]> git.ipfire.org Git - people/ms/linux.git/blob - fs/namei.c
Merge tag 'soc-fixes-6.0-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[people/ms/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 struct path path;
498 struct qstr last;
499 struct path root;
500 struct inode *inode; /* path.dentry.d_inode */
501 unsigned int flags;
502 unsigned seq, m_seq;
503 int last_type;
504 unsigned depth;
505 int total_link_count;
506 struct saved {
507 struct path link;
508 void *cookie;
509 const char *name;
510 struct inode *inode;
511 unsigned seq;
512 } *stack, internal[EMBEDDED_LEVELS];
513 struct filename *name;
514 struct nameidata *saved;
515 unsigned root_seq;
516 int dfd;
517 };
518
519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
520 {
521 struct nameidata *old = current->nameidata;
522 p->stack = p->internal;
523 p->dfd = dfd;
524 p->name = name;
525 p->total_link_count = old ? old->total_link_count : 0;
526 p->saved = old;
527 current->nameidata = p;
528 }
529
530 static void restore_nameidata(void)
531 {
532 struct nameidata *now = current->nameidata, *old = now->saved;
533
534 current->nameidata = old;
535 if (old)
536 old->total_link_count = now->total_link_count;
537 if (now->stack != now->internal) {
538 kfree(now->stack);
539 now->stack = now->internal;
540 }
541 }
542
543 static int __nd_alloc_stack(struct nameidata *nd)
544 {
545 struct saved *p;
546
547 if (nd->flags & LOOKUP_RCU) {
548 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
549 GFP_ATOMIC);
550 if (unlikely(!p))
551 return -ECHILD;
552 } else {
553 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
554 GFP_KERNEL);
555 if (unlikely(!p))
556 return -ENOMEM;
557 }
558 memcpy(p, nd->internal, sizeof(nd->internal));
559 nd->stack = p;
560 return 0;
561 }
562
563 /**
564 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
565 * @path: nameidate to verify
566 *
567 * Rename can sometimes move a file or directory outside of a bind
568 * mount, path_connected allows those cases to be detected.
569 */
570 static bool path_connected(const struct path *path)
571 {
572 struct vfsmount *mnt = path->mnt;
573
574 /* Only bind mounts can have disconnected paths */
575 if (mnt->mnt_root == mnt->mnt_sb->s_root)
576 return true;
577
578 return is_subdir(path->dentry, mnt->mnt_root);
579 }
580
581 static inline int nd_alloc_stack(struct nameidata *nd)
582 {
583 if (likely(nd->depth != EMBEDDED_LEVELS))
584 return 0;
585 if (likely(nd->stack != nd->internal))
586 return 0;
587 return __nd_alloc_stack(nd);
588 }
589
590 static void drop_links(struct nameidata *nd)
591 {
592 int i = nd->depth;
593 while (i--) {
594 struct saved *last = nd->stack + i;
595 struct inode *inode = last->inode;
596 if (last->cookie && inode->i_op->put_link) {
597 inode->i_op->put_link(inode, last->cookie);
598 last->cookie = NULL;
599 }
600 }
601 }
602
603 static void terminate_walk(struct nameidata *nd)
604 {
605 drop_links(nd);
606 if (!(nd->flags & LOOKUP_RCU)) {
607 int i;
608 path_put(&nd->path);
609 for (i = 0; i < nd->depth; i++)
610 path_put(&nd->stack[i].link);
611 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
612 path_put(&nd->root);
613 nd->root.mnt = NULL;
614 }
615 } else {
616 nd->flags &= ~LOOKUP_RCU;
617 if (!(nd->flags & LOOKUP_ROOT))
618 nd->root.mnt = NULL;
619 rcu_read_unlock();
620 }
621 nd->depth = 0;
622 }
623
624 /* path_put is needed afterwards regardless of success or failure */
625 static bool legitimize_path(struct nameidata *nd,
626 struct path *path, unsigned seq)
627 {
628 int res = __legitimize_mnt(path->mnt, nd->m_seq);
629 if (unlikely(res)) {
630 if (res > 0)
631 path->mnt = NULL;
632 path->dentry = NULL;
633 return false;
634 }
635 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
636 path->dentry = NULL;
637 return false;
638 }
639 return !read_seqcount_retry(&path->dentry->d_seq, seq);
640 }
641
642 static bool legitimize_links(struct nameidata *nd)
643 {
644 int i;
645 for (i = 0; i < nd->depth; i++) {
646 struct saved *last = nd->stack + i;
647 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
648 drop_links(nd);
649 nd->depth = i + 1;
650 return false;
651 }
652 }
653 return true;
654 }
655
656 /*
657 * Path walking has 2 modes, rcu-walk and ref-walk (see
658 * Documentation/filesystems/path-lookup.txt). In situations when we can't
659 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
660 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
661 * mode. Refcounts are grabbed at the last known good point before rcu-walk
662 * got stuck, so ref-walk may continue from there. If this is not successful
663 * (eg. a seqcount has changed), then failure is returned and it's up to caller
664 * to restart the path walk from the beginning in ref-walk mode.
665 */
666
667 /**
668 * unlazy_walk - try to switch to ref-walk mode.
669 * @nd: nameidata pathwalk data
670 * @dentry: child of nd->path.dentry or NULL
671 * @seq: seq number to check dentry against
672 * Returns: 0 on success, -ECHILD on failure
673 *
674 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
675 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
676 * @nd or NULL. Must be called from rcu-walk context.
677 * Nothing should touch nameidata between unlazy_walk() failure and
678 * terminate_walk().
679 */
680 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
681 {
682 struct dentry *parent = nd->path.dentry;
683
684 BUG_ON(!(nd->flags & LOOKUP_RCU));
685
686 nd->flags &= ~LOOKUP_RCU;
687 if (unlikely(!legitimize_links(nd)))
688 goto out2;
689 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
690 goto out2;
691 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
692 goto out1;
693
694 /*
695 * For a negative lookup, the lookup sequence point is the parents
696 * sequence point, and it only needs to revalidate the parent dentry.
697 *
698 * For a positive lookup, we need to move both the parent and the
699 * dentry from the RCU domain to be properly refcounted. And the
700 * sequence number in the dentry validates *both* dentry counters,
701 * since we checked the sequence number of the parent after we got
702 * the child sequence number. So we know the parent must still
703 * be valid if the child sequence number is still valid.
704 */
705 if (!dentry) {
706 if (read_seqcount_retry(&parent->d_seq, nd->seq))
707 goto out;
708 BUG_ON(nd->inode != parent->d_inode);
709 } else {
710 if (!lockref_get_not_dead(&dentry->d_lockref))
711 goto out;
712 if (read_seqcount_retry(&dentry->d_seq, seq))
713 goto drop_dentry;
714 }
715
716 /*
717 * Sequence counts matched. Now make sure that the root is
718 * still valid and get it if required.
719 */
720 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
721 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
722 rcu_read_unlock();
723 dput(dentry);
724 return -ECHILD;
725 }
726 }
727
728 rcu_read_unlock();
729 return 0;
730
731 drop_dentry:
732 rcu_read_unlock();
733 dput(dentry);
734 goto drop_root_mnt;
735 out2:
736 nd->path.mnt = NULL;
737 out1:
738 nd->path.dentry = NULL;
739 out:
740 rcu_read_unlock();
741 drop_root_mnt:
742 if (!(nd->flags & LOOKUP_ROOT))
743 nd->root.mnt = NULL;
744 return -ECHILD;
745 }
746
747 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
748 {
749 if (unlikely(!legitimize_path(nd, link, seq))) {
750 drop_links(nd);
751 nd->depth = 0;
752 nd->flags &= ~LOOKUP_RCU;
753 nd->path.mnt = NULL;
754 nd->path.dentry = NULL;
755 if (!(nd->flags & LOOKUP_ROOT))
756 nd->root.mnt = NULL;
757 rcu_read_unlock();
758 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
759 return 0;
760 }
761 path_put(link);
762 return -ECHILD;
763 }
764
765 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
766 {
767 return dentry->d_op->d_revalidate(dentry, flags);
768 }
769
770 /**
771 * complete_walk - successful completion of path walk
772 * @nd: pointer nameidata
773 *
774 * If we had been in RCU mode, drop out of it and legitimize nd->path.
775 * Revalidate the final result, unless we'd already done that during
776 * the path walk or the filesystem doesn't ask for it. Return 0 on
777 * success, -error on failure. In case of failure caller does not
778 * need to drop nd->path.
779 */
780 static int complete_walk(struct nameidata *nd)
781 {
782 struct dentry *dentry = nd->path.dentry;
783 int status;
784
785 if (nd->flags & LOOKUP_RCU) {
786 if (!(nd->flags & LOOKUP_ROOT))
787 nd->root.mnt = NULL;
788 if (unlikely(unlazy_walk(nd, NULL, 0)))
789 return -ECHILD;
790 }
791
792 if (likely(!(nd->flags & LOOKUP_JUMPED)))
793 return 0;
794
795 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
796 return 0;
797
798 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
799 if (status > 0)
800 return 0;
801
802 if (!status)
803 status = -ESTALE;
804
805 return status;
806 }
807
808 static void set_root(struct nameidata *nd)
809 {
810 get_fs_root(current->fs, &nd->root);
811 }
812
813 static void set_root_rcu(struct nameidata *nd)
814 {
815 struct fs_struct *fs = current->fs;
816 unsigned seq;
817
818 do {
819 seq = read_seqcount_begin(&fs->seq);
820 nd->root = fs->root;
821 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
822 } while (read_seqcount_retry(&fs->seq, seq));
823 }
824
825 static void path_put_conditional(struct path *path, struct nameidata *nd)
826 {
827 dput(path->dentry);
828 if (path->mnt != nd->path.mnt)
829 mntput(path->mnt);
830 }
831
832 static inline void path_to_nameidata(const struct path *path,
833 struct nameidata *nd)
834 {
835 if (!(nd->flags & LOOKUP_RCU)) {
836 dput(nd->path.dentry);
837 if (nd->path.mnt != path->mnt)
838 mntput(nd->path.mnt);
839 }
840 nd->path.mnt = path->mnt;
841 nd->path.dentry = path->dentry;
842 }
843
844 /*
845 * Helper to directly jump to a known parsed path from ->follow_link,
846 * caller must have taken a reference to path beforehand.
847 */
848 void nd_jump_link(struct path *path)
849 {
850 struct nameidata *nd = current->nameidata;
851 path_put(&nd->path);
852
853 nd->path = *path;
854 nd->inode = nd->path.dentry->d_inode;
855 nd->flags |= LOOKUP_JUMPED;
856 }
857
858 static inline void put_link(struct nameidata *nd)
859 {
860 struct saved *last = nd->stack + --nd->depth;
861 struct inode *inode = last->inode;
862 if (last->cookie && inode->i_op->put_link)
863 inode->i_op->put_link(inode, last->cookie);
864 if (!(nd->flags & LOOKUP_RCU))
865 path_put(&last->link);
866 }
867
868 int sysctl_protected_symlinks __read_mostly = 0;
869 int sysctl_protected_hardlinks __read_mostly = 0;
870
871 /**
872 * may_follow_link - Check symlink following for unsafe situations
873 * @nd: nameidata pathwalk data
874 *
875 * In the case of the sysctl_protected_symlinks sysctl being enabled,
876 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
877 * in a sticky world-writable directory. This is to protect privileged
878 * processes from failing races against path names that may change out
879 * from under them by way of other users creating malicious symlinks.
880 * It will permit symlinks to be followed only when outside a sticky
881 * world-writable directory, or when the uid of the symlink and follower
882 * match, or when the directory owner matches the symlink's owner.
883 *
884 * Returns 0 if following the symlink is allowed, -ve on error.
885 */
886 static inline int may_follow_link(struct nameidata *nd)
887 {
888 const struct inode *inode;
889 const struct inode *parent;
890
891 if (!sysctl_protected_symlinks)
892 return 0;
893
894 /* Allowed if owner and follower match. */
895 inode = nd->stack[0].inode;
896 if (uid_eq(current_cred()->fsuid, inode->i_uid))
897 return 0;
898
899 /* Allowed if parent directory not sticky and world-writable. */
900 parent = nd->inode;
901 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
902 return 0;
903
904 /* Allowed if parent directory and link owner match. */
905 if (uid_eq(parent->i_uid, inode->i_uid))
906 return 0;
907
908 if (nd->flags & LOOKUP_RCU)
909 return -ECHILD;
910
911 audit_log_link_denied("follow_link", &nd->stack[0].link);
912 return -EACCES;
913 }
914
915 /**
916 * safe_hardlink_source - Check for safe hardlink conditions
917 * @inode: the source inode to hardlink from
918 *
919 * Return false if at least one of the following conditions:
920 * - inode is not a regular file
921 * - inode is setuid
922 * - inode is setgid and group-exec
923 * - access failure for read and write
924 *
925 * Otherwise returns true.
926 */
927 static bool safe_hardlink_source(struct inode *inode)
928 {
929 umode_t mode = inode->i_mode;
930
931 /* Special files should not get pinned to the filesystem. */
932 if (!S_ISREG(mode))
933 return false;
934
935 /* Setuid files should not get pinned to the filesystem. */
936 if (mode & S_ISUID)
937 return false;
938
939 /* Executable setgid files should not get pinned to the filesystem. */
940 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
941 return false;
942
943 /* Hardlinking to unreadable or unwritable sources is dangerous. */
944 if (inode_permission(inode, MAY_READ | MAY_WRITE))
945 return false;
946
947 return true;
948 }
949
950 /**
951 * may_linkat - Check permissions for creating a hardlink
952 * @link: the source to hardlink from
953 *
954 * Block hardlink when all of:
955 * - sysctl_protected_hardlinks enabled
956 * - fsuid does not match inode
957 * - hardlink source is unsafe (see safe_hardlink_source() above)
958 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
959 *
960 * Returns 0 if successful, -ve on error.
961 */
962 static int may_linkat(struct path *link)
963 {
964 struct inode *inode;
965
966 if (!sysctl_protected_hardlinks)
967 return 0;
968
969 inode = link->dentry->d_inode;
970
971 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
972 * otherwise, it must be a safe source.
973 */
974 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
975 return 0;
976
977 audit_log_link_denied("linkat", link);
978 return -EPERM;
979 }
980
981 static __always_inline
982 const char *get_link(struct nameidata *nd)
983 {
984 struct saved *last = nd->stack + nd->depth - 1;
985 struct dentry *dentry = last->link.dentry;
986 struct inode *inode = last->inode;
987 int error;
988 const char *res;
989
990 if (!(nd->flags & LOOKUP_RCU)) {
991 touch_atime(&last->link);
992 cond_resched();
993 } else if (atime_needs_update(&last->link, inode)) {
994 if (unlikely(unlazy_walk(nd, NULL, 0)))
995 return ERR_PTR(-ECHILD);
996 touch_atime(&last->link);
997 }
998
999 error = security_inode_follow_link(dentry, inode,
1000 nd->flags & LOOKUP_RCU);
1001 if (unlikely(error))
1002 return ERR_PTR(error);
1003
1004 nd->last_type = LAST_BIND;
1005 res = inode->i_link;
1006 if (!res) {
1007 if (nd->flags & LOOKUP_RCU) {
1008 if (unlikely(unlazy_walk(nd, NULL, 0)))
1009 return ERR_PTR(-ECHILD);
1010 }
1011 res = inode->i_op->follow_link(dentry, &last->cookie);
1012 if (IS_ERR_OR_NULL(res)) {
1013 last->cookie = NULL;
1014 return res;
1015 }
1016 }
1017 if (*res == '/') {
1018 if (nd->flags & LOOKUP_RCU) {
1019 struct dentry *d;
1020 if (!nd->root.mnt)
1021 set_root_rcu(nd);
1022 nd->path = nd->root;
1023 d = nd->path.dentry;
1024 nd->inode = d->d_inode;
1025 nd->seq = nd->root_seq;
1026 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
1027 return ERR_PTR(-ECHILD);
1028 } else {
1029 if (!nd->root.mnt)
1030 set_root(nd);
1031 path_put(&nd->path);
1032 nd->path = nd->root;
1033 path_get(&nd->root);
1034 nd->inode = nd->path.dentry->d_inode;
1035 }
1036 nd->flags |= LOOKUP_JUMPED;
1037 while (unlikely(*++res == '/'))
1038 ;
1039 }
1040 if (!*res)
1041 res = NULL;
1042 return res;
1043 }
1044
1045 /*
1046 * follow_up - Find the mountpoint of path's vfsmount
1047 *
1048 * Given a path, find the mountpoint of its source file system.
