]> git.ipfire.org Git - people/ms/linux.git/blob - fs/fcntl.c
Merge tag 'soc-fixes-6.0-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[people/ms/linux.git] / fs / fcntl.c
1 /*
2 * linux/fs/fcntl.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/syscalls.h>
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fs.h>
11 #include <linux/file.h>
12 #include <linux/fdtable.h>
13 #include <linux/capability.h>
14 #include <linux/dnotify.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/pipe_fs_i.h>
18 #include <linux/security.h>
19 #include <linux/ptrace.h>
20 #include <linux/signal.h>
21 #include <linux/rcupdate.h>
22 #include <linux/pid_namespace.h>
23 #include <linux/user_namespace.h>
24 #include <linux/shmem_fs.h>
25
26 #include <asm/poll.h>
27 #include <asm/siginfo.h>
28 #include <asm/uaccess.h>
29
30 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
31
32 static int setfl(int fd, struct file * filp, unsigned long arg)
33 {
34 struct inode * inode = file_inode(filp);
35 int error = 0;
36
37 /*
38 * O_APPEND cannot be cleared if the file is marked as append-only
39 * and the file is open for write.
40 */
41 if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
42 return -EPERM;
43
44 /* O_NOATIME can only be set by the owner or superuser */
45 if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
46 if (!inode_owner_or_capable(inode))
47 return -EPERM;
48
49 /* required for strict SunOS emulation */
50 if (O_NONBLOCK != O_NDELAY)
51 if (arg & O_NDELAY)
52 arg |= O_NONBLOCK;
53
54 if (arg & O_DIRECT) {
55 if (!filp->f_mapping || !filp->f_mapping->a_ops ||
56 !filp->f_mapping->a_ops->direct_IO)
57 return -EINVAL;
58 }
59
60 if (filp->f_op->check_flags)
61 error = filp->f_op->check_flags(arg);
62 if (error)
63 return error;
64
65 /*
66 * ->fasync() is responsible for setting the FASYNC bit.
67 */
68 if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
69 error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
70 if (error < 0)
71 goto out;
72 if (error > 0)
73 error = 0;
74 }
75 spin_lock(&filp->f_lock);
76 filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
77 spin_unlock(&filp->f_lock);
78
79 out:
80 return error;
81 }
82
83 static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
84 int force)
85 {
86 write_lock_irq(&filp->f_owner.lock);
87 if (force || !filp->f_owner.pid) {
88 put_pid(filp->f_owner.pid);
89 filp->f_owner.pid = get_pid(pid);
90 filp->f_owner.pid_type = type;
91
92 if (pid) {
93 const struct cred *cred = current_cred();
94 filp->f_owner.uid = cred->uid;
95 filp->f_owner.euid = cred->euid;
96 }
97 }
98 write_unlock_irq(&filp->f_owner.lock);
99 }
100
101 void __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
102 int force)
103 {
104 security_file_set_fowner(filp);
105 f_modown(filp, pid, type, force);
106 }
107 EXPORT_SYMBOL(__f_setown);
108
109 void f_setown(struct file *filp, unsigned long arg, int force)
110 {
111 enum pid_type type;
112 struct pid *pid;
113 int who = arg;
114 type = PIDTYPE_PID;
115 if (who < 0) {
116 type = PIDTYPE_PGID;
117 who = -who;
118 }
119 rcu_read_lock();
120 pid = find_vpid(who);
121 __f_setown(filp, pid, type, force);
122 rcu_read_unlock();
123 }
124 EXPORT_SYMBOL(f_setown);
125
126 void f_delown(struct file *filp)
127 {
128 f_modown(filp, NULL, PIDTYPE_PID, 1);
129 }
130
131 pid_t f_getown(struct file *filp)
132 {
133 pid_t pid;
134 read_lock(&filp->f_owner.lock);
135 pid = pid_vnr(filp->f_owner.pid);
136 if (filp->f_owner.pid_type == PIDTYPE_PGID)
