vi;
5668 break;
5669 case IEEE80211_AC_BE:
5670 p = &arvif->wmm_params.ac_be;
5671 break;
5672 case IEEE80211_AC_BK:
5673 p = &arvif->wmm_params.ac_bk;
5674 break;
5675 }
5676
5677 if (WARN_ON(!p)) {
5678 ret = -EINVAL;
5679 goto exit;
5680 }
5681
5682 p->cwmin = params->cw_min;
5683 p->cwmax = params->cw_max;
5684 p->aifs = params->aifs;
5685
5686 /*
5687 * The channel time duration programmed in the HW is in absolute
5688 * microseconds, while mac80211 gives the txop in units of
5689 * 32 microseconds.
5690 */
5691 p->txop = params->txop * 32;
5692
5693 if (ar->wmi.ops->gen_vdev_wmm_conf) {
5694 ret = ath10k_wmi_vdev_wmm_conf(ar, arvif->vdev_id,
5695 &arvif->wmm_params);
5696 if (ret) {
5697 ath10k_warn(ar, "failed to set vdev wmm params on vdev %i: %d\n",
5698 arvif->vdev_id, ret);
5699 goto exit;
5700 }
5701 } else {
5702 /* This won't work well with multi-interface cases but it's
5703 * better than nothing.
5704 */
5705 ret = ath10k_wmi_pdev_set_wmm_params(ar, &arvif->wmm_params);
5706 if (ret) {
5707 ath10k_warn(ar, "failed to set wmm params: %d\n", ret);
5708 goto exit;
5709 }
5710 }
5711
5712 ret = ath10k_conf_tx_uapsd(ar, vif, ac, params->uapsd);
5713 if (ret)
5714 ath10k_warn(ar, "failed to set sta uapsd: %d\n", ret);
5715
5716 exit:
5717 mutex_unlock(&ar->conf_mutex);
5718 return ret;
5719 }
5720
5721 #define ATH10K_ROC_TIMEOUT_HZ (2*HZ)
5722
5723 static int ath10k_remain_on_channel(struct ieee80211_hw *hw,
5724 struct ieee80211_vif *vif,
5725 struct ieee80211_channel *chan,
5726 int duration,
5727 enum ieee80211_roc_type type)
5728 {
5729 struct ath10k *ar = hw->priv;
5730 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
5731 struct wmi_start_scan_arg arg;
5732 int ret = 0;
5733 u32 scan_time_msec;
5734
5735 mutex_lock(&ar->conf_mutex);
5736
5737 spin_lock_bh(&ar->data_lock);
5738 switch (ar->scan.state) {
5739 case ATH10K_SCAN_IDLE:
5740 reinit_completion(&ar->scan.started);
5741 reinit_completion(&ar->scan.completed);
5742 reinit_completion(&ar->scan.on_channel);
5743 ar->scan.state = ATH10K_SCAN_STARTING;
5744 ar->scan.is_roc = true;
5745 ar->scan.vdev_id = arvif->vdev_id;
5746 ar->scan.roc_freq = chan->center_freq;
5747 ar->scan.roc_notify = true;
5748 ret = 0;
5749 break;
5750 case ATH10K_SCAN_STARTING:
5751 case ATH10K_SCAN_RUNNING:
5752 case ATH10K_SCAN_ABORTING:
5753 ret = -EBUSY;
5754 break;
5755 }
5756 spin_unlock_bh(&ar->data_lock);
5757
5758 if (ret)
5759 goto exit;
5760
5761 scan_time_msec = ar->hw->wiphy->max_remain_on_channel_duration * 2;
5762
5763 memset(&arg, 0, sizeof(arg));
5764 ath10k_wmi_start_scan_init(ar, &arg);
5765 arg.vdev_id = arvif->vdev_id;
5766 arg.scan_id = ATH10K_SCAN_ID;
5767 arg.n_channels = 1;
5768 arg.channels[0] = chan->center_freq;
5769 arg.dwell_time_active = scan_time_msec;
5770 arg.dwell_time_passive = scan_time_msec;
5771 arg.max_scan_time = scan_time_msec;
5772 arg.scan_ctrl_flags |= WMI_SCAN_FLAG_PASSIVE;
5773 arg.scan_ctrl_flags |= WMI_SCAN_FILTER_PROBE_REQ;
5774 arg.burst_duration_ms = duration;
5775
5776 ret = ath10k_start_scan(ar, &arg);
5777 if (ret) {
5778 ath10k_warn(ar, "failed to start roc scan: %d\n", ret);
5779 spin_lock_bh(&ar->data_lock);
5780 ar->scan.state = ATH10K_SCAN_IDLE;
5781 spin_unlock_bh(&ar->data_lock);
5782 goto exit;
5783 }
5784
5785 ret = wait_for_completion_timeout(&ar->scan.on_channel, 3*HZ);
5786 if (ret == 0) {
5787 ath10k_warn(ar, "failed to switch to channel for roc scan\n");
5788
5789 ret = ath10k_scan_stop(ar);
5790 if (ret)
5791 ath10k_warn(ar, "failed to stop scan: %d\n", ret);
5792
5793 ret = -ETIMEDOUT;
5794 goto exit;
5795 }
5796
5797 ieee80211_queue_delayed_work(ar->hw, &ar->scan.timeout,
5798 msecs_to_jiffies(duration));
5799
5800 ret = 0;
5801 exit:
5802 mutex_unlock(&ar->conf_mutex);
5803 return ret;
5804 }
5805
5806 static int ath10k_cancel_remain_on_channel(struct ieee80211_hw *hw)
5807 {
5808 struct ath10k *ar = hw->priv;
5809
5810 mutex_lock(&ar->conf_mutex);
5811
5812 spin_lock_bh(&ar->data_lock);
5813 ar->scan.roc_notify = false;
5814 spin_unlock_bh(&ar->data_lock);
5815
5816 ath10k_scan_abort(ar);
5817
5818 mutex_unlock(&ar->conf_mutex);
5819
5820 cancel_delayed_work_sync(&ar->scan.timeout);
5821
5822 return 0;
5823 }
5824
5825 /*
5826 * Both RTS and Fragmentation threshold are interface-specific
5827 * in ath10k, but device-specific in mac80211.
5828 */
5829
5830 static int ath10k_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
5831 {
5832 struct ath10k *ar = hw->priv;
5833 struct ath10k_vif *arvif;
5834 int ret = 0;
5835
5836 mutex_lock(&ar->conf_mutex);
5837 list_for_each_entry(arvif, &ar->arvifs, list) {
5838 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d rts threshold %d\n",
5839 arvif->vdev_id, value);
5840
5841 ret = ath10k_mac_set_rts(arvif, value);
5842 if (ret) {
5843 ath10k_warn(ar, "failed to set rts threshold for vdev %d: %d\n",
5844 arvif->vdev_id, ret);
5845 break;
5846 }
5847 }
5848 mutex_unlock(&ar->conf_mutex);
5849
5850 return ret;
5851 }
5852
5853 static int ath10k_mac_op_set_frag_threshold(struct ieee80211_hw *hw, u32 value)
5854 {
5855 /* Even though there's a WMI enum for fragmentation threshold no known
5856 * firmware actually implements it. Moreover it is not possible to rely
5857 * frame fragmentation to mac80211 because firmware clears the "more
5858 * fragments" bit in frame control making it impossible for remote
5859 * devices to reassemble frames.
5860 *
5861 * Hence implement a dummy callback just to say fragmentation isn't
5862 * supported. This effectively prevents mac80211 from doing frame
5863 * fragmentation in software.
5864 */
5865 return -EOPNOTSUPP;
5866 }
5867
5868 static void ath10k_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
5869 u32 queues, bool drop)
5870 {
5871 struct ath10k *ar = hw->priv;
5872 bool skip;
5873 long time_left;
5874
5875 /* mac80211 doesn't care if we really xmit queued frames or not
5876 * we'll collect those frames either way if we stop/delete vdevs */
5877 if (drop)
5878 return;
5879
5880 mutex_lock(&ar->conf_mutex);
5881
5882 if (ar->state == ATH10K_STATE_WEDGED)
5883 goto skip;
5884
5885 time_left = wait_event_timeout(ar->htt.empty_tx_wq, ({
5886 bool empty;
5887
5888 spin_lock_bh(&ar->htt.tx_lock);
5889 empty = (ar->htt.num_pending_tx == 0);
5890 spin_unlock_bh(&ar->htt.tx_lock);
5891
5892 skip = (ar->state == ATH10K_STATE_WEDGED) ||
5893 test_bit(ATH10K_FLAG_CRASH_FLUSH,
5894 &ar->dev_flags);
5895
5896 (empty || skip);
5897 }), ATH10K_FLUSH_TIMEOUT_HZ);
5898
5899 if (time_left == 0 || skip)
5900 ath10k_warn(ar, "failed to flush transmit queue (skip %i ar-state %i): %ld\n",
5901 skip, ar->state, time_left);
5902
5903 skip:
5904 mutex_unlock(&ar->conf_mutex);
5905 }
5906
5907 /* TODO: Implement this function properly
5908 * For now it is needed to reply to Probe Requests in IBSS mode.