1049 * Replace @path with the path of the mountpoint in the parent mount.
1050 * Up is towards /.
1051 *
1052 * Return 1 if we went up a level and 0 if we were already at the
1053 * root.
1054 */
1055 int follow_up(struct path *path)
1056 {
1057 struct mount *mnt = real_mount(path->mnt);
1058 struct mount *parent;
1059 struct dentry *mountpoint;
1060
1061 read_seqlock_excl(&mount_lock);
1062 parent = mnt->mnt_parent;
1063 if (parent == mnt) {
1064 read_sequnlock_excl(&mount_lock);
1065 return 0;
1066 }
1067 mntget(&parent->mnt);
1068 mountpoint = dget(mnt->mnt_mountpoint);
1069 read_sequnlock_excl(&mount_lock);
1070 dput(path->dentry);
1071 path->dentry = mountpoint;
1072 mntput(path->mnt);
1073 path->mnt = &parent->mnt;
1074 return 1;
1075 }
1076 EXPORT_SYMBOL(follow_up);
1077
1078 /*
1079 * Perform an automount
1080 * - return -EISDIR to tell follow_managed() to stop and return the path we
1081 * were called with.
1082 */
1083 static int follow_automount(struct path *path, struct nameidata *nd,
1084 bool *need_mntput)
1085 {
1086 struct vfsmount *mnt;
1087 int err;
1088
1089 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1090 return -EREMOTE;
1091
1092 /* We don't want to mount if someone's just doing a stat -
1093 * unless they're stat'ing a directory and appended a '/' to
1094 * the name.
1095 *
1096 * We do, however, want to mount if someone wants to open or
1097 * create a file of any type under the mountpoint, wants to
1098 * traverse through the mountpoint or wants to open the
1099 * mounted directory. Also, autofs may mark negative dentries
1100 * as being automount points. These will need the attentions
1101 * of the daemon to instantiate them before they can be used.
1102 */
1103 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1104 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1105 path->dentry->d_inode)
1106 return -EISDIR;
1107
1108 nd->total_link_count++;
1109 if (nd->total_link_count >= 40)
1110 return -ELOOP;
1111
1112 mnt = path->dentry->d_op->d_automount(path);
1113 if (IS_ERR(mnt)) {
1114 /*
1115 * The filesystem is allowed to return -EISDIR here to indicate
1116 * it doesn't want to automount. For instance, autofs would do
1117 * this so that its userspace daemon can mount on this dentry.
1118 *
1119 * However, we can only permit this if it's a terminal point in
1120 * the path being looked up; if it wasn't then the remainder of
1121 * the path is inaccessible and we should say so.
1122 */
1123 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1124 return -EREMOTE;
1125 return PTR_ERR(mnt);
1126 }
1127
1128 if (!mnt) /* mount collision */
1129 return 0;
1130
1131 if (!*need_mntput) {
1132 /* lock_mount() may release path->mnt on error */
1133 mntget(path->mnt);
1134 *need_mntput = true;
1135 }
1136 err = finish_automount(mnt, path);
1137
1138 switch (err) {
1139 case -EBUSY:
1140 /* Someone else made a mount here whilst we were busy */
1141 return 0;
1142 case 0:
1143 path_put(path);
1144 path->mnt = mnt;
1145 path->dentry = dget(mnt->mnt_root);
1146 return 0;
1147 default:
1148 return err;
1149 }
1150
1151 }
1152
1153 /*
1154 * Handle a dentry that is managed in some way.
1155 * - Flagged for transit management (autofs)
1156 * - Flagged as mountpoint
1157 * - Flagged as automount point
1158 *
1159 * This may only be called in refwalk mode.
1160 *
1161 * Serialization is taken care of in namespace.c
1162 */
1163 static int follow_managed(struct path *path, struct nameidata *nd)
1164 {
1165 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1166 unsigned managed;
1167 bool need_mntput = false;
1168 int ret = 0;
1169
1170 /* Given that we're not holding a lock here, we retain the value in a
1171 * local variable for each dentry as we look at it so that we don't see
1172 * the components of that value change under us */
1173 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1174 managed &= DCACHE_MANAGED_DENTRY,
1175 unlikely(managed != 0)) {
1176 /* Allow the filesystem to manage the transit without i_mutex
1177 * being held. */
1178 if (managed & DCACHE_MANAGE_TRANSIT) {
1179 BUG_ON(!path->dentry->d_op);
1180 BUG_ON(!path->dentry->d_op->d_manage);
1181 ret = path->dentry->d_op->d_manage(path->dentry, false);
1182 if (ret < 0)
1183 break;
1184 }
1185
1186 /* Transit to a mounted filesystem. */
1187 if (managed & DCACHE_MOUNTED) {
1188 struct vfsmount *mounted = lookup_mnt(path);
1189 if (mounted) {
1190 dput(path->dentry);
1191 if (need_mntput)
1192 mntput(path->mnt);
1193 path->mnt = mounted;
1194 path->dentry = dget(mounted->mnt_root);
1195 need_mntput = true;
1196 continue;
1197 }
1198
1199 /* Something is mounted on this dentry in another
1200 * namespace and/or whatever was mounted there in this
1201 * namespace got unmounted before lookup_mnt() could
1202 * get it */
1203 }
1204
1205 /* Handle an automount point */
1206 if (managed & DCACHE_NEED_AUTOMOUNT) {
1207 ret = follow_automount(path, nd, &need_mntput);
1208 if (ret < 0)
1209 break;
1210 continue;
1211 }
1212
1213 /* We didn't change the current path point */
1214 break;
1215 }
1216
1217 if (need_mntput && path->mnt == mnt)
1218 mntput(path->mnt);
1219 if (ret == -EISDIR)
1220 ret = 0;
1221 if (need_mntput)
1222 nd->flags |= LOOKUP_JUMPED;
1223 if (unlikely(ret < 0))
1224 path_put_conditional(path, nd);
1225 return ret;
1226 }
1227
1228 int follow_down_one(struct path *path)
1229 {
1230 struct vfsmount *mounted;
1231
1232 mounted = lookup_mnt(path);
1233 if (mounted) {
1234 dput(path->dentry);
1235 mntput(path->mnt);
1236 path->mnt = mounted;
1237 path->dentry = dget(mounted->mnt_root);
1238 return 1;
1239 }
1240 return 0;
1241 }
1242 EXPORT_SYMBOL(follow_down_one);
1243
1244 static inline int managed_dentry_rcu(struct dentry *dentry)
1245 {
1246 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1247 dentry->d_op->d_manage(dentry, true) : 0;
1248 }
1249
1250 /*
1251 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1252 * we meet a managed dentry that would need blocking.
1253 */
1254 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1255 struct inode **inode, unsigned *seqp)
1256 {
1257 for (;;) {
1258 struct mount *mounted;
1259 /*
1260 * Don't forget we might have a non-mountpoint managed dentry
1261 * that wants to block transit.
1262 */
1263 switch (managed_dentry_rcu(path->dentry)) {
1264 case -ECHILD:
1265 default:
1266 return false;
1267 case -EISDIR:
1268 return true;
1269 case 0:
1270 break;
1271 }
1272
1273 if (!d_mountpoint(path->dentry))
1274 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1275
1276 mounted = __lookup_mnt(path->mnt, path->dentry);
1277 if (!mounted)
1278 break;
1279 path->mnt = &mounted->mnt;
1280 path->dentry = mounted->mnt.mnt_root;
1281 nd->flags |= LOOKUP_JUMPED;
1282 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1283 /*
1284 * Update the inode too. We don't need to re-check the
1285 * dentry sequence number here after this d_inode read,
1286 * because a mount-point is always pinned.
1287 */
1288 *inode = path->dentry->d_inode;
1289 }
1290 return !read_seqretry(&mount_lock, nd->m_seq) &&
1291 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1292 }
1293
1294 static int follow_dotdot_rcu(struct nameidata *nd)
1295 {
1296 struct inode *inode = nd->inode;
1297 if (!nd->root.mnt)
1298 set_root_rcu(nd);
1299
1300 while (1) {
1301 if (path_equal(&nd->path, &nd->root))
1302 break;
1303 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1304 struct dentry *old = nd->path.dentry;
1305 struct dentry *parent = old->d_parent;
1306 unsigned seq;
1307
1308 inode = parent->d_inode;
1309 seq = read_seqcount_begin(&parent->d_seq);
1310 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1311 return -ECHILD;
1312 nd->path.dentry = parent;
1313 nd->seq = seq;
1314 if (unlikely(!path_connected(&nd->path)))
1315 return -ENOENT;
1316 break;
1317 } else {
1318 struct mount *mnt = real_mount(nd->path.mnt);
1319 struct mount *mparent = mnt->mnt_parent;
1320 struct dentry *mountpoint = mnt->mnt_mountpoint;
1321 struct inode *inode2 = mountpoint->d_inode;
1322 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1323 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1324 return -ECHILD;
1325 if (&mparent->mnt == nd->path.mnt)
1326 break;
1327 /* we know that mountpoint was pinned */
1328 nd->path.dentry = mountpoint;
1329 nd->path.mnt = &mparent->mnt;
1330 inode = inode2;
1331 nd->seq = seq;
1332 }
1333 }
1334 while (unlikely(d_mountpoint(nd->path.dentry))) {
1335 struct mount *mounted;
1336 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1337 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1338 return -ECHILD;
1339 if (!mounted)
1340 break;
1341 nd->path.mnt = &mounted->mnt;
1342 nd->path.dentry = mounted->mnt.mnt_root;
1343 inode = nd->path.dentry->d_inode;
1344 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1345 }
1346 nd->inode = inode;
1347 return 0;
1348 }
1349
1350 /*
1351 * Follow down to the covering mount currently visible to userspace. At each
1352 * point, the filesystem owning that dentry may be queried as to whether the
1353 * caller is permitted to proceed or not.
1354 */
1355 int follow_down(struct path *path)
1356 {
1357 unsigned managed;
1358 int ret;
1359
1360 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1361 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1362 /* Allow the filesystem to manage the transit without i_mutex
1363 * being held.
1364 *
1365 * We indicate to the filesystem if someone is trying to mount
1366 * something here. This gives autofs the chance to deny anyone
1367 * other than its daemon the right to mount on its
1368 * superstructure.
1369 *
1370 * The filesystem may sleep at this point.
1371 */
1372 if (managed & DCACHE_MANAGE_TRANSIT) {
1373 BUG_ON(!path->dentry->d_op);
1374 BUG_ON(!path->dentry->d_op->d_manage);
1375 ret = path->dentry->d_op->d_manage(
1376 path->dentry, false);
1377 if (ret < 0)
1378 return ret == -EISDIR ? 0 : ret;
1379 }
1380
1381 /* Transit to a mounted filesystem. */
1382 if (managed & DCACHE_MOUNTED) {
1383 struct vfsmount *mounted = lookup_mnt(path);
1384 if (!mounted)
1385 break;
1386 dput(path->dentry);
1387 mntput(path->mnt);
1388 path->mnt = mounted;
1389 path->dentry = dget(mounted->mnt_root);
1390 continue;
1391 }
1392
1393 /* Don't handle automount points here */
1394 break;
1395 }
1396 return 0;
1397 }
1398 EXPORT_SYMBOL(follow_down);
1399
1400 /*
1401 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1402 */
1403 static void follow_mount(struct path *path)
1404 {
1405 while (d_mountpoint(path->dentry)) {
1406 struct vfsmount *mounted = lookup_mnt(path);
1407 if (!mounted)
1408 break;
1409 dput(path->dentry);
1410 mntput(path->mnt);
1411 path->mnt = mounted;
1412 path->dentry = dget(mounted->mnt_root);
1413 }
1414 }
1415
1416 static int follow_dotdot(struct nameidata *nd)
1417 {
1418 if (!nd->root.mnt)
1419 set_root(nd);
1420
1421 while(1) {
1422 struct dentry *old = nd->path.dentry;
1423
1424 if (nd->path.dentry == nd->root.dentry &&
1425 nd->path.mnt == nd->root.mnt) {
1426 break;
1427 }
1428 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1429 /* rare case of legitimate dget_parent()... */
1430 nd->path.dentry = dget_parent(nd->path.dentry);
1431 dput(old);
1432 if (unlikely(!path_connected(&nd->path)))
1433 return -ENOENT;
1434 break;
1435 }
1436 if (!follow_up(&nd->path))
1437 break;
1438 }
1439 follow_mount(&nd->path);
1440 nd->inode = nd->path.dentry->d_inode;
1441 return 0;
1442 }
1443
1444 /*
1445 * This looks up the name in dcache, possibly revalidates the old dentry and
1446 * allocates a new one if not found or not valid. In the need_lookup argument
1447 * returns whether i_op->lookup is necessary.
1448 *
1449 * dir->d_inode->i_mutex must be held
1450 */
1451 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1452 unsigned int flags, bool *need_lookup)
1453 {
1454 struct dentry *dentry;
1455 int error;
1456
1457 *need_lookup = false;
1458 dentry = d_lookup(dir, name);
1459 if (dentry) {
1460 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1461 error = d_revalidate(dentry, flags);
1462 if (unlikely(error <= 0)) {
1463 if (error < 0) {
1464 dput(dentry);
1465 return ERR_PTR(error);
1466 } else {
1467 d_invalidate(dentry);
1468 dput(dentry);
1469 dentry = NULL;
1470 }
1471 }
1472 }
1473 }
1474
1475 if (!dentry) {
1476 dentry = d_alloc(dir, name);
1477 if (unlikely(!dentry))
1478 return ERR_PTR(-ENOMEM);
1479
1480 *need_lookup = true;
1481 }
1482 return dentry;
1483 }
1484
1485 /*
1486 * Call i_op->lookup on the dentry. The dentry must be negative and
1487 * unhashed.
1488 *
1489 * dir->d_inode->i_mutex must be held
1490 */
1491 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1492 unsigned int flags)
1493 {
1494 struct dentry *old;
1495
1496 /* Don't create child dentry for a dead directory. */
1497 if (unlikely(IS_DEADDIR(dir))) {
1498 dput(dentry);
1499 return ERR_PTR(-ENOENT);
1500 }
1501
1502 old = dir->i_op->lookup(dir, dentry, flags);
1503 if (unlikely(old)) {
1504 dput(dentry);
1505 dentry = old;
1506 }
1507 return dentry;
1508 }
1509
1510 static struct dentry *__lookup_hash(struct qstr *name,
1511 struct dentry *base, unsigned int flags)
1512 {
1513 bool need_lookup;
1514 struct dentry *dentry;
1515
1516 dentry = lookup_dcache(name, base, flags, &need_lookup);
1517 if (!need_lookup)
1518 return dentry;
1519
1520 return lookup_real(base->d_inode, dentry, flags);
1521 }
1522
1523 /*
1524 * It's more convoluted than I'd like it to be, but... it's still fairly
1525 * small and for now I'd prefer to have fast path as straight as possible.
