]> git.ipfire.org Git - people/ms/linux.git/blob - fs/inode.c
Merge tag 'soc-fixes-6.0-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[people/ms/linux.git] / fs / inode.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fsnotify.h>
16 #include <linux/mount.h>
17 #include <linux/posix_acl.h>
18 #include <linux/prefetch.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
24 #include "internal.h"
25
26 /*
27 * Inode locking rules:
28 *
29 * inode->i_lock protects:
30 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list
31 * Inode LRU list locks protect:
32 * inode->i_sb->s_inode_lru, inode->i_lru
33 * inode->i_sb->s_inode_list_lock protects:
34 * inode->i_sb->s_inodes, inode->i_sb_list
35 * bdi->wb.list_lock protects:
36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37 * inode_hash_lock protects:
38 * inode_hashtable, inode->i_hash
39 *
40 * Lock ordering:
41 *
42 * inode->i_sb->s_inode_list_lock
43 * inode->i_lock
44 * Inode LRU list locks
45 *
46 * bdi->wb.list_lock
47 * inode->i_lock
48 *
49 * inode_hash_lock
50 * inode->i_sb->s_inode_list_lock
51 * inode->i_lock
52 *
53 * iunique_lock
54 * inode_hash_lock
55 */
56
57 static unsigned int i_hash_mask __read_mostly;
58 static unsigned int i_hash_shift __read_mostly;
59 static struct hlist_head *inode_hashtable __read_mostly;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61
62 /*
63 * Empty aops. Can be used for the cases where the user does not
64 * define any of the address_space operations.
65 */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69
70 static DEFINE_PER_CPU(unsigned long, nr_inodes);
71 static DEFINE_PER_CPU(unsigned long, nr_unused);
72
73 static struct kmem_cache *inode_cachep __read_mostly;
74
75 static long get_nr_inodes(void)
76 {
77 int i;
78 long sum = 0;
79 for_each_possible_cpu(i)
80 sum += per_cpu(nr_inodes, i);
81 return sum < 0 ? 0 : sum;
82 }
83
84 static inline long get_nr_inodes_unused(void)
85 {
86 int i;
87 long sum = 0;
88 for_each_possible_cpu(i)
89 sum += per_cpu(nr_unused, i);
90 return sum < 0 ? 0 : sum;
91 }
92
93 long get_nr_dirty_inodes(void)
94 {
95 /* not actually dirty inodes, but a wild approximation */
96 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
97 return nr_dirty > 0 ? nr_dirty : 0;
98 }
99
100 /*
101 * Handle nr_inode sysctl
102 */
103 #ifdef CONFIG_SYSCTL
104 /*
105 * Statistics gathering..
106 */
107 static struct inodes_stat_t inodes_stat;
108
109 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer,
110 size_t *lenp, loff_t *ppos)
111 {
112 inodes_stat.nr_inodes = get_nr_inodes();
113 inodes_stat.nr_unused = get_nr_inodes_unused();
114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116
117 static struct ctl_table inodes_sysctls[] = {
118 {
119 .procname = "inode-nr",
120 .data = &inodes_stat,
121 .maxlen = 2*sizeof(long),
122 .mode = 0444,
123 .proc_handler = proc_nr_inodes,
124 },
125 {
126 .procname = "inode-state",
127 .data = &inodes_stat,
128 .maxlen = 7*sizeof(long),
129 .mode = 0444,
130 .proc_handler = proc_nr_inodes,
131 },
132 { }
133 };
134
135 static int __init init_fs_inode_sysctls(void)
136 {
137 register_sysctl_init("fs", inodes_sysctls);
138 return 0;
139 }
140 early_initcall(init_fs_inode_sysctls);
141 #endif
142
143 static int no_open(struct inode *inode, struct file *file)
144 {
145 return -ENXIO;
146 }
147
148 /**
149 * inode_init_always - perform inode structure initialisation
150 * @sb: superblock inode belongs to
151 * @inode: inode to initialise
152 *
153 * These are initializations that need to be done on every inode
154 * allocation as the fields are not initialised by slab allocation.
155 */
156 int inode_init_always(struct super_block *sb, struct inode *inode)
157 {
158 static const struct inode_operations empty_iops;
159 static const struct file_operations no_open_fops = {.open = no_open};
160 struct address_space *const mapping = &inode->i_data;
161
162 inode->i_sb = sb;
163 inode->i_blkbits = sb->s_blocksize_bits;
164 inode->i_flags = 0;
165 atomic64_set(&inode->i_sequence, 0);
166 atomic_set(&inode->i_count, 1);
167 inode->i_op = &empty_iops;
168 inode->i_fop = &no_open_fops;
169 inode->i_ino = 0;
170 inode->__i_nlink = 1;
171 inode->i_opflags = 0;
172 if (sb->s_xattr)
173 inode->i_opflags |= IOP_XATTR;
174 i_uid_write(inode, 0);
175 i_gid_write(inode, 0);
176 atomic_set(&inode->i_writecount, 0);
177 inode->i_size = 0;
178 inode->i_write_hint = WRITE_LIFE_NOT_SET;
179 inode->i_blocks = 0;
180 inode->i_bytes = 0;
181 inode->i_generation = 0;
182 inode->i_pipe = NULL;
183 inode->i_cdev = NULL;
184 inode->i_link = NULL;
185 inode->i_dir_seq = 0;
186 inode->i_rdev = 0;
187 inode->dirtied_when = 0;
188
189 #ifdef CONFIG_CGROUP_WRITEBACK
190 inode->i_wb_frn_winner = 0;
191 inode->i_wb_frn_avg_time = 0;
192 inode->i_wb_frn_history = 0;
193 #endif
194
195 if (security_inode_alloc(inode))
196 goto out;
197 spin_lock_init(&inode->i_lock);
198 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
199
200 init_rwsem(&inode->i_rwsem);
201 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
202
203 atomic_set(&inode->i_dio_count, 0);
204
205 mapping->a_ops = &empty_aops;
206 mapping->host = inode;
207 mapping->flags = 0;
208 mapping->wb_err = 0;
209 atomic_set(&mapping->i_mmap_writable, 0);
210 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
211 atomic_set(&mapping->nr_thps, 0);
212 #endif
213 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
214 mapping->private_data = NULL;
215 mapping->writeback_index = 0;
216 init_rwsem(&mapping->invalidate_lock);
217 lockdep_set_class_and_name(&mapping->invalidate_lock,
218 &sb->s_type->invalidate_lock_key,
219 "mapping.invalidate_lock");
220 inode->i_private = NULL;
221 inode->i_mapping = mapping;
222 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
223 #ifdef CONFIG_FS_POSIX_ACL
224 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
225 #endif
226
227 #ifdef CONFIG_FSNOTIFY
228 inode->i_fsnotify_mask = 0;
229 #endif
230 inode->i_flctx = NULL;
231 this_cpu_inc(nr_inodes);
232
233 return 0;
234 out:
235 return -ENOMEM;
236 }
237 EXPORT_SYMBOL(inode_init_always);
238
239 void free_inode_nonrcu(struct inode *inode)
240 {
241 kmem_cache_free(inode_cachep, inode);
242 }
243 EXPORT_SYMBOL(free_inode_nonrcu);
244
245 static void i_callback(struct rcu_head *head)
246 {
247 struct inode *inode = container_of(head, struct inode, i_rcu);
248 if (inode->free_inode)
249 inode->free_inode(inode);
250 else
251 free_inode_nonrcu(inode);
252 }
253
254 static struct inode *alloc_inode(struct super_block *sb)
255 {
256 const struct super_operations *ops = sb->s_op;
257 struct inode *inode;
258
259 if (ops->alloc_inode)
260 inode = ops->alloc_inode(sb);
261 else
262 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
263
264 if (!inode)
265 return NULL;
266
267 if (unlikely(inode_init_always(sb, inode))) {
268 if (ops->destroy_inode) {
269 ops->destroy_inode(inode);
270 if (!ops->free_inode)
271 return NULL;
272 }
273 inode->free_inode = ops->free_inode;
274 i_callback(&inode->i_rcu);
275 return NULL;
276 }
277
278 return inode;
279 }
280
281 void __destroy_inode(struct inode *inode)
282 {
283 BUG_ON(inode_has_buffers(inode));
284 inode_detach_wb(inode);
285 security_inode_free(inode);
286 fsnotify_inode_delete(inode);
287 locks_free_lock_context(inode);
288 if (!inode->i_nlink) {
289 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
290 atomic_long_dec(&inode->i_sb->s_remove_count);
291 }
292
293 #ifdef CONFIG_FS_POSIX_ACL
294 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
295 posix_acl_release(inode->i_acl);
296 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
297 posix_acl_release(inode->i_default_acl);
298 #endif
299 this_cpu_dec(nr_inodes);
300 }
301 EXPORT_SYMBOL(__destroy_inode);
302
303 static void destroy_inode(struct inode *inode)
304 {
305 const struct super_operations *ops = inode->i_sb->s_op;
306
307 BUG_ON(!list_empty(&inode->i_lru));
308 __destroy_inode(inode);
309 if (ops->destroy_inode) {
310 ops->destroy_inode(inode);
311 if (!ops->free_inode)
312 return;
313 }
314 inode->free_inode = ops->free_inode;
315 call_rcu(&inode->i_rcu, i_callback);
316 }
317
318 /**
319 * drop_nlink - directly drop an inode's link count
320 * @inode: inode
321 *
322 * This is a low-level filesystem helper to replace any
323 * direct filesystem manipulation of i_nlink. In cases
324 * where we are attempting to track writes to the
325 * filesystem, a decrement to zero means an imminent
326 * write when the file is truncated and actually unlinked
327 * on the filesystem.
328 */
329 void drop_nlink(struct inode *inode)
330 {
331 WARN_ON(inode->i_nlink == 0);
332 inode->__i_nlink--;
333 if (!inode->i_nlink)
334 atomic_long_inc(&inode->i_sb->s_remove_count);
335 }
336 EXPORT_SYMBOL(drop_nlink);
337
338 /**
339 * clear_nlink - directly zero an inode's link count
340 * @inode: inode
341 *
342 * This is a low-level filesystem helper to replace any
343 * direct filesystem manipulation of i_nlink. See
344 * drop_nlink() for why we care about i_nlink hitting zero.