5909 * Propably we need this information from FW.
5910 */
5911 static int ath10k_tx_last_beacon(struct ieee80211_hw *hw)
5912 {
5913 return 1;
5914 }
5915
5916 static void ath10k_reconfig_complete(struct ieee80211_hw *hw,
5917 enum ieee80211_reconfig_type reconfig_type)
5918 {
5919 struct ath10k *ar = hw->priv;
5920
5921 if (reconfig_type != IEEE80211_RECONFIG_TYPE_RESTART)
5922 return;
5923
5924 mutex_lock(&ar->conf_mutex);
5925
5926 /* If device failed to restart it will be in a different state, e.g.
5927 * ATH10K_STATE_WEDGED */
5928 if (ar->state == ATH10K_STATE_RESTARTED) {
5929 ath10k_info(ar, "device successfully recovered\n");
5930 ar->state = ATH10K_STATE_ON;
5931 ieee80211_wake_queues(ar->hw);
5932 }
5933
5934 mutex_unlock(&ar->conf_mutex);
5935 }
5936
5937 static int ath10k_get_survey(struct ieee80211_hw *hw, int idx,
5938 struct survey_info *survey)
5939 {
5940 struct ath10k *ar = hw->priv;
5941 struct ieee80211_supported_band *sband;
5942 struct survey_info *ar_survey = &ar->survey[idx];
5943 int ret = 0;
5944
5945 mutex_lock(&ar->conf_mutex);
5946
5947 sband = hw->wiphy->bands[IEEE80211_BAND_2GHZ];
5948 if (sband && idx >= sband->n_channels) {
5949 idx -= sband->n_channels;
5950 sband = NULL;
5951 }
5952
5953 if (!sband)
5954 sband = hw->wiphy->bands[IEEE80211_BAND_5GHZ];
5955
5956 if (!sband || idx >= sband->n_channels) {
5957 ret = -ENOENT;
5958 goto exit;
5959 }
5960
5961 spin_lock_bh(&ar->data_lock);
5962 memcpy(survey, ar_survey, sizeof(*survey));
5963 spin_unlock_bh(&ar->data_lock);
5964
5965 survey->channel = &sband->channels[idx];
5966
5967 if (ar->rx_channel == survey->channel)
5968 survey->filled |= SURVEY_INFO_IN_USE;
5969
5970 exit:
5971 mutex_unlock(&ar->conf_mutex);
5972 return ret;
5973 }
5974
5975 static bool
5976 ath10k_mac_bitrate_mask_has_single_rate(struct ath10k *ar,
5977 enum ieee80211_band band,
5978 const struct cfg80211_bitrate_mask *mask)
5979 {
5980 int num_rates = 0;
5981 int i;
5982
5983 num_rates += hweight32(mask->control[band].legacy);
5984
5985 for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++)
5986 num_rates += hweight8(mask->control[band].ht_mcs[i]);
5987
5988 for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++)
5989 num_rates += hweight16(mask->control[band].vht_mcs[i]);
5990
5991 return num_rates == 1;
5992 }
5993
5994 static bool
5995 ath10k_mac_bitrate_mask_get_single_nss(struct ath10k *ar,
5996 enum ieee80211_band band,
5997 const struct cfg80211_bitrate_mask *mask,
5998 int *nss)
5999 {
6000 struct ieee80211_supported_band *sband = &ar->mac.sbands[band];
6001 u16 vht_mcs_map = le16_to_cpu(sband->vht_cap.vht_mcs.tx_mcs_map);
6002 u8 ht_nss_mask = 0;
6003 u8 vht_nss_mask = 0;
6004 int i;
6005
6006 if (mask->control[band].legacy)
6007 return false;
6008
6009 for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++) {
6010 if (mask->control[band].ht_mcs[i] == 0)
6011 continue;
6012 else if (mask->control[band].ht_mcs[i] ==
6013 sband->ht_cap.mcs.rx_mask[i])
6014 ht_nss_mask |= BIT(i);
6015 else
6016 return false;
6017 }
6018
6019 for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++) {
6020 if (mask->control[band].vht_mcs[i] == 0)
6021 continue;
6022 else if (mask->control[band].vht_mcs[i] ==
6023 ath10k_mac_get_max_vht_mcs_map(vht_mcs_map, i))
6024 vht_nss_mask |= BIT(i);
6025 else
6026 return false;
6027 }
6028
6029 if (ht_nss_mask != vht_nss_mask)
6030 return false;
6031
6032 if (ht_nss_mask == 0)
6033 return false;
6034
6035 if (BIT(fls(ht_nss_mask)) - 1 != ht_nss_mask)
6036 return false;
6037
6038 *nss = fls(ht_nss_mask);
6039
6040 return true;
6041 }
6042
6043 static int
6044 ath10k_mac_bitrate_mask_get_single_rate(struct ath10k *ar,
6045 enum ieee80211_band band,
6046 const struct cfg80211_bitrate_mask *mask,
6047 u8 *rate, u8 *nss)
6048 {
6049 struct ieee80211_supported_band *sband = &ar->mac.sbands[band];
6050 int rate_idx;
6051 int i;
6052 u16 bitrate;
6053 u8 preamble;
6054 u8 hw_rate;
6055
6056 if (hweight32(mask->control[band].legacy) == 1) {
6057 rate_idx = ffs(mask->control[band].legacy) - 1;
6058
6059 hw_rate = sband->bitrates[rate_idx].hw_value;
6060 bitrate = sband->bitrates[rate_idx].bitrate;
6061
6062 if (ath10k_mac_bitrate_is_cck(bitrate))
6063 preamble = WMI_RATE_PREAMBLE_CCK;
6064 else
6065 preamble = WMI_RATE_PREAMBLE_OFDM;
6066
6067 *nss = 1;
6068 *rate = preamble << 6 |
6069 (*nss - 1) << 4 |
6070 hw_rate << 0;
6071
6072 return 0;
6073 }
6074
6075 for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++) {
6076 if (hweight8(mask->control[band].ht_mcs[i]) == 1) {
6077 *nss = i + 1;
6078 *rate = WMI_RATE_PREAMBLE_HT << 6 |
6079 (*nss - 1) << 4 |
6080 (ffs(mask->control[band].ht_mcs[i]) - 1);
6081
6082 return 0;
6083 }
6084 }
6085
6086 for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++) {
6087 if (hweight16(mask->control[band].vht_mcs[i]) == 1) {
6088 *nss = i + 1;
6089 *rate = WMI_RATE_PREAMBLE_VHT << 6 |
6090 (*nss - 1) << 4 |
6091 (ffs(mask->control[band].vht_mcs[i]) - 1);
6092
6093 return 0;
6094 }
6095 }
6096
6097 return -EINVAL;
6098 }
6099
6100 static int ath10k_mac_set_fixed_rate_params(struct ath10k_vif *arvif,
6101 u8 rate, u8 nss, u8 sgi, u8 ldpc)
6102 {
6103 struct ath10k *ar = arvif->ar;
6104 u32 vdev_param;
6105 int ret;
6106
6107 lockdep_assert_held(&ar->conf_mutex);
6108
6109 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac set fixed rate params vdev %i rate 0x%02hhx nss %hhu sgi %hhu\n",
6110 arvif->vdev_id, rate, nss, sgi);
6111
6112 vdev_param = ar->wmi.vdev_param->fixed_rate;
6113 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, rate);
6114 if (ret) {
6115 ath10k_warn(ar, "failed to set fixed rate param 0x%02x: %d\n",
6116 rate, ret);
6117 return ret;
6118 }
6119
6120 vdev_param = ar->wmi.vdev_param->nss;
6121 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, nss);
6122 if (ret) {
6123 ath10k_warn(ar, "failed to set nss param %d: %d\n", nss, ret);
6124 return ret;
6125 }
6126
6127 vdev_param = ar->wmi.vdev_param->sgi;
6128 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, sgi);
6129 if (ret) {
6130 ath10k_warn(ar, "failed to set sgi param %d: %d\n", sgi, ret);
6131 return ret;
6132 }
6133
6134 vdev_param = ar->wmi.vdev_param->ldpc;
6135 ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, ldpc);
6136 if (ret) {
6137 ath10k_warn(ar, "failed to set ldpc param %d: %d\n", ldpc, ret);
6138 return ret;
6139 }
6140
6141 return 0;
6142 }
6143
6144 static bool
6145 ath10k_mac_can_set_bitrate_mask(struct ath10k *ar,
6146 enum ieee80211_band band,
6147 const struct cfg80211_bitrate_mask *mask)
6148 {
6149 int i;
6150 u16 vht_mcs;
6151
6152 /* Due to firmware limitation in WMI_PEER_ASSOC_CMDID it is impossible
6153 * to express all VHT MCS rate masks. Effectively only the following
6154 * ranges can be used: none, 0-7, 0-8 and 0-9.