137 pid = -pid;
138 read_unlock(&filp->f_owner.lock);
139 return pid;
140 }
141
142 static int f_setown_ex(struct file *filp, unsigned long arg)
143 {
144 struct f_owner_ex __user *owner_p = (void __user *)arg;
145 struct f_owner_ex owner;
146 struct pid *pid;
147 int type;
148 int ret;
149
150 ret = copy_from_user(&owner, owner_p, sizeof(owner));
151 if (ret)
152 return -EFAULT;
153
154 switch (owner.type) {
155 case F_OWNER_TID:
156 type = PIDTYPE_MAX;
157 break;
158
159 case F_OWNER_PID:
160 type = PIDTYPE_PID;
161 break;
162
163 case F_OWNER_PGRP:
164 type = PIDTYPE_PGID;
165 break;
166
167 default:
168 return -EINVAL;
169 }
170
171 rcu_read_lock();
172 pid = find_vpid(owner.pid);
173 if (owner.pid && !pid)
174 ret = -ESRCH;
175 else
176 __f_setown(filp, pid, type, 1);
177 rcu_read_unlock();
178
179 return ret;
180 }
181
182 static int f_getown_ex(struct file *filp, unsigned long arg)
183 {
184 struct f_owner_ex __user *owner_p = (void __user *)arg;
185 struct f_owner_ex owner;
186 int ret = 0;
187
188 read_lock(&filp->f_owner.lock);
189 owner.pid = pid_vnr(filp->f_owner.pid);
190 switch (filp->f_owner.pid_type) {
191 case PIDTYPE_MAX:
192 owner.type = F_OWNER_TID;
193 break;
194
195 case PIDTYPE_PID:
196 owner.type = F_OWNER_PID;
197 break;
198
199 case PIDTYPE_PGID:
200 owner.type = F_OWNER_PGRP;
201 break;
202
203 default:
204 WARN_ON(1);
205 ret = -EINVAL;
206 break;
207 }
208 read_unlock(&filp->f_owner.lock);
209
210 if (!ret) {
211 ret = copy_to_user(owner_p, &owner, sizeof(owner));
212 if (ret)
213 ret = -EFAULT;
214 }
215 return ret;
216 }
217
218 #ifdef CONFIG_CHECKPOINT_RESTORE
219 static int f_getowner_uids(struct file *filp, unsigned long arg)
220 {
221 struct user_namespace *user_ns = current_user_ns();
222 uid_t __user *dst = (void __user *)arg;
223 uid_t src[2];
224 int err;
225
226 read_lock(&filp->f_owner.lock);
227 src[0] = from_kuid(user_ns, filp->f_owner.uid);
228 src[1] = from_kuid(user_ns, filp->f_owner.euid);
229 read_unlock(&filp->f_owner.lock);
230
231 err = put_user(src[0], &dst[0]);
232 err |= put_user(src[1], &dst[1]);
233
234 return err;
235 }
236 #else
237 static int f_getowner_uids(struct file *filp, unsigned long arg)
238 {
239 return -EINVAL;
240 }
241 #endif
242
243 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
244 struct file *filp)
245 {
246 long err = -EINVAL;
247
248 switch (cmd) {
249 case F_DUPFD:
250 err = f_dupfd(arg, filp, 0);
251 break;
252 case F_DUPFD_CLOEXEC:
253 err = f_dupfd(arg, filp, O_CLOEXEC);
254 break;
255 case F_GETFD:
256 err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
257 break;
258 case F_SETFD:
259 err = 0;
260 set_close_on_exec(fd, arg & FD_CLOEXEC);
261 break;
262 case F_GETFL:
263 err = filp->f_flags;
264 break;
265 case F_SETFL:
266 err = setfl(fd, filp, arg);
267 break;
268 #if BITS_PER_LONG != 32
269 /* 32-bit arches must use fcntl64() */
270 case F_OFD_GETLK:
271 #endif
272 case F_GETLK:
273 err = fcntl_getlk(filp, cmd, (struct flock __user *) arg);
274 break;
275 #if BITS_PER_LONG != 32
276 /* 32-bit arches must use fcntl64() */
277 case F_OFD_SETLK:
278 case F_OFD_SETLKW:
279 #endif
280 /* Fallthrough */
281 case F_SETLK:
282 case F_SETLKW:
283 err = fcntl_setlk(fd, filp, cmd, (struct flock __user *) arg);
284 break;
285 case F_GETOWN:
286 /*
287 * XXX If f_owner is a process group, the
288 * negative return value will get converted
289 * into an error. Oops. If we keep the
290 * current syscall conventions, the only way
291 * to fix this will be in libc.