345 */
346 void clear_nlink(struct inode *inode)
347 {
348 if (inode->i_nlink) {
349 inode->__i_nlink = 0;
350 atomic_long_inc(&inode->i_sb->s_remove_count);
351 }
352 }
353 EXPORT_SYMBOL(clear_nlink);
354
355 /**
356 * set_nlink - directly set an inode's link count
357 * @inode: inode
358 * @nlink: new nlink (should be non-zero)
359 *
360 * This is a low-level filesystem helper to replace any
361 * direct filesystem manipulation of i_nlink.
362 */
363 void set_nlink(struct inode *inode, unsigned int nlink)
364 {
365 if (!nlink) {
366 clear_nlink(inode);
367 } else {
368 /* Yes, some filesystems do change nlink from zero to one */
369 if (inode->i_nlink == 0)
370 atomic_long_dec(&inode->i_sb->s_remove_count);
371
372 inode->__i_nlink = nlink;
373 }
374 }
375 EXPORT_SYMBOL(set_nlink);
376
377 /**
378 * inc_nlink - directly increment an inode's link count
379 * @inode: inode
380 *
381 * This is a low-level filesystem helper to replace any
382 * direct filesystem manipulation of i_nlink. Currently,
383 * it is only here for parity with dec_nlink().
384 */
385 void inc_nlink(struct inode *inode)
386 {
387 if (unlikely(inode->i_nlink == 0)) {
388 WARN_ON(!(inode->i_state & I_LINKABLE));
389 atomic_long_dec(&inode->i_sb->s_remove_count);
390 }
391
392 inode->__i_nlink++;
393 }
394 EXPORT_SYMBOL(inc_nlink);
395
396 static void __address_space_init_once(struct address_space *mapping)
397 {
398 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
399 init_rwsem(&mapping->i_mmap_rwsem);
400 INIT_LIST_HEAD(&mapping->private_list);
401 spin_lock_init(&mapping->private_lock);
402 mapping->i_mmap = RB_ROOT_CACHED;
403 }
404
405 void address_space_init_once(struct address_space *mapping)
406 {
407 memset(mapping, 0, sizeof(*mapping));
408 __address_space_init_once(mapping);
409 }
410 EXPORT_SYMBOL(address_space_init_once);
411
412 /*
413 * These are initializations that only need to be done
414 * once, because the fields are idempotent across use
415 * of the inode, so let the slab aware of that.
416 */
417 void inode_init_once(struct inode *inode)
418 {
419 memset(inode, 0, sizeof(*inode));
420 INIT_HLIST_NODE(&inode->i_hash);
421 INIT_LIST_HEAD(&inode->i_devices);
422 INIT_LIST_HEAD(&inode->i_io_list);
423 INIT_LIST_HEAD(&inode->i_wb_list);
424 INIT_LIST_HEAD(&inode->i_lru);
425 INIT_LIST_HEAD(&inode->i_sb_list);
426 __address_space_init_once(&inode->i_data);
427 i_size_ordered_init(inode);
428 }
429 EXPORT_SYMBOL(inode_init_once);
430
431 static void init_once(void *foo)
432 {
433 struct inode *inode = (struct inode *) foo;
434
435 inode_init_once(inode);
436 }
437
438 /*
439 * inode->i_lock must be held
440 */
441 void __iget(struct inode *inode)
442 {
443 atomic_inc(&inode->i_count);
444 }
445
446 /*
447 * get additional reference to inode; caller must already hold one.
448 */
449 void ihold(struct inode *inode)
450 {
451 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
452 }
453 EXPORT_SYMBOL(ihold);
454
455 static void __inode_add_lru(struct inode *inode, bool rotate)
456 {
457 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
458 return;
459 if (atomic_read(&inode->i_count))
460 return;
461 if (!(inode->i_sb->s_flags & SB_ACTIVE))
462 return;
463 if (!mapping_shrinkable(&inode->i_data))
464 return;
465
466 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
467 this_cpu_inc(nr_unused);
468 else if (rotate)
469 inode->i_state |= I_REFERENCED;
470 }
471
472 /*
473 * Add inode to LRU if needed (inode is unused and clean).
474 *
475 * Needs inode->i_lock held.
476 */
477 void inode_add_lru(struct inode *inode)
478 {
479 __inode_add_lru(inode, false);
480 }
481
482 static void inode_lru_list_del(struct inode *inode)
483 {
484 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
485 this_cpu_dec(nr_unused);
486 }
487
488 /**
489 * inode_sb_list_add - add inode to the superblock list of inodes
490 * @inode: inode to add
491 */
492 void inode_sb_list_add(struct inode *inode)
493 {
494 spin_lock(&inode->i_sb->s_inode_list_lock);
495 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
496 spin_unlock(&inode->i_sb->s_inode_list_lock);
497 }
498 EXPORT_SYMBOL_GPL(inode_sb_list_add);
499
500 static inline void inode_sb_list_del(struct inode *inode)
501 {
502 if (!list_empty(&inode->i_sb_list)) {
503 spin_lock(&inode->i_sb->s_inode_list_lock);
504 list_del_init(&inode->i_sb_list);
505 spin_unlock(&inode->i_sb->s_inode_list_lock);
506 }
507 }
508
509 static unsigned long hash(struct super_block *sb, unsigned long hashval)
510 {
511 unsigned long tmp;
512
513 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
514 L1_CACHE_BYTES;
515 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
516 return tmp & i_hash_mask;
517 }
518
519 /**
520 * __insert_inode_hash - hash an inode
521 * @inode: unhashed inode
522 * @hashval: unsigned long value used to locate this object in the
523 * inode_hashtable.
524 *
525 * Add an inode to the inode hash for this superblock.
526 */
527 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
528 {
529 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
530
531 spin_lock(&inode_hash_lock);
532 spin_lock(&inode->i_lock);
533 hlist_add_head_rcu(&inode->i_hash, b);
534 spin_unlock(&inode->i_lock);
535 spin_unlock(&inode_hash_lock);
536 }
537 EXPORT_SYMBOL(__insert_inode_hash);
538
539 /**
540 * __remove_inode_hash - remove an inode from the hash
541 * @inode: inode to unhash
542 *
543 * Remove an inode from the superblock.
544 */
545 void __remove_inode_hash(struct inode *inode)
546 {
547 spin_lock(&inode_hash_lock);
548 spin_lock(&inode->i_lock);
549 hlist_del_init_rcu(&inode->i_hash);
550 spin_unlock(&inode->i_lock);
551 spin_unlock(&inode_hash_lock);
552 }
553 EXPORT_SYMBOL(__remove_inode_hash);
554
555 void dump_mapping(const struct address_space *mapping)
556 {
557 struct inode *host;
558 const struct address_space_operations *a_ops;
559 struct hlist_node *dentry_first;
560 struct dentry *dentry_ptr;
561 struct dentry dentry;
562 unsigned long ino;
563
564 /*
565 * If mapping is an invalid pointer, we don't want to crash
566 * accessing it, so probe everything depending on it carefully.
567 */
568 if (get_kernel_nofault(host, &mapping->host) ||
569 get_kernel_nofault(a_ops, &mapping->a_ops)) {
570 pr_warn("invalid mapping:%px\n", mapping);
571 return;
572 }
573
574 if (!host) {
575 pr_warn("aops:%ps\n", a_ops);
576 return;
577 }
578
579 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
580 get_kernel_nofault(ino, &host->i_ino)) {
581 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
582 return;
583 }
584
585 if (!dentry_first) {
586 pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
587 return;
588 }
589
590 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
591 if (get_kernel_nofault(dentry, dentry_ptr)) {
592 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
593 a_ops, ino, dentry_ptr);
594 return;
595 }
596
597 /*
598 * if dentry is corrupted, the %pd handler may still crash,
599 * but it's unlikely that we reach here with a corrupt mapping
600 */
601 pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
602 }
603
604 void clear_inode(struct inode *inode)
605 {
606 /*
607 * We have to cycle the i_pages lock here because reclaim can be in the
608 * process of removing the last page (in __filemap_remove_folio())
609 * and we must not free the mapping under it.
610 */
611 xa_lock_irq(&inode->i_data.i_pages);
612 BUG_ON(inode->i_data.nrpages);
613 /*
614 * Almost always, mapping_empty(&inode->i_data) here; but there are
615 * two known and long-standing ways in which nodes may get left behind
616 * (when deep radix-tree node allocation failed partway; or when THP
617 * collapse_file() failed). Until those two known cases are cleaned up,
618 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
619 * nor even WARN_ON(!mapping_empty).
620 */
621 xa_unlock_irq(&inode->i_data.i_pages);
622 BUG_ON(!list_empty(&inode->i_data.private_list));
623 BUG_ON(!(inode->i_state & I_FREEING));
624 BUG_ON(inode->i_state & I_CLEAR);
625 BUG_ON(!list_empty(&inode->i_wb_list));
626 /* don't need i_lock here, no concurrent mods to i_state */
627 inode->i_state = I_FREEING | I_CLEAR;
628 }
629 EXPORT_SYMBOL(clear_inode);
630
631 /*
632 * Free the inode passed in, removing it from the lists it is still connected
633 * to. We remove any pages still attached to the inode and wait for any IO that
634 * is still in progress before finally destroying the inode.
635 *
636 * An inode must already be marked I_FREEING so that we avoid the inode being
637 * moved back onto lists if we race with other code that manipulates the lists
638 * (e.g. writeback_single_inode). The caller is responsible for setting this.
639 *
640 * An inode must already be removed from the LRU list before being evicted from
641 * the cache. This should occur atomically with setting the I_FREEING state
642 * flag, so no inodes here should ever be on the LRU when being evicted.