6155 */
6156 for (i = 0; i < NL80211_VHT_NSS_MAX; i++) {
6157 vht_mcs = mask->control[band].vht_mcs[i];
6158
6159 switch (vht_mcs) {
6160 case 0:
6161 case BIT(8) - 1:
6162 case BIT(9) - 1:
6163 case BIT(10) - 1:
6164 break;
6165 default:
6166 ath10k_warn(ar, "refusing bitrate mask with missing 0-7 VHT MCS rates\n");
6167 return false;
6168 }
6169 }
6170
6171 return true;
6172 }
6173
6174 static void ath10k_mac_set_bitrate_mask_iter(void *data,
6175 struct ieee80211_sta *sta)
6176 {
6177 struct ath10k_vif *arvif = data;
6178 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
6179 struct ath10k *ar = arvif->ar;
6180
6181 if (arsta->arvif != arvif)
6182 return;
6183
6184 spin_lock_bh(&ar->data_lock);
6185 arsta->changed |= IEEE80211_RC_SUPP_RATES_CHANGED;
6186 spin_unlock_bh(&ar->data_lock);
6187
6188 ieee80211_queue_work(ar->hw, &arsta->update_wk);
6189 }
6190
6191 static int ath10k_mac_op_set_bitrate_mask(struct ieee80211_hw *hw,
6192 struct ieee80211_vif *vif,
6193 const struct cfg80211_bitrate_mask *mask)
6194 {
6195 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
6196 struct cfg80211_chan_def def;
6197 struct ath10k *ar = arvif->ar;
6198 enum ieee80211_band band;
6199 const u8 *ht_mcs_mask;
6200 const u16 *vht_mcs_mask;
6201 u8 rate;
6202 u8 nss;
6203 u8 sgi;
6204 u8 ldpc;
6205 int single_nss;
6206 int ret;
6207
6208 if (ath10k_mac_vif_chan(vif, &def))
6209 return -EPERM;
6210
6211 band = def.chan->band;
6212 ht_mcs_mask = mask->control[band].ht_mcs;
6213 vht_mcs_mask = mask->control[band].vht_mcs;
6214 ldpc = !!(ar->ht_cap_info & WMI_HT_CAP_LDPC);
6215
6216 sgi = mask->control[band].gi;
6217 if (sgi == NL80211_TXRATE_FORCE_LGI)
6218 return -EINVAL;
6219
6220 if (ath10k_mac_bitrate_mask_has_single_rate(ar, band, mask)) {
6221 ret = ath10k_mac_bitrate_mask_get_single_rate(ar, band, mask,
6222 &rate, &nss);
6223 if (ret) {
6224 ath10k_warn(ar, "failed to get single rate for vdev %i: %d\n",
6225 arvif->vdev_id, ret);
6226 return ret;
6227 }
6228 } else if (ath10k_mac_bitrate_mask_get_single_nss(ar, band, mask,
6229 &single_nss)) {
6230 rate = WMI_FIXED_RATE_NONE;
6231 nss = single_nss;
6232 } else {
6233 rate = WMI_FIXED_RATE_NONE;
6234 nss = min(ar->num_rf_chains,
6235 max(ath10k_mac_max_ht_nss(ht_mcs_mask),
6236 ath10k_mac_max_vht_nss(vht_mcs_mask)));
6237
6238 if (!ath10k_mac_can_set_bitrate_mask(ar, band, mask))
6239 return -EINVAL;
6240
6241 mutex_lock(&ar->conf_mutex);
6242
6243 arvif->bitrate_mask = *mask;
6244 ieee80211_iterate_stations_atomic(ar->hw,
6245 ath10k_mac_set_bitrate_mask_iter,
6246 arvif);
6247
6248 mutex_unlock(&ar->conf_mutex);
6249 }
6250
6251 mutex_lock(&ar->conf_mutex);
6252
6253 ret = ath10k_mac_set_fixed_rate_params(arvif, rate, nss, sgi, ldpc);
6254 if (ret) {
6255 ath10k_warn(ar, "failed to set fixed rate params on vdev %i: %d\n",
6256 arvif->vdev_id, ret);
6257 goto exit;
6258 }
6259
6260 exit:
6261 mutex_unlock(&ar->conf_mutex);
6262
6263 return ret;
6264 }
6265
6266 static void ath10k_sta_rc_update(struct ieee80211_hw *hw,
6267 struct ieee80211_vif *vif,
6268 struct ieee80211_sta *sta,
6269 u32 changed)
6270 {
6271 struct ath10k *ar = hw->priv;
6272 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
6273 u32 bw, smps;
6274
6275 spin_lock_bh(&ar->data_lock);
6276
6277 ath10k_dbg(ar, ATH10K_DBG_MAC,
6278 "mac sta rc update for %pM changed %08x bw %d nss %d smps %d\n",
6279 sta->addr, changed, sta->bandwidth, sta->rx_nss,
6280 sta->smps_mode);
6281
6282 if (changed & IEEE80211_RC_BW_CHANGED) {
6283 bw = WMI_PEER_CHWIDTH_20MHZ;
6284
6285 switch (sta->bandwidth) {
6286 case IEEE80211_STA_RX_BW_20:
6287 bw = WMI_PEER_CHWIDTH_20MHZ;
6288 break;
6289 case IEEE80211_STA_RX_BW_40:
6290 bw = WMI_PEER_CHWIDTH_40MHZ;
6291 break;
6292 case IEEE80211_STA_RX_BW_80:
6293 bw = WMI_PEER_CHWIDTH_80MHZ;
6294 break;
6295 case IEEE80211_STA_RX_BW_160:
6296 ath10k_warn(ar, "Invalid bandwidth %d in rc update for %pM\n",
6297 sta->bandwidth, sta->addr);
6298 bw = WMI_PEER_CHWIDTH_20MHZ;
6299 break;
6300 }
6301
6302 arsta->bw = bw;
6303 }
6304
6305 if (changed & IEEE80211_RC_NSS_CHANGED)
6306 arsta->nss = sta->rx_nss;
6307
6308 if (changed & IEEE80211_RC_SMPS_CHANGED) {
6309 smps = WMI_PEER_SMPS_PS_NONE;
6310
6311 switch (sta->smps_mode) {
6312 case IEEE80211_SMPS_AUTOMATIC:
6313 case IEEE80211_SMPS_OFF:
6314 smps = WMI_PEER_SMPS_PS_NONE;
6315 break;
6316 case IEEE80211_SMPS_STATIC:
6317 smps = WMI_PEER_SMPS_STATIC;
6318 break;
6319 case IEEE80211_SMPS_DYNAMIC:
6320 smps = WMI_PEER_SMPS_DYNAMIC;
6321 break;
6322 case IEEE80211_SMPS_NUM_MODES:
6323 ath10k_warn(ar, "Invalid smps %d in sta rc update for %pM\n",
6324 sta->smps_mode, sta->addr);
6325 smps = WMI_PEER_SMPS_PS_NONE;
6326 break;
6327 }
6328
6329 arsta->smps = smps;
6330 }
6331
6332 arsta->changed |= changed;
6333
6334 spin_unlock_bh(&ar->data_lock);
6335
6336 ieee80211_queue_work(hw, &arsta->update_wk);
6337 }
6338
6339 static u64 ath10k_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
6340 {
6341 /*
6342 * FIXME: Return 0 for time being. Need to figure out whether FW
6343 * has the API to fetch 64-bit local TSF
6344 */
6345
6346 return 0;
6347 }
6348
6349 static int ath10k_ampdu_action(struct ieee80211_hw *hw,
6350 struct ieee80211_vif *vif,
6351 enum ieee80211_ampdu_mlme_action action,
6352 struct ieee80211_sta *sta, u16 tid, u16 *ssn,
6353 u8 buf_size, bool amsdu)
6354 {
6355 struct ath10k *ar = hw->priv;
6356 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
6357
6358 ath10k_dbg(ar, ATH10K_DBG_MAC, "mac ampdu vdev_id %i sta %pM tid %hu action %d\n",
6359 arvif->vdev_id, sta->addr, tid, action);
6360
6361 switch (action) {
6362 case IEEE80211_AMPDU_RX_START:
6363 case IEEE80211_AMPDU_RX_STOP:
6364 /* HTT AddBa/DelBa events trigger mac80211 Rx BA session
6365 * creation/removal. Do we need to verify this?