1526 * It _is_ time-critical.
1527 */
1528 static int lookup_fast(struct nameidata *nd,
1529 struct path *path, struct inode **inode,
1530 unsigned *seqp)
1531 {
1532 struct vfsmount *mnt = nd->path.mnt;
1533 struct dentry *dentry, *parent = nd->path.dentry;
1534 int need_reval = 1;
1535 int status = 1;
1536 int err;
1537
1538 /*
1539 * Rename seqlock is not required here because in the off chance
1540 * of a false negative due to a concurrent rename, we're going to
1541 * do the non-racy lookup, below.
1542 */
1543 if (nd->flags & LOOKUP_RCU) {
1544 unsigned seq;
1545 bool negative;
1546 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1547 if (!dentry)
1548 goto unlazy;
1549
1550 /*
1551 * This sequence count validates that the inode matches
1552 * the dentry name information from lookup.
1553 */
1554 *inode = d_backing_inode(dentry);
1555 negative = d_is_negative(dentry);
1556 if (read_seqcount_retry(&dentry->d_seq, seq))
1557 return -ECHILD;
1558
1559 /*
1560 * This sequence count validates that the parent had no
1561 * changes while we did the lookup of the dentry above.
1562 *
1563 * The memory barrier in read_seqcount_begin of child is
1564 * enough, we can use __read_seqcount_retry here.
1565 */
1566 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1567 return -ECHILD;
1568
1569 *seqp = seq;
1570 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1571 status = d_revalidate(dentry, nd->flags);
1572 if (unlikely(status <= 0)) {
1573 if (status != -ECHILD)
1574 need_reval = 0;
1575 goto unlazy;
1576 }
1577 }
1578 /*
1579 * Note: do negative dentry check after revalidation in
1580 * case that drops it.
1581 */
1582 if (negative)
1583 return -ENOENT;
1584 path->mnt = mnt;
1585 path->dentry = dentry;
1586 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1587 return 0;
1588 unlazy:
1589 if (unlazy_walk(nd, dentry, seq))
1590 return -ECHILD;
1591 } else {
1592 dentry = __d_lookup(parent, &nd->last);
1593 }
1594
1595 if (unlikely(!dentry))
1596 goto need_lookup;
1597
1598 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1599 status = d_revalidate(dentry, nd->flags);
1600 if (unlikely(status <= 0)) {
1601 if (status < 0) {
1602 dput(dentry);
1603 return status;
1604 }
1605 d_invalidate(dentry);
1606 dput(dentry);
1607 goto need_lookup;
1608 }
1609
1610 if (unlikely(d_is_negative(dentry))) {
1611 dput(dentry);
1612 return -ENOENT;
1613 }
1614 path->mnt = mnt;
1615 path->dentry = dentry;
1616 err = follow_managed(path, nd);
1617 if (likely(!err))
1618 *inode = d_backing_inode(path->dentry);
1619 return err;
1620
1621 need_lookup:
1622 return 1;
1623 }
1624
1625 /* Fast lookup failed, do it the slow way */
1626 static int lookup_slow(struct nameidata *nd, struct path *path)
1627 {
1628 struct dentry *dentry, *parent;
1629
1630 parent = nd->path.dentry;
1631 BUG_ON(nd->inode != parent->d_inode);
1632
1633 mutex_lock(&parent->d_inode->i_mutex);
1634 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1635 mutex_unlock(&parent->d_inode->i_mutex);
1636 if (IS_ERR(dentry))
1637 return PTR_ERR(dentry);
1638 path->mnt = nd->path.mnt;
1639 path->dentry = dentry;
1640 return follow_managed(path, nd);
1641 }
1642
1643 static inline int may_lookup(struct nameidata *nd)
1644 {
1645 if (nd->flags & LOOKUP_RCU) {
1646 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1647 if (err != -ECHILD)
1648 return err;
1649 if (unlazy_walk(nd, NULL, 0))
1650 return -ECHILD;
1651 }
1652 return inode_permission(nd->inode, MAY_EXEC);
1653 }
1654
1655 static inline int handle_dots(struct nameidata *nd, int type)
1656 {
1657 if (type == LAST_DOTDOT) {
1658 if (nd->flags & LOOKUP_RCU) {
1659 return follow_dotdot_rcu(nd);
1660 } else
1661 return follow_dotdot(nd);
1662 }
1663 return 0;
1664 }
1665
1666 static int pick_link(struct nameidata *nd, struct path *link,
1667 struct inode *inode, unsigned seq)
1668 {
1669 int error;
1670 struct saved *last;
1671 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1672 path_to_nameidata(link, nd);
1673 return -ELOOP;
1674 }
1675 if (!(nd->flags & LOOKUP_RCU)) {
1676 if (link->mnt == nd->path.mnt)
1677 mntget(link->mnt);
1678 }
1679 error = nd_alloc_stack(nd);
1680 if (unlikely(error)) {
1681 if (error == -ECHILD) {
1682 if (unlikely(unlazy_link(nd, link, seq)))
1683 return -ECHILD;
1684 error = nd_alloc_stack(nd);
1685 }
1686 if (error) {
1687 path_put(link);
1688 return error;
1689 }
1690 }
1691
1692 last = nd->stack + nd->depth++;
1693 last->link = *link;
1694 last->cookie = NULL;
1695 last->inode = inode;
1696 last->seq = seq;
1697 return 1;
1698 }
1699
1700 /*
1701 * Do we need to follow links? We _really_ want to be able
1702 * to do this check without having to look at inode->i_op,
1703 * so we keep a cache of "no, this doesn't need follow_link"
1704 * for the common case.
1705 */
1706 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1707 int follow,
1708 struct inode *inode, unsigned seq)
1709 {
1710 if (likely(!d_is_symlink(link->dentry)))
1711 return 0;
1712 if (!follow)
1713 return 0;
1714 return pick_link(nd, link, inode, seq);
1715 }
1716
1717 enum {WALK_GET = 1, WALK_PUT = 2};
1718
1719 static int walk_component(struct nameidata *nd, int flags)
1720 {
1721 struct path path;
1722 struct inode *inode;
1723 unsigned seq;
1724 int err;
1725 /*
1726 * "." and ".." are special - ".." especially so because it has
1727 * to be able to know about the current root directory and
1728 * parent relationships.
1729 */
1730 if (unlikely(nd->last_type != LAST_NORM)) {
1731 err = handle_dots(nd, nd->last_type);
1732 if (flags & WALK_PUT)
1733 put_link(nd);
1734 return err;
1735 }
1736 err = lookup_fast(nd, &path, &inode, &seq);
1737 if (unlikely(err)) {
1738 if (err < 0)
1739 return err;
1740
1741 err = lookup_slow(nd, &path);
1742 if (err < 0)
1743 return err;
1744
1745 inode = d_backing_inode(path.dentry);
1746 seq = 0; /* we are already out of RCU mode */
1747 err = -ENOENT;
1748 if (d_is_negative(path.dentry))
1749 goto out_path_put;
1750 }
1751
1752 if (flags & WALK_PUT)
1753 put_link(nd);
1754 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1755 if (unlikely(err))
1756 return err;
1757 path_to_nameidata(&path, nd);
1758 nd->inode = inode;
1759 nd->seq = seq;
1760 return 0;
1761
1762 out_path_put:
1763 path_to_nameidata(&path, nd);
1764 return err;
1765 }
1766
1767 /*
1768 * We can do the critical dentry name comparison and hashing
1769 * operations one word at a time, but we are limited to:
1770 *
1771 * - Architectures with fast unaligned word accesses. We could
1772 * do a "get_unaligned()" if this helps and is sufficiently
1773 * fast.
1774 *
1775 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1776 * do not trap on the (extremely unlikely) case of a page
1777 * crossing operation.
1778 *
1779 * - Furthermore, we need an efficient 64-bit compile for the
1780 * 64-bit case in order to generate the "number of bytes in
1781 * the final mask". Again, that could be replaced with a
1782 * efficient population count instruction or similar.
1783 */
1784 #ifdef CONFIG_DCACHE_WORD_ACCESS
1785
1786 #include <asm/word-at-a-time.h>
1787
1788 #ifdef CONFIG_64BIT
1789
1790 static inline unsigned int fold_hash(unsigned long hash)
1791 {
1792 return hash_64(hash, 32);
1793 }
1794
1795 #else /* 32-bit case */
1796
1797 #define fold_hash(x) (x)
1798
1799 #endif
1800
1801 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1802 {
1803 unsigned long a, mask;
1804 unsigned long hash = 0;
1805
1806 for (;;) {
1807 a = load_unaligned_zeropad(name);
1808 if (len < sizeof(unsigned long))
1809 break;
1810 hash += a;
1811 hash *= 9;
1812 name += sizeof(unsigned long);
1813 len -= sizeof(unsigned long);
1814 if (!len)
1815 goto done;
1816 }
1817 mask = bytemask_from_count(len);
1818 hash += mask & a;
1819 done:
1820 return fold_hash(hash);
1821 }
1822 EXPORT_SYMBOL(full_name_hash);
1823
1824 /*
1825 * Calculate the length and hash of the path component, and
1826 * return the "hash_len" as the result.
1827 */
1828 static inline u64 hash_name(const char *name)
1829 {
1830 unsigned long a, b, adata, bdata, mask, hash, len;
1831 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1832
1833 hash = a = 0;
1834 len = -sizeof(unsigned long);
1835 do {
1836 hash = (hash + a) * 9;
1837 len += sizeof(unsigned long);
1838 a = load_unaligned_zeropad(name+len);
1839 b = a ^ REPEAT_BYTE('/');
1840 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1841
1842 adata = prep_zero_mask(a, adata, &constants);
1843 bdata = prep_zero_mask(b, bdata, &constants);
1844
1845 mask = create_zero_mask(adata | bdata);
1846
1847 hash += a & zero_bytemask(mask);
1848 len += find_zero(mask);
1849 return hashlen_create(fold_hash(hash), len);
1850 }
1851
1852 #else
1853
1854 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1855 {
1856 unsigned long hash = init_name_hash();
1857 while (len--)
1858 hash = partial_name_hash(*name++, hash);
1859 return end_name_hash(hash);
1860 }
1861 EXPORT_SYMBOL(full_name_hash);
1862
1863 /*
1864 * We know there's a real path component here of at least
1865 * one character.
1866 */
1867 static inline u64 hash_name(const char *name)
1868 {
1869 unsigned long hash = init_name_hash();
1870 unsigned long len = 0, c;
1871
1872 c = (unsigned char)*name;
1873 do {
1874 len++;
1875 hash = partial_name_hash(c, hash);
1876 c = (unsigned char)name[len];
1877 } while (c && c != '/');
1878 return hashlen_create(end_name_hash(hash), len);
1879 }
1880
1881 #endif
1882
1883 /*
1884 * Name resolution.
1885 * This is the basic name resolution function, turning a pathname into
1886 * the final dentry. We expect 'base' to be positive and a directory.
1887 *
1888 * Returns 0 and nd will have valid dentry and mnt on success.
1889 * Returns error and drops reference to input namei data on failure.
1890 */
1891 static int link_path_walk(const char *name, struct nameidata *nd)
1892 {
1893 int err;
1894
1895 while (*name=='/')
1896 name++;
1897 if (!*name)
1898 return 0;
1899
1900 /* At this point we know we have a real path component. */
1901 for(;;) {
1902 u64 hash_len;
1903 int type;
1904
1905 err = may_lookup(nd);
1906 if (err)
1907 return err;
1908
1909 hash_len = hash_name(name);
1910
1911 type = LAST_NORM;
1912 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1913 case 2:
1914 if (name[1] == '.') {
1915 type = LAST_DOTDOT;
1916 nd->flags |= LOOKUP_JUMPED;
1917 }
1918 break;
1919 case 1:
1920 type = LAST_DOT;
1921 }
1922 if (likely(type == LAST_NORM)) {
1923 struct dentry *parent = nd->path.dentry;
1924 nd->flags &= ~LOOKUP_JUMPED;
1925 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1926 struct qstr this = { { .hash_len = hash_len }, .name = name };
1927 err = parent->d_op->d_hash(parent, &this);
1928 if (err < 0)
1929 return err;
1930 hash_len = this.hash_len;
1931 name = this.name;
1932 }
1933 }
1934
1935 nd->last.hash_len = hash_len;
1936 nd->last.name = name;
1937 nd->last_type = type;
1938
1939 name += hashlen_len(hash_len);
1940 if (!*name)
1941 goto OK;
1942 /*
1943 * If it wasn't NUL, we know it was '/'. Skip that
1944 * slash, and continue until no more slashes.