643 */
644 static void evict(struct inode *inode)
645 {
646 const struct super_operations *op = inode->i_sb->s_op;
647
648 BUG_ON(!(inode->i_state & I_FREEING));
649 BUG_ON(!list_empty(&inode->i_lru));
650
651 if (!list_empty(&inode->i_io_list))
652 inode_io_list_del(inode);
653
654 inode_sb_list_del(inode);
655
656 /*
657 * Wait for flusher thread to be done with the inode so that filesystem
658 * does not start destroying it while writeback is still running. Since
659 * the inode has I_FREEING set, flusher thread won't start new work on
660 * the inode. We just have to wait for running writeback to finish.
661 */
662 inode_wait_for_writeback(inode);
663
664 if (op->evict_inode) {
665 op->evict_inode(inode);
666 } else {
667 truncate_inode_pages_final(&inode->i_data);
668 clear_inode(inode);
669 }
670 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
671 cd_forget(inode);
672
673 remove_inode_hash(inode);
674
675 spin_lock(&inode->i_lock);
676 wake_up_bit(&inode->i_state, __I_NEW);
677 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
678 spin_unlock(&inode->i_lock);
679
680 destroy_inode(inode);
681 }
682
683 /*
684 * dispose_list - dispose of the contents of a local list
685 * @head: the head of the list to free
686 *
687 * Dispose-list gets a local list with local inodes in it, so it doesn't
688 * need to worry about list corruption and SMP locks.
689 */
690 static void dispose_list(struct list_head *head)
691 {
692 while (!list_empty(head)) {
693 struct inode *inode;
694
695 inode = list_first_entry(head, struct inode, i_lru);
696 list_del_init(&inode->i_lru);
697
698 evict(inode);
699 cond_resched();
700 }
701 }
702
703 /**
704 * evict_inodes - evict all evictable inodes for a superblock
705 * @sb: superblock to operate on
706 *
707 * Make sure that no inodes with zero refcount are retained. This is
708 * called by superblock shutdown after having SB_ACTIVE flag removed,
709 * so any inode reaching zero refcount during or after that call will
710 * be immediately evicted.
711 */
712 void evict_inodes(struct super_block *sb)
713 {
714 struct inode *inode, *next;
715 LIST_HEAD(dispose);
716
717 again:
718 spin_lock(&sb->s_inode_list_lock);
719 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
720 if (atomic_read(&inode->i_count))
721 continue;
722
723 spin_lock(&inode->i_lock);
724 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
725 spin_unlock(&inode->i_lock);
726 continue;
727 }
728
729 inode->i_state |= I_FREEING;
730 inode_lru_list_del(inode);
731 spin_unlock(&inode->i_lock);
732 list_add(&inode->i_lru, &dispose);
733
734 /*
735 * We can have a ton of inodes to evict at unmount time given
736 * enough memory, check to see if we need to go to sleep for a
737 * bit so we don't livelock.
738 */
739 if (need_resched()) {
740 spin_unlock(&sb->s_inode_list_lock);
741 cond_resched();
742 dispose_list(&dispose);
743 goto again;
744 }
745 }
746 spin_unlock(&sb->s_inode_list_lock);
747
748 dispose_list(&dispose);
749 }
750 EXPORT_SYMBOL_GPL(evict_inodes);
751
752 /**
753 * invalidate_inodes - attempt to free all inodes on a superblock
754 * @sb: superblock to operate on
755 * @kill_dirty: flag to guide handling of dirty inodes
756 *
757 * Attempts to free all inodes for a given superblock. If there were any
758 * busy inodes return a non-zero value, else zero.
759 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
760 * them as busy.
761 */
762 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
763 {
764 int busy = 0;
765 struct inode *inode, *next;
766 LIST_HEAD(dispose);
767
768 again:
769 spin_lock(&sb->s_inode_list_lock);
770 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
771 spin_lock(&inode->i_lock);
772 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
773 spin_unlock(&inode->i_lock);
774 continue;
775 }
776 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
777 spin_unlock(&inode->i_lock);
778 busy = 1;
779 continue;
780 }
781 if (atomic_read(&inode->i_count)) {
782 spin_unlock(&inode->i_lock);
783 busy = 1;
784 continue;
785 }
786
787 inode->i_state |= I_FREEING;
788 inode_lru_list_del(inode);
789 spin_unlock(&inode->i_lock);
790 list_add(&inode->i_lru, &dispose);
791 if (need_resched()) {
792 spin_unlock(&sb->s_inode_list_lock);
793 cond_resched();
794 dispose_list(&dispose);
795 goto again;
796 }
797 }
798 spin_unlock(&sb->s_inode_list_lock);
799
800 dispose_list(&dispose);
801
802 return busy;
803 }
804
805 /*
806 * Isolate the inode from the LRU in preparation for freeing it.
807 *
808 * If the inode has the I_REFERENCED flag set, then it means that it has been
809 * used recently - the flag is set in iput_final(). When we encounter such an
810 * inode, clear the flag and move it to the back of the LRU so it gets another
811 * pass through the LRU before it gets reclaimed. This is necessary because of
812 * the fact we are doing lazy LRU updates to minimise lock contention so the
813 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
814 * with this flag set because they are the inodes that are out of order.
815 */
816 static enum lru_status inode_lru_isolate(struct list_head *item,
817 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
818 {
819 struct list_head *freeable = arg;
820 struct inode *inode = container_of(item, struct inode, i_lru);
821
822 /*
823 * We are inverting the lru lock/inode->i_lock here, so use a
824 * trylock. If we fail to get the lock, just skip it.
825 */
826 if (!spin_trylock(&inode->i_lock))
827 return LRU_SKIP;
828
829 /*
830 * Inodes can get referenced, redirtied, or repopulated while
831 * they're already on the LRU, and this can make them
832 * unreclaimable for a while. Remove them lazily here; iput,
833 * sync, or the last page cache deletion will requeue them.
834 */
835 if (atomic_read(&inode->i_count) ||
836 (inode->i_state & ~I_REFERENCED) ||
837 !mapping_shrinkable(&inode->i_data)) {
838 list_lru_isolate(lru, &inode->i_lru);
839 spin_unlock(&inode->i_lock);
840 this_cpu_dec(nr_unused);
841 return LRU_REMOVED;
842 }
843
844 /* Recently referenced inodes get one more pass */
845 if (inode->i_state & I_REFERENCED) {
846 inode->i_state &= ~I_REFERENCED;
847 spin_unlock(&inode->i_lock);
848 return LRU_ROTATE;
849 }
850
851 /*
852 * On highmem systems, mapping_shrinkable() permits dropping
853 * page cache in order to free up struct inodes: lowmem might
854 * be under pressure before the cache inside the highmem zone.
855 */
856 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
857 __iget(inode);
858 spin_unlock(&inode->i_lock);
859 spin_unlock(lru_lock);
860 if (remove_inode_buffers(inode)) {
861 unsigned long reap;
862 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
863 if (current_is_kswapd())
864 __count_vm_events(KSWAPD_INODESTEAL, reap);
865 else
866 __count_vm_events(PGINODESTEAL, reap);
867 if (current->reclaim_state)
868 current->reclaim_state->reclaimed_slab += reap;
869 }
870 iput(inode);
871 spin_lock(lru_lock);
872 return LRU_RETRY;
873 }
874
875 WARN_ON(inode->i_state & I_NEW);
876 inode->i_state |= I_FREEING;
877 list_lru_isolate_move(lru, &inode->i_lru, freeable);
878 spin_unlock(&inode->i_lock);
879
880 this_cpu_dec(nr_unused);
881 return LRU_REMOVED;
882 }
883
884 /*
885 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
886 * This is called from the superblock shrinker function with a number of inodes
887 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
888 * then are freed outside inode_lock by dispose_list().
889 */
890 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
891 {
892 LIST_HEAD(freeable);
893 long freed;
894
895 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
896 inode_lru_isolate, &freeable);
897 dispose_list(&freeable);
898 return freed;
899 }
900
901 static void __wait_on_freeing_inode(struct inode *inode);
902 /*
903 * Called with the inode lock held.
904 */
905 static struct inode *find_inode(struct super_block *sb,
906 struct hlist_head *head,
907 int (*test)(struct inode *, void *),
908 void *data)
909 {
910 struct inode *inode = NULL;
911
912 repeat:
913 hlist_for_each_entry(inode, head, i_hash) {
914 if (inode->i_sb != sb)
915 continue;
916 if (!test(inode, data))
917 continue;
918 spin_lock(&inode->i_lock);
919 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
920 __wait_on_freeing_inode(inode);
921 goto repeat;
922 }
923 if (unlikely(inode->i_state & I_CREATING)) {
924 spin_unlock(&inode->i_lock);
925 return ERR_PTR(-ESTALE);
926 }
927 __iget(inode);
928 spin_unlock(&inode->i_lock);
929 return inode;
930 }
931 return NULL;
932 }
933
934 /*
935 * find_inode_fast is the fast path version of find_inode, see the comment at
936 * iget_locked for details.
937 */
938 static struct inode *find_inode_fast(struct super_block *sb,
939 struct hlist_head *head, unsigned long ino)
940 {
941 struct inode *inode = NULL;
942
943 repeat:
944 hlist_for_each_entry(inode, head, i_hash) {
945 if (inode->i_ino != ino)
946 continue;
947 if (inode->i_sb != sb)
948 continue;
949 spin_lock(&inode->i_lock);
950 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
951 __wait_on_freeing_inode(inode);
952 goto repeat;
953 }
954 if (unlikely(inode->i_state & I_CREATING)) {
955 spin_unlock(&inode->i_lock);
956 return ERR_PTR(-ESTALE);
957 }
958 __iget(inode);
959 spin_unlock(&inode->i_lock);
960 return inode;
961 }
962 return NULL;
963 }
964
965 /*
966 * Each cpu owns a range of LAST_INO_BATCH numbers.
967 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
968 * to renew the exhausted range.
969 *
970 * This does not significantly increase overflow rate because every CPU can
971 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
972 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
973 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
974 * overflow rate by 2x, which does not seem too significant.
