]> git.ipfire.org Git - people/ms/linux.git/blob - fs/ext4/page-io.c
Merge tag 'soc-fixes-6.0-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[people/ms/linux.git] / fs / ext4 / page-io.c
1 /*
2 * linux/fs/ext4/page-io.c
3 *
4 * This contains the new page_io functions for ext4
5 *
6 * Written by Theodore Ts'o, 2010.
7 */
8
9 #include <linux/fs.h>
10 #include <linux/time.h>
11 #include <linux/highuid.h>
12 #include <linux/pagemap.h>
13 #include <linux/quotaops.h>
14 #include <linux/string.h>
15 #include <linux/buffer_head.h>
16 #include <linux/writeback.h>
17 #include <linux/pagevec.h>
18 #include <linux/mpage.h>
19 #include <linux/namei.h>
20 #include <linux/uio.h>
21 #include <linux/bio.h>
22 #include <linux/workqueue.h>
23 #include <linux/kernel.h>
24 #include <linux/slab.h>
25 #include <linux/mm.h>
26
27 #include "ext4_jbd2.h"
28 #include "xattr.h"
29 #include "acl.h"
30
31 static struct kmem_cache *io_end_cachep;
32
33 int __init ext4_init_pageio(void)
34 {
35 io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
36 if (io_end_cachep == NULL)
37 return -ENOMEM;
38 return 0;
39 }
40
41 void ext4_exit_pageio(void)
42 {
43 kmem_cache_destroy(io_end_cachep);
44 }
45
46 /*
47 * Print an buffer I/O error compatible with the fs/buffer.c. This
48 * provides compatibility with dmesg scrapers that look for a specific
49 * buffer I/O error message. We really need a unified error reporting
50 * structure to userspace ala Digital Unix's uerf system, but it's
51 * probably not going to happen in my lifetime, due to LKML politics...
52 */
53 static void buffer_io_error(struct buffer_head *bh)
54 {
55 char b[BDEVNAME_SIZE];
56 printk_ratelimited(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n",
57 bdevname(bh->b_bdev, b),
58 (unsigned long long)bh->b_blocknr);
59 }
60
61 static void ext4_finish_bio(struct bio *bio)
62 {
63 int i;
64 struct bio_vec *bvec;
65
66 bio_for_each_segment_all(bvec, bio, i) {
67 struct page *page = bvec->bv_page;
68 #ifdef CONFIG_EXT4_FS_ENCRYPTION
69 struct page *data_page = NULL;
70 struct ext4_crypto_ctx *ctx = NULL;
71 #endif
72 struct buffer_head *bh, *head;
73 unsigned bio_start = bvec->bv_offset;
74 unsigned bio_end = bio_start + bvec->bv_len;
75 unsigned under_io = 0;
76 unsigned long flags;
77
78 if (!page)
79 continue;
80
81 #ifdef CONFIG_EXT4_FS_ENCRYPTION
82 if (!page->mapping) {
83 /* The bounce data pages are unmapped. */
84 data_page = page;
85 ctx = (struct ext4_crypto_ctx *)page_private(data_page);
86 page = ctx->w.control_page;
87 }
88 #endif
89
90 if (bio->bi_error) {
91 SetPageError(page);
92 set_bit(AS_EIO, &page->mapping->flags);
93 }
94 bh = head = page_buffers(page);
95 /*
96 * We check all buffers in the page under BH_Uptodate_Lock
97 * to avoid races with other end io clearing async_write flags
98 */
99 local_irq_save(flags);
100 bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
101 do {
102 if (bh_offset(bh) < bio_start ||
103 bh_offset(bh) + bh->b_size > bio_end) {
104 if (buffer_async_write(bh))
105 under_io++;
106 continue;
107 }
108 clear_buffer_async_write(bh);
109 if (bio->bi_error)
110 buffer_io_error(bh);
111 } while ((bh = bh->b_this_page) != head);
112 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
113 local_irq_restore(flags);
114 if (!under_io) {
115 #ifdef CONFIG_EXT4_FS_ENCRYPTION
116 if (ctx)
117 ext4_restore_control_page(data_page);
118 #endif
119 end_page_writeback(page);
120 }
121 }
122 }
123
124 static void ext4_release_io_end(ext4_io_end_t *io_end)
125 {