6366 */
6367 return 0;
6368 case IEEE80211_AMPDU_TX_START:
6369 case IEEE80211_AMPDU_TX_STOP_CONT:
6370 case IEEE80211_AMPDU_TX_STOP_FLUSH:
6371 case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
6372 case IEEE80211_AMPDU_TX_OPERATIONAL:
6373 /* Firmware offloads Tx aggregation entirely so deny mac80211
6374 * Tx aggregation requests.
6375 */
6376 return -EOPNOTSUPP;
6377 }
6378
6379 return -EINVAL;
6380 }
6381
6382 static void
6383 ath10k_mac_update_rx_channel(struct ath10k *ar,
6384 struct ieee80211_chanctx_conf *ctx,
6385 struct ieee80211_vif_chanctx_switch *vifs,
6386 int n_vifs)
6387 {
6388 struct cfg80211_chan_def *def = NULL;
6389
6390 /* Both locks are required because ar->rx_channel is modified. This
6391 * allows readers to hold either lock.
6392 */
6393 lockdep_assert_held(&ar->conf_mutex);
6394 lockdep_assert_held(&ar->data_lock);
6395
6396 WARN_ON(ctx && vifs);
6397 WARN_ON(vifs && n_vifs != 1);
6398
6399 /* FIXME: Sort of an optimization and a workaround. Peers and vifs are
6400 * on a linked list now. Doing a lookup peer -> vif -> chanctx for each
6401 * ppdu on Rx may reduce performance on low-end systems. It should be
6402 * possible to make tables/hashmaps to speed the lookup up (be vary of
6403 * cpu data cache lines though regarding sizes) but to keep the initial
6404 * implementation simple and less intrusive fallback to the slow lookup
6405 * only for multi-channel cases. Single-channel cases will remain to
6406 * use the old channel derival and thus performance should not be
6407 * affected much.
6408 */
6409 rcu_read_lock();
6410 if (!ctx && ath10k_mac_num_chanctxs(ar) == 1) {
6411 ieee80211_iter_chan_contexts_atomic(ar->hw,
6412 ath10k_mac_get_any_chandef_iter,
6413 &def);
6414
6415 if (vifs)
6416 def = &vifs[0].new_ctx->def;
6417
6418 ar->rx_channel = def->chan;
6419 } else if (ctx && ath10k_mac_num_chanctxs(ar) == 0) {
6420 ar->rx_channel = ctx->def.chan;
6421 } else {
6422 ar->rx_channel = NULL;
6423 }
6424 rcu_read_unlock();
6425 }
6426
6427 static void
6428 ath10k_mac_update_vif_chan(struct ath10k *ar,
6429 struct ieee80211_vif_chanctx_switch *vifs,
6430 int n_vifs)
6431 {
6432 struct ath10k_vif *arvif;
6433 int ret;
6434 int i;
6435
6436 lockdep_assert_held(&ar->conf_mutex);
6437
6438 /* First stop monitor interface. Some FW versions crash if there's a
6439 * lone monitor interface.
6440 */
6441 if (ar->monitor_started)
6442 ath10k_monitor_stop(ar);
6443
6444 for (i = 0; i < n_vifs; i++) {
6445 arvif = ath10k_vif_to_arvif(vifs[i].vif);
6446
6447 ath10k_dbg(ar, ATH10K_DBG_MAC,
6448 "mac chanctx switch vdev_id %i freq %hu->%hu width %d->%d\n",
6449 arvif->vdev_id,
6450 vifs[i].old_ctx->def.chan->center_freq,
6451 vifs[i].new_ctx->def.chan->center_freq,
6452 vifs[i].old_ctx->def.width,
6453 vifs[i].new_ctx->def.width);
6454
6455 if (WARN_ON(!arvif->is_started))
6456 continue;
6457
6458 if (WARN_ON(!arvif->is_up))
6459 continue;
6460
6461 ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id);
6462 if (ret) {
6463 ath10k_warn(ar, "failed to down vdev %d: %d\n",
6464 arvif->vdev_id, ret);
6465 continue;
6466 }
6467 }
6468
6469 /* All relevant vdevs are downed and associated channel resources
6470 * should be available for the channel switch now.
6471 */
6472
6473 spin_lock_bh(&ar->data_lock);
6474 ath10k_mac_update_rx_channel(ar, NULL, vifs, n_vifs);
6475 spin_unlock_bh(&ar->data_lock);
6476
6477 for (i = 0; i < n_vifs; i++) {
6478 arvif = ath10k_vif_to_arvif(vifs[i].vif);
6479
6480 if (WARN_ON(!arvif->is_started))
6481 continue;
6482
6483 if (WARN_ON(!arvif->is_up))
6484 continue;
6485
6486 ret = ath10k_mac_setup_bcn_tmpl(arvif);
6487 if (ret)
6488 ath10k_warn(ar, "failed to update bcn tmpl during csa: %d\n",
6489 ret);
6490
6491 ret = ath10k_mac_setup_prb_tmpl(arvif);
6492 if (ret)
6493 ath10k_warn(ar, "failed to update prb tmpl during csa: %d\n",
6494 ret);
6495
6496 ret = ath10k_vdev_restart(arvif, &vifs[i].new_ctx->def);
6497 if (ret) {
6498 ath10k_warn(ar, "failed to restart vdev %d: %d\n",
6499 arvif->vdev_id, ret);
6500 continue;
6501 }
6502
6503 ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid,
6504 arvif->bssid);
6505 if (ret) {
6506 ath10k_warn(ar, "failed to bring vdev up %d: %d\n",
6507 arvif->vdev_id, ret);
6508 continue;
6509 }
6510 }
6511
6512 ath10k_monitor_recalc(ar);
6513 }
6514
6515 static int
6516 ath10k_mac_op_add_chanctx(struct ieee80211_hw *hw,
6517 struct ieee80211_chanctx_conf *ctx)
6518 {
6519 struct ath10k *ar = hw->priv;
6520
6521 ath10k_dbg(ar, ATH10K_DBG_MAC,
6522 "mac chanctx add freq %hu width %d ptr %p\n",
6523 ctx->def.chan->center_freq, ctx->def.width, ctx);
6524
6525 mutex_lock(&ar->conf_mutex);
6526
6527 spin_lock_bh(&ar->data_lock);
6528 ath10k_mac_update_rx_channel(ar, ctx, NULL, 0);
6529 spin_unlock_bh(&ar->data_lock);
6530
6531 ath10k_recalc_radar_detection(ar);
6532 ath10k_monitor_recalc(ar);
6533
6534 mutex_unlock(&ar->conf_mutex);
6535
6536 return 0;
6537 }
6538
6539 static void
6540 ath10k_mac_op_remove_chanctx(struct ieee80211_hw *hw,
6541 struct ieee80211_chanctx_conf *ctx)
6542 {
6543 struct ath10k *ar = hw->priv;
6544
6545 ath10k_dbg(ar, ATH10K_DBG_MAC,
6546 "mac chanctx remove freq %hu width %d ptr %p\n",
6547 ctx->def.chan->center_freq, ctx->def.width, ctx);
6548
6549 mutex_lock(&ar->conf_mutex);
6550
6551 spin_lock_bh(&ar->data_lock);
6552 ath10k_mac_update_rx_channel(ar, NULL, NULL, 0);
6553 spin_unlock_bh(&ar->data_lock);
6554
6555 ath10k_recalc_radar_detection(ar);
6556 ath10k_monitor_recalc(ar);
6557
6558 mutex_unlock(&ar->conf_mutex);
6559 }
6560
6561 struct ath10k_mac_change_chanctx_arg {
6562 struct ieee80211_chanctx_conf *ctx;
6563 struct ieee80211_vif_chanctx_switch *vifs;
6564 int n_vifs;
6565 int next_vif;
6566 };
6567
6568 static void
6569 ath10k_mac_change_chanctx_cnt_iter(void *data, u8 *mac,
6570 struct ieee80211_vif *vif)
6571 {
6572 struct ath10k_mac_change_chanctx_arg *arg = data;
6573
6574 if (rcu_access_pointer(vif->chanctx_conf) != arg->ctx)
6575 return;
6576
6577 arg->n_vifs++;
6578 }
6579
6580 static void
6581 ath10k_mac_change_chanctx_fill_iter(void *data, u8 *mac,
6582 struct ieee80211_vif *vif)
6583 {
6584 struct ath10k_mac_change_chanctx_arg *arg = data;
6585 struct ieee80211_chanctx_conf *ctx;
6586
6587 ctx = rcu_access_pointer(vif->chanctx_conf);
6588 if (ctx != arg->ctx)
6589 return;
6590
6591 if (WARN_ON(arg->next_vif == arg->n_vifs))
6592 return;
6593
6594 arg->vifs[arg->next_vif].vif = vif;
6595 arg->vifs[arg->next_vif].old_ctx = ctx;
6596 arg->vifs[arg->next_vif].new_ctx = ctx;
6597 arg->next_vif++;
6598 }
6599
6600 static void
6601 ath10k_mac_op_change_chanctx(struct ieee80211_hw *hw,
6602 struct ieee80211_chanctx_conf *ctx,
6603 u32 changed)
6604 {
6605 struct ath10k *ar = hw->priv;
6606 struct ath10k_mac_change_chanctx_arg arg = { .ctx = ctx };
6607
6608 mutex_lock(&ar->conf_mutex);
6609
6610 ath10k_dbg(ar, ATH10K_DBG_MAC,
6611 "mac chanctx change freq %hu width %d ptr %p changed %x\n",
6612 ctx->def.chan->center_freq, ctx->def.width, ctx, changed);
6613
6614 /* This shouldn't really happen because channel switching should use
6615 * switch_vif_chanctx().