975 *
976 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
977 * error if st_ino won't fit in target struct field. Use 32bit counter
978 * here to attempt to avoid that.
979 */
980 #define LAST_INO_BATCH 1024
981 static DEFINE_PER_CPU(unsigned int, last_ino);
982
983 unsigned int get_next_ino(void)
984 {
985 unsigned int *p = &get_cpu_var(last_ino);
986 unsigned int res = *p;
987
988 #ifdef CONFIG_SMP
989 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
990 static atomic_t shared_last_ino;
991 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
992
993 res = next - LAST_INO_BATCH;
994 }
995 #endif
996
997 res++;
998 /* get_next_ino should not provide a 0 inode number */
999 if (unlikely(!res))
1000 res++;
1001 *p = res;
1002 put_cpu_var(last_ino);
1003 return res;
1004 }
1005 EXPORT_SYMBOL(get_next_ino);
1006
1007 /**
1008 * new_inode_pseudo - obtain an inode
1009 * @sb: superblock
1010 *
1011 * Allocates a new inode for given superblock.
1012 * Inode wont be chained in superblock s_inodes list
1013 * This means :
1014 * - fs can't be unmount
1015 * - quotas, fsnotify, writeback can't work
1016 */
1017 struct inode *new_inode_pseudo(struct super_block *sb)
1018 {
1019 struct inode *inode = alloc_inode(sb);
1020
1021 if (inode) {
1022 spin_lock(&inode->i_lock);
1023 inode->i_state = 0;
1024 spin_unlock(&inode->i_lock);
1025 }
1026 return inode;
1027 }
1028
1029 /**
1030 * new_inode - obtain an inode
1031 * @sb: superblock
1032 *
1033 * Allocates a new inode for given superblock. The default gfp_mask
1034 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1035 * If HIGHMEM pages are unsuitable or it is known that pages allocated
1036 * for the page cache are not reclaimable or migratable,
1037 * mapping_set_gfp_mask() must be called with suitable flags on the
1038 * newly created inode's mapping
1039 *
1040 */
1041 struct inode *new_inode(struct super_block *sb)
1042 {
1043 struct inode *inode;
1044
1045 spin_lock_prefetch(&sb->s_inode_list_lock);
1046
1047 inode = new_inode_pseudo(sb);
1048 if (inode)
1049 inode_sb_list_add(inode);
1050 return inode;
1051 }
1052 EXPORT_SYMBOL(new_inode);
1053
1054 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1055 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1056 {
1057 if (S_ISDIR(inode->i_mode)) {
1058 struct file_system_type *type = inode->i_sb->s_type;
1059
1060 /* Set new key only if filesystem hasn't already changed it */
1061 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1062 /*
1063 * ensure nobody is actually holding i_mutex
1064 */
1065 // mutex_destroy(&inode->i_mutex);
1066 init_rwsem(&inode->i_rwsem);
1067 lockdep_set_class(&inode->i_rwsem,
1068 &type->i_mutex_dir_key);
1069 }
1070 }
1071 }
1072 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1073 #endif
1074
1075 /**
1076 * unlock_new_inode - clear the I_NEW state and wake up any waiters
1077 * @inode: new inode to unlock
1078 *
1079 * Called when the inode is fully initialised to clear the new state of the
1080 * inode and wake up anyone waiting for the inode to finish initialisation.
1081 */
1082 void unlock_new_inode(struct inode *inode)
1083 {
1084 lockdep_annotate_inode_mutex_key(inode);
1085 spin_lock(&inode->i_lock);
1086 WARN_ON(!(inode->i_state & I_NEW));
1087 inode->i_state &= ~I_NEW & ~I_CREATING;
1088 smp_mb();
1089 wake_up_bit(&inode->i_state, __I_NEW);
1090 spin_unlock(&inode->i_lock);
1091 }
1092 EXPORT_SYMBOL(unlock_new_inode);
1093
1094 void discard_new_inode(struct inode *inode)
1095 {
1096 lockdep_annotate_inode_mutex_key(inode);
1097 spin_lock(&inode->i_lock);
1098 WARN_ON(!(inode->i_state & I_NEW));
1099 inode->i_state &= ~I_NEW;
1100 smp_mb();
1101 wake_up_bit(&inode->i_state, __I_NEW);
1102 spin_unlock(&inode->i_lock);
1103 iput(inode);
1104 }
1105 EXPORT_SYMBOL(discard_new_inode);
1106
1107 /**
1108 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1109 *
1110 * Lock any non-NULL argument that is not a directory.
1111 * Zero, one or two objects may be locked by this function.
1112 *
1113 * @inode1: first inode to lock
1114 * @inode2: second inode to lock
1115 */
1116 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1117 {
1118 if (inode1 > inode2)
1119 swap(inode1, inode2);
1120
1121 if (inode1 && !S_ISDIR(inode1->i_mode))
1122 inode_lock(inode1);
1123 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1124 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1125 }
1126 EXPORT_SYMBOL(lock_two_nondirectories);
1127
1128 /**
1129 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1130 * @inode1: first inode to unlock
1131 * @inode2: second inode to unlock
1132 */
1133 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1134 {
1135 if (inode1 && !S_ISDIR(inode1->i_mode))
1136 inode_unlock(inode1);
1137 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1138 inode_unlock(inode2);
1139 }
1140 EXPORT_SYMBOL(unlock_two_nondirectories);
1141
1142 /**
1143 * inode_insert5 - obtain an inode from a mounted file system
1144 * @inode: pre-allocated inode to use for insert to cache
1145 * @hashval: hash value (usually inode number) to get
1146 * @test: callback used for comparisons between inodes
1147 * @set: callback used to initialize a new struct inode
1148 * @data: opaque data pointer to pass to @test and @set
1149 *
1150 * Search for the inode specified by @hashval and @data in the inode cache,
1151 * and if present it is return it with an increased reference count. This is
1152 * a variant of iget5_locked() for callers that don't want to fail on memory
1153 * allocation of inode.
1154 *
1155 * If the inode is not in cache, insert the pre-allocated inode to cache and
1156 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1157 * to fill it in before unlocking it via unlock_new_inode().
1158 *
1159 * Note both @test and @set are called with the inode_hash_lock held, so can't
1160 * sleep.
1161 */
1162 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1163 int (*test)(struct inode *, void *),
1164 int (*set)(struct inode *, void *), void *data)
1165 {
1166 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1167 struct inode *old;
1168
1169 again:
1170 spin_lock(&inode_hash_lock);
1171 old = find_inode(inode->i_sb, head, test, data);
1172 if (unlikely(old)) {
1173 /*
1174 * Uhhuh, somebody else created the same inode under us.
1175 * Use the old inode instead of the preallocated one.
1176 */
1177 spin_unlock(&inode_hash_lock);
1178 if (IS_ERR(old))
1179 return NULL;
1180 wait_on_inode(old);
1181 if (unlikely(inode_unhashed(old))) {
1182 iput(old);
1183 goto again;
1184 }
1185 return old;
1186 }
1187
1188 if (set && unlikely(set(inode, data))) {
1189 inode = NULL;
1190 goto unlock;
1191 }
1192
1193 /*
1194 * Return the locked inode with I_NEW set, the
1195 * caller is responsible for filling in the contents
1196 */
1197 spin_lock(&inode->i_lock);
1198 inode->i_state |= I_NEW;
1199 hlist_add_head_rcu(&inode->i_hash, head);
1200 spin_unlock(&inode->i_lock);
1201
1202 /*
1203 * Add inode to the sb list if it's not already. It has I_NEW at this
1204 * point, so it should be safe to test i_sb_list locklessly.
1205 */
1206 if (list_empty(&inode->i_sb_list))
1207 inode_sb_list_add(inode);
1208 unlock:
1209 spin_unlock(&inode_hash_lock);
1210
1211 return inode;
1212 }
1213 EXPORT_SYMBOL(inode_insert5);
1214
1215 /**
1216 * iget5_locked - obtain an inode from a mounted file system
1217 * @sb: super block of file system
1218 * @hashval: hash value (usually inode number) to get
1219 * @test: callback used for comparisons between inodes
1220 * @set: callback used to initialize a new struct inode
1221 * @data: opaque data pointer to pass to @test and @set
1222 *
1223 * Search for the inode specified by @hashval and @data in the inode cache,
1224 * and if present it is return it with an increased reference count. This is
1225 * a generalized version of iget_locked() for file systems where the inode
1226 * number is not sufficient for unique identification of an inode.
1227 *
1228 * If the inode is not in cache, allocate a new inode and return it locked,
1229 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1230 * before unlocking it via unlock_new_inode().
1231 *
1232 * Note both @test and @set are called with the inode_hash_lock held, so can't
1233 * sleep.
1234 */
1235 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1236 int (*test)(struct inode *, void *),
1237 int (*set)(struct inode *, void *), void *data)
1238 {
1239 struct inode *inode = ilookup5(sb, hashval, test, data);
1240
1241 if (!inode) {
1242 struct inode *new = alloc_inode(sb);
1243
1244 if (new) {
1245 new->i_state = 0;
1246 inode = inode_insert5(new, hashval, test, set, data);
1247 if (unlikely(inode != new))
1248 destroy_inode(new);
1249 }
1250 }
1251 return inode;
1252 }
1253 EXPORT_SYMBOL(iget5_locked);
1254
1255 /**
1256 * iget_locked - obtain an inode from a mounted file system
1257 * @sb: super block of file system
1258 * @ino: inode number to get
1259 *
1260 * Search for the inode specified by @ino in the inode cache and if present
1261 * return it with an increased reference count. This is for file systems
1262 * where the inode number is sufficient for unique identification of an inode.
1263 *
1264 * If the inode is not in cache, allocate a new inode and return it locked,
1265 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1266 * before unlocking it via unlock_new_inode().