126 struct bio *bio, *next_bio;
127
128 BUG_ON(!list_empty(&io_end->list));
129 BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
130 WARN_ON(io_end->handle);
131
132 if (atomic_dec_and_test(&EXT4_I(io_end->inode)->i_ioend_count))
133 wake_up_all(ext4_ioend_wq(io_end->inode));
134
135 for (bio = io_end->bio; bio; bio = next_bio) {
136 next_bio = bio->bi_private;
137 ext4_finish_bio(bio);
138 bio_put(bio);
139 }
140 kmem_cache_free(io_end_cachep, io_end);
141 }
142
143 static void ext4_clear_io_unwritten_flag(ext4_io_end_t *io_end)
144 {
145 struct inode *inode = io_end->inode;
146
147 io_end->flag &= ~EXT4_IO_END_UNWRITTEN;
148 /* Wake up anyone waiting on unwritten extent conversion */
149 if (atomic_dec_and_test(&EXT4_I(inode)->i_unwritten))
150 wake_up_all(ext4_ioend_wq(inode));
151 }
152
153 /*
154 * Check a range of space and convert unwritten extents to written. Note that
155 * we are protected from truncate touching same part of extent tree by the
156 * fact that truncate code waits for all DIO to finish (thus exclusion from
157 * direct IO is achieved) and also waits for PageWriteback bits. Thus we
158 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
159 * completed (happens from ext4_free_ioend()).
160 */
161 static int ext4_end_io(ext4_io_end_t *io)
162 {
163 struct inode *inode = io->inode;
164 loff_t offset = io->offset;
165 ssize_t size = io->size;
166 handle_t *handle = io->handle;
167 int ret = 0;
168
169 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
170 "list->prev 0x%p\n",
171 io, inode->i_ino, io->list.next, io->list.prev);
172
173 io->handle = NULL; /* Following call will use up the handle */
174 ret = ext4_convert_unwritten_extents(handle, inode, offset, size);
175 if (ret < 0) {
176 ext4_msg(inode->i_sb, KERN_EMERG,
177 "failed to convert unwritten extents to written "
178 "extents -- potential data loss! "
179 "(inode %lu, offset %llu, size %zd, error %d)",
180 inode->i_ino, offset, size, ret);
181 }
182 ext4_clear_io_unwritten_flag(io);
183 ext4_release_io_end(io);
184 return ret;
185 }
186
187 static void dump_completed_IO(struct inode *inode, struct list_head *head)
188 {
189 #ifdef EXT4FS_DEBUG
190 struct list_head *cur, *before, *after;
191 ext4_io_end_t *io, *io0, *io1;
192
193 if (list_empty(head))
194 return;
195
196 ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
197 list_for_each_entry(io, head, list) {
198 cur = &io->list;
199 before = cur->prev;
200 io0 = container_of(before, ext4_io_end_t, list);
201 after = cur->next;
202 io1 = container_of(after, ext4_io_end_t, list);
203
204 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
205 io, inode->i_ino, io0, io1);
206 }
207 #endif
208 }
209
210 /* Add the io_end to per-inode completed end_io list. */
211 static void ext4_add_complete_io(ext4_io_end_t *io_end)
212 {
213 struct ext4_inode_info *ei = EXT4_I(io_end->inode);
214 struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
215 struct workqueue_struct *wq;
216 unsigned long flags;
217
218 /* Only reserved conversions from writeback should enter here */
219 WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
220 WARN_ON(!io_end->handle && sbi->s_journal);
221 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
222 wq = sbi->rsv_conversion_wq;
223 if (list_empty(&ei->i_rsv_conversion_list))
224 queue_work(wq, &ei->i_rsv_conversion_work);
225 list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
226 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
227 }
228