6616 */
6617 if (WARN_ON(changed & IEEE80211_CHANCTX_CHANGE_CHANNEL))
6618 goto unlock;
6619
6620 if (changed & IEEE80211_CHANCTX_CHANGE_WIDTH) {
6621 ieee80211_iterate_active_interfaces_atomic(
6622 hw,
6623 IEEE80211_IFACE_ITER_NORMAL,
6624 ath10k_mac_change_chanctx_cnt_iter,
6625 &arg);
6626 if (arg.n_vifs == 0)
6627 goto radar;
6628
6629 arg.vifs = kcalloc(arg.n_vifs, sizeof(arg.vifs[0]),
6630 GFP_KERNEL);
6631 if (!arg.vifs)
6632 goto radar;
6633
6634 ieee80211_iterate_active_interfaces_atomic(
6635 hw,
6636 IEEE80211_IFACE_ITER_NORMAL,
6637 ath10k_mac_change_chanctx_fill_iter,
6638 &arg);
6639 ath10k_mac_update_vif_chan(ar, arg.vifs, arg.n_vifs);
6640 kfree(arg.vifs);
6641 }
6642
6643 radar:
6644 ath10k_recalc_radar_detection(ar);
6645
6646 /* FIXME: How to configure Rx chains properly? */
6647
6648 /* No other actions are actually necessary. Firmware maintains channel
6649 * definitions per vdev internally and there's no host-side channel
6650 * context abstraction to configure, e.g. channel width.
6651 */
6652
6653 unlock:
6654 mutex_unlock(&ar->conf_mutex);
6655 }
6656
6657 static int
6658 ath10k_mac_op_assign_vif_chanctx(struct ieee80211_hw *hw,
6659 struct ieee80211_vif *vif,
6660 struct ieee80211_chanctx_conf *ctx)
6661 {
6662 struct ath10k *ar = hw->priv;
6663 struct ath10k_vif *arvif = (void *)vif->drv_priv;
6664 int ret;
6665
6666 mutex_lock(&ar->conf_mutex);
6667
6668 ath10k_dbg(ar, ATH10K_DBG_MAC,
6669 "mac chanctx assign ptr %p vdev_id %i\n",
6670 ctx, arvif->vdev_id);
6671
6672 if (WARN_ON(arvif->is_started)) {
6673 mutex_unlock(&ar->conf_mutex);
6674 return -EBUSY;
6675 }
6676
6677 ret = ath10k_vdev_start(arvif, &ctx->def);
6678 if (ret) {
6679 ath10k_warn(ar, "failed to start vdev %i addr %pM on freq %d: %d\n",
6680 arvif->vdev_id, vif->addr,
6681 ctx->def.chan->center_freq, ret);
6682 goto err;
6683 }
6684
6685 arvif->is_started = true;
6686
6687 ret = ath10k_mac_vif_setup_ps(arvif);
6688 if (ret) {
6689 ath10k_warn(ar, "failed to update vdev %i ps: %d\n",
6690 arvif->vdev_id, ret);
6691 goto err_stop;
6692 }
6693
6694 if (vif->type == NL80211_IFTYPE_MONITOR) {
6695 ret = ath10k_wmi_vdev_up(ar, arvif->vdev_id, 0, vif->addr);
6696 if (ret) {
6697 ath10k_warn(ar, "failed to up monitor vdev %i: %d\n",
6698 arvif->vdev_id, ret);
6699 goto err_stop;
6700 }
6701
6702 arvif->is_up = true;
6703 }
6704
6705 mutex_unlock(&ar->conf_mutex);
6706 return 0;
6707
6708 err_stop:
6709 ath10k_vdev_stop(arvif);
6710 arvif->is_started = false;
6711 ath10k_mac_vif_setup_ps(arvif);
6712
6713 err:
6714 mutex_unlock(&ar->conf_mutex);
6715 return ret;
6716 }
6717
6718 static void
6719 ath10k_mac_op_unassign_vif_chanctx(struct ieee80211_hw *hw,
6720 struct ieee80211_vif *vif,
6721 struct ieee80211_chanctx_conf *ctx)
6722 {
6723 struct ath10k *ar = hw->priv;
6724 struct ath10k_vif *arvif = (void *)vif->drv_priv;
6725 int ret;
6726
6727 mutex_lock(&ar->conf_mutex);
6728
6729 ath10k_dbg(ar, ATH10K_DBG_MAC,
6730 "mac chanctx unassign ptr %p vdev_id %i\n",
6731 ctx, arvif->vdev_id);
6732
6733 WARN_ON(!arvif->is_started);
6734
6735 if (vif->type == NL80211_IFTYPE_MONITOR) {
6736 WARN_ON(!arvif->is_up);
6737
6738 ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id);
6739 if (ret)
6740 ath10k_warn(ar, "failed to down monitor vdev %i: %d\n",
6741 arvif->vdev_id, ret);
6742
6743 arvif->is_up = false;
6744 }
6745
6746 ret = ath10k_vdev_stop(arvif);
6747 if (ret)
6748 ath10k_warn(ar, "failed to stop vdev %i: %d\n",
6749 arvif->vdev_id, ret);
6750
6751 arvif->is_started = false;
6752
6753 mutex_unlock(&ar->conf_mutex);
6754 }
6755
6756 static int
6757 ath10k_mac_op_switch_vif_chanctx(struct ieee80211_hw *hw,
6758 struct ieee80211_vif_chanctx_switch *vifs,
6759 int n_vifs,
6760 enum ieee80211_chanctx_switch_mode mode)
6761 {
6762 struct ath10k *ar = hw->priv;
6763
6764 mutex_lock(&ar->conf_mutex);
6765
6766 ath10k_dbg(ar, ATH10K_DBG_MAC,
6767 "mac chanctx switch n_vifs %d mode %d\n",
6768 n_vifs, mode);
6769 ath10k_mac_update_vif_chan(ar, vifs, n_vifs);
6770
6771 mutex_unlock(&ar->conf_mutex);
6772 return 0;
6773 }
6774
6775 static const struct ieee80211_ops ath10k_ops = {
6776 .tx = ath10k_tx,
6777 .start = ath10k_start,
6778 .stop = ath10k_stop,
6779 .config = ath10k_config,
6780 .add_interface = ath10k_add_interface,
6781 .remove_interface = ath10k_remove_interface,
6782 .configure_filter = ath10k_configure_filter,
6783 .bss_info_changed = ath10k_bss_info_changed,
6784 .hw_scan = ath10k_hw_scan,
6785 .cancel_hw_scan = ath10k_cancel_hw_scan,
6786 .set_key = ath10k_set_key,
6787 .set_default_unicast_key = ath10k_set_default_unicast_key,
6788 .sta_state = ath10k_sta_state,
6789 .conf_tx = ath10k_conf_tx,
6790 .remain_on_channel = ath10k_remain_on_channel,
6791 .cancel_remain_on_channel = ath10k_cancel_remain_on_channel,
6792 .set_rts_threshold = ath10k_set_rts_threshold,
6793 .set_frag_threshold = ath10k_mac_op_set_frag_threshold,
6794 .flush = ath10k_flush,
6795 .tx_last_beacon = ath10k_tx_last_beacon,
6796 .set_antenna = ath10k_set_antenna,
6797 .get_antenna = ath10k_get_antenna,
6798 .reconfig_complete = ath10k_reconfig_complete,
6799 .get_survey = ath10k_get_survey,
6800 .set_bitrate_mask = ath10k_mac_op_set_bitrate_mask,
6801 .sta_rc_update = ath10k_sta_rc_update,
6802 .get_tsf = ath10k_get_tsf,
6803 .ampdu_action = ath10k_ampdu_action,
6804 .get_et_sset_count = ath10k_debug_get_et_sset_count,
6805 .get_et_stats = ath10k_debug_get_et_stats,
6806 .get_et_strings = ath10k_debug_get_et_strings,
