]> git.ipfire.org Git - people/ms/linux.git/blob - fs/namei.c
Merge tag 'soc-fixes-6.0-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[people/ms/linux.git] / fs / namei.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/sched/mm.h>
26 #include <linux/fsnotify.h>
27 #include <linux/personality.h>
28 #include <linux/security.h>
29 #include <linux/ima.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
43
44 #include "internal.h"
45 #include "mount.h"
46
47 /* [Feb-1997 T. Schoebel-Theuer]
48 * Fundamental changes in the pathname lookup mechanisms (namei)
49 * were necessary because of omirr. The reason is that omirr needs
50 * to know the _real_ pathname, not the user-supplied one, in case
51 * of symlinks (and also when transname replacements occur).
52 *
53 * The new code replaces the old recursive symlink resolution with
54 * an iterative one (in case of non-nested symlink chains). It does
55 * this with calls to <fs>_follow_link().
56 * As a side effect, dir_namei(), _namei() and follow_link() are now
57 * replaced with a single function lookup_dentry() that can handle all
58 * the special cases of the former code.
59 *
60 * With the new dcache, the pathname is stored at each inode, at least as
61 * long as the refcount of the inode is positive. As a side effect, the
62 * size of the dcache depends on the inode cache and thus is dynamic.
63 *
64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65 * resolution to correspond with current state of the code.
66 *
67 * Note that the symlink resolution is not *completely* iterative.
68 * There is still a significant amount of tail- and mid- recursion in
69 * the algorithm. Also, note that <fs>_readlink() is not used in
70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71 * may return different results than <fs>_follow_link(). Many virtual
72 * filesystems (including /proc) exhibit this behavior.
73 */
74
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77 * and the name already exists in form of a symlink, try to create the new
78 * name indicated by the symlink. The old code always complained that the
79 * name already exists, due to not following the symlink even if its target
80 * is nonexistent. The new semantics affects also mknod() and link() when
81 * the name is a symlink pointing to a non-existent name.
82 *
83 * I don't know which semantics is the right one, since I have no access
84 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86 * "old" one. Personally, I think the new semantics is much more logical.
87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88 * file does succeed in both HP-UX and SunOs, but not in Solaris
89 * and in the old Linux semantics.
90 */
91
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93 * semantics. See the comments in "open_namei" and "do_link" below.
94 *
95 * [10-Sep-98 Alan Modra] Another symlink change.
96 */
97
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99 * inside the path - always follow.
100 * in the last component in creation/removal/renaming - never follow.
101 * if LOOKUP_FOLLOW passed - follow.
102 * if the pathname has trailing slashes - follow.
103 * otherwise - don't follow.
104 * (applied in that order).
105 *
106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108 * During the 2.4 we need to fix the userland stuff depending on it -
109 * hopefully we will be able to get rid of that wart in 2.5. So far only
110 * XEmacs seems to be relying on it...
111 */
112 /*
113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
115 * any extra contention...
116 */
117
118 /* In order to reduce some races, while at the same time doing additional
119 * checking and hopefully speeding things up, we copy filenames to the
120 * kernel data space before using them..
121 *
122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123 * PATH_MAX includes the nul terminator --RR.
124 */
125
126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
127
128 struct filename *
129 getname_flags(const char __user *filename, int flags, int *empty)
130 {
131 struct filename *result;
132 char *kname;
133 int len;
134
135 result = audit_reusename(filename);
136 if (result)
137 return result;
138
139 result = __getname();
140 if (unlikely(!result))
141 return ERR_PTR(-ENOMEM);
142
143 /*
144 * First, try to embed the struct filename inside the names_cache
145 * allocation
146 */
147 kname = (char *)result->iname;
148 result->name = kname;
149
150 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
151 if (unlikely(len < 0)) {
152 __putname(result);
153 return ERR_PTR(len);
154 }
155
156 /*
157 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
158 * separate struct filename so we can dedicate the entire
159 * names_cache allocation for the pathname, and re-do the copy from
160 * userland.
161 */
162 if (unlikely(len == EMBEDDED_NAME_MAX)) {
163 const size_t size = offsetof(struct filename, iname[1]);
164 kname = (char *)result;
165
166 /*
167 * size is chosen that way we to guarantee that
168 * result->iname[0] is within the same object and that
169 * kname can't be equal to result->iname, no matter what.