229 static int ext4_do_flush_completed_IO(struct inode *inode,
230 struct list_head *head)
231 {
232 ext4_io_end_t *io;
233 struct list_head unwritten;
234 unsigned long flags;
235 struct ext4_inode_info *ei = EXT4_I(inode);
236 int err, ret = 0;
237
238 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
239 dump_completed_IO(inode, head);
240 list_replace_init(head, &unwritten);
241 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
242
243 while (!list_empty(&unwritten)) {
244 io = list_entry(unwritten.next, ext4_io_end_t, list);
245 BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
246 list_del_init(&io->list);
247
248 err = ext4_end_io(io);
249 if (unlikely(!ret && err))
250 ret = err;
251 }
252 return ret;
253 }
254
255 /*
256 * work on completed IO, to convert unwritten extents to extents
257 */
258 void ext4_end_io_rsv_work(struct work_struct *work)
259 {
260 struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
261 i_rsv_conversion_work);
262 ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
263 }
264
265 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
266 {
267 ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
268 if (io) {
269 atomic_inc(&EXT4_I(inode)->i_ioend_count);
270 io->inode = inode;
271 INIT_LIST_HEAD(&io->list);
272 atomic_set(&io->count, 1);
273 }
274 return io;
275 }
276
277 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
278 {
279 if (atomic_dec_and_test(&io_end->count)) {
280 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) {
281 ext4_release_io_end(io_end);
282 return;
283 }
284 ext4_add_complete_io(io_end);
285 }
286 }
287
288 int ext4_put_io_end(ext4_io_end_t *io_end)
289 {
290 int err = 0;
291
292 if (atomic_dec_and_test(&io_end->count)) {
293 if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
294 err = ext4_convert_unwritten_extents(io_end->handle,
295 io_end->inode, io_end->offset,
296 io_end->size);
297 io_end->handle = NULL;
298 ext4_clear_io_unwritten_flag(io_end);
299 }
300 ext4_release_io_end(io_end);
301 }
302 return err;
303 }
304
305 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
306 {
307 atomic_inc(&io_end->count);
308 return io_end;
309 }
310
311 /* BIO completion function for page writeback */
312 static void ext4_end_bio(struct bio *bio)
313 {
314 ext4_io_end_t *io_end = bio->bi_private;
315 sector_t bi_sector = bio->bi_iter.bi_sector;
316
317 BUG_ON(!io_end);
318 bio->bi_end_io = NULL;
319
320 if (bio->bi_error) {
321 struct inode *inode = io_end->inode;
322
323 ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
324 "(offset %llu size %ld starting block %llu)",
325 bio->bi_error, inode->i_ino,
326 (unsigned long long) io_end->offset,
327 (long) io_end->size,
328 (unsigned long long)
329 bi_sector >> (inode->i_blkbits - 9));
330 mapping_set_error(inode->i_mapping, bio->bi_error);
331 }
332
333 if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
334 /*
335 * Link bio into list hanging from io_end. We have to do it
336 * atomically as bio completions can be racing against each
337 * other.
338 */
339 bio->bi_private = xchg(&io_end->bio, bio);
340 ext4_put_io_end_defer(io_end);
341 } else {
342 /*
343 * Drop io_end reference early. Inode can get freed once
344 * we finish the bio.
345 */
346 ext4_put_io_end_defer(io_end);
347 ext4_finish_bio(bio);
348 bio_put(bio);
349 }
350 }
351
352 void ext4_io_submit(struct ext4_io_submit *io)
353 {
354 struct bio *bio = io->io_bio;
355
356 if (bio) {
357 int io_op = io->io_wbc->sync_mode == WB_SYNC_ALL ?