6807 .add_chanctx = ath10k_mac_op_add_chanctx,
6808 .remove_chanctx = ath10k_mac_op_remove_chanctx,
6809 .change_chanctx = ath10k_mac_op_change_chanctx,
6810 .assign_vif_chanctx = ath10k_mac_op_assign_vif_chanctx,
6811 .unassign_vif_chanctx = ath10k_mac_op_unassign_vif_chanctx,
6812 .switch_vif_chanctx = ath10k_mac_op_switch_vif_chanctx,
6813
6814 CFG80211_TESTMODE_CMD(ath10k_tm_cmd)
6815
6816 #ifdef CONFIG_PM
6817 .suspend = ath10k_wow_op_suspend,
6818 .resume = ath10k_wow_op_resume,
6819 #endif
6820 #ifdef CONFIG_MAC80211_DEBUGFS
6821 .sta_add_debugfs = ath10k_sta_add_debugfs,
6822 #endif
6823 };
6824
6825 #define CHAN2G(_channel, _freq, _flags) { \
6826 .band = IEEE80211_BAND_2GHZ, \
6827 .hw_value = (_channel), \
6828 .center_freq = (_freq), \
6829 .flags = (_flags), \
6830 .max_antenna_gain = 0, \
6831 .max_power = 30, \
6832 }
6833
6834 #define CHAN5G(_channel, _freq, _flags) { \
6835 .band = IEEE80211_BAND_5GHZ, \
6836 .hw_value = (_channel), \
6837 .center_freq = (_freq), \
6838 .flags = (_flags), \
6839 .max_antenna_gain = 0, \
6840 .max_power = 30, \
6841 }
6842
6843 static const struct ieee80211_channel ath10k_2ghz_channels[] = {
6844 CHAN2G(1, 2412, 0),
6845 CHAN2G(2, 2417, 0),
6846 CHAN2G(3, 2422, 0),
6847 CHAN2G(4, 2427, 0),
6848 CHAN2G(5, 2432, 0),
6849 CHAN2G(6, 2437, 0),
6850 CHAN2G(7, 2442, 0),
6851 CHAN2G(8, 2447, 0),
6852 CHAN2G(9, 2452, 0),
6853 CHAN2G(10, 2457, 0),
6854 CHAN2G(11, 2462, 0),
6855 CHAN2G(12, 2467, 0),
6856 CHAN2G(13, 2472, 0),
6857 CHAN2G(14, 2484, 0),
6858 };
6859
6860 static const struct ieee80211_channel ath10k_5ghz_channels[] = {
6861 CHAN5G(36, 5180, 0),
6862 CHAN5G(40, 5200, 0),
6863 CHAN5G(44, 5220, 0),
6864 CHAN5G(48, 5240, 0),
6865 CHAN5G(52, 5260, 0),
6866 CHAN5G(56, 5280, 0),
6867 CHAN5G(60, 5300, 0),
6868 CHAN5G(64, 5320, 0),
6869 CHAN5G(100, 5500, 0),
6870 CHAN5G(104, 5520, 0),
6871 CHAN5G(108, 5540, 0),
6872 CHAN5G(112, 5560, 0),
6873 CHAN5G(116, 5580, 0),
6874 CHAN5G(120, 5600, 0),
6875 CHAN5G(124, 5620, 0),
6876 CHAN5G(128, 5640, 0),
6877 CHAN5G(132, 5660, 0),
6878 CHAN5G(136, 5680, 0),
6879 CHAN5G(140, 5700, 0),
6880 CHAN5G(144, 5720, 0),
6881 CHAN5G(149, 5745, 0),
6882 CHAN5G(153, 5765, 0),
6883 CHAN5G(157, 5785, 0),
6884 CHAN5G(161, 5805, 0),
6885 CHAN5G(165, 5825, 0),
6886 };
6887
6888 struct ath10k *ath10k_mac_create(size_t priv_size)
6889 {
6890 struct ieee80211_hw *hw;
6891 struct ath10k *ar;
6892
6893 hw = ieee80211_alloc_hw(sizeof(struct ath10k) + priv_size, &ath10k_ops);
6894 if (!hw)
6895 return NULL;
6896
6897 ar = hw->priv;
6898 ar->hw = hw;
6899
6900 return ar;
6901 }
6902
6903 void ath10k_mac_destroy(struct ath10k *ar)
6904 {
6905 ieee80211_free_hw(ar->hw);
6906 }
6907
6908 static const struct ieee80211_iface_limit ath10k_if_limits[] = {
6909 {
6910 .max = 8,
6911 .types = BIT(NL80211_IFTYPE_STATION)
6912 | BIT(NL80211_IFTYPE_P2P_CLIENT)
6913 },
6914 {
6915 .max = 3,
6916 .types = BIT(NL80211_IFTYPE_P2P_GO)
6917 },
6918 {
6919 .max = 1,
6920 .types = BIT(NL80211_IFTYPE_P2P_DEVICE)
6921 },
6922 {
6923 .max = 7,
6924 .types = BIT(NL80211_IFTYPE_AP)
6925 #ifdef CONFIG_MAC80211_MESH
6926 | BIT(NL80211_IFTYPE_MESH_POINT)
6927 #endif
6928 },
6929 };
6930
6931 static const struct ieee80211_iface_limit ath10k_10x_if_limits[] = {
6932 {
6933 .max = 8,
6934 .types = BIT(NL80211_IFTYPE_AP)
6935 #ifdef CONFIG_MAC80211_MESH
6936 | BIT(NL80211_IFTYPE_MESH_POINT)
6937 #endif
6938 },
6939 };
6940
6941 static const struct ieee80211_iface_combination ath10k_if_comb[] = {
6942 {
6943 .limits = ath10k_if_limits,
6944 .n_limits = ARRAY_SIZE(ath10k_if_limits),
6945 .max_interfaces = 8,
6946 .num_different_channels = 1,
6947 .beacon_int_infra_match = true,
6948 },
6949 };
6950
6951 static const struct ieee80211_iface_combination ath10k_10x_if_comb[] = {
6952 {
6953 .limits = ath10k_10x_if_limits,
6954 .n_limits = ARRAY_SIZE(ath10k_10x_if_limits),
6955 .max_interfaces = 8,
6956 .num_different_channels = 1,
6957 .beacon_int_infra_match = true,
6958 #ifdef CONFIG_ATH10K_DFS_CERTIFIED
6959 .radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
6960 BIT(NL80211_CHAN_WIDTH_20) |
6961 BIT(NL80211_CHAN_WIDTH_40) |
6962 BIT(NL80211_CHAN_WIDTH_80),
6963 #endif
6964 },
6965 };
6966
6967 static const struct ieee80211_iface_limit ath10k_tlv_if_limit[] = {
6968 {
6969 .max = 2,
6970 .types = BIT(NL80211_IFTYPE_STATION),
6971 },
6972 {
6973 .max = 2,
6974 .types = BIT(NL80211_IFTYPE_AP) |
6975 #ifdef CONFIG_MAC80211_MESH
6976 BIT(NL80211_IFTYPE_MESH_POINT) |
6977 #endif
6978 BIT(NL80211_IFTYPE_P2P_CLIENT) |
6979 BIT(NL80211_IFTYPE_P2P_GO),
6980 },
6981 {
6982 .max = 1,
6983 .types = BIT(NL80211_IFTYPE_P2P_DEVICE),
6984 },
6985 };
6986
6987 static const struct ieee80211_iface_limit ath10k_tlv_qcs_if_limit[] = {
6988 {
6989 .max = 2,
6990 .types = BIT(NL80211_IFTYPE_STATION),
6991 },
6992 {
6993 .max = 2,
6994 .types = BIT(NL80211_IFTYPE_P2P_CLIENT),
6995 },
6996 {
6997 .max = 1,
6998 .types = BIT(NL80211_IFTYPE_AP) |
6999 #ifdef CONFIG_MAC80211_MESH
7000 BIT(NL80211_IFTYPE_MESH_POINT) |
7001 #endif
7002 BIT(NL80211_IFTYPE_P2P_GO),
7003 },
7004 {
7005 .max = 1,
7006 .types = BIT(NL80211_IFTYPE_P2P_DEVICE),
7007 },
7008 };
7009
7010 static const struct ieee80211_iface_limit ath10k_tlv_if_limit_ibss[] = {
7011 {
7012 .max = 1,
7013 .types = BIT(NL80211_IFTYPE_STATION),
7014 },
7015 {
7016 .max = 1,
7017 .types = BIT(NL80211_IFTYPE_ADHOC),
7018 },
7019 };
7020
7021 /* FIXME: This is not thouroughly tested. These combinations may over- or
7022 * underestimate hw/fw capabilities.