1945 */
1946 do {
1947 name++;
1948 } while (unlikely(*name == '/'));
1949 if (unlikely(!*name)) {
1950 OK:
1951 /* pathname body, done */
1952 if (!nd->depth)
1953 return 0;
1954 name = nd->stack[nd->depth - 1].name;
1955 /* trailing symlink, done */
1956 if (!name)
1957 return 0;
1958 /* last component of nested symlink */
1959 err = walk_component(nd, WALK_GET | WALK_PUT);
1960 } else {
1961 err = walk_component(nd, WALK_GET);
1962 }
1963 if (err < 0)
1964 return err;
1965
1966 if (err) {
1967 const char *s = get_link(nd);
1968
1969 if (IS_ERR(s))
1970 return PTR_ERR(s);
1971 err = 0;
1972 if (unlikely(!s)) {
1973 /* jumped */
1974 put_link(nd);
1975 } else {
1976 nd->stack[nd->depth - 1].name = name;
1977 name = s;
1978 continue;
1979 }
1980 }
1981 if (unlikely(!d_can_lookup(nd->path.dentry))) {
1982 if (nd->flags & LOOKUP_RCU) {
1983 if (unlazy_walk(nd, NULL, 0))
1984 return -ECHILD;
1985 }
1986 return -ENOTDIR;
1987 }
1988 }
1989 }
1990
1991 static const char *path_init(struct nameidata *nd, unsigned flags)
1992 {
1993 int retval = 0;
1994 const char *s = nd->name->name;
1995
1996 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1997 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1998 nd->depth = 0;
1999 if (flags & LOOKUP_ROOT) {
2000 struct dentry *root = nd->root.dentry;
2001 struct inode *inode = root->d_inode;
2002 if (*s) {
2003 if (!d_can_lookup(root))
2004 return ERR_PTR(-ENOTDIR);
2005 retval = inode_permission(inode, MAY_EXEC);
2006 if (retval)
2007 return ERR_PTR(retval);
2008 }
2009 nd->path = nd->root;
2010 nd->inode = inode;
2011 if (flags & LOOKUP_RCU) {
2012 rcu_read_lock();
2013 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2014 nd->root_seq = nd->seq;
2015 nd->m_seq = read_seqbegin(&mount_lock);
2016 } else {
2017 path_get(&nd->path);
2018 }
2019 return s;
2020 }
2021
2022 nd->root.mnt = NULL;
2023
2024 nd->m_seq = read_seqbegin(&mount_lock);
2025 if (*s == '/') {
2026 if (flags & LOOKUP_RCU) {
2027 rcu_read_lock();
2028 set_root_rcu(nd);
2029 nd->seq = nd->root_seq;
2030 } else {
2031 set_root(nd);
2032 path_get(&nd->root);
2033 }
2034 nd->path = nd->root;
2035 } else if (nd->dfd == AT_FDCWD) {
2036 if (flags & LOOKUP_RCU) {
2037 struct fs_struct *fs = current->fs;
2038 unsigned seq;
2039
2040 rcu_read_lock();
2041
2042 do {
2043 seq = read_seqcount_begin(&fs->seq);
2044 nd->path = fs->pwd;
2045 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2046 } while (read_seqcount_retry(&fs->seq, seq));
2047 } else {
2048 get_fs_pwd(current->fs, &nd->path);
2049 }
2050 } else {
2051 /* Caller must check execute permissions on the starting path component */
2052 struct fd f = fdget_raw(nd->dfd);
2053 struct dentry *dentry;
2054
2055 if (!f.file)
2056 return ERR_PTR(-EBADF);
2057
2058 dentry = f.file->f_path.dentry;
2059
2060 if (*s) {
2061 if (!d_can_lookup(dentry)) {
2062 fdput(f);
2063 return ERR_PTR(-ENOTDIR);
2064 }
2065 }
2066
2067 nd->path = f.file->f_path;
2068 if (flags & LOOKUP_RCU) {
2069 rcu_read_lock();
2070 nd->inode = nd->path.dentry->d_inode;
2071 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2072 } else {
2073 path_get(&nd->path);
2074 nd->inode = nd->path.dentry->d_inode;
2075 }
2076 fdput(f);
2077 return s;
2078 }
2079
2080 nd->inode = nd->path.dentry->d_inode;
2081 if (!(flags & LOOKUP_RCU))
2082 return s;
2083 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
2084 return s;
2085 if (!(nd->flags & LOOKUP_ROOT))
2086 nd->root.mnt = NULL;
2087 rcu_read_unlock();
2088 return ERR_PTR(-ECHILD);
2089 }
2090
2091 static const char *trailing_symlink(struct nameidata *nd)
2092 {
2093 const char *s;
2094 int error = may_follow_link(nd);
2095 if (unlikely(error))
2096 return ERR_PTR(error);
2097 nd->flags |= LOOKUP_PARENT;
2098 nd->stack[0].name = NULL;
2099 s = get_link(nd);
2100 return s ? s : "";
2101 }
2102
2103 static inline int lookup_last(struct nameidata *nd)
2104 {
2105 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2106 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2107
2108 nd->flags &= ~LOOKUP_PARENT;
2109 return walk_component(nd,
2110 nd->flags & LOOKUP_FOLLOW
2111 ? nd->depth
2112 ? WALK_PUT | WALK_GET
2113 : WALK_GET
2114 : 0);
2115 }
2116
2117 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2118 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2119 {
2120 const char *s = path_init(nd, flags);
2121 int err;
2122
2123 if (IS_ERR(s))
2124 return PTR_ERR(s);
2125 while (!(err = link_path_walk(s, nd))
2126 && ((err = lookup_last(nd)) > 0)) {
2127 s = trailing_symlink(nd);
2128 if (IS_ERR(s)) {
2129 err = PTR_ERR(s);
2130 break;
2131 }
2132 }
2133 if (!err)
2134 err = complete_walk(nd);
2135
2136 if (!err && nd->flags & LOOKUP_DIRECTORY)
2137 if (!d_can_lookup(nd->path.dentry))
2138 err = -ENOTDIR;
2139 if (!err) {
2140 *path = nd->path;
2141 nd->path.mnt = NULL;
2142 nd->path.dentry = NULL;
2143 }
2144 terminate_walk(nd);
2145 return err;
2146 }
2147
2148 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2149 struct path *path, struct path *root)
2150 {
2151 int retval;
2152 struct nameidata nd;
2153 if (IS_ERR(name))
2154 return PTR_ERR(name);
2155 if (unlikely(root)) {
2156 nd.root = *root;
2157 flags |= LOOKUP_ROOT;
2158 }
2159 set_nameidata(&nd, dfd, name);
2160 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2161 if (unlikely(retval == -ECHILD))
2162 retval = path_lookupat(&nd, flags, path);
2163 if (unlikely(retval == -ESTALE))
2164 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2165
2166 if (likely(!retval))
2167 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2168 restore_nameidata();
2169 putname(name);
2170 return retval;
2171 }
2172
2173 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2174 static int path_parentat(struct nameidata *nd, unsigned flags,
2175 struct path *parent)
2176 {
2177 const char *s = path_init(nd, flags);
2178 int err;
2179 if (IS_ERR(s))
2180 return PTR_ERR(s);
2181 err = link_path_walk(s, nd);
2182 if (!err)
2183 err = complete_walk(nd);
2184 if (!err) {
2185 *parent = nd->path;
2186 nd->path.mnt = NULL;
2187 nd->path.dentry = NULL;
2188 }
2189 terminate_walk(nd);
2190 return err;
2191 }
2192
2193 static struct filename *filename_parentat(int dfd, struct filename *name,
2194 unsigned int flags, struct path *parent,
2195 struct qstr *last, int *type)
2196 {
2197 int retval;
2198 struct nameidata nd;
2199
2200 if (IS_ERR(name))
2201 return name;
2202 set_nameidata(&nd, dfd, name);
2203 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2204 if (unlikely(retval == -ECHILD))
2205 retval = path_parentat(&nd, flags, parent);
2206 if (unlikely(retval == -ESTALE))
2207 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2208 if (likely(!retval)) {
2209 *last = nd.last;
2210 *type = nd.last_type;
2211 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2212 } else {
2213 putname(name);
2214 name = ERR_PTR(retval);
2215 }
2216 restore_nameidata();
2217 return name;
2218 }
2219
2220 /* does lookup, returns the object with parent locked */
2221 struct dentry *kern_path_locked(const char *name, struct path *path)
2222 {
2223 struct filename *filename;
2224 struct dentry *d;
2225 struct qstr last;
2226 int type;
2227
2228 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2229 &last, &type);
2230 if (IS_ERR(filename))
2231 return ERR_CAST(filename);
2232 if (unlikely(type != LAST_NORM)) {
2233 path_put(path);
2234 putname(filename);
2235 return ERR_PTR(-EINVAL);
2236 }
2237 mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2238 d = __lookup_hash(&last, path->dentry, 0);
2239 if (IS_ERR(d)) {
2240 mutex_unlock(&path->dentry->d_inode->i_mutex);
2241 path_put(path);
2242 }
2243 putname(filename);
2244 return d;
2245 }
2246
2247 int kern_path(const char *name, unsigned int flags, struct path *path)
2248 {
2249 return filename_lookup(AT_FDCWD, getname_kernel(name),
2250 flags, path, NULL);
2251 }
2252 EXPORT_SYMBOL(kern_path);
2253
2254 /**
2255 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2256 * @dentry: pointer to dentry of the base directory
2257 * @mnt: pointer to vfs mount of the base directory
2258 * @name: pointer to file name
2259 * @flags: lookup flags
2260 * @path: pointer to struct path to fill
2261 */
2262 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2263 const char *name, unsigned int flags,
2264 struct path *path)
2265 {
2266 struct path root = {.mnt = mnt, .dentry = dentry};
2267 /* the first argument of filename_lookup() is ignored with root */
2268 return filename_lookup(AT_FDCWD, getname_kernel(name),
2269 flags , path, &root);
2270 }
2271 EXPORT_SYMBOL(vfs_path_lookup);
2272
2273 /**
2274 * lookup_one_len - filesystem helper to lookup single pathname component
2275 * @name: pathname component to lookup
2276 * @base: base directory to lookup from
2277 * @len: maximum length @len should be interpreted to
2278 *
2279 * Note that this routine is purely a helper for filesystem usage and should
2280 * not be called by generic code.
2281 */
2282 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2283 {
2284 struct qstr this;
2285 unsigned int c;
2286 int err;
2287
2288 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2289
2290 this.name = name;
2291 this.len = len;
2292 this.hash = full_name_hash(name, len);
2293 if (!len)
2294 return ERR_PTR(-EACCES);
2295
2296 if (unlikely(name[0] == '.')) {
2297 if (len < 2 || (len == 2 && name[1] == '.'))
2298 return ERR_PTR(-EACCES);
2299 }
2300
2301 while (len--) {
2302 c = *(const unsigned char *)name++;
2303 if (c == '/' || c == '\0')
2304 return ERR_PTR(-EACCES);
2305 }
2306 /*
2307 * See if the low-level filesystem might want
2308 * to use its own hash..
2309 */
2310 if (base->d_flags & DCACHE_OP_HASH) {
2311 int err = base->d_op->d_hash(base, &this);
2312 if (err < 0)
2313 return ERR_PTR(err);
2314 }
2315
2316 err = inode_permission(base->d_inode, MAY_EXEC);
2317 if (err)
2318 return ERR_PTR(err);
2319
2320 return __lookup_hash(&this, base, 0);
2321 }
2322 EXPORT_SYMBOL(lookup_one_len);
2323
2324 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2325 struct path *path, int *empty)
2326 {
2327 return filename_lookup(dfd, getname_flags(name, flags, empty),
2328 flags, path, NULL);
2329 }
2330 EXPORT_SYMBOL(user_path_at_empty);
2331
2332 /*
2333 * NB: most callers don't do anything directly with the reference to the
2334 * to struct filename, but the nd->last pointer points into the name string
2335 * allocated by getname. So we must hold the reference to it until all
2336 * path-walking is complete.
2337 */
2338 static inline struct filename *
2339 user_path_parent(int dfd, const char __user *path,
2340 struct path *parent,
2341 struct qstr *last,
2342 int *type,
2343 unsigned int flags)
2344 {
2345 /* only LOOKUP_REVAL is allowed in extra flags */
2346 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2347 parent, last, type);
2348 }
2349
2350 /**
2351 * mountpoint_last - look up last component for umount
2352 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2353 * @path: pointer to container for result
2354 *
2355 * This is a special lookup_last function just for umount. In this case, we
2356 * need to resolve the path without doing any revalidation.
2357 *
2358 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2359 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2360 * in almost all cases, this lookup will be served out of the dcache. The only
2361 * cases where it won't are if nd->last refers to a symlink or the path is
2362 * bogus and it doesn't exist.
2363 *
2364 * Returns:
2365 * -error: if there was an error during lookup. This includes -ENOENT if the
2366 * lookup found a negative dentry. The nd->path reference will also be
2367 * put in this case.
2368 *
2369 * 0: if we successfully resolved nd->path and found it to not to be a
2370 * symlink that needs to be followed. "path" will also be populated.
2371 * The nd->path reference will also be put.
2372 *
2373 * 1: if we successfully resolved nd->last and found it to be a symlink
2374 * that needs to be followed. "path" will be populated with the path
2375 * to the link, and nd->path will *not* be put.
2376 */
2377 static int
2378 mountpoint_last(struct nameidata *nd, struct path *path)
2379 {
2380 int error = 0;
2381 struct dentry *dentry;
2382 struct dentry *dir = nd->path.dentry;
2383
2384 /* If we're in rcuwalk, drop out of it to handle last component */
2385 if (nd->flags & LOOKUP_RCU) {
2386 if (unlazy_walk(nd, NULL, 0))
2387 return -ECHILD;
2388 }
2389
2390 nd->flags &= ~LOOKUP_PARENT;
2391
2392 if (unlikely(nd->last_type != LAST_NORM)) {
2393 error = handle_dots(nd, nd->last_type);
2394 if (error)
2395 return error;
2396 dentry = dget(nd->path.dentry);
2397 goto done;
2398 }
2399
2400 mutex_lock(&dir->d_inode->i_mutex);
2401 dentry = d_lookup(dir, &nd->last);
2402 if (!dentry) {
2403 /*
2404 * No cached dentry. Mounted dentries are pinned in the cache,
2405 * so that means that this dentry is probably a symlink or the
2406 * path doesn't actually point to a mounted dentry.
2407 */
2408 dentry = d_alloc(dir, &nd->last);
2409 if (!dentry) {
2410 mutex_unlock(&dir->d_inode->i_mutex);
2411 return -ENOMEM;
2412 }
2413 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2414 if (IS_ERR(dentry)) {
2415 mutex_unlock(&dir->d_inode->i_mutex);
2416 return PTR_ERR(dentry);
2417 }
2418 }
2419 mutex_unlock(&dir->d_inode->i_mutex);
2420
2421 done:
2422 if (d_is_negative(dentry)) {
2423 dput(dentry);
2424 return -ENOENT;
2425 }
2426 if (nd->depth)
2427 put_link(nd);
2428 path->dentry = dentry;
2429 path->mnt = nd->path.mnt;
2430 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2431 d_backing_inode(dentry), 0);
2432 if (unlikely(error))
2433 return error;
2434 mntget(path->mnt);
2435 follow_mount(path);
2436 return 0;
2437 }
2438
2439 /**
2440 * path_mountpoint - look up a path to be umounted
2441 * @nd: lookup context
2442 * @flags: lookup flags
2443 * @path: pointer to container for result
2444 *
2445 * Look up the given name, but don't attempt to revalidate the last component.
2446 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2447 */
2448 static int
2449 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2450 {
2451 const char *s = path_init(nd, flags);
2452 int err;
2453 if (IS_ERR(s))
2454 return PTR_ERR(s);
2455 while (!(err = link_path_walk(s, nd)) &&
2456 (err = mountpoint_last(nd, path)) > 0) {
2457 s = trailing_symlink(nd);
2458 if (IS_ERR(s)) {
2459 err = PTR_ERR(s);
2460 break;
2461 }
2462 }
2463 terminate_walk(nd);
2464 return err;
2465 }
2466
2467 static int
2468 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2469 unsigned int flags)
2470 {
2471 struct nameidata nd;
2472 int error;
2473 if (IS_ERR(name))
2474 return PTR_ERR(name);
2475 set_nameidata(&nd, dfd, name);
2476 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2477 if (unlikely(error == -ECHILD))
2478 error = path_mountpoint(&nd, flags, path);
2479 if (unlikely(error == -ESTALE))
2480 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2481 if (likely(!error))
2482 audit_inode(name, path->dentry, 0);
2483 restore_nameidata();
2484 putname(name);
2485 return error;
2486 }
2487
2488 /**
2489 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2490 * @dfd: directory file descriptor
2491 * @name: pathname from userland
2492 * @flags: lookup flags
2493 * @path: pointer to container to hold result
2494 *
2495 * A umount is a special case for path walking. We're not actually interested
2496 * in the inode in this situation, and ESTALE errors can be a problem. We
2497 * simply want track down the dentry and vfsmount attached at the mountpoint
2498 * and avoid revalidating the last component.
2499 *
2500 * Returns 0 and populates "path" on success.
2501 */
2502 int
2503 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2504 struct path *path)
2505 {
2506 return filename_mountpoint(dfd, getname(name), path, flags);
2507 }
2508
2509 int
2510 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2511 unsigned int flags)
2512 {
2513 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2514 }
2515 EXPORT_SYMBOL(kern_path_mountpoint);
2516
2517 int __check_sticky(struct inode *dir, struct inode *inode)
2518 {
2519 kuid_t fsuid = current_fsuid();
2520
2521 if (uid_eq(inode->i_uid, fsuid))
2522 return 0;
2523 if (uid_eq(dir->i_uid, fsuid))
2524 return 0;
2525 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2526 }
2527 EXPORT_SYMBOL(__check_sticky);
2528
2529 /*
2530 * Check whether we can remove a link victim from directory dir, check
2531 * whether the type of victim is right.