1267 */
1268 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1269 {
1270 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1271 struct inode *inode;
1272 again:
1273 spin_lock(&inode_hash_lock);
1274 inode = find_inode_fast(sb, head, ino);
1275 spin_unlock(&inode_hash_lock);
1276 if (inode) {
1277 if (IS_ERR(inode))
1278 return NULL;
1279 wait_on_inode(inode);
1280 if (unlikely(inode_unhashed(inode))) {
1281 iput(inode);
1282 goto again;
1283 }
1284 return inode;
1285 }
1286
1287 inode = alloc_inode(sb);
1288 if (inode) {
1289 struct inode *old;
1290
1291 spin_lock(&inode_hash_lock);
1292 /* We released the lock, so.. */
1293 old = find_inode_fast(sb, head, ino);
1294 if (!old) {
1295 inode->i_ino = ino;
1296 spin_lock(&inode->i_lock);
1297 inode->i_state = I_NEW;
1298 hlist_add_head_rcu(&inode->i_hash, head);
1299 spin_unlock(&inode->i_lock);
1300 inode_sb_list_add(inode);
1301 spin_unlock(&inode_hash_lock);
1302
1303 /* Return the locked inode with I_NEW set, the
1304 * caller is responsible for filling in the contents
1305 */
1306 return inode;
1307 }
1308
1309 /*
1310 * Uhhuh, somebody else created the same inode under
1311 * us. Use the old inode instead of the one we just
1312 * allocated.
1313 */
1314 spin_unlock(&inode_hash_lock);
1315 destroy_inode(inode);
1316 if (IS_ERR(old))
1317 return NULL;
1318 inode = old;
1319 wait_on_inode(inode);
1320 if (unlikely(inode_unhashed(inode))) {
1321 iput(inode);
1322 goto again;
1323 }
1324 }
1325 return inode;
1326 }
1327 EXPORT_SYMBOL(iget_locked);
1328
1329 /*
1330 * search the inode cache for a matching inode number.
1331 * If we find one, then the inode number we are trying to
1332 * allocate is not unique and so we should not use it.
1333 *
1334 * Returns 1 if the inode number is unique, 0 if it is not.
1335 */
1336 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1337 {
1338 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1339 struct inode *inode;
1340
1341 hlist_for_each_entry_rcu(inode, b, i_hash) {
1342 if (inode->i_ino == ino && inode->i_sb == sb)
1343 return 0;
1344 }
1345 return 1;
1346 }
1347
1348 /**
1349 * iunique - get a unique inode number
1350 * @sb: superblock
1351 * @max_reserved: highest reserved inode number
1352 *
1353 * Obtain an inode number that is unique on the system for a given
1354 * superblock. This is used by file systems that have no natural
1355 * permanent inode numbering system. An inode number is returned that
1356 * is higher than the reserved limit but unique.
1357 *
1358 * BUGS:
1359 * With a large number of inodes live on the file system this function
1360 * currently becomes quite slow.
1361 */
1362 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1363 {
1364 /*
1365 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1366 * error if st_ino won't fit in target struct field. Use 32bit counter
1367 * here to attempt to avoid that.
1368 */
1369 static DEFINE_SPINLOCK(iunique_lock);
1370 static unsigned int counter;
1371 ino_t res;
1372
1373 rcu_read_lock();
1374 spin_lock(&iunique_lock);
1375 do {
1376 if (counter <= max_reserved)
1377 counter = max_reserved + 1;
1378 res = counter++;
1379 } while (!test_inode_iunique(sb, res));
1380 spin_unlock(&iunique_lock);
1381 rcu_read_unlock();
1382
1383 return res;
1384 }
1385 EXPORT_SYMBOL(iunique);
1386
1387 struct inode *igrab(struct inode *inode)
1388 {
1389 spin_lock(&inode->i_lock);
1390 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1391 __iget(inode);
1392 spin_unlock(&inode->i_lock);
1393 } else {
1394 spin_unlock(&inode->i_lock);
1395 /*
1396 * Handle the case where s_op->clear_inode is not been
1397 * called yet, and somebody is calling igrab
1398 * while the inode is getting freed.
1399 */
1400 inode = NULL;
1401 }
1402 return inode;
1403 }
1404 EXPORT_SYMBOL(igrab);
1405
1406 /**
1407 * ilookup5_nowait - search for an inode in the inode cache
1408 * @sb: super block of file system to search
1409 * @hashval: hash value (usually inode number) to search for
1410 * @test: callback used for comparisons between inodes
1411 * @data: opaque data pointer to pass to @test
1412 *
1413 * Search for the inode specified by @hashval and @data in the inode cache.
1414 * If the inode is in the cache, the inode is returned with an incremented
1415 * reference count.
1416 *
1417 * Note: I_NEW is not waited upon so you have to be very careful what you do
1418 * with the returned inode. You probably should be using ilookup5() instead.
1419 *
1420 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1421 */
1422 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1423 int (*test)(struct inode *, void *), void *data)
1424 {
1425 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1426 struct inode *inode;
1427
1428 spin_lock(&inode_hash_lock);
1429 inode = find_inode(sb, head, test, data);
1430 spin_unlock(&inode_hash_lock);
1431
1432 return IS_ERR(inode) ? NULL : inode;
1433 }
1434 EXPORT_SYMBOL(ilookup5_nowait);
1435
1436 /**
1437 * ilookup5 - search for an inode in the inode cache
1438 * @sb: super block of file system to search
1439 * @hashval: hash value (usually inode number) to search for
1440 * @test: callback used for comparisons between inodes
1441 * @data: opaque data pointer to pass to @test
1442 *
1443 * Search for the inode specified by @hashval and @data in the inode cache,
1444 * and if the inode is in the cache, return the inode with an incremented
1445 * reference count. Waits on I_NEW before returning the inode.
1446 * returned with an incremented reference count.
1447 *
1448 * This is a generalized version of ilookup() for file systems where the
1449 * inode number is not sufficient for unique identification of an inode.
1450 *
1451 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1452 */
1453 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1454 int (*test)(struct inode *, void *), void *data)
1455 {
1456 struct inode *inode;
1457 again:
1458 inode = ilookup5_nowait(sb, hashval, test, data);
1459 if (inode) {
1460 wait_on_inode(inode);
1461 if (unlikely(inode_unhashed(inode))) {
1462 iput(inode);
1463 goto again;
1464 }
1465 }
1466 return inode;
1467 }
1468 EXPORT_SYMBOL(ilookup5);
1469
1470 /**
1471 * ilookup - search for an inode in the inode cache
1472 * @sb: super block of file system to search
1473 * @ino: inode number to search for
1474 *
1475 * Search for the inode @ino in the inode cache, and if the inode is in the
1476 * cache, the inode is returned with an incremented reference count.
1477 */
1478 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1479 {
1480 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1481 struct inode *inode;
1482 again:
1483 spin_lock(&inode_hash_lock);
1484 inode = find_inode_fast(sb, head, ino);
1485 spin_unlock(&inode_hash_lock);
1486
1487 if (inode) {
1488 if (IS_ERR(inode))
1489 return NULL;
1490 wait_on_inode(inode);
1491 if (unlikely(inode_unhashed(inode))) {
1492 iput(inode);
1493 goto again;
1494 }
1495 }
1496 return inode;
1497 }
1498 EXPORT_SYMBOL(ilookup);
1499
1500 /**
1501 * find_inode_nowait - find an inode in the inode cache
1502 * @sb: super block of file system to search
1503 * @hashval: hash value (usually inode number) to search for
1504 * @match: callback used for comparisons between inodes
1505 * @data: opaque data pointer to pass to @match
1506 *
1507 * Search for the inode specified by @hashval and @data in the inode
1508 * cache, where the helper function @match will return 0 if the inode
1509 * does not match, 1 if the inode does match, and -1 if the search
1510 * should be stopped. The @match function must be responsible for
1511 * taking the i_lock spin_lock and checking i_state for an inode being
1512 * freed or being initialized, and incrementing the reference count
1513 * before returning 1. It also must not sleep, since it is called with
1514 * the inode_hash_lock spinlock held.
1515 *
1516 * This is a even more generalized version of ilookup5() when the
1517 * function must never block --- find_inode() can block in
1518 * __wait_on_freeing_inode() --- or when the caller can not increment
1519 * the reference count because the resulting iput() might cause an
1520 * inode eviction. The tradeoff is that the @match funtion must be
1521 * very carefully implemented.
1522 */
1523 struct inode *find_inode_nowait(struct super_block *sb,
1524 unsigned long hashval,
1525 int (*match)(struct inode *, unsigned long,
1526 void *),
1527 void *data)
1528 {
1529 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1530 struct inode *inode, *ret_inode = NULL;
1531 int mval;
1532
1533 spin_lock(&inode_hash_lock);
1534 hlist_for_each_entry(inode, head, i_hash) {
1535 if (inode->i_sb != sb)
1536 continue;
1537 mval = match(inode, hashval, data);
1538 if (mval == 0)
1539 continue;
1540 if (mval == 1)
1541 ret_inode = inode;
1542 goto out;
1543 }
1544 out:
1545 spin_unlock(&inode_hash_lock);
1546 return ret_inode;
1547 }
1548 EXPORT_SYMBOL(find_inode_nowait);
1549
1550 /**
1551 * find_inode_rcu - find an inode in the inode cache
1552 * @sb: Super block of file system to search
1553 * @hashval: Key to hash
1554 * @test: Function to test match on an inode
1555 * @data: Data for test function
1556 *
1557 * Search for the inode specified by @hashval and @data in the inode cache,
1558 * where the helper function @test will return 0 if the inode does not match
1559 * and 1 if it does. The @test function must be responsible for taking the
1560 * i_lock spin_lock and checking i_state for an inode being freed or being
1561 * initialized.
1562 *
1563 * If successful, this will return the inode for which the @test function
1564 * returned 1 and NULL otherwise.
1565 *
1566 * The @test function is not permitted to take a ref on any inode presented.
1567 * It is also not permitted to sleep.
1568 *
1569 * The caller must hold the RCU read lock.