292 */
293 err = f_getown(filp);
294 force_successful_syscall_return();
295 break;
296 case F_SETOWN:
297 f_setown(filp, arg, 1);
298 err = 0;
299 break;
300 case F_GETOWN_EX:
301 err = f_getown_ex(filp, arg);
302 break;
303 case F_SETOWN_EX:
304 err = f_setown_ex(filp, arg);
305 break;
306 case F_GETOWNER_UIDS:
307 err = f_getowner_uids(filp, arg);
308 break;
309 case F_GETSIG:
310 err = filp->f_owner.signum;
311 break;
312 case F_SETSIG:
313 /* arg == 0 restores default behaviour. */
314 if (!valid_signal(arg)) {
315 break;
316 }
317 err = 0;
318 filp->f_owner.signum = arg;
319 break;
320 case F_GETLEASE:
321 err = fcntl_getlease(filp);
322 break;
323 case F_SETLEASE:
324 err = fcntl_setlease(fd, filp, arg);
325 break;
326 case F_NOTIFY:
327 err = fcntl_dirnotify(fd, filp, arg);
328 break;
329 case F_SETPIPE_SZ:
330 case F_GETPIPE_SZ:
331 err = pipe_fcntl(filp, cmd, arg);
332 break;
333 case F_ADD_SEALS:
334 case F_GET_SEALS:
335 err = shmem_fcntl(filp, cmd, arg);
336 break;
337 default:
338 break;
339 }
340 return err;
341 }
342
343 static int check_fcntl_cmd(unsigned cmd)
344 {
345 switch (cmd) {
346 case F_DUPFD:
347 case F_DUPFD_CLOEXEC:
348 case F_GETFD:
349 case F_SETFD:
350 case F_GETFL:
351 return 1;
352 }
353 return 0;
354 }
355
356 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
357 {
358 struct fd f = fdget_raw(fd);
359 long err = -EBADF;
360
361 if (!f.file)
362 goto out;
363
364 if (unlikely(f.file->f_mode & FMODE_PATH)) {
365 if (!check_fcntl_cmd(cmd))
366 goto out1;
367 }
368
369 err = security_file_fcntl(f.file, cmd, arg);
370 if (!err)
371 err = do_fcntl(fd, cmd, arg, f.file);
372
373 out1:
374 fdput(f);
375 out:
376 return err;
377 }
378
379 #if BITS_PER_LONG == 32
380 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
381 unsigned long, arg)
382 {
383 struct fd f = fdget_raw(fd);
384 long err = -EBADF;
385
386 if (!f.file)
387 goto out;
388
389 if (unlikely(f.file->f_mode & FMODE_PATH)) {
390 if (!check_fcntl_cmd(cmd))
391 goto out1;
392 }
393
394 err = security_file_fcntl(f.file, cmd, arg);
395 if (err)
396 goto out1;
397
398 switch (cmd) {
399 case F_GETLK64:
400 case F_OFD_GETLK:
401 err = fcntl_getlk64(f.file, cmd, (struct flock64 __user *) arg);
402 break;
403 case F_SETLK64:
404 case F_SETLKW64:
405 case F_OFD_SETLK:
406 case F_OFD_SETLKW:
407 err = fcntl_setlk64(fd, f.file, cmd,
408 (struct flock64 __user *) arg);
409 break;
410 default:
411 err = do_fcntl(fd, cmd, arg, f.file);
412 break;
413 }
414 out1:
415 fdput(f);
416 out:
417 return err;
418 }
419 #endif
420
421 /* Table to convert sigio signal codes into poll band bitmaps */
422
423 static const long band_table[NSIGPOLL] = {
424 POLLIN | POLLRDNORM, /* POLL_IN */
425 POLLOUT | POLLWRNORM | POLLWRBAND, /* POLL_OUT */
426 POLLIN | POLLRDNORM | POLLMSG, /* POLL_MSG */
427 POLLERR, /* POLL_ERR */
428 POLLPRI | POLLRDBAND, /* POLL_PRI */
429 POLLHUP | POLLERR /* POLL_HUP */
430 };
431
432 static inline int sigio_perm(struct task_struct *p,
433 struct fown_struct *fown, int sig)
434 {
435 const struct cred *cred;
436 int ret;
437
438 rcu_read_lock();
439 cred = __task_cred(p);
440 ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
441 uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
442 uid_eq(fown->uid, cred->suid) || uid_eq(fown->uid, cred->uid)) &&
443 !security_file_send_sigiotask(p, fown, sig));
444 rcu_read_unlock();
445 return ret;
446 }
447
448 static void send_sigio_to_task(struct task_struct *p,
449 struct fown_struct *fown,
450 int fd, int reason, int group)
451 {
452 /*
453 * F_SETSIG can change ->signum lockless in parallel, make
454 * sure we read it once and use the same value throughout.