2532 * 1. We can't do it if dir is read-only (done in permission())
2533 * 2. We should have write and exec permissions on dir
2534 * 3. We can't remove anything from append-only dir
2535 * 4. We can't do anything with immutable dir (done in permission())
2536 * 5. If the sticky bit on dir is set we should either
2537 * a. be owner of dir, or
2538 * b. be owner of victim, or
2539 * c. have CAP_FOWNER capability
2540 * 6. If the victim is append-only or immutable we can't do antyhing with
2541 * links pointing to it.
2542 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2543 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2544 * 9. We can't remove a root or mountpoint.
2545 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2546 * nfs_async_unlink().
2547 */
2548 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2549 {
2550 struct inode *inode = d_backing_inode(victim);
2551 int error;
2552
2553 if (d_is_negative(victim))
2554 return -ENOENT;
2555 BUG_ON(!inode);
2556
2557 BUG_ON(victim->d_parent->d_inode != dir);
2558 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2559
2560 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2561 if (error)
2562 return error;
2563 if (IS_APPEND(dir))
2564 return -EPERM;
2565
2566 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2567 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2568 return -EPERM;
2569 if (isdir) {
2570 if (!d_is_dir(victim))
2571 return -ENOTDIR;
2572 if (IS_ROOT(victim))
2573 return -EBUSY;
2574 } else if (d_is_dir(victim))
2575 return -EISDIR;
2576 if (IS_DEADDIR(dir))
2577 return -ENOENT;
2578 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2579 return -EBUSY;
2580 return 0;
2581 }
2582
2583 /* Check whether we can create an object with dentry child in directory
2584 * dir.
2585 * 1. We can't do it if child already exists (open has special treatment for
2586 * this case, but since we are inlined it's OK)
2587 * 2. We can't do it if dir is read-only (done in permission())
2588 * 3. We should have write and exec permissions on dir
2589 * 4. We can't do it if dir is immutable (done in permission())
2590 */
2591 static inline int may_create(struct inode *dir, struct dentry *child)
2592 {
2593 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2594 if (child->d_inode)
2595 return -EEXIST;
2596 if (IS_DEADDIR(dir))
2597 return -ENOENT;
2598 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2599 }
2600
2601 /*
2602 * p1 and p2 should be directories on the same fs.
2603 */
2604 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2605 {
2606 struct dentry *p;
2607
2608 if (p1 == p2) {
2609 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2610 return NULL;
2611 }
2612
2613 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2614
2615 p = d_ancestor(p2, p1);
2616 if (p) {
2617 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2618 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2619 return p;
2620 }
2621
2622 p = d_ancestor(p1, p2);
2623 if (p) {
2624 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2625 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2626 return p;
2627 }
2628
2629 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2630 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2631 return NULL;
2632 }
2633 EXPORT_SYMBOL(lock_rename);
2634
2635 void unlock_rename(struct dentry *p1, struct dentry *p2)
2636 {
2637 mutex_unlock(&p1->d_inode->i_mutex);
2638 if (p1 != p2) {
2639 mutex_unlock(&p2->d_inode->i_mutex);
2640 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2641 }
2642 }
2643 EXPORT_SYMBOL(unlock_rename);
2644
2645 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2646 bool want_excl)
2647 {
2648 int error = may_create(dir, dentry);
2649 if (error)
2650 return error;
2651
2652 if (!dir->i_op->create)
2653 return -EACCES; /* shouldn't it be ENOSYS? */
2654 mode &= S_IALLUGO;
2655 mode |= S_IFREG;
2656 error = security_inode_create(dir, dentry, mode);
2657 if (error)
2658 return error;
2659 error = dir->i_op->create(dir, dentry, mode, want_excl);
2660 if (!error)
2661 fsnotify_create(dir, dentry);
2662 return error;
2663 }
2664 EXPORT_SYMBOL(vfs_create);
2665
2666 static int may_open(struct path *path, int acc_mode, int flag)
2667 {
2668 struct dentry *dentry = path->dentry;
2669 struct inode *inode = dentry->d_inode;
2670 int error;
2671
2672 /* O_PATH? */
2673 if (!acc_mode)
2674 return 0;
2675
2676 if (!inode)
2677 return -ENOENT;
2678
2679 switch (inode->i_mode & S_IFMT) {
2680 case S_IFLNK:
2681 return -ELOOP;
2682 case S_IFDIR:
2683 if (acc_mode & MAY_WRITE)
2684 return -EISDIR;
2685 break;
2686 case S_IFBLK:
2687 case S_IFCHR:
2688 if (path->mnt->mnt_flags & MNT_NODEV)
2689 return -EACCES;
2690 /*FALLTHRU*/
2691 case S_IFIFO:
2692 case S_IFSOCK:
2693 flag &= ~O_TRUNC;
2694 break;
2695 }
2696
2697 error = inode_permission(inode, acc_mode);
2698 if (error)
2699 return error;
2700
2701 /*
2702 * An append-only file must be opened in append mode for writing.
2703 */
2704 if (IS_APPEND(inode)) {
2705 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2706 return -EPERM;
2707 if (flag & O_TRUNC)
2708 return -EPERM;
2709 }
2710
2711 /* O_NOATIME can only be set by the owner or superuser */
2712 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2713 return -EPERM;
2714
2715 return 0;
2716 }
2717
2718 static int handle_truncate(struct file *filp)
2719 {
2720 struct path *path = &filp->f_path;
2721 struct inode *inode = path->dentry->d_inode;
2722 int error = get_write_access(inode);
2723 if (error)
2724 return error;
2725 /*
2726 * Refuse to truncate files with mandatory locks held on them.
2727 */
2728 error = locks_verify_locked(filp);
2729 if (!error)
2730 error = security_path_truncate(path);
2731 if (!error) {
2732 error = do_truncate(path->dentry, 0,
2733 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2734 filp);
2735 }
2736 put_write_access(inode);
2737 return error;
2738 }
2739
2740 static inline int open_to_namei_flags(int flag)
2741 {
2742 if ((flag & O_ACCMODE) == 3)
2743 flag--;
2744 return flag;
2745 }
2746
2747 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2748 {
2749 int error = security_path_mknod(dir, dentry, mode, 0);
2750 if (error)
2751 return error;
2752
2753 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2754 if (error)
2755 return error;
2756
2757 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2758 }
2759
2760 /*
2761 * Attempt to atomically look up, create and open a file from a negative
2762 * dentry.
2763 *
2764 * Returns 0 if successful. The file will have been created and attached to
2765 * @file by the filesystem calling finish_open().
2766 *
2767 * Returns 1 if the file was looked up only or didn't need creating. The
2768 * caller will need to perform the open themselves. @path will have been
2769 * updated to point to the new dentry. This may be negative.
2770 *
2771 * Returns an error code otherwise.
2772 */
2773 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2774 struct path *path, struct file *file,
2775 const struct open_flags *op,
2776 bool got_write, bool need_lookup,
2777 int *opened)
2778 {
2779 struct inode *dir = nd->path.dentry->d_inode;
2780 unsigned open_flag = open_to_namei_flags(op->open_flag);
2781 umode_t mode;
2782 int error;
2783 int acc_mode;
2784 int create_error = 0;
2785 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2786 bool excl;
2787
2788 BUG_ON(dentry->d_inode);
2789
2790 /* Don't create child dentry for a dead directory. */
2791 if (unlikely(IS_DEADDIR(dir))) {
2792 error = -ENOENT;
2793 goto out;
2794 }
2795
2796 mode = op->mode;
2797 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2798 mode &= ~current_umask();
2799
2800 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2801 if (excl)
2802 open_flag &= ~O_TRUNC;
2803
2804 /*
2805 * Checking write permission is tricky, bacuse we don't know if we are
2806 * going to actually need it: O_CREAT opens should work as long as the
2807 * file exists. But checking existence breaks atomicity. The trick is
2808 * to check access and if not granted clear O_CREAT from the flags.
2809 *
2810 * Another problem is returing the "right" error value (e.g. for an
2811 * O_EXCL open we want to return EEXIST not EROFS).
2812 */
2813 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2814 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2815 if (!(open_flag & O_CREAT)) {
2816 /*
2817 * No O_CREATE -> atomicity not a requirement -> fall
2818 * back to lookup + open
2819 */
2820 goto no_open;
2821 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2822 /* Fall back and fail with the right error */
2823 create_error = -EROFS;
2824 goto no_open;
2825 } else {
2826 /* No side effects, safe to clear O_CREAT */
2827 create_error = -EROFS;
2828 open_flag &= ~O_CREAT;
2829 }
2830 }
2831
2832 if (open_flag & O_CREAT) {
2833 error = may_o_create(&nd->path, dentry, mode);
2834 if (error) {
2835 create_error = error;
2836 if (open_flag & O_EXCL)
2837 goto no_open;
2838 open_flag &= ~O_CREAT;
2839 }
2840 }
2841
2842 if (nd->flags & LOOKUP_DIRECTORY)
2843 open_flag |= O_DIRECTORY;
2844
2845 file->f_path.dentry = DENTRY_NOT_SET;
2846 file->f_path.mnt = nd->path.mnt;
2847 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2848 opened);
2849 if (error < 0) {
2850 if (create_error && error == -ENOENT)
2851 error = create_error;
2852 goto out;
2853 }
2854
2855 if (error) { /* returned 1, that is */
2856 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2857 error = -EIO;
2858 goto out;
2859 }
2860 if (file->f_path.dentry) {
2861 dput(dentry);
2862 dentry = file->f_path.dentry;
2863 }
2864 if (*opened & FILE_CREATED)
2865 fsnotify_create(dir, dentry);
2866 if (!dentry->d_inode) {
2867 WARN_ON(*opened & FILE_CREATED);
2868 if (create_error) {
2869 error = create_error;
2870 goto out;
2871 }
2872 } else {
2873 if (excl && !(*opened & FILE_CREATED)) {
2874 error = -EEXIST;
2875 goto out;
2876 }
2877 }
2878 goto looked_up;
2879 }
2880
2881 /*
2882 * We didn't have the inode before the open, so check open permission
2883 * here.
2884 */
2885 acc_mode = op->acc_mode;
2886 if (*opened & FILE_CREATED) {
2887 WARN_ON(!(open_flag & O_CREAT));
2888 fsnotify_create(dir, dentry);
2889 acc_mode = MAY_OPEN;
2890 }
2891 error = may_open(&file->f_path, acc_mode, open_flag);
2892 if (error)
2893 fput(file);
2894
2895 out:
2896 dput(dentry);
2897 return error;
2898
2899 no_open:
2900 if (need_lookup) {
2901 dentry = lookup_real(dir, dentry, nd->flags);
2902 if (IS_ERR(dentry))
2903 return PTR_ERR(dentry);
2904
2905 if (create_error) {
2906 int open_flag = op->open_flag;
2907
2908 error = create_error;
2909 if ((open_flag & O_EXCL)) {
2910 if (!dentry->d_inode)
2911 goto out;
2912 } else if (!dentry->d_inode) {
2913 goto out;
2914 } else if ((open_flag & O_TRUNC) &&
2915 d_is_reg(dentry)) {
2916 goto out;
2917 }
2918 /* will fail later, go on to get the right error */
2919 }
2920 }
2921 looked_up:
2922 path->dentry = dentry;
2923 path->mnt = nd->path.mnt;
2924 return 1;
2925 }
2926
2927 /*
2928 * Look up and maybe create and open the last component.
2929 *
2930 * Must be called with i_mutex held on parent.
2931 *
2932 * Returns 0 if the file was successfully atomically created (if necessary) and
2933 * opened. In this case the file will be returned attached to @file.
2934 *
2935 * Returns 1 if the file was not completely opened at this time, though lookups
2936 * and creations will have been performed and the dentry returned in @path will
2937 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2938 * specified then a negative dentry may be returned.
2939 *
2940 * An error code is returned otherwise.
2941 *
2942 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2943 * cleared otherwise prior to returning.
2944 */
2945 static int lookup_open(struct nameidata *nd, struct path *path,
2946 struct file *file,
2947 const struct open_flags *op,
2948 bool got_write, int *opened)
2949 {
2950 struct dentry *dir = nd->path.dentry;
2951 struct inode *dir_inode = dir->d_inode;
2952 struct dentry *dentry;
2953 int error;
2954 bool need_lookup;
2955
2956 *opened &= ~FILE_CREATED;
2957 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2958 if (IS_ERR(dentry))
2959 return PTR_ERR(dentry);
2960
2961 /* Cached positive dentry: will open in f_op->open */
2962 if (!need_lookup && dentry->d_inode)
2963 goto out_no_open;
2964
2965 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2966 return atomic_open(nd, dentry, path, file, op, got_write,
2967 need_lookup, opened);
2968 }
2969
2970 if (need_lookup) {
2971 BUG_ON(dentry->d_inode);
2972
2973 dentry = lookup_real(dir_inode, dentry, nd->flags);
2974 if (IS_ERR(dentry))
2975 return PTR_ERR(dentry);
2976 }
2977
2978 /* Negative dentry, just create the file */
2979 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2980 umode_t mode = op->mode;
2981 if (!IS_POSIXACL(dir->d_inode))
2982 mode &= ~current_umask();
2983 /*
2984 * This write is needed to ensure that a
2985 * rw->ro transition does not occur between
2986 * the time when the file is created and when
2987 * a permanent write count is taken through
2988 * the 'struct file' in finish_open().
2989 */
2990 if (!got_write) {
2991 error = -EROFS;
2992 goto out_dput;
2993 }
2994 *opened |= FILE_CREATED;
2995 error = security_path_mknod(&nd->path, dentry, mode, 0);
2996 if (error)
2997 goto out_dput;
2998 error = vfs_create(dir->d_inode, dentry, mode,
2999 nd->flags & LOOKUP_EXCL);
3000 if (error)
3001 goto out_dput;
3002 }
3003 out_no_open:
3004 path->dentry = dentry;
3005 path->mnt = nd->path.mnt;
3006 return 1;
3007
3008 out_dput:
3009 dput(dentry);
3010 return error;
3011 }
3012
3013 /*
3014 * Handle the last step of open()
3015 */
3016 static int do_last(struct nameidata *nd,
3017 struct file *file, const struct open_flags *op,
3018 int *opened)
3019 {
3020 struct dentry *dir = nd->path.dentry;
3021 int open_flag = op->open_flag;
3022 bool will_truncate = (open_flag & O_TRUNC) != 0;
3023 bool got_write = false;
3024 int acc_mode = op->acc_mode;
3025 unsigned seq;
3026 struct inode *inode;
3027 struct path save_parent = { .dentry = NULL, .mnt = NULL };
3028 struct path path;
3029 bool retried = false;
3030 int error;
3031
3032 nd->flags &= ~LOOKUP_PARENT;
3033 nd->flags |= op->intent;
3034
3035 if (nd->last_type != LAST_NORM) {
3036 error = handle_dots(nd, nd->last_type);
3037 if (unlikely(error))
3038 return error;
3039 goto finish_open;
3040 }
3041
3042 if (!(open_flag & O_CREAT)) {
3043 if (nd->last.name[nd->last.len])
3044 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3045 /* we _can_ be in RCU mode here */
3046 error = lookup_fast(nd, &path, &inode, &seq);
3047 if (likely(!error))
3048 goto finish_lookup;
3049
3050 if (error < 0)
3051 return error;
3052
3053 BUG_ON(nd->inode != dir->d_inode);
3054 } else {
3055 /* create side of things */
3056 /*
3057 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3058 * has been cleared when we got to the last component we are
3059 * about to look up
3060 */
3061 error = complete_walk(nd);
3062 if (error)
3063 return error;
3064
3065 audit_inode(nd->name, dir, LOOKUP_PARENT);
3066 /* trailing slashes? */
3067 if (unlikely(nd->last.name[nd->last.len]))
3068 return -EISDIR;
3069 }
3070
3071 retry_lookup:
3072 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3073 error = mnt_want_write(nd->path.mnt);
3074 if (!error)
3075 got_write = true;
3076 /*
3077 * do _not_ fail yet - we might not need that or fail with
3078 * a different error; let lookup_open() decide; we'll be
3079 * dropping this one anyway.