7023 */
7024 static struct ieee80211_iface_combination ath10k_tlv_if_comb[] = {
7025 {
7026 .limits = ath10k_tlv_if_limit,
7027 .num_different_channels = 1,
7028 .max_interfaces = 4,
7029 .n_limits = ARRAY_SIZE(ath10k_tlv_if_limit),
7030 },
7031 {
7032 .limits = ath10k_tlv_if_limit_ibss,
7033 .num_different_channels = 1,
7034 .max_interfaces = 2,
7035 .n_limits = ARRAY_SIZE(ath10k_tlv_if_limit_ibss),
7036 },
7037 };
7038
7039 static struct ieee80211_iface_combination ath10k_tlv_qcs_if_comb[] = {
7040 {
7041 .limits = ath10k_tlv_if_limit,
7042 .num_different_channels = 1,
7043 .max_interfaces = 4,
7044 .n_limits = ARRAY_SIZE(ath10k_tlv_if_limit),
7045 },
7046 {
7047 .limits = ath10k_tlv_qcs_if_limit,
7048 .num_different_channels = 2,
7049 .max_interfaces = 4,
7050 .n_limits = ARRAY_SIZE(ath10k_tlv_qcs_if_limit),
7051 },
7052 {
7053 .limits = ath10k_tlv_if_limit_ibss,
7054 .num_different_channels = 1,
7055 .max_interfaces = 2,
7056 .n_limits = ARRAY_SIZE(ath10k_tlv_if_limit_ibss),
7057 },
7058 };
7059
7060 static const struct ieee80211_iface_limit ath10k_10_4_if_limits[] = {
7061 {
7062 .max = 1,
7063 .types = BIT(NL80211_IFTYPE_STATION),
7064 },
7065 {
7066 .max = 16,
7067 .types = BIT(NL80211_IFTYPE_AP)
7068 #ifdef CONFIG_MAC80211_MESH
7069 | BIT(NL80211_IFTYPE_MESH_POINT)
7070 #endif
7071 },
7072 };
7073
7074 static const struct ieee80211_iface_combination ath10k_10_4_if_comb[] = {
7075 {
7076 .limits = ath10k_10_4_if_limits,
7077 .n_limits = ARRAY_SIZE(ath10k_10_4_if_limits),
7078 .max_interfaces = 16,
7079 .num_different_channels = 1,
7080 .beacon_int_infra_match = true,
7081 #ifdef CONFIG_ATH10K_DFS_CERTIFIED
7082 .radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
7083 BIT(NL80211_CHAN_WIDTH_20) |
7084 BIT(NL80211_CHAN_WIDTH_40) |
7085 BIT(NL80211_CHAN_WIDTH_80),
7086 #endif
7087 },
7088 };
7089
7090 static void ath10k_get_arvif_iter(void *data, u8 *mac,
7091 struct ieee80211_vif *vif)
7092 {
7093 struct ath10k_vif_iter *arvif_iter = data;
7094 struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif);
7095
7096 if (arvif->vdev_id == arvif_iter->vdev_id)
7097 arvif_iter->arvif = arvif;
7098 }
7099
7100 struct ath10k_vif *ath10k_get_arvif(struct ath10k *ar, u32 vdev_id)
7101 {
7102 struct ath10k_vif_iter arvif_iter;
7103 u32 flags;
7104
7105 memset(&arvif_iter, 0, sizeof(struct ath10k_vif_iter));
7106 arvif_iter.vdev_id = vdev_id;
7107
7108 flags = IEEE80211_IFACE_ITER_RESUME_ALL;
7109 ieee80211_iterate_active_interfaces_atomic(ar->hw,
7110 flags,
7111 ath10k_get_arvif_iter,
7112 &arvif_iter);
7113 if (!arvif_iter.arvif) {
7114 ath10k_warn(ar, "No VIF found for vdev %d\n", vdev_id);
7115 return NULL;
7116 }
7117
7118 return arvif_iter.arvif;
7119 }
7120
7121 int ath10k_mac_register(struct ath10k *ar)
7122 {
7123 static const u32 cipher_suites[] = {
7124 WLAN_CIPHER_SUITE_WEP40,
7125 WLAN_CIPHER_SUITE_WEP104,
7126 WLAN_CIPHER_SUITE_TKIP,
7127 WLAN_CIPHER_SUITE_CCMP,
7128 WLAN_CIPHER_SUITE_AES_CMAC,
7129 };
7130 struct ieee80211_supported_band *band;
7131 void *channels;
7132 int ret;
7133
7134 SET_IEEE80211_PERM_ADDR(ar->hw, ar->mac_addr);
7135
7136 SET_IEEE80211_DEV(ar->hw, ar->dev);
7137
7138 BUILD_BUG_ON((ARRAY_SIZE(ath10k_2ghz_channels) +
7139 ARRAY_SIZE(ath10k_5ghz_channels)) !=
7140 ATH10K_NUM_CHANS);
7141
7142 if (ar->phy_capability & WHAL_WLAN_11G_CAPABILITY) {
7143 channels = kmemdup(ath10k_2ghz_channels,
7144 sizeof(ath10k_2ghz_channels),
7145 GFP_KERNEL);
7146 if (!channels) {
7147 ret = -ENOMEM;
7148 goto err_free;
7149 }
7150
7151 band = &ar->mac.sbands[IEEE80211_BAND_2GHZ];
7152 band->n_channels = ARRAY_SIZE(ath10k_2ghz_channels);
7153 band->channels = channels;
7154 band->n_bitrates = ath10k_g_rates_size;
7155 band->bitrates = ath10k_g_rates;
7156
7157 ar->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = band;
7158 }
7159
7160 if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY) {
7161 channels = kmemdup(ath10k_5ghz_channels,
7162 sizeof(ath10k_5ghz_channels),
7163 GFP_KERNEL);
7164 if (!channels) {
7165 ret = -ENOMEM;
7166 goto err_free;
7167 }
7168
7169 band = &ar->mac.sbands[IEEE80211_BAND_5GHZ];
7170 band->n_channels = ARRAY_SIZE(ath10k_5ghz_channels);
7171 band->channels = channels;
7172 band->n_bitrates = ath10k_a_rates_size;
7173 band->bitrates = ath10k_a_rates;
7174 ar->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = band;
7175 }
7176
7177 ath10k_mac_setup_ht_vht_cap(ar);
7178
7179 ar->hw->wiphy->interface_modes =
7180 BIT(NL80211_IFTYPE_STATION) |
7181 BIT(NL80211_IFTYPE_AP) |
7182 BIT(NL80211_IFTYPE_MESH_POINT);
7183
7184 ar->hw->wiphy->available_antennas_rx = ar->cfg_rx_chainmask;
7185 ar->hw->wiphy->available_antennas_tx = ar->cfg_tx_chainmask;
7186
7187 if (!test_bit(ATH10K_FW_FEATURE_NO_P2P, ar->fw_features))
7188 ar->hw->wiphy->interface_modes |=
7189 BIT(NL80211_IFTYPE_P2P_DEVICE) |
7190 BIT(NL80211_IFTYPE_P2P_CLIENT) |
7191 BIT(NL80211_IFTYPE_P2P_GO);
7192
7193 ieee80211_hw_set(ar->hw, SIGNAL_DBM);
7194 ieee80211_hw_set(ar->hw, SUPPORTS_PS);
7195 ieee80211_hw_set(ar->hw, SUPPORTS_DYNAMIC_PS);
7196 ieee80211_hw_set(ar->hw, MFP_CAPABLE);
7197 ieee80211_hw_set(ar->hw, REPORTS_TX_ACK_STATUS);
7198 ieee80211_hw_set(ar->hw, HAS_RATE_CONTROL);
7199 ieee80211_hw_set(ar->hw, AP_LINK_PS);
7200 ieee80211_hw_set(ar->hw, SPECTRUM_MGMT);
7201 ieee80211_hw_set(ar->hw, SUPPORT_FAST_XMIT);
7202 ieee80211_hw_set(ar->hw, CONNECTION_MONITOR);
7203 ieee80211_hw_set(ar->hw, SUPPORTS_PER_STA_GTK);
7204 ieee80211_hw_set(ar->hw, WANT_MONITOR_VIF);
7205 ieee80211_hw_set(ar->hw, CHANCTX_STA_CSA);
7206 ieee80211_hw_set(ar->hw, QUEUE_CONTROL);
7207
7208 if (!test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags))
7209 ieee80211_hw_set(ar->hw, SW_CRYPTO_CONTROL);
7210
7211 ar->hw->wiphy->features |= NL80211_FEATURE_STATIC_SMPS;
7212 ar->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
7213
7214 if (ar->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS)
7215 ar->hw->wiphy->features |= NL80211_FEATURE_DYNAMIC_SMPS;
7216
7217 if (ar->ht_cap_info & WMI_HT_CAP_ENABLED) {
7218 ieee80211_hw_set(ar->hw, AMPDU_AGGREGATION);
7219 ieee80211_hw_set(ar->hw, TX_AMPDU_SETUP_IN_HW);
7220 }
7221
7222 ar->hw->wiphy->max_scan_ssids = WLAN_SCAN_PARAMS_MAX_SSID;
7223 ar->hw->wiphy->max_scan_ie_len = WLAN_SCAN_PARAMS_MAX_IE_LEN;
7224
7225 ar->hw->vif_data_size = sizeof(struct ath10k_vif);
7226 ar->hw->sta_data_size = sizeof(struct ath10k_sta);
7227
7228 ar->hw->max_listen_interval = ATH10K_MAX_HW_LISTEN_INTERVAL;
7229
7230 if (test_bit(WMI_SERVICE_BEACON_OFFLOAD, ar->wmi.svc_map)) {
7231 ar->hw->wiphy->flags |= WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD;
7232
7233 /* Firmware delivers WPS/P2P Probe Requests frames to driver so
7234 * that userspace (e.g. wpa_supplicant/hostapd) can generate
7235 * correct Probe Responses. This is more of a hack advert..