455 */
456 int signum = ACCESS_ONCE(fown->signum);
457
458 if (!sigio_perm(p, fown, signum))
459 return;
460
461 switch (signum) {
462 siginfo_t si;
463 default:
464 /* Queue a rt signal with the appropriate fd as its
465 value. We use SI_SIGIO as the source, not
466 SI_KERNEL, since kernel signals always get
467 delivered even if we can't queue. Failure to
468 queue in this case _should_ be reported; we fall
469 back to SIGIO in that case. --sct */
470 si.si_signo = signum;
471 si.si_errno = 0;
472 si.si_code = reason;
473 /* Make sure we are called with one of the POLL_*
474 reasons, otherwise we could leak kernel stack into
475 userspace. */
476 BUG_ON((reason & __SI_MASK) != __SI_POLL);
477 if (reason - POLL_IN >= NSIGPOLL)
478 si.si_band = ~0L;
479 else
480 si.si_band = band_table[reason - POLL_IN];
481 si.si_fd = fd;
482 if (!do_send_sig_info(signum, &si, p, group))
483 break;
484 /* fall-through: fall back on the old plain SIGIO signal */
485 case 0:
486 do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, group);
487 }
488 }
489
490 void send_sigio(struct fown_struct *fown, int fd, int band)
491 {
492 struct task_struct *p;
493 enum pid_type type;
494 struct pid *pid;
495 int group = 1;
496
497 read_lock(&fown->lock);
498
499 type = fown->pid_type;
500 if (type == PIDTYPE_MAX) {
501 group = 0;
502 type = PIDTYPE_PID;
503 }
504
505 pid = fown->pid;
506 if (!pid)
507 goto out_unlock_fown;
508
509 read_lock(&tasklist_lock);
510 do_each_pid_task(pid, type, p) {
511 send_sigio_to_task(p, fown, fd, band, group);
512 } while_each_pid_task(pid, type, p);
513 read_unlock(&tasklist_lock);
514 out_unlock_fown:
515 read_unlock(&fown->lock);
516 }
517
518 static void send_sigurg_to_task(struct task_struct *p,
519 struct fown_struct *fown, int group)
520 {
521 if (sigio_perm(p, fown, SIGURG))
522 do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, group);
523 }
524
525 int send_sigurg(struct fown_struct *fown)
526 {
527 struct task_struct *p;
528 enum pid_type type;
529 struct pid *pid;
530 int group = 1;
531 int ret = 0;
532
533 read_lock(&fown->lock);
534
535 type = fown->pid_type;
536 if (type == PIDTYPE_MAX) {
537 group = 0;
538 type = PIDTYPE_PID;
539 }
540
541 pid = fown->pid;
542 if (!pid)
543 goto out_unlock_fown;
544
545 ret = 1;
546
547 read_lock(&tasklist_lock);
548 do_each_pid_task(pid, type, p) {
549 send_sigurg_to_task(p, fown, group);
550 } while_each_pid_task(pid, type, p);
551 read_unlock(&tasklist_lock);
552 out_unlock_fown:
553 read_unlock(&fown->lock);
554 return ret;
555 }
556
557 static DEFINE_SPINLOCK(fasync_lock);
558 static struct kmem_cache *fasync_cache __read_mostly;
559
560 static void fasync_free_rcu(struct rcu_head *head)
561 {
562 kmem_cache_free(fasync_cache,
563 container_of(head, struct fasync_struct, fa_rcu));
564 }
565
566 /*
567 * Remove a fasync entry. If successfully removed, return
568 * positive and clear the FASYNC flag. If no entry exists,
569 * do nothing and return 0.
570 *
571 * NOTE! It is very important that the FASYNC flag always
572 * match the state "is the filp on a fasync list".
573 *
574 */
575 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
576 {
577 struct fasync_struct *fa, **fp;
578 int result = 0;
579
580 spin_lock(&filp->f_lock);
581 spin_lock(&fasync_lock);
582 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
583 if (fa->fa_file != filp)
584 continue;
585
586 spin_lock_irq(&fa->fa_lock);
587 fa->fa_file = NULL;
588 spin_unlock_irq(&fa->fa_lock);
589
590 *fp = fa->fa_next;
591 call_rcu(&fa->fa_rcu, fasync_free_rcu);
592 filp->f_flags &= ~FASYNC;
593 result = 1;
594 break;
595 }
596 spin_unlock(&fasync_lock);
597 spin_unlock(&filp->f_lock);
598 return result;
599 }
600
601 struct fasync_struct *fasync_alloc(void)
602 {
603 return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
604 }
605
606 /*
607 * NOTE! This can be used only for unused fasync entries:
608 * entries that actually got inserted on the fasync list
609 * need to be released by rcu - see fasync_remove_entry.