3080 */
3081 }
3082 mutex_lock(&dir->d_inode->i_mutex);
3083 error = lookup_open(nd, &path, file, op, got_write, opened);
3084 mutex_unlock(&dir->d_inode->i_mutex);
3085
3086 if (error <= 0) {
3087 if (error)
3088 goto out;
3089
3090 if ((*opened & FILE_CREATED) ||
3091 !S_ISREG(file_inode(file)->i_mode))
3092 will_truncate = false;
3093
3094 audit_inode(nd->name, file->f_path.dentry, 0);
3095 goto opened;
3096 }
3097
3098 if (*opened & FILE_CREATED) {
3099 /* Don't check for write permission, don't truncate */
3100 open_flag &= ~O_TRUNC;
3101 will_truncate = false;
3102 acc_mode = MAY_OPEN;
3103 path_to_nameidata(&path, nd);
3104 goto finish_open_created;
3105 }
3106
3107 /*
3108 * create/update audit record if it already exists.
3109 */
3110 if (d_is_positive(path.dentry))
3111 audit_inode(nd->name, path.dentry, 0);
3112
3113 /*
3114 * If atomic_open() acquired write access it is dropped now due to
3115 * possible mount and symlink following (this might be optimized away if
3116 * necessary...)
3117 */
3118 if (got_write) {
3119 mnt_drop_write(nd->path.mnt);
3120 got_write = false;
3121 }
3122
3123 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3124 path_to_nameidata(&path, nd);
3125 return -EEXIST;
3126 }
3127
3128 error = follow_managed(&path, nd);
3129 if (unlikely(error < 0))
3130 return error;
3131
3132 BUG_ON(nd->flags & LOOKUP_RCU);
3133 inode = d_backing_inode(path.dentry);
3134 seq = 0; /* out of RCU mode, so the value doesn't matter */
3135 if (unlikely(d_is_negative(path.dentry))) {
3136 path_to_nameidata(&path, nd);
3137 return -ENOENT;
3138 }
3139 finish_lookup:
3140 if (nd->depth)
3141 put_link(nd);
3142 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3143 inode, seq);
3144 if (unlikely(error))
3145 return error;
3146
3147 if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) {
3148 path_to_nameidata(&path, nd);
3149 return -ELOOP;
3150 }
3151
3152 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3153 path_to_nameidata(&path, nd);
3154 } else {
3155 save_parent.dentry = nd->path.dentry;
3156 save_parent.mnt = mntget(path.mnt);
3157 nd->path.dentry = path.dentry;
3158
3159 }
3160 nd->inode = inode;
3161 nd->seq = seq;
3162 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3163 finish_open:
3164 error = complete_walk(nd);
3165 if (error) {
3166 path_put(&save_parent);
3167 return error;
3168 }
3169 audit_inode(nd->name, nd->path.dentry, 0);
3170 error = -EISDIR;
3171 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3172 goto out;
3173 error = -ENOTDIR;
3174 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3175 goto out;
3176 if (!d_is_reg(nd->path.dentry))
3177 will_truncate = false;
3178
3179 if (will_truncate) {
3180 error = mnt_want_write(nd->path.mnt);
3181 if (error)
3182 goto out;
3183 got_write = true;
3184 }
3185 finish_open_created:
3186 error = may_open(&nd->path, acc_mode, open_flag);
3187 if (error)
3188 goto out;
3189
3190 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3191 error = vfs_open(&nd->path, file, current_cred());
3192 if (!error) {
3193 *opened |= FILE_OPENED;
3194 } else {
3195 if (error == -EOPENSTALE)
3196 goto stale_open;
3197 goto out;
3198 }
3199 opened:
3200 error = open_check_o_direct(file);
3201 if (error)
3202 goto exit_fput;
3203 error = ima_file_check(file, op->acc_mode, *opened);
3204 if (error)
3205 goto exit_fput;
3206
3207 if (will_truncate) {
3208 error = handle_truncate(file);
3209 if (error)
3210 goto exit_fput;
3211 }
3212 out:
3213 if (got_write)
3214 mnt_drop_write(nd->path.mnt);
3215 path_put(&save_parent);
3216 return error;
3217
3218 exit_fput:
3219 fput(file);
3220 goto out;
3221
3222 stale_open:
3223 /* If no saved parent or already retried then can't retry */
3224 if (!save_parent.dentry || retried)
3225 goto out;
3226
3227 BUG_ON(save_parent.dentry != dir);
3228 path_put(&nd->path);
3229 nd->path = save_parent;
3230 nd->inode = dir->d_inode;
3231 save_parent.mnt = NULL;
3232 save_parent.dentry = NULL;
3233 if (got_write) {
3234 mnt_drop_write(nd->path.mnt);
3235 got_write = false;
3236 }
3237 retried = true;
3238 goto retry_lookup;
3239 }
3240
3241 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3242 const struct open_flags *op,
3243 struct file *file, int *opened)
3244 {
3245 static const struct qstr name = QSTR_INIT("/", 1);
3246 struct dentry *child;
3247 struct inode *dir;
3248 struct path path;
3249 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3250 if (unlikely(error))
3251 return error;
3252 error = mnt_want_write(path.mnt);
3253 if (unlikely(error))
3254 goto out;
3255 dir = path.dentry->d_inode;
3256 /* we want directory to be writable */
3257 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3258 if (error)
3259 goto out2;
3260 if (!dir->i_op->tmpfile) {
3261 error = -EOPNOTSUPP;
3262 goto out2;
3263 }
3264 child = d_alloc(path.dentry, &name);
3265 if (unlikely(!child)) {
3266 error = -ENOMEM;
3267 goto out2;
3268 }
3269 dput(path.dentry);
3270 path.dentry = child;
3271 error = dir->i_op->tmpfile(dir, child, op->mode);
3272 if (error)
3273 goto out2;
3274 audit_inode(nd->name, child, 0);
3275 /* Don't check for other permissions, the inode was just created */
3276 error = may_open(&path, MAY_OPEN, op->open_flag);
3277 if (error)
3278 goto out2;
3279 file->f_path.mnt = path.mnt;
3280 error = finish_open(file, child, NULL, opened);
3281 if (error)
3282 goto out2;
3283 error = open_check_o_direct(file);
3284 if (error) {
3285 fput(file);
3286 } else if (!(op->open_flag & O_EXCL)) {
3287 struct inode *inode = file_inode(file);
3288 spin_lock(&inode->i_lock);
3289 inode->i_state |= I_LINKABLE;
3290 spin_unlock(&inode->i_lock);
3291 }
3292 out2:
3293 mnt_drop_write(path.mnt);
3294 out:
3295 path_put(&path);
3296 return error;
3297 }
3298
3299 static struct file *path_openat(struct nameidata *nd,
3300 const struct open_flags *op, unsigned flags)
3301 {
3302 const char *s;
3303 struct file *file;
3304 int opened = 0;
3305 int error;
3306
3307 file = get_empty_filp();
3308 if (IS_ERR(file))
3309 return file;
3310
3311 file->f_flags = op->open_flag;
3312
3313 if (unlikely(file->f_flags & __O_TMPFILE)) {
3314 error = do_tmpfile(nd, flags, op, file, &opened);
3315 goto out2;
3316 }
3317
3318 s = path_init(nd, flags);
3319 if (IS_ERR(s)) {
3320 put_filp(file);
3321 return ERR_CAST(s);
3322 }
3323 while (!(error = link_path_walk(s, nd)) &&
3324 (error = do_last(nd, file, op, &opened)) > 0) {
3325 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3326 s = trailing_symlink(nd);
3327 if (IS_ERR(s)) {
3328 error = PTR_ERR(s);
3329 break;
3330 }
3331 }
3332 terminate_walk(nd);
3333 out2:
3334 if (!(opened & FILE_OPENED)) {
3335 BUG_ON(!error);
3336 put_filp(file);
3337 }
3338 if (unlikely(error)) {
3339 if (error == -EOPENSTALE) {
3340 if (flags & LOOKUP_RCU)
3341 error = -ECHILD;
3342 else
3343 error = -ESTALE;
3344 }
3345 file = ERR_PTR(error);
3346 }
3347 return file;
3348 }
3349
3350 struct file *do_filp_open(int dfd, struct filename *pathname,
3351 const struct open_flags *op)
3352 {
3353 struct nameidata nd;
3354 int flags = op->lookup_flags;
3355 struct file *filp;
3356
3357 set_nameidata(&nd, dfd, pathname);
3358 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3359 if (unlikely(filp == ERR_PTR(-ECHILD)))
3360 filp = path_openat(&nd, op, flags);
3361 if (unlikely(filp == ERR_PTR(-ESTALE)))
3362 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3363 restore_nameidata();
3364 return filp;
3365 }
3366
3367 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3368 const char *name, const struct open_flags *op)
3369 {
3370 struct nameidata nd;
3371 struct file *file;
3372 struct filename *filename;
3373 int flags = op->lookup_flags | LOOKUP_ROOT;
3374
3375 nd.root.mnt = mnt;
3376 nd.root.dentry = dentry;
3377
3378 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3379 return ERR_PTR(-ELOOP);
3380
3381 filename = getname_kernel(name);
3382 if (IS_ERR(filename))
3383 return ERR_CAST(filename);
3384
3385 set_nameidata(&nd, -1, filename);
3386 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3387 if (unlikely(file == ERR_PTR(-ECHILD)))
3388 file = path_openat(&nd, op, flags);
3389 if (unlikely(file == ERR_PTR(-ESTALE)))
3390 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3391 restore_nameidata();
3392 putname(filename);
3393 return file;
3394 }
3395
3396 static struct dentry *filename_create(int dfd, struct filename *name,
3397 struct path *path, unsigned int lookup_flags)
3398 {
3399 struct dentry *dentry = ERR_PTR(-EEXIST);
3400 struct qstr last;
3401 int type;
3402 int err2;
3403 int error;
3404 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3405
3406 /*
3407 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3408 * other flags passed in are ignored!
3409 */
3410 lookup_flags &= LOOKUP_REVAL;
3411
3412 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3413 if (IS_ERR(name))
3414 return ERR_CAST(name);
3415
3416 /*
3417 * Yucky last component or no last component at all?
3418 * (foo/., foo/.., /////)
3419 */
3420 if (unlikely(type != LAST_NORM))
3421 goto out;
3422
3423 /* don't fail immediately if it's r/o, at least try to report other errors */
3424 err2 = mnt_want_write(path->mnt);
3425 /*
3426 * Do the final lookup.
3427 */
3428 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3429 mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3430 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3431 if (IS_ERR(dentry))
3432 goto unlock;
3433
3434 error = -EEXIST;
3435 if (d_is_positive(dentry))
3436 goto fail;
3437
3438 /*
3439 * Special case - lookup gave negative, but... we had foo/bar/
3440 * From the vfs_mknod() POV we just have a negative dentry -
3441 * all is fine. Let's be bastards - you had / on the end, you've
3442 * been asking for (non-existent) directory. -ENOENT for you.
3443 */
3444 if (unlikely(!is_dir && last.name[last.len])) {
3445 error = -ENOENT;
3446 goto fail;
3447 }
3448 if (unlikely(err2)) {
3449 error = err2;
3450 goto fail;
3451 }
3452 putname(name);
3453 return dentry;
3454 fail:
3455 dput(dentry);
3456 dentry = ERR_PTR(error);
3457 unlock:
3458 mutex_unlock(&path->dentry->d_inode->i_mutex);
3459 if (!err2)
3460 mnt_drop_write(path->mnt);
3461 out:
3462 path_put(path);
3463 putname(name);
3464 return dentry;
3465 }
3466
3467 struct dentry *kern_path_create(int dfd, const char *pathname,
3468 struct path *path, unsigned int lookup_flags)
3469 {
3470 return filename_create(dfd, getname_kernel(pathname),
3471 path, lookup_flags);
3472 }
3473 EXPORT_SYMBOL(kern_path_create);
3474
3475 void done_path_create(struct path *path, struct dentry *dentry)
3476 {
3477 dput(dentry);
3478 mutex_unlock(&path->dentry->d_inode->i_mutex);
3479 mnt_drop_write(path->mnt);
3480 path_put(path);
3481 }
3482 EXPORT_SYMBOL(done_path_create);
3483
3484 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3485 struct path *path, unsigned int lookup_flags)
3486 {
3487 return filename_create(dfd, getname(pathname), path, lookup_flags);
3488 }
3489 EXPORT_SYMBOL(user_path_create);
3490
3491 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3492 {
3493 int error = may_create(dir, dentry);
3494
3495 if (error)
3496 return error;
3497
3498 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3499 return -EPERM;
3500
3501 if (!dir->i_op->mknod)
3502 return -EPERM;
3503
3504 error = devcgroup_inode_mknod(mode, dev);
3505 if (error)
3506 return error;
3507
3508 error = security_inode_mknod(dir, dentry, mode, dev);
3509 if (error)
3510 return error;
3511
3512 error = dir->i_op->mknod(dir, dentry, mode, dev);
3513 if (!error)
3514 fsnotify_create(dir, dentry);
3515 return error;
3516 }
3517 EXPORT_SYMBOL(vfs_mknod);
3518
3519 static int may_mknod(umode_t mode)
3520 {
3521 switch (mode & S_IFMT) {
3522 case S_IFREG:
3523 case S_IFCHR:
3524 case S_IFBLK:
3525 case S_IFIFO:
3526 case S_IFSOCK:
3527 case 0: /* zero mode translates to S_IFREG */
3528 return 0;
3529 case S_IFDIR:
3530 return -EPERM;
3531 default:
3532 return -EINVAL;
3533 }
3534 }
3535
3536 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3537 unsigned, dev)
3538 {
3539 struct dentry *dentry;
3540 struct path path;
3541 int error;
3542 unsigned int lookup_flags = 0;
3543
3544 error = may_mknod(mode);
3545 if (error)
3546 return error;
3547 retry:
3548 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3549 if (IS_ERR(dentry))
3550 return PTR_ERR(dentry);
3551
3552 if (!IS_POSIXACL(path.dentry->d_inode))
3553 mode &= ~current_umask();
3554 error = security_path_mknod(&path, dentry, mode, dev);
3555 if (error)
3556 goto out;
3557 switch (mode & S_IFMT) {
3558 case 0: case S_IFREG:
3559 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3560 break;
3561 case S_IFCHR: case S_IFBLK:
3562 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3563 new_decode_dev(dev));
3564 break;
3565 case S_IFIFO: case S_IFSOCK:
3566 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3567 break;
3568 }
3569 out:
3570 done_path_create(&path, dentry);
3571 if (retry_estale(error, lookup_flags)) {
3572 lookup_flags |= LOOKUP_REVAL;
3573 goto retry;
3574 }
3575 return error;
3576 }
3577
3578 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3579 {
3580 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3581 }
3582
3583 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3584 {
3585 int error = may_create(dir, dentry);
3586 unsigned max_links = dir->i_sb->s_max_links;
3587
3588 if (error)
3589 return error;
3590
3591 if (!dir->i_op->mkdir)
3592 return -EPERM;
3593
3594 mode &= (S_IRWXUGO|S_ISVTX);
3595 error = security_inode_mkdir(dir, dentry, mode);
3596 if (error)
3597 return error;
3598
3599 if (max_links && dir->i_nlink >= max_links)
3600 return -EMLINK;
3601
3602 error = dir->i_op->mkdir(dir, dentry, mode);
3603 if (!error)
3604 fsnotify_mkdir(dir, dentry);
3605 return error;
3606 }
3607 EXPORT_SYMBOL(vfs_mkdir);
3608
3609 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3610 {
3611 struct dentry *dentry;
3612 struct path path;
3613 int error;
3614 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3615
3616 retry:
3617 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3618 if (IS_ERR(dentry))
3619 return PTR_ERR(dentry);
3620
3621 if (!IS_POSIXACL(path.dentry->d_inode))
3622 mode &= ~current_umask();
3623 error = security_path_mkdir(&path, dentry, mode);
3624 if (!error)
3625 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3626 done_path_create(&path, dentry);
3627 if (retry_estale(error, lookup_flags)) {
3628 lookup_flags |= LOOKUP_REVAL;
3629 goto retry;
3630 }
3631 return error;
3632 }
3633
3634 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3635 {
3636 return sys_mkdirat(AT_FDCWD, pathname, mode);
3637 }
3638
3639 /*
3640 * The dentry_unhash() helper will try to drop the dentry early: we
3641 * should have a usage count of 1 if we're the only user of this
3642 * dentry, and if that is true (possibly after pruning the dcache),
3643 * then we drop the dentry now.