1570 */
1571 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1572 int (*test)(struct inode *, void *), void *data)
1573 {
1574 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1575 struct inode *inode;
1576
1577 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1578 "suspicious find_inode_rcu() usage");
1579
1580 hlist_for_each_entry_rcu(inode, head, i_hash) {
1581 if (inode->i_sb == sb &&
1582 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1583 test(inode, data))
1584 return inode;
1585 }
1586 return NULL;
1587 }
1588 EXPORT_SYMBOL(find_inode_rcu);
1589
1590 /**
1591 * find_inode_by_ino_rcu - Find an inode in the inode cache
1592 * @sb: Super block of file system to search
1593 * @ino: The inode number to match
1594 *
1595 * Search for the inode specified by @hashval and @data in the inode cache,
1596 * where the helper function @test will return 0 if the inode does not match
1597 * and 1 if it does. The @test function must be responsible for taking the
1598 * i_lock spin_lock and checking i_state for an inode being freed or being
1599 * initialized.
1600 *
1601 * If successful, this will return the inode for which the @test function
1602 * returned 1 and NULL otherwise.
1603 *
1604 * The @test function is not permitted to take a ref on any inode presented.
1605 * It is also not permitted to sleep.
1606 *
1607 * The caller must hold the RCU read lock.
1608 */
1609 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1610 unsigned long ino)
1611 {
1612 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1613 struct inode *inode;
1614
1615 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1616 "suspicious find_inode_by_ino_rcu() usage");
1617
1618 hlist_for_each_entry_rcu(inode, head, i_hash) {
1619 if (inode->i_ino == ino &&
1620 inode->i_sb == sb &&
1621 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1622 return inode;
1623 }
1624 return NULL;
1625 }
1626 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1627
1628 int insert_inode_locked(struct inode *inode)
1629 {
1630 struct super_block *sb = inode->i_sb;
1631 ino_t ino = inode->i_ino;
1632 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1633
1634 while (1) {
1635 struct inode *old = NULL;
1636 spin_lock(&inode_hash_lock);
1637 hlist_for_each_entry(old, head, i_hash) {
1638 if (old->i_ino != ino)
1639 continue;
1640 if (old->i_sb != sb)
1641 continue;
1642 spin_lock(&old->i_lock);
1643 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1644 spin_unlock(&old->i_lock);
1645 continue;
1646 }
1647 break;
1648 }
1649 if (likely(!old)) {
1650 spin_lock(&inode->i_lock);
1651 inode->i_state |= I_NEW | I_CREATING;
1652 hlist_add_head_rcu(&inode->i_hash, head);
1653 spin_unlock(&inode->i_lock);
1654 spin_unlock(&inode_hash_lock);
1655 return 0;
1656 }
1657 if (unlikely(old->i_state & I_CREATING)) {
1658 spin_unlock(&old->i_lock);
1659 spin_unlock(&inode_hash_lock);
1660 return -EBUSY;
1661 }
1662 __iget(old);
1663 spin_unlock(&old->i_lock);
1664 spin_unlock(&inode_hash_lock);
1665 wait_on_inode(old);
1666 if (unlikely(!inode_unhashed(old))) {
1667 iput(old);
1668 return -EBUSY;
1669 }
1670 iput(old);
1671 }
1672 }
1673 EXPORT_SYMBOL(insert_inode_locked);
1674
1675 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1676 int (*test)(struct inode *, void *), void *data)
1677 {
1678 struct inode *old;
1679
1680 inode->i_state |= I_CREATING;
1681 old = inode_insert5(inode, hashval, test, NULL, data);
1682
1683 if (old != inode) {
1684 iput(old);
1685 return -EBUSY;
1686 }
1687 return 0;
1688 }
1689 EXPORT_SYMBOL(insert_inode_locked4);
1690
1691
1692 int generic_delete_inode(struct inode *inode)
1693 {
1694 return 1;
1695 }
1696 EXPORT_SYMBOL(generic_delete_inode);
1697
1698 /*
1699 * Called when we're dropping the last reference
1700 * to an inode.
1701 *
1702 * Call the FS "drop_inode()" function, defaulting to
1703 * the legacy UNIX filesystem behaviour. If it tells
1704 * us to evict inode, do so. Otherwise, retain inode
1705 * in cache if fs is alive, sync and evict if fs is
1706 * shutting down.
1707 */
1708 static void iput_final(struct inode *inode)
1709 {
1710 struct super_block *sb = inode->i_sb;
1711 const struct super_operations *op = inode->i_sb->s_op;
1712 unsigned long state;
1713 int drop;
1714
1715 WARN_ON(inode->i_state & I_NEW);
1716
1717 if (op->drop_inode)
1718 drop = op->drop_inode(inode);
1719 else
1720 drop = generic_drop_inode(inode);
1721
1722 if (!drop &&
1723 !(inode->i_state & I_DONTCACHE) &&
1724 (sb->s_flags & SB_ACTIVE)) {
1725 __inode_add_lru(inode, true);
1726 spin_unlock(&inode->i_lock);
1727 return;
1728 }
1729
1730 state = inode->i_state;
1731 if (!drop) {
1732 WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1733 spin_unlock(&inode->i_lock);
1734
1735 write_inode_now(inode, 1);
1736
1737 spin_lock(&inode->i_lock);
1738 state = inode->i_state;
1739 WARN_ON(state & I_NEW);
1740 state &= ~I_WILL_FREE;
1741 }
1742
1743 WRITE_ONCE(inode->i_state, state | I_FREEING);
1744 if (!list_empty(&inode->i_lru))
1745 inode_lru_list_del(inode);
1746 spin_unlock(&inode->i_lock);
1747
1748 evict(inode);
1749 }
1750
1751 /**
1752 * iput - put an inode
1753 * @inode: inode to put
1754 *
1755 * Puts an inode, dropping its usage count. If the inode use count hits
1756 * zero, the inode is then freed and may also be destroyed.
1757 *
1758 * Consequently, iput() can sleep.
1759 */
1760 void iput(struct inode *inode)
1761 {
1762 if (!inode)
1763 return;
1764 BUG_ON(inode->i_state & I_CLEAR);
1765 retry:
1766 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1767 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1768 atomic_inc(&inode->i_count);
1769 spin_unlock(&inode->i_lock);
1770 trace_writeback_lazytime_iput(inode);
1771 mark_inode_dirty_sync(inode);
1772 goto retry;
1773 }
1774 iput_final(inode);
1775 }
1776 }
1777 EXPORT_SYMBOL(iput);
1778
1779 #ifdef CONFIG_BLOCK
1780 /**
1781 * bmap - find a block number in a file
1782 * @inode: inode owning the block number being requested
1783 * @block: pointer containing the block to find
1784 *
1785 * Replaces the value in ``*block`` with the block number on the device holding
1786 * corresponding to the requested block number in the file.
1787 * That is, asked for block 4 of inode 1 the function will replace the
1788 * 4 in ``*block``, with disk block relative to the disk start that holds that
1789 * block of the file.
1790 *
1791 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1792 * hole, returns 0 and ``*block`` is also set to 0.
1793 */
1794 int bmap(struct inode *inode, sector_t *block)
1795 {
1796 if (!inode->i_mapping->a_ops->bmap)
1797 return -EINVAL;
1798
1799 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1800 return 0;
1801 }
1802 EXPORT_SYMBOL(bmap);
1803 #endif
1804
1805 /*
1806 * With relative atime, only update atime if the previous atime is
1807 * earlier than either the ctime or mtime or if at least a day has
1808 * passed since the last atime update.
1809 */
1810 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1811 struct timespec64 now)
1812 {
1813
1814 if (!(mnt->mnt_flags & MNT_RELATIME))
1815 return 1;
1816 /*
1817 * Is mtime younger than atime? If yes, update atime:
1818 */
1819 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1820 return 1;
1821 /*
1822 * Is ctime younger than atime? If yes, update atime:
1823 */
1824 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1825 return 1;
1826
1827 /*
1828 * Is the previous atime value older than a day? If yes,
1829 * update atime:
1830 */
1831 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1832 return 1;
1833 /*
1834 * Good, we can skip the atime update:
1835 */
1836 return 0;
1837 }
1838
1839 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1840 {
1841 int dirty_flags = 0;
1842
1843 if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1844 if (flags & S_ATIME)
1845 inode->i_atime = *time;
1846 if (flags & S_CTIME)
1847 inode->i_ctime = *time;
1848 if (flags & S_MTIME)
1849 inode->i_mtime = *time;
1850
1851 if (inode->i_sb->s_flags & SB_LAZYTIME)
1852 dirty_flags |= I_DIRTY_TIME;
1853 else
1854 dirty_flags |= I_DIRTY_SYNC;
1855 }
1856
1857 if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1858 dirty_flags |= I_DIRTY_SYNC;
1859
1860 __mark_inode_dirty(inode, dirty_flags);
1861 return 0;
1862 }
1863 EXPORT_SYMBOL(generic_update_time);
1864
1865 /*
1866 * This does the actual work of updating an inodes time or version. Must have
1867 * had called mnt_want_write() before calling this.
1868 */
1869 int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
1870 {
1871 if (inode->i_op->update_time)
1872 return inode->i_op->update_time(inode, time, flags);
1873 return generic_update_time(inode, time, flags);
1874 }
1875 EXPORT_SYMBOL(inode_update_time);
1876
1877 /**
1878 * atime_needs_update - update the access time
1879 * @path: the &struct path to update
1880 * @inode: inode to update
1881 *
1882 * Update the accessed time on an inode and mark it for writeback.
1883 * This function automatically handles read only file systems and media,
1884 * as well as the "noatime" flag and inode specific "noatime" markers.
1885 */
1886 bool atime_needs_update(const struct path *path, struct inode *inode)
1887 {
1888 struct vfsmount *mnt = path->mnt;
1889 struct timespec64 now;
1890
1891 if (inode->i_flags & S_NOATIME)
1892 return false;
1893
1894 /* Atime updates will likely cause i_uid and i_gid to be written
1895 * back improprely if their true value is unknown to the vfs.