610 */
611 void fasync_free(struct fasync_struct *new)
612 {
613 kmem_cache_free(fasync_cache, new);
614 }
615
616 /*
617 * Insert a new entry into the fasync list. Return the pointer to the
618 * old one if we didn't use the new one.
619 *
620 * NOTE! It is very important that the FASYNC flag always
621 * match the state "is the filp on a fasync list".
622 */
623 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
624 {
625 struct fasync_struct *fa, **fp;
626
627 spin_lock(&filp->f_lock);
628 spin_lock(&fasync_lock);
629 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
630 if (fa->fa_file != filp)
631 continue;
632
633 spin_lock_irq(&fa->fa_lock);
634 fa->fa_fd = fd;
635 spin_unlock_irq(&fa->fa_lock);
636 goto out;
637 }
638
639 spin_lock_init(&new->fa_lock);
640 new->magic = FASYNC_MAGIC;
641 new->fa_file = filp;
642 new->fa_fd = fd;
643 new->fa_next = *fapp;
644 rcu_assign_pointer(*fapp, new);
645 filp->f_flags |= FASYNC;
646
647 out:
648 spin_unlock(&fasync_lock);
649 spin_unlock(&filp->f_lock);
650 return fa;
651 }
652
653 /*
654 * Add a fasync entry. Return negative on error, positive if
655 * added, and zero if did nothing but change an existing one.
656 */
657 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
658 {
659 struct fasync_struct *new;
660
661 new = fasync_alloc();
662 if (!new)
663 return -ENOMEM;
664
665 /*
666 * fasync_insert_entry() returns the old (update) entry if
667 * it existed.
668 *
669 * So free the (unused) new entry and return 0 to let the
670 * caller know that we didn't add any new fasync entries.
671 */
672 if (fasync_insert_entry(fd, filp, fapp, new)) {
673 fasync_free(new);
674 return 0;
675 }
676
677 return 1;
678 }
679
680 /*
681 * fasync_helper() is used by almost all character device drivers
682 * to set up the fasync queue, and for regular files by the file
683 * lease code. It returns negative on error, 0 if it did no changes
684 * and positive if it added/deleted the entry.
685 */
686 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
687 {
688 if (!on)
689 return fasync_remove_entry(filp, fapp);
690 return fasync_add_entry(fd, filp, fapp);
691 }
692
693 EXPORT_SYMBOL(fasync_helper);
694
695 /*
696 * rcu_read_lock() is held
697 */
698 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
699 {
700 while (fa) {
701 struct fown_struct *fown;
702 unsigned long flags;
703
704 if (fa->magic != FASYNC_MAGIC) {
705 printk(KERN_ERR "kill_fasync: bad magic number in "
706 "fasync_struct!\n");
707 return;
708 }
709 spin_lock_irqsave(&fa->fa_lock, flags);
710 if (fa->fa_file) {
711 fown = &fa->fa_file->f_owner;
712 /* Don't send SIGURG to processes which have not set a
713 queued signum: SIGURG has its own default signalling
714 mechanism. */
715 if (!(sig == SIGURG && fown->signum == 0))
716 send_sigio(fown, fa->fa_fd, band);
717 }
718 spin_unlock_irqrestore(&fa->fa_lock, flags);
719 fa = rcu_dereference(fa->fa_next);
720 }
721 }
722
723 void kill_fasync(struct fasync_struct **fp, int sig, int band)
724 {
725 /* First a quick test without locking: usually
726 * the list is empty.
727 */
728 if (*fp) {
729 rcu_read_lock();
730 kill_fasync_rcu(rcu_dereference(*fp), sig, band);
731 rcu_read_unlock();
732 }
733 }
734 EXPORT_SYMBOL(kill_fasync);
735
736 static int __init fcntl_init(void)
737 {
738 /*
739 * Please add new bits here to ensure allocation uniqueness.
740 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
741 * is defined as O_NONBLOCK on some platforms and not on others.
742 */
743 BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ != HWEIGHT32(
744 O_RDONLY | O_WRONLY | O_RDWR |
745 O_CREAT | O_EXCL | O_NOCTTY |
746 O_TRUNC | O_APPEND | /* O_NONBLOCK | */
747 __O_SYNC | O_DSYNC | FASYNC |
748 O_DIRECT | O_LARGEFILE | O_DIRECTORY |
749 O_NOFOLLOW | O_NOATIME | O_CLOEXEC |
750 __FMODE_EXEC | O_PATH | __O_TMPFILE |
751 __FMODE_NONOTIFY
752 ));
753
754 fasync_cache = kmem_cache_create("fasync_cache",
755 sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL);
756 return 0;
757 }
758
759 module_init(fcntl_init)