3644 *
3645 * A low-level filesystem can, if it choses, legally
3646 * do a
3647 *
3648 * if (!d_unhashed(dentry))
3649 * return -EBUSY;
3650 *
3651 * if it cannot handle the case of removing a directory
3652 * that is still in use by something else..
3653 */
3654 void dentry_unhash(struct dentry *dentry)
3655 {
3656 shrink_dcache_parent(dentry);
3657 spin_lock(&dentry->d_lock);
3658 if (dentry->d_lockref.count == 1)
3659 __d_drop(dentry);
3660 spin_unlock(&dentry->d_lock);
3661 }
3662 EXPORT_SYMBOL(dentry_unhash);
3663
3664 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3665 {
3666 int error = may_delete(dir, dentry, 1);
3667
3668 if (error)
3669 return error;
3670
3671 if (!dir->i_op->rmdir)
3672 return -EPERM;
3673
3674 dget(dentry);
3675 mutex_lock(&dentry->d_inode->i_mutex);
3676
3677 error = -EBUSY;
3678 if (is_local_mountpoint(dentry))
3679 goto out;
3680
3681 error = security_inode_rmdir(dir, dentry);
3682 if (error)
3683 goto out;
3684
3685 shrink_dcache_parent(dentry);
3686 error = dir->i_op->rmdir(dir, dentry);
3687 if (error)
3688 goto out;
3689
3690 dentry->d_inode->i_flags |= S_DEAD;
3691 dont_mount(dentry);
3692 detach_mounts(dentry);
3693
3694 out:
3695 mutex_unlock(&dentry->d_inode->i_mutex);
3696 dput(dentry);
3697 if (!error)
3698 d_delete(dentry);
3699 return error;
3700 }
3701 EXPORT_SYMBOL(vfs_rmdir);
3702
3703 static long do_rmdir(int dfd, const char __user *pathname)
3704 {
3705 int error = 0;
3706 struct filename *name;
3707 struct dentry *dentry;
3708 struct path path;
3709 struct qstr last;
3710 int type;
3711 unsigned int lookup_flags = 0;
3712 retry:
3713 name = user_path_parent(dfd, pathname,
3714 &path, &last, &type, lookup_flags);
3715 if (IS_ERR(name))
3716 return PTR_ERR(name);
3717
3718 switch (type) {
3719 case LAST_DOTDOT:
3720 error = -ENOTEMPTY;
3721 goto exit1;
3722 case LAST_DOT:
3723 error = -EINVAL;
3724 goto exit1;
3725 case LAST_ROOT:
3726 error = -EBUSY;
3727 goto exit1;
3728 }
3729
3730 error = mnt_want_write(path.mnt);
3731 if (error)
3732 goto exit1;
3733
3734 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3735 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3736 error = PTR_ERR(dentry);
3737 if (IS_ERR(dentry))
3738 goto exit2;
3739 if (!dentry->d_inode) {
3740 error = -ENOENT;
3741 goto exit3;
3742 }
3743 error = security_path_rmdir(&path, dentry);
3744 if (error)
3745 goto exit3;
3746 error = vfs_rmdir(path.dentry->d_inode, dentry);
3747 exit3:
3748 dput(dentry);
3749 exit2:
3750 mutex_unlock(&path.dentry->d_inode->i_mutex);
3751 mnt_drop_write(path.mnt);
3752 exit1:
3753 path_put(&path);
3754 putname(name);
3755 if (retry_estale(error, lookup_flags)) {
3756 lookup_flags |= LOOKUP_REVAL;
3757 goto retry;
3758 }
3759 return error;
3760 }
3761
3762 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3763 {
3764 return do_rmdir(AT_FDCWD, pathname);
3765 }
3766
3767 /**
3768 * vfs_unlink - unlink a filesystem object
3769 * @dir: parent directory
3770 * @dentry: victim
3771 * @delegated_inode: returns victim inode, if the inode is delegated.
3772 *
3773 * The caller must hold dir->i_mutex.
3774 *
3775 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3776 * return a reference to the inode in delegated_inode. The caller
3777 * should then break the delegation on that inode and retry. Because
3778 * breaking a delegation may take a long time, the caller should drop
3779 * dir->i_mutex before doing so.
3780 *
3781 * Alternatively, a caller may pass NULL for delegated_inode. This may
3782 * be appropriate for callers that expect the underlying filesystem not
3783 * to be NFS exported.
3784 */
3785 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3786 {
3787 struct inode *target = dentry->d_inode;
3788 int error = may_delete(dir, dentry, 0);
3789
3790 if (error)
3791 return error;
3792
3793 if (!dir->i_op->unlink)
3794 return -EPERM;
3795
3796 mutex_lock(&target->i_mutex);
3797 if (is_local_mountpoint(dentry))
3798 error = -EBUSY;
3799 else {
3800 error = security_inode_unlink(dir, dentry);
3801 if (!error) {
3802 error = try_break_deleg(target, delegated_inode);
3803 if (error)
3804 goto out;
3805 error = dir->i_op->unlink(dir, dentry);
3806 if (!error) {
3807 dont_mount(dentry);
3808 detach_mounts(dentry);
3809 }
3810 }
3811 }
3812 out:
3813 mutex_unlock(&target->i_mutex);
3814
3815 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3816 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3817 fsnotify_link_count(target);
3818 d_delete(dentry);
3819 }
3820
3821 return error;
3822 }
3823 EXPORT_SYMBOL(vfs_unlink);
3824
3825 /*
3826 * Make sure that the actual truncation of the file will occur outside its
3827 * directory's i_mutex. Truncate can take a long time if there is a lot of
3828 * writeout happening, and we don't want to prevent access to the directory
3829 * while waiting on the I/O.
3830 */
3831 static long do_unlinkat(int dfd, const char __user *pathname)
3832 {
3833 int error;
3834 struct filename *name;
3835 struct dentry *dentry;
3836 struct path path;
3837 struct qstr last;
3838 int type;
3839 struct inode *inode = NULL;
3840 struct inode *delegated_inode = NULL;
3841 unsigned int lookup_flags = 0;
3842 retry:
3843 name = user_path_parent(dfd, pathname,
3844 &path, &last, &type, lookup_flags);
3845 if (IS_ERR(name))
3846 return PTR_ERR(name);
3847
3848 error = -EISDIR;
3849 if (type != LAST_NORM)
3850 goto exit1;
3851
3852 error = mnt_want_write(path.mnt);
3853 if (error)
3854 goto exit1;
3855 retry_deleg:
3856 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3857 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3858 error = PTR_ERR(dentry);
3859 if (!IS_ERR(dentry)) {
3860 /* Why not before? Because we want correct error value */
3861 if (last.name[last.len])
3862 goto slashes;
3863 inode = dentry->d_inode;
3864 if (d_is_negative(dentry))
3865 goto slashes;
3866 ihold(inode);
3867 error = security_path_unlink(&path, dentry);
3868 if (error)
3869 goto exit2;
3870 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3871 exit2:
3872 dput(dentry);
3873 }
3874 mutex_unlock(&path.dentry->d_inode->i_mutex);
3875 if (inode)
3876 iput(inode); /* truncate the inode here */
3877 inode = NULL;
3878 if (delegated_inode) {
3879 error = break_deleg_wait(&delegated_inode);
3880 if (!error)
3881 goto retry_deleg;
3882 }
3883 mnt_drop_write(path.mnt);
3884 exit1:
3885 path_put(&path);
3886 putname(name);
3887 if (retry_estale(error, lookup_flags)) {
3888 lookup_flags |= LOOKUP_REVAL;
3889 inode = NULL;
3890 goto retry;
3891 }
3892 return error;
3893
3894 slashes:
3895 if (d_is_negative(dentry))
3896 error = -ENOENT;
3897 else if (d_is_dir(dentry))
3898 error = -EISDIR;
3899 else
3900 error = -ENOTDIR;
3901 goto exit2;
3902 }
3903
3904 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3905 {
3906 if ((flag & ~AT_REMOVEDIR) != 0)
3907 return -EINVAL;
3908
3909 if (flag & AT_REMOVEDIR)
3910 return do_rmdir(dfd, pathname);
3911
3912 return do_unlinkat(dfd, pathname);
3913 }
3914
3915 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3916 {
3917 return do_unlinkat(AT_FDCWD, pathname);
3918 }
3919
3920 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3921 {
3922 int error = may_create(dir, dentry);
3923
3924 if (error)
3925 return error;
3926
3927 if (!dir->i_op->symlink)
3928 return -EPERM;
3929
3930 error = security_inode_symlink(dir, dentry, oldname);
3931 if (error)
3932 return error;
3933
3934 error = dir->i_op->symlink(dir, dentry, oldname);
3935 if (!error)
3936 fsnotify_create(dir, dentry);
3937 return error;
3938 }
3939 EXPORT_SYMBOL(vfs_symlink);
3940
3941 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3942 int, newdfd, const char __user *, newname)
3943 {
3944 int error;
3945 struct filename *from;
3946 struct dentry *dentry;
3947 struct path path;
3948 unsigned int lookup_flags = 0;
3949
3950 from = getname(oldname);
3951 if (IS_ERR(from))
3952 return PTR_ERR(from);
3953 retry:
3954 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3955 error = PTR_ERR(dentry);
3956 if (IS_ERR(dentry))
3957 goto out_putname;
3958
3959 error = security_path_symlink(&path, dentry, from->name);
3960 if (!error)
3961 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3962 done_path_create(&path, dentry);
3963 if (retry_estale(error, lookup_flags)) {
3964 lookup_flags |= LOOKUP_REVAL;
3965 goto retry;
3966 }
3967 out_putname:
3968 putname(from);
3969 return error;
3970 }
3971
3972 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3973 {
3974 return sys_symlinkat(oldname, AT_FDCWD, newname);
3975 }
3976
3977 /**
3978 * vfs_link - create a new link
3979 * @old_dentry: object to be linked
3980 * @dir: new parent
3981 * @new_dentry: where to create the new link
3982 * @delegated_inode: returns inode needing a delegation break
3983 *
3984 * The caller must hold dir->i_mutex
3985 *
3986 * If vfs_link discovers a delegation on the to-be-linked file in need
3987 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3988 * inode in delegated_inode. The caller should then break the delegation
3989 * and retry. Because breaking a delegation may take a long time, the
3990 * caller should drop the i_mutex before doing so.
3991 *
3992 * Alternatively, a caller may pass NULL for delegated_inode. This may
3993 * be appropriate for callers that expect the underlying filesystem not
3994 * to be NFS exported.
3995 */
3996 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3997 {
3998 struct inode *inode = old_dentry->d_inode;
3999 unsigned max_links = dir->i_sb->s_max_links;
4000 int error;
4001
4002 if (!inode)
4003 return -ENOENT;
4004
4005 error = may_create(dir, new_dentry);
4006 if (error)
4007 return error;
4008
4009 if (dir->i_sb != inode->i_sb)
4010 return -EXDEV;
4011
4012 /*
4013 * A link to an append-only or immutable file cannot be created.
4014 */
4015 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4016 return -EPERM;
4017 if (!dir->i_op->link)
4018 return -EPERM;
4019 if (S_ISDIR(inode->i_mode))
4020 return -EPERM;
4021
4022 error = security_inode_link(old_dentry, dir, new_dentry);
4023 if (error)
4024 return error;
4025
4026 mutex_lock(&inode->i_mutex);
4027 /* Make sure we don't allow creating hardlink to an unlinked file */
4028 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4029 error = -ENOENT;
4030 else if (max_links && inode->i_nlink >= max_links)
4031 error = -EMLINK;
4032 else {
4033 error = try_break_deleg(inode, delegated_inode);
4034 if (!error)
4035 error = dir->i_op->link(old_dentry, dir, new_dentry);
4036 }
4037
4038 if (!error && (inode->i_state & I_LINKABLE)) {
4039 spin_lock(&inode->i_lock);
4040 inode->i_state &= ~I_LINKABLE;
4041 spin_unlock(&inode->i_lock);
4042 }
4043 mutex_unlock(&inode->i_mutex);
4044 if (!error)
4045 fsnotify_link(dir, inode, new_dentry);
4046 return error;
4047 }
4048 EXPORT_SYMBOL(vfs_link);
4049
4050 /*
4051 * Hardlinks are often used in delicate situations. We avoid
4052 * security-related surprises by not following symlinks on the
4053 * newname. --KAB
4054 *
4055 * We don't follow them on the oldname either to be compatible
4056 * with linux 2.0, and to avoid hard-linking to directories
4057 * and other special files. --ADM
4058 */
4059 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4060 int, newdfd, const char __user *, newname, int, flags)
4061 {
4062 struct dentry *new_dentry;
4063 struct path old_path, new_path;
4064 struct inode *delegated_inode = NULL;
4065 int how = 0;
4066 int error;
4067
4068 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4069 return -EINVAL;
4070 /*
4071 * To use null names we require CAP_DAC_READ_SEARCH
4072 * This ensures that not everyone will be able to create
4073 * handlink using the passed filedescriptor.