1896 */
1897 if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
1898 return false;
1899
1900 if (IS_NOATIME(inode))
1901 return false;
1902 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1903 return false;
1904
1905 if (mnt->mnt_flags & MNT_NOATIME)
1906 return false;
1907 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1908 return false;
1909
1910 now = current_time(inode);
1911
1912 if (!relatime_need_update(mnt, inode, now))
1913 return false;
1914
1915 if (timespec64_equal(&inode->i_atime, &now))
1916 return false;
1917
1918 return true;
1919 }
1920
1921 void touch_atime(const struct path *path)
1922 {
1923 struct vfsmount *mnt = path->mnt;
1924 struct inode *inode = d_inode(path->dentry);
1925 struct timespec64 now;
1926
1927 if (!atime_needs_update(path, inode))
1928 return;
1929
1930 if (!sb_start_write_trylock(inode->i_sb))
1931 return;
1932
1933 if (__mnt_want_write(mnt) != 0)
1934 goto skip_update;
1935 /*
1936 * File systems can error out when updating inodes if they need to
1937 * allocate new space to modify an inode (such is the case for
1938 * Btrfs), but since we touch atime while walking down the path we
1939 * really don't care if we failed to update the atime of the file,
1940 * so just ignore the return value.
1941 * We may also fail on filesystems that have the ability to make parts
1942 * of the fs read only, e.g. subvolumes in Btrfs.
1943 */
1944 now = current_time(inode);
1945 inode_update_time(inode, &now, S_ATIME);
1946 __mnt_drop_write(mnt);
1947 skip_update:
1948 sb_end_write(inode->i_sb);
1949 }
1950 EXPORT_SYMBOL(touch_atime);
1951
1952 /*
1953 * The logic we want is
1954 *
1955 * if suid or (sgid and xgrp)
1956 * remove privs
1957 */
1958 int should_remove_suid(struct dentry *dentry)
1959 {
1960 umode_t mode = d_inode(dentry)->i_mode;
1961 int kill = 0;
1962
1963 /* suid always must be killed */
1964 if (unlikely(mode & S_ISUID))
1965 kill = ATTR_KILL_SUID;
1966
1967 /*
1968 * sgid without any exec bits is just a mandatory locking mark; leave
1969 * it alone. If some exec bits are set, it's a real sgid; kill it.
1970 */
1971 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1972 kill |= ATTR_KILL_SGID;
1973
1974 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1975 return kill;
1976
1977 return 0;
1978 }
1979 EXPORT_SYMBOL(should_remove_suid);
1980
1981 /*
1982 * Return mask of changes for notify_change() that need to be done as a
1983 * response to write or truncate. Return 0 if nothing has to be changed.
1984 * Negative value on error (change should be denied).
1985 */
1986 int dentry_needs_remove_privs(struct dentry *dentry)
1987 {
1988 struct inode *inode = d_inode(dentry);
1989 int mask = 0;
1990 int ret;
1991
1992 if (IS_NOSEC(inode))
1993 return 0;
1994
1995 mask = should_remove_suid(dentry);
1996 ret = security_inode_need_killpriv(dentry);
1997 if (ret < 0)
1998 return ret;
1999 if (ret)
2000 mask |= ATTR_KILL_PRIV;
2001 return mask;
2002 }
2003
2004 static int __remove_privs(struct user_namespace *mnt_userns,
2005 struct dentry *dentry, int kill)
2006 {
2007 struct iattr newattrs;
2008
2009 newattrs.ia_valid = ATTR_FORCE | kill;
2010 /*
2011 * Note we call this on write, so notify_change will not
2012 * encounter any conflicting delegations:
2013 */
2014 return notify_change(mnt_userns, dentry, &newattrs, NULL);
2015 }
2016
2017 static int __file_remove_privs(struct file *file, unsigned int flags)
2018 {
2019 struct dentry *dentry = file_dentry(file);
2020 struct inode *inode = file_inode(file);
2021 int error = 0;
2022 int kill;
2023
2024 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2025 return 0;
2026
2027 kill = dentry_needs_remove_privs(dentry);
2028 if (kill < 0)
2029 return kill;
2030
2031 if (kill) {
2032 if (flags & IOCB_NOWAIT)
2033 return -EAGAIN;
2034
2035 error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
2036 }
2037
2038 if (!error)
2039 inode_has_no_xattr(inode);
2040 return error;
2041 }
2042
2043 /**
2044 * file_remove_privs - remove special file privileges (suid, capabilities)
2045 * @file: file to remove privileges from
2046 *
2047 * When file is modified by a write or truncation ensure that special
2048 * file privileges are removed.
2049 *
2050 * Return: 0 on success, negative errno on failure.
2051 */
2052 int file_remove_privs(struct file *file)
2053 {
2054 return __file_remove_privs(file, 0);
2055 }
2056 EXPORT_SYMBOL(file_remove_privs);
2057
2058 static int inode_needs_update_time(struct inode *inode, struct timespec64 *now)
2059 {
2060 int sync_it = 0;
2061
2062 /* First try to exhaust all avenues to not sync */
2063 if (IS_NOCMTIME(inode))
2064 return 0;
2065
2066 if (!timespec64_equal(&inode->i_mtime, now))
2067 sync_it = S_MTIME;
2068
2069 if (!timespec64_equal(&inode->i_ctime, now))
2070 sync_it |= S_CTIME;
2071
2072 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2073 sync_it |= S_VERSION;
2074
2075 if (!sync_it)
2076 return 0;
2077
2078 return sync_it;
2079 }
2080
2081 static int __file_update_time(struct file *file, struct timespec64 *now,
2082 int sync_mode)
2083 {
2084 int ret = 0;
2085 struct inode *inode = file_inode(file);
2086
2087 /* try to update time settings */
2088 if (!__mnt_want_write_file(file)) {
2089 ret = inode_update_time(inode, now, sync_mode);
2090 __mnt_drop_write_file(file);
2091 }
2092
2093 return ret;
2094 }
2095
2096 /**
2097 * file_update_time - update mtime and ctime time
2098 * @file: file accessed
2099 *
2100 * Update the mtime and ctime members of an inode and mark the inode for
2101 * writeback. Note that this function is meant exclusively for usage in
2102 * the file write path of filesystems, and filesystems may choose to
2103 * explicitly ignore updates via this function with the _NOCMTIME inode
2104 * flag, e.g. for network filesystem where these imestamps are handled
2105 * by the server. This can return an error for file systems who need to
2106 * allocate space in order to update an inode.
2107 *
2108 * Return: 0 on success, negative errno on failure.
2109 */
2110 int file_update_time(struct file *file)
2111 {
2112 int ret;
2113 struct inode *inode = file_inode(file);
2114 struct timespec64 now = current_time(inode);
2115
2116 ret = inode_needs_update_time(inode, &now);
2117 if (ret <= 0)
2118 return ret;
2119
2120 return __file_update_time(file, &now, ret);
2121 }
2122 EXPORT_SYMBOL(file_update_time);
2123
2124 /**
2125 * file_modified_flags - handle mandated vfs changes when modifying a file
2126 * @file: file that was modified
2127 * @flags: kiocb flags
2128 *
2129 * When file has been modified ensure that special
2130 * file privileges are removed and time settings are updated.
2131 *
2132 * If IOCB_NOWAIT is set, special file privileges will not be removed and
2133 * time settings will not be updated. It will return -EAGAIN.
2134 *
2135 * Context: Caller must hold the file's inode lock.
2136 *
2137 * Return: 0 on success, negative errno on failure.
2138 */
2139 static int file_modified_flags(struct file *file, int flags)
2140 {
2141 int ret;
2142 struct inode *inode = file_inode(file);
2143 struct timespec64 now = current_time(inode);
2144
2145 /*
2146 * Clear the security bits if the process is not being run by root.
2147 * This keeps people from modifying setuid and setgid binaries.
2148 */
2149 ret = __file_remove_privs(file, flags);
2150 if (ret)
2151 return ret;
2152
2153 if (unlikely(file->f_mode & FMODE_NOCMTIME))
2154 return 0;
2155
2156 ret = inode_needs_update_time(inode, &now);
2157 if (ret <= 0)
2158 return ret;
2159 if (flags & IOCB_NOWAIT)
2160 return -EAGAIN;
2161
2162 return __file_update_time(file, &now, ret);
2163 }
2164
2165 /**
2166 * file_modified - handle mandated vfs changes when modifying a file
2167 * @file: file that was modified
2168 *
2169 * When file has been modified ensure that special
2170 * file privileges are removed and time settings are updated.
2171 *
2172 * Context: Caller must hold the file's inode lock.
2173 *
2174 * Return: 0 on success, negative errno on failure.
2175 */
2176 int file_modified(struct file *file)
2177 {
2178 return file_modified_flags(file, 0);
2179 }
2180 EXPORT_SYMBOL(file_modified);
2181
2182 /**
2183 * kiocb_modified - handle mandated vfs changes when modifying a file
2184 * @iocb: iocb that was modified
2185 *
2186 * When file has been modified ensure that special
2187 * file privileges are removed and time settings are updated.
2188 *
2189 * Context: Caller must hold the file's inode lock.
2190 *
2191 * Return: 0 on success, negative errno on failure.
2192 */
2193 int kiocb_modified(struct kiocb *iocb)
2194 {
2195 return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2196 }
2197 EXPORT_SYMBOL_GPL(kiocb_modified);
2198
2199 int inode_needs_sync(struct inode *inode)
2200 {
2201 if (IS_SYNC(inode))
2202 return 1;
2203 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2204 return 1;
2205 return 0;
2206 }
2207 EXPORT_SYMBOL(inode_needs_sync);
2208
2209 /*
2210 * If we try to find an inode in the inode hash while it is being
2211 * deleted, we have to wait until the filesystem completes its
2212 * deletion before reporting that it isn't found. This function waits
2213 * until the deletion _might_ have completed. Callers are responsible
2214 * to recheck inode state.
2215 *
2216 * It doesn't matter if I_NEW is not set initially, a call to
2217 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2218 * will DTRT.