7236 */
7237 ar->hw->wiphy->probe_resp_offload |=
7238 NL80211_PROBE_RESP_OFFLOAD_SUPPORT_WPS |
7239 NL80211_PROBE_RESP_OFFLOAD_SUPPORT_WPS2 |
7240 NL80211_PROBE_RESP_OFFLOAD_SUPPORT_P2P;
7241 }
7242
7243 if (test_bit(WMI_SERVICE_TDLS, ar->wmi.svc_map))
7244 ar->hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS;
7245
7246 ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL;
7247 ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH;
7248 ar->hw->wiphy->max_remain_on_channel_duration = 5000;
7249
7250 ar->hw->wiphy->flags |= WIPHY_FLAG_AP_UAPSD;
7251 ar->hw->wiphy->features |= NL80211_FEATURE_AP_MODE_CHAN_WIDTH_CHANGE;
7252
7253 ar->hw->wiphy->max_ap_assoc_sta = ar->max_num_stations;
7254
7255 ret = ath10k_wow_init(ar);
7256 if (ret) {
7257 ath10k_warn(ar, "failed to init wow: %d\n", ret);
7258 goto err_free;
7259 }
7260
7261 wiphy_ext_feature_set(ar->hw->wiphy, NL80211_EXT_FEATURE_VHT_IBSS);
7262
7263 /*
7264 * on LL hardware queues are managed entirely by the FW
7265 * so we only advertise to mac we can do the queues thing
7266 */
7267 ar->hw->queues = IEEE80211_MAX_QUEUES;
7268
7269 /* vdev_ids are used as hw queue numbers. Make sure offchan tx queue is
7270 * something that vdev_ids can't reach so that we don't stop the queue
7271 * accidentally.
7272 */
7273 ar->hw->offchannel_tx_hw_queue = IEEE80211_MAX_QUEUES - 1;
7274
7275 switch (ar->wmi.op_version) {
7276 case ATH10K_FW_WMI_OP_VERSION_MAIN:
7277 ar->hw->wiphy->iface_combinations = ath10k_if_comb;
7278 ar->hw->wiphy->n_iface_combinations =
7279 ARRAY_SIZE(ath10k_if_comb);
7280 ar->hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_ADHOC);
7281 break;
7282 case ATH10K_FW_WMI_OP_VERSION_TLV:
7283 if (test_bit(WMI_SERVICE_ADAPTIVE_OCS, ar->wmi.svc_map)) {
7284 ar->hw->wiphy->iface_combinations =
7285 ath10k_tlv_qcs_if_comb;
7286 ar->hw->wiphy->n_iface_combinations =
7287 ARRAY_SIZE(ath10k_tlv_qcs_if_comb);
7288 } else {
7289 ar->hw->wiphy->iface_combinations = ath10k_tlv_if_comb;
7290 ar->hw->wiphy->n_iface_combinations =
7291 ARRAY_SIZE(ath10k_tlv_if_comb);
7292 }
7293 ar->hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_ADHOC);
7294 break;
7295 case ATH10K_FW_WMI_OP_VERSION_10_1:
7296 case ATH10K_FW_WMI_OP_VERSION_10_2:
7297 case ATH10K_FW_WMI_OP_VERSION_10_2_4:
7298 ar->hw->wiphy->iface_combinations = ath10k_10x_if_comb;
7299 ar->hw->wiphy->n_iface_combinations =
7300 ARRAY_SIZE(ath10k_10x_if_comb);
7301 break;
7302 case ATH10K_FW_WMI_OP_VERSION_10_4:
7303 ar->hw->wiphy->iface_combinations = ath10k_10_4_if_comb;
7304 ar->hw->wiphy->n_iface_combinations =
7305 ARRAY_SIZE(ath10k_10_4_if_comb);
7306 break;
7307 case ATH10K_FW_WMI_OP_VERSION_UNSET:
7308 case ATH10K_FW_WMI_OP_VERSION_MAX:
7309 WARN_ON(1);
7310 ret = -EINVAL;
7311 goto err_free;
7312 }
7313
7314 if (!test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags))
7315 ar->hw->netdev_features = NETIF_F_HW_CSUM;
7316
7317 if (config_enabled(CONFIG_ATH10K_DFS_CERTIFIED)) {
7318 /* Init ath dfs pattern detector */
7319 ar->ath_common.debug_mask = ATH_DBG_DFS;
7320 ar->dfs_detector = dfs_pattern_detector_init(&ar->ath_common,
7321 NL80211_DFS_UNSET);
7322
7323 if (!ar->dfs_detector)
7324 ath10k_warn(ar, "failed to initialise DFS pattern detector\n");
7325 }
7326
7327 ret = ath_regd_init(&ar->ath_common.regulatory, ar->hw->wiphy,
7328 ath10k_reg_notifier);
7329 if (ret) {
7330 ath10k_err(ar, "failed to initialise regulatory: %i\n", ret);
7331 goto err_dfs_detector_exit;
7332 }
7333
7334 ar->hw->wiphy->cipher_suites = cipher_suites;
7335 ar->hw->wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites);
7336
7337 ret = ieee80211_register_hw(ar->hw);
7338 if (ret) {
7339 ath10k_err(ar, "failed to register ieee80211: %d\n", ret);
7340 goto err_dfs_detector_exit;
7341 }
7342
7343 if (!ath_is_world_regd(&ar->ath_common.regulatory)) {
7344 ret = regulatory_hint(ar->hw->wiphy,
7345 ar->ath_common.regulatory.alpha2);
7346 if (ret)
7347 goto err_unregister;
7348 }
7349
7350 return 0;
7351
7352 err_unregister:
7353 ieee80211_unregister_hw(ar->hw);
7354
7355 err_dfs_detector_exit:
7356 if (config_enabled(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector)
7357 ar->dfs_detector->exit(ar->dfs_detector);
7358
7359 err_free:
7360 kfree(ar->mac.sbands[IEEE80211_BAND_2GHZ].channels);
7361 kfree(ar->mac.sbands[IEEE80211_BAND_5GHZ].channels);
7362
7363 SET_IEEE80211_DEV(ar->hw, NULL);
7364 return ret;
7365 }
7366
7367 void ath10k_mac_unregister(struct ath10k *ar)
7368 {
7369 ieee80211_unregister_hw(ar->hw);
7370
7371 if (config_enabled(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector)
7372 ar->dfs_detector->exit(ar->dfs_detector);
7373
7374 kfree(ar->mac.sbands[IEEE80211_BAND_2GHZ].channels);
7375 kfree(ar->mac.sbands[IEEE80211_BAND_5GHZ].channels);
7376
7377 SET_IEEE80211_DEV(ar->hw, NULL);
7378 }