358 WRITE_SYNC : WRITE;
359 bio_get(io->io_bio);
360 submit_bio(io_op, io->io_bio);
361 bio_put(io->io_bio);
362 }
363 io->io_bio = NULL;
364 }
365
366 void ext4_io_submit_init(struct ext4_io_submit *io,
367 struct writeback_control *wbc)
368 {
369 io->io_wbc = wbc;
370 io->io_bio = NULL;
371 io->io_end = NULL;
372 }
373
374 static int io_submit_init_bio(struct ext4_io_submit *io,
375 struct buffer_head *bh)
376 {
377 struct bio *bio;
378
379 bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
380 if (!bio)
381 return -ENOMEM;
382 wbc_init_bio(io->io_wbc, bio);
383 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
384 bio->bi_bdev = bh->b_bdev;
385 bio->bi_end_io = ext4_end_bio;
386 bio->bi_private = ext4_get_io_end(io->io_end);
387 io->io_bio = bio;
388 io->io_next_block = bh->b_blocknr;
389 return 0;
390 }
391
392 static int io_submit_add_bh(struct ext4_io_submit *io,
393 struct inode *inode,
394 struct page *page,
395 struct buffer_head *bh)
396 {
397 int ret;
398
399 if (io->io_bio && bh->b_blocknr != io->io_next_block) {
400 submit_and_retry:
401 ext4_io_submit(io);
402 }
403 if (io->io_bio == NULL) {
404 ret = io_submit_init_bio(io, bh);
405 if (ret)
406 return ret;
407 }
408 ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
409 if (ret != bh->b_size)
410 goto submit_and_retry;
411 wbc_account_io(io->io_wbc, page, bh->b_size);
412 io->io_next_block++;
413 return 0;
414 }
415
416 int ext4_bio_write_page(struct ext4_io_submit *io,
417 struct page *page,
418 int len,
419 struct writeback_control *wbc,
420 bool keep_towrite)
421 {
422 struct page *data_page = NULL;
423 struct inode *inode = page->mapping->host;
424 unsigned block_start, blocksize;
425 struct buffer_head *bh, *head;
426 int ret = 0;
427 int nr_submitted = 0;
428 int nr_to_submit = 0;
429
430 blocksize = 1 << inode->i_blkbits;
431
432 BUG_ON(!PageLocked(page));
433 BUG_ON(PageWriteback(page));
434
435 if (keep_towrite)
436 set_page_writeback_keepwrite(page);
437 else
438 set_page_writeback(page);
439 ClearPageError(page);
440
441 /*
442 * Comments copied from block_write_full_page:
443 *
444 * The page straddles i_size. It must be zeroed out on each and every
445 * writepage invocation because it may be mmapped. "A file is mapped
446 * in multiples of the page size. For a file that is not a multiple of
447 * the page size, the remaining memory is zeroed when mapped, and
448 * writes to that region are not written out to the file."
449 */
450 if (len < PAGE_CACHE_SIZE)
451 zero_user_segment(page, len, PAGE_CACHE_SIZE);
452 /*
453 * In the first loop we prepare and mark buffers to submit. We have to
454 * mark all buffers in the page before submitting so that
455 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
456 * on the first buffer finishes and we are still working on submitting
457 * the second buffer.
458 */
459 bh = head = page_buffers(page);
460 do {
461 block_start = bh_offset(bh);
462 if (block_start >= len) {
463 clear_buffer_dirty(bh);
464 set_buffer_uptodate(bh);
465 continue;
466 }
467 if (!buffer_dirty(bh) || buffer_delay(bh) ||
468 !buffer_mapped(bh) || buffer_unwritten(bh)) {
469 /* A hole? We can safely clear the dirty bit */
470 if (!buffer_mapped(bh))
471 clear_buffer_dirty(bh);
472 if (io->io_bio)
473 ext4_io_submit(io);
474 continue;
475 }
476 if (buffer_new(bh)) {
477 clear_buffer_new(bh);
478 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
479 }
480 set_buffer_async_write(bh);
481 nr_to_submit++;
482 } while ((bh = bh->b_this_page) != head);
483
484 bh = head = page_buffers(page);
485
486 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode) &&
487 nr_to_submit) {
488 data_page = ext4_encrypt(inode, page);
489 if (IS_ERR(data_page)) {
490 ret = PTR_ERR(data_page);
491 data_page = NULL;
492 goto out;
493 }
494 }
495
496 /* Now submit buffers to write */
497 do {
498 if (!buffer_async_write(bh))
499 continue;
500 ret = io_submit_add_bh(io, inode,
501 data_page ? data_page : page, bh);
502 if (ret) {
503 /*
504 * We only get here on ENOMEM. Not much else
505 * we can do but mark the page as dirty, and
506 * better luck next time.
507 */
508 break;
509 }
510 nr_submitted++;
511 clear_buffer_dirty(bh);
512 } while ((bh = bh->b_this_page) != head);
513
514 /* Error stopped previous loop? Clean up buffers... */
515 if (ret) {
516 out:
517 if (data_page)
518 ext4_restore_control_page(data_page);
519 printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
520 redirty_page_for_writepage(wbc, page);
521 do {
522 clear_buffer_async_write(bh);
523 bh = bh->b_this_page;
524 } while (bh != head);
525 }
526 unlock_page(page);
527 /* Nothing submitted - we have to end page writeback */
528 if (!nr_submitted)
529 end_page_writeback(page);
530 return ret;
531 }