4074 */
4075 if (flags & AT_EMPTY_PATH) {
4076 if (!capable(CAP_DAC_READ_SEARCH))
4077 return -ENOENT;
4078 how = LOOKUP_EMPTY;
4079 }
4080
4081 if (flags & AT_SYMLINK_FOLLOW)
4082 how |= LOOKUP_FOLLOW;
4083 retry:
4084 error = user_path_at(olddfd, oldname, how, &old_path);
4085 if (error)
4086 return error;
4087
4088 new_dentry = user_path_create(newdfd, newname, &new_path,
4089 (how & LOOKUP_REVAL));
4090 error = PTR_ERR(new_dentry);
4091 if (IS_ERR(new_dentry))
4092 goto out;
4093
4094 error = -EXDEV;
4095 if (old_path.mnt != new_path.mnt)
4096 goto out_dput;
4097 error = may_linkat(&old_path);
4098 if (unlikely(error))
4099 goto out_dput;
4100 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4101 if (error)
4102 goto out_dput;
4103 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4104 out_dput:
4105 done_path_create(&new_path, new_dentry);
4106 if (delegated_inode) {
4107 error = break_deleg_wait(&delegated_inode);
4108 if (!error) {
4109 path_put(&old_path);
4110 goto retry;
4111 }
4112 }
4113 if (retry_estale(error, how)) {
4114 path_put(&old_path);
4115 how |= LOOKUP_REVAL;
4116 goto retry;
4117 }
4118 out:
4119 path_put(&old_path);
4120
4121 return error;
4122 }
4123
4124 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4125 {
4126 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4127 }
4128
4129 /**
4130 * vfs_rename - rename a filesystem object
4131 * @old_dir: parent of source
4132 * @old_dentry: source
4133 * @new_dir: parent of destination
4134 * @new_dentry: destination
4135 * @delegated_inode: returns an inode needing a delegation break
4136 * @flags: rename flags
4137 *
4138 * The caller must hold multiple mutexes--see lock_rename()).
4139 *
4140 * If vfs_rename discovers a delegation in need of breaking at either
4141 * the source or destination, it will return -EWOULDBLOCK and return a
4142 * reference to the inode in delegated_inode. The caller should then
4143 * break the delegation and retry. Because breaking a delegation may
4144 * take a long time, the caller should drop all locks before doing
4145 * so.
4146 *
4147 * Alternatively, a caller may pass NULL for delegated_inode. This may
4148 * be appropriate for callers that expect the underlying filesystem not
4149 * to be NFS exported.
4150 *
4151 * The worst of all namespace operations - renaming directory. "Perverted"
4152 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4153 * Problems:
4154 * a) we can get into loop creation.
4155 * b) race potential - two innocent renames can create a loop together.
4156 * That's where 4.4 screws up. Current fix: serialization on
4157 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4158 * story.
4159 * c) we have to lock _four_ objects - parents and victim (if it exists),
4160 * and source (if it is not a directory).
4161 * And that - after we got ->i_mutex on parents (until then we don't know
4162 * whether the target exists). Solution: try to be smart with locking
4163 * order for inodes. We rely on the fact that tree topology may change
4164 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4165 * move will be locked. Thus we can rank directories by the tree
4166 * (ancestors first) and rank all non-directories after them.
4167 * That works since everybody except rename does "lock parent, lookup,
4168 * lock child" and rename is under ->s_vfs_rename_mutex.
4169 * HOWEVER, it relies on the assumption that any object with ->lookup()
4170 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4171 * we'd better make sure that there's no link(2) for them.
4172 * d) conversion from fhandle to dentry may come in the wrong moment - when
4173 * we are removing the target. Solution: we will have to grab ->i_mutex
4174 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4175 * ->i_mutex on parents, which works but leads to some truly excessive
4176 * locking].
4177 */
4178 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4179 struct inode *new_dir, struct dentry *new_dentry,
4180 struct inode **delegated_inode, unsigned int flags)
4181 {
4182 int error;
4183 bool is_dir = d_is_dir(old_dentry);
4184 const unsigned char *old_name;
4185 struct inode *source = old_dentry->d_inode;
4186 struct inode *target = new_dentry->d_inode;
4187 bool new_is_dir = false;
4188 unsigned max_links = new_dir->i_sb->s_max_links;
4189
4190 if (source == target)
4191 return 0;
4192
4193 error = may_delete(old_dir, old_dentry, is_dir);
4194 if (error)
4195 return error;
4196
4197 if (!target) {
4198 error = may_create(new_dir, new_dentry);
4199 } else {
4200 new_is_dir = d_is_dir(new_dentry);
4201
4202 if (!(flags & RENAME_EXCHANGE))
4203 error = may_delete(new_dir, new_dentry, is_dir);
4204 else
4205 error = may_delete(new_dir, new_dentry, new_is_dir);
4206 }
4207 if (error)
4208 return error;
4209
4210 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4211 return -EPERM;
4212
4213 if (flags && !old_dir->i_op->rename2)
4214 return -EINVAL;
4215
4216 /*
4217 * If we are going to change the parent - check write permissions,
4218 * we'll need to flip '..'.
4219 */
4220 if (new_dir != old_dir) {
4221 if (is_dir) {
4222 error = inode_permission(source, MAY_WRITE);
4223 if (error)
4224 return error;
4225 }
4226 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4227 error = inode_permission(target, MAY_WRITE);
4228 if (error)
4229 return error;
4230 }
4231 }
4232
4233 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4234 flags);
4235 if (error)
4236 return error;
4237
4238 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4239 dget(new_dentry);
4240 if (!is_dir || (flags & RENAME_EXCHANGE))
4241 lock_two_nondirectories(source, target);
4242 else if (target)
4243 mutex_lock(&target->i_mutex);
4244
4245 error = -EBUSY;
4246 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4247 goto out;
4248
4249 if (max_links && new_dir != old_dir) {
4250 error = -EMLINK;
4251 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4252 goto out;
4253 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4254 old_dir->i_nlink >= max_links)
4255 goto out;
4256 }
4257 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4258 shrink_dcache_parent(new_dentry);
4259 if (!is_dir) {
4260 error = try_break_deleg(source, delegated_inode);
4261 if (error)
4262 goto out;
4263 }
4264 if (target && !new_is_dir) {
4265 error = try_break_deleg(target, delegated_inode);
4266 if (error)
4267 goto out;
4268 }
4269 if (!old_dir->i_op->rename2) {
4270 error = old_dir->i_op->rename(old_dir, old_dentry,
4271 new_dir, new_dentry);
4272 } else {
4273 WARN_ON(old_dir->i_op->rename != NULL);
4274 error = old_dir->i_op->rename2(old_dir, old_dentry,
4275 new_dir, new_dentry, flags);
4276 }
4277 if (error)
4278 goto out;
4279
4280 if (!(flags & RENAME_EXCHANGE) && target) {
4281 if (is_dir)
4282 target->i_flags |= S_DEAD;
4283 dont_mount(new_dentry);
4284 detach_mounts(new_dentry);
4285 }
4286 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4287 if (!(flags & RENAME_EXCHANGE))
4288 d_move(old_dentry, new_dentry);
4289 else
4290 d_exchange(old_dentry, new_dentry);
4291 }
4292 out:
4293 if (!is_dir || (flags & RENAME_EXCHANGE))
4294 unlock_two_nondirectories(source, target);
4295 else if (target)
4296 mutex_unlock(&target->i_mutex);
4297 dput(new_dentry);
4298 if (!error) {
4299 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4300 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4301 if (flags & RENAME_EXCHANGE) {
4302 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4303 new_is_dir, NULL, new_dentry);
4304 }
4305 }
4306 fsnotify_oldname_free(old_name);
4307
4308 return error;
4309 }
4310 EXPORT_SYMBOL(vfs_rename);
4311
4312 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4313 int, newdfd, const char __user *, newname, unsigned int, flags)
4314 {
4315 struct dentry *old_dentry, *new_dentry;
4316 struct dentry *trap;
4317 struct path old_path, new_path;
4318 struct qstr old_last, new_last;
4319 int old_type, new_type;
4320 struct inode *delegated_inode = NULL;
4321 struct filename *from;
4322 struct filename *to;
4323 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4324 bool should_retry = false;
4325 int error;
4326
4327 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4328 return -EINVAL;
4329
4330 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4331 (flags & RENAME_EXCHANGE))
4332 return -EINVAL;
4333
4334 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4335 return -EPERM;
4336
4337 if (flags & RENAME_EXCHANGE)
4338 target_flags = 0;
4339
4340 retry:
4341 from = user_path_parent(olddfd, oldname,
4342 &old_path, &old_last, &old_type, lookup_flags);
4343 if (IS_ERR(from)) {
4344 error = PTR_ERR(from);
4345 goto exit;
4346 }
4347
4348 to = user_path_parent(newdfd, newname,
4349 &new_path, &new_last, &new_type, lookup_flags);
4350 if (IS_ERR(to)) {
4351 error = PTR_ERR(to);
4352 goto exit1;
4353 }
4354
4355 error = -EXDEV;
4356 if (old_path.mnt != new_path.mnt)
4357 goto exit2;
4358
4359 error = -EBUSY;
4360 if (old_type != LAST_NORM)
4361 goto exit2;
4362
4363 if (flags & RENAME_NOREPLACE)
4364 error = -EEXIST;
4365 if (new_type != LAST_NORM)
4366 goto exit2;
4367
4368 error = mnt_want_write(old_path.mnt);
4369 if (error)
4370 goto exit2;
4371
4372 retry_deleg:
4373 trap = lock_rename(new_path.dentry, old_path.dentry);
4374
4375 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4376 error = PTR_ERR(old_dentry);
4377 if (IS_ERR(old_dentry))
4378 goto exit3;
4379 /* source must exist */
4380 error = -ENOENT;
4381 if (d_is_negative(old_dentry))
4382 goto exit4;
4383 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4384 error = PTR_ERR(new_dentry);
4385 if (IS_ERR(new_dentry))
4386 goto exit4;
4387 error = -EEXIST;
4388 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4389 goto exit5;
4390 if (flags & RENAME_EXCHANGE) {
4391 error = -ENOENT;
4392 if (d_is_negative(new_dentry))
4393 goto exit5;
4394
4395 if (!d_is_dir(new_dentry)) {
4396 error = -ENOTDIR;
4397 if (new_last.name[new_last.len])
4398 goto exit5;
4399 }
4400 }
4401 /* unless the source is a directory trailing slashes give -ENOTDIR */
4402 if (!d_is_dir(old_dentry)) {
4403 error = -ENOTDIR;
4404 if (old_last.name[old_last.len])
4405 goto exit5;
4406 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4407 goto exit5;
4408 }
4409 /* source should not be ancestor of target */
4410 error = -EINVAL;
4411 if (old_dentry == trap)
4412 goto exit5;
4413 /* target should not be an ancestor of source */
4414 if (!(flags & RENAME_EXCHANGE))
4415 error = -ENOTEMPTY;
4416 if (new_dentry == trap)
4417 goto exit5;
4418
4419 error = security_path_rename(&old_path, old_dentry,
4420 &new_path, new_dentry, flags);
4421 if (error)
4422 goto exit5;
4423 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4424 new_path.dentry->d_inode, new_dentry,
4425 &delegated_inode, flags);
4426 exit5:
4427 dput(new_dentry);
4428 exit4:
4429 dput(old_dentry);
4430 exit3:
4431 unlock_rename(new_path.dentry, old_path.dentry);
4432 if (delegated_inode) {
4433 error = break_deleg_wait(&delegated_inode);
4434 if (!error)
4435 goto retry_deleg;
4436 }
4437 mnt_drop_write(old_path.mnt);
4438 exit2:
4439 if (retry_estale(error, lookup_flags))
4440 should_retry = true;
4441 path_put(&new_path);
4442 putname(to);
4443 exit1:
4444 path_put(&old_path);
4445 putname(from);
4446 if (should_retry) {
4447 should_retry = false;
4448 lookup_flags |= LOOKUP_REVAL;
4449 goto retry;
4450 }
4451 exit:
4452 return error;
4453 }
4454
4455 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4456 int, newdfd, const char __user *, newname)
4457 {
4458 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4459 }
4460
4461 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4462 {
4463 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4464 }
4465
4466 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4467 {
4468 int error = may_create(dir, dentry);
4469 if (error)
4470 return error;
4471
4472 if (!dir->i_op->mknod)
4473 return -EPERM;
4474
4475 return dir->i_op->mknod(dir, dentry,
4476 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4477 }
4478 EXPORT_SYMBOL(vfs_whiteout);
4479
4480 int readlink_copy(char __user *buffer, int buflen, const char *link)
4481 {
4482 int len = PTR_ERR(link);
4483 if (IS_ERR(link))
4484 goto out;
4485
4486 len = strlen(link);
4487 if (len > (unsigned) buflen)
4488 len = buflen;
4489 if (copy_to_user(buffer, link, len))
4490 len = -EFAULT;
4491 out:
4492 return len;
4493 }
4494 EXPORT_SYMBOL(readlink_copy);
4495
4496 /*
4497 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4498 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4499 * using) it for any given inode is up to filesystem.
4500 */
4501 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4502 {
4503 void *cookie;
4504 struct inode *inode = d_inode(dentry);
4505 const char *link = inode->i_link;
4506 int res;
4507
4508 if (!link) {
4509 link = inode->i_op->follow_link(dentry, &cookie);
4510 if (IS_ERR(link))
4511 return PTR_ERR(link);
4512 }
4513 res = readlink_copy(buffer, buflen, link);
4514 if (inode->i_op->put_link)
4515 inode->i_op->put_link(inode, cookie);
4516 return res;
4517 }
4518 EXPORT_SYMBOL(generic_readlink);
4519
4520 /* get the link contents into pagecache */
4521 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4522 {
4523 char *kaddr;
4524 struct page *page;
4525 struct address_space *mapping = dentry->d_inode->i_mapping;
4526 page = read_mapping_page(mapping, 0, NULL);
4527 if (IS_ERR(page))
4528 return (char*)page;
4529 *ppage = page;
4530 kaddr = kmap(page);
4531 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4532 return kaddr;
4533 }
4534
4535 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4536 {
4537 struct page *page = NULL;
4538 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4539 if (page) {
4540 kunmap(page);
4541 page_cache_release(page);
4542 }
4543 return res;
4544 }
4545 EXPORT_SYMBOL(page_readlink);
4546
4547 const char *page_follow_link_light(struct dentry *dentry, void **cookie)
4548 {
4549 struct page *page = NULL;
4550 char *res = page_getlink(dentry, &page);
4551 if (!IS_ERR(res))
4552 *cookie = page;
4553 return res;
4554 }
4555 EXPORT_SYMBOL(page_follow_link_light);
4556
4557 void page_put_link(struct inode *unused, void *cookie)
4558 {
4559 struct page *page = cookie;
4560 kunmap(page);
4561 page_cache_release(page);
4562 }
4563 EXPORT_SYMBOL(page_put_link);
4564
4565 /*
4566 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4567 */
4568 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4569 {
4570 struct address_space *mapping = inode->i_mapping;
4571 struct page *page;
4572 void *fsdata;
4573 int err;
4574 char *kaddr;
4575 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4576 if (nofs)
4577 flags |= AOP_FLAG_NOFS;
4578
4579 retry:
4580 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4581 flags, &page, &fsdata);
4582 if (err)
4583 goto fail;
4584
4585 kaddr = kmap_atomic(page);
4586 memcpy(kaddr, symname, len-1);
4587 kunmap_atomic(kaddr);
4588
4589 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4590 page, fsdata);
4591 if (err < 0)
4592 goto fail;
4593 if (err < len-1)
4594 goto retry;
4595
4596 mark_inode_dirty(inode);
4597 return 0;
4598 fail:
4599 return err;
4600 }
4601 EXPORT_SYMBOL(__page_symlink);
4602
4603 int page_symlink(struct inode *inode, const char *symname, int len)
4604 {
4605 return __page_symlink(inode, symname, len,
4606 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4607 }
4608 EXPORT_SYMBOL(page_symlink);
4609
4610 const struct inode_operations page_symlink_inode_operations = {
4611 .readlink = generic_readlink,
4612 .follow_link = page_follow_link_light,
4613 .put_link = page_put_link,
4614 };
4615 EXPORT_SYMBOL(page_symlink_inode_operations);