2219 */
2220 static void __wait_on_freeing_inode(struct inode *inode)
2221 {
2222 wait_queue_head_t *wq;
2223 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2224 wq = bit_waitqueue(&inode->i_state, __I_NEW);
2225 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2226 spin_unlock(&inode->i_lock);
2227 spin_unlock(&inode_hash_lock);
2228 schedule();
2229 finish_wait(wq, &wait.wq_entry);
2230 spin_lock(&inode_hash_lock);
2231 }
2232
2233 static __initdata unsigned long ihash_entries;
2234 static int __init set_ihash_entries(char *str)
2235 {
2236 if (!str)
2237 return 0;
2238 ihash_entries = simple_strtoul(str, &str, 0);
2239 return 1;
2240 }
2241 __setup("ihash_entries=", set_ihash_entries);
2242
2243 /*
2244 * Initialize the waitqueues and inode hash table.
2245 */
2246 void __init inode_init_early(void)
2247 {
2248 /* If hashes are distributed across NUMA nodes, defer
2249 * hash allocation until vmalloc space is available.
2250 */
2251 if (hashdist)
2252 return;
2253
2254 inode_hashtable =
2255 alloc_large_system_hash("Inode-cache",
2256 sizeof(struct hlist_head),
2257 ihash_entries,
2258 14,
2259 HASH_EARLY | HASH_ZERO,
2260 &i_hash_shift,
2261 &i_hash_mask,
2262 0,
2263 0);
2264 }
2265
2266 void __init inode_init(void)
2267 {
2268 /* inode slab cache */
2269 inode_cachep = kmem_cache_create("inode_cache",
2270 sizeof(struct inode),
2271 0,
2272 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2273 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2274 init_once);
2275
2276 /* Hash may have been set up in inode_init_early */
2277 if (!hashdist)
2278 return;
2279
2280 inode_hashtable =
2281 alloc_large_system_hash("Inode-cache",
2282 sizeof(struct hlist_head),
2283 ihash_entries,
2284 14,
2285 HASH_ZERO,
2286 &i_hash_shift,
2287 &i_hash_mask,
2288 0,
2289 0);
2290 }
2291
2292 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2293 {
2294 inode->i_mode = mode;
2295 if (S_ISCHR(mode)) {
2296 inode->i_fop = &def_chr_fops;
2297 inode->i_rdev = rdev;
2298 } else if (S_ISBLK(mode)) {
2299 inode->i_fop = &def_blk_fops;
2300 inode->i_rdev = rdev;
2301 } else if (S_ISFIFO(mode))
2302 inode->i_fop = &pipefifo_fops;
2303 else if (S_ISSOCK(mode))
2304 ; /* leave it no_open_fops */
2305 else
2306 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2307 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2308 inode->i_ino);
2309 }
2310 EXPORT_SYMBOL(init_special_inode);
2311
2312 /**
2313 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2314 * @mnt_userns: User namespace of the mount the inode was created from
2315 * @inode: New inode
2316 * @dir: Directory inode
2317 * @mode: mode of the new inode
2318 *
2319 * If the inode has been created through an idmapped mount the user namespace of
2320 * the vfsmount must be passed through @mnt_userns. This function will then take
2321 * care to map the inode according to @mnt_userns before checking permissions
2322 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2323 * checking is to be performed on the raw inode simply passs init_user_ns.
2324 */
2325 void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
2326 const struct inode *dir, umode_t mode)
2327 {
2328 inode_fsuid_set(inode, mnt_userns);
2329 if (dir && dir->i_mode & S_ISGID) {
2330 inode->i_gid = dir->i_gid;
2331
2332 /* Directories are special, and always inherit S_ISGID */
2333 if (S_ISDIR(mode))
2334 mode |= S_ISGID;
2335 } else
2336 inode_fsgid_set(inode, mnt_userns);
2337 inode->i_mode = mode;
2338 }
2339 EXPORT_SYMBOL(inode_init_owner);
2340
2341 /**
2342 * inode_owner_or_capable - check current task permissions to inode
2343 * @mnt_userns: user namespace of the mount the inode was found from
2344 * @inode: inode being checked
2345 *
2346 * Return true if current either has CAP_FOWNER in a namespace with the
2347 * inode owner uid mapped, or owns the file.
2348 *
2349 * If the inode has been found through an idmapped mount the user namespace of
2350 * the vfsmount must be passed through @mnt_userns. This function will then take
2351 * care to map the inode according to @mnt_userns before checking permissions.
2352 * On non-idmapped mounts or if permission checking is to be performed on the
2353 * raw inode simply passs init_user_ns.
2354 */
2355 bool inode_owner_or_capable(struct user_namespace *mnt_userns,
2356 const struct inode *inode)
2357 {
2358 kuid_t i_uid;
2359 struct user_namespace *ns;
2360
2361 i_uid = i_uid_into_mnt(mnt_userns, inode);
2362 if (uid_eq(current_fsuid(), i_uid))
2363 return true;
2364
2365 ns = current_user_ns();
2366 if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER))
2367 return true;
2368 return false;
2369 }
2370 EXPORT_SYMBOL(inode_owner_or_capable);
2371
2372 /*
2373 * Direct i/o helper functions
2374 */
2375 static void __inode_dio_wait(struct inode *inode)
2376 {
2377 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2378 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2379
2380 do {
2381 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2382 if (atomic_read(&inode->i_dio_count))
2383 schedule();
2384 } while (atomic_read(&inode->i_dio_count));
2385 finish_wait(wq, &q.wq_entry);
2386 }
2387
2388 /**
2389 * inode_dio_wait - wait for outstanding DIO requests to finish
2390 * @inode: inode to wait for
2391 *
2392 * Waits for all pending direct I/O requests to finish so that we can
2393 * proceed with a truncate or equivalent operation.
2394 *
2395 * Must be called under a lock that serializes taking new references
2396 * to i_dio_count, usually by inode->i_mutex.
2397 */
2398 void inode_dio_wait(struct inode *inode)
2399 {
2400 if (atomic_read(&inode->i_dio_count))
2401 __inode_dio_wait(inode);
2402 }
2403 EXPORT_SYMBOL(inode_dio_wait);
2404
2405 /*
2406 * inode_set_flags - atomically set some inode flags
2407 *
2408 * Note: the caller should be holding i_mutex, or else be sure that
2409 * they have exclusive access to the inode structure (i.e., while the
2410 * inode is being instantiated). The reason for the cmpxchg() loop
2411 * --- which wouldn't be necessary if all code paths which modify
2412 * i_flags actually followed this rule, is that there is at least one
2413 * code path which doesn't today so we use cmpxchg() out of an abundance
2414 * of caution.
2415 *
2416 * In the long run, i_mutex is overkill, and we should probably look
2417 * at using the i_lock spinlock to protect i_flags, and then make sure
2418 * it is so documented in include/linux/fs.h and that all code follows
2419 * the locking convention!!
2420 */
2421 void inode_set_flags(struct inode *inode, unsigned int flags,
2422 unsigned int mask)
2423 {
2424 WARN_ON_ONCE(flags & ~mask);
2425 set_mask_bits(&inode->i_flags, mask, flags);
2426 }
2427 EXPORT_SYMBOL(inode_set_flags);
2428
2429 void inode_nohighmem(struct inode *inode)
2430 {
2431 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2432 }
2433 EXPORT_SYMBOL(inode_nohighmem);
2434
2435 /**
2436 * timestamp_truncate - Truncate timespec to a granularity
2437 * @t: Timespec
2438 * @inode: inode being updated
2439 *
2440 * Truncate a timespec to the granularity supported by the fs
2441 * containing the inode. Always rounds down. gran must
2442 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2443 */
2444 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2445 {
2446 struct super_block *sb = inode->i_sb;
2447 unsigned int gran = sb->s_time_gran;
2448
2449 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2450 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2451 t.tv_nsec = 0;
2452
2453 /* Avoid division in the common cases 1 ns and 1 s. */
2454 if (gran == 1)
2455 ; /* nothing */
2456 else if (gran == NSEC_PER_SEC)
2457 t.tv_nsec = 0;
2458 else if (gran > 1 && gran < NSEC_PER_SEC)
2459 t.tv_nsec -= t.tv_nsec % gran;
2460 else
2461 WARN(1, "invalid file time granularity: %u", gran);
2462 return t;
2463 }
2464 EXPORT_SYMBOL(timestamp_truncate);
2465
2466 /**
2467 * current_time - Return FS time
2468 * @inode: inode.
2469 *
2470 * Return the current time truncated to the time granularity supported by
2471 * the fs.
2472 *
2473 * Note that inode and inode->sb cannot be NULL.
2474 * Otherwise, the function warns and returns time without truncation.
2475 */
2476 struct timespec64 current_time(struct inode *inode)
2477 {
2478 struct timespec64 now;
2479
2480 ktime_get_coarse_real_ts64(&now);
2481
2482 if (unlikely(!inode->i_sb)) {
2483 WARN(1, "current_time() called with uninitialized super_block in the inode");
2484 return now;
2485 }
2486
2487 return timestamp_truncate(now, inode);
2488 }
2489 EXPORT_SYMBOL(current_time);
2490
2491 /**
2492 * mode_strip_sgid - handle the sgid bit for non-directories
2493 * @mnt_userns: User namespace of the mount the inode was created from
2494 * @dir: parent directory inode
2495 * @mode: mode of the file to be created in @dir
2496 *
2497 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2498 * raised and @dir has the S_ISGID bit raised ensure that the caller is
2499 * either in the group of the parent directory or they have CAP_FSETID
2500 * in their user namespace and are privileged over the parent directory.
2501 * In all other cases, strip the S_ISGID bit from @mode.
2502 *
2503 * Return: the new mode to use for the file
2504 */
2505 umode_t mode_strip_sgid(struct user_namespace *mnt_userns,
2506 const struct inode *dir, umode_t mode)
2507 {
2508 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2509 return mode;
2510 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2511 return mode;
2512 if (in_group_p(i_gid_into_mnt(mnt_userns, dir)))
2513 return mode;
2514 if (capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID))
2515 return mode;
2516
2517 return mode & ~S_ISGID;
2518 }
2519 EXPORT_SYMBOL(mode_strip_sgid);