170 */
171 result = kzalloc(size, GFP_KERNEL);
172 if (unlikely(!result)) {
173 __putname(kname);
174 return ERR_PTR(-ENOMEM);
175 }
176 result->name = kname;
177 len = strncpy_from_user(kname, filename, PATH_MAX);
178 if (unlikely(len < 0)) {
179 __putname(kname);
180 kfree(result);
181 return ERR_PTR(len);
182 }
183 if (unlikely(len == PATH_MAX)) {
184 __putname(kname);
185 kfree(result);
186 return ERR_PTR(-ENAMETOOLONG);
187 }
188 }
189
190 result->refcnt = 1;
191 /* The empty path is special. */
192 if (unlikely(!len)) {
193 if (empty)
194 *empty = 1;
195 if (!(flags & LOOKUP_EMPTY)) {
196 putname(result);
197 return ERR_PTR(-ENOENT);
198 }
199 }
200
201 result->uptr = filename;
202 result->aname = NULL;
203 audit_getname(result);
204 return result;
205 }
206
207 struct filename *
208 getname_uflags(const char __user *filename, int uflags)
209 {
210 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
211
212 return getname_flags(filename, flags, NULL);
213 }
214
215 struct filename *
216 getname(const char __user * filename)
217 {
218 return getname_flags(filename, 0, NULL);
219 }
220
221 struct filename *
222 getname_kernel(const char * filename)
223 {
224 struct filename *result;
225 int len = strlen(filename) + 1;
226
227 result = __getname();
228 if (unlikely(!result))
229 return ERR_PTR(-ENOMEM);
230
231 if (len <= EMBEDDED_NAME_MAX) {
232 result->name = (char *)result->iname;
233 } else if (len <= PATH_MAX) {
234 const size_t size = offsetof(struct filename, iname[1]);
235 struct filename *tmp;
236
237 tmp = kmalloc(size, GFP_KERNEL);
238 if (unlikely(!tmp)) {
239 __putname(result);
240 return ERR_PTR(-ENOMEM);
241 }
242 tmp->name = (char *)result;
243 result = tmp;
244 } else {
245 __putname(result);
246 return ERR_PTR(-ENAMETOOLONG);
247 }
248 memcpy((char *)result->name, filename, len);
249 result->uptr = NULL;
250 result->aname = NULL;
251 result->refcnt = 1;
252 audit_getname(result);
253
254 return result;
255 }
256
257 void putname(struct filename *name)
258 {
259 if (IS_ERR(name))
260 return;
261
262 BUG_ON(name->refcnt <= 0);
263
264 if (--name->refcnt > 0)
265 return;
266
267 if (name->name != name->iname) {
268 __putname(name->name);
269 kfree(name);
270 } else
271 __putname(name);
272 }
273
274 /**
275 * check_acl - perform ACL permission checking
276 * @mnt_userns: user namespace of the mount the inode was found from
277 * @inode: inode to check permissions on
278 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
279 *
280 * This function performs the ACL permission checking. Since this function
281 * retrieve POSIX acls it needs to know whether it is called from a blocking or
282 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
283 *
284 * If the inode has been found through an idmapped mount the user namespace of
285 * the vfsmount must be passed through @mnt_userns. This function will then take
286 * care to map the inode according to @mnt_userns before checking permissions.
287 * On non-idmapped mounts or if permission checking is to be performed on the
288 * raw inode simply passs init_user_ns.
289 */
290 static int check_acl(struct user_namespace *mnt_userns,
291 struct inode *inode, int mask)
292 {
293 #ifdef CONFIG_FS_POSIX_ACL
294 struct posix_acl *acl;
295
296 if (mask & MAY_NOT_BLOCK) {
297 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
298 if (!acl)
299 return -EAGAIN;
300 /* no ->get_acl() calls in RCU mode... */
301 if (is_uncached_acl(acl))
302 return -ECHILD;
303 return posix_acl_permission(mnt_userns, inode, acl, mask);
304 }
305
306 acl = get_acl(inode, ACL_TYPE_ACCESS);
307 if (IS_ERR(acl))
308 return PTR_ERR(acl);
309 if (acl) {
310 int error = posix_acl_permission(mnt_userns, inode, acl, mask);
311 posix_acl_release(acl);
312 return error;
313 }
314 #endif
315
316 return -EAGAIN;
317 }
318
319 /**
320 * acl_permission_check - perform basic UNIX permission checking
321 * @mnt_userns: user namespace of the mount the inode was found from
322 * @inode: inode to check permissions on
323 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
324 *
325 * This function performs the basic UNIX permission checking. Since this
326 * function may retrieve POSIX acls it needs to know whether it is called from a
327 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
328 *
329 * If the inode has been found through an idmapped mount the user namespace of
330 * the vfsmount must be passed through @mnt_userns. This function will then take
331 * care to map the inode according to @mnt_userns before checking permissions.
332 * On non-idmapped mounts or if permission checking is to be performed on the
333 * raw inode simply passs init_user_ns.
334 */
335 static int acl_permission_check(struct user_namespace *mnt_userns,
336 struct inode *inode, int mask)
337 {
338 unsigned int mode = inode->i_mode;
339 kuid_t i_uid;
340
341 /* Are we the owner? If so, ACL's don't matter */
342 i_uid = i_uid_into_mnt(mnt_userns, inode);
343 if (likely(uid_eq(current_fsuid(), i_uid))) {
344 mask &= 7;
345 mode >>= 6;
346 return (mask & ~mode) ? -EACCES : 0;
347 }
348
349 /* Do we have ACL's? */
350 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
351 int error = check_acl(mnt_userns, inode, mask);
352 if (error != -EAGAIN)
353 return error;
354 }
355
356 /* Only RWX matters for group/other mode bits */
357 mask &= 7;
358
359 /*
360 * Are the group permissions different from
361 * the other permissions in the bits we care
362 * about? Need to check group ownership if so.
363 */
364 if (mask & (mode ^ (mode >> 3))) {
365 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
366 if (in_group_p(kgid))
367 mode >>= 3;
368 }
369
370 /* Bits in 'mode' clear that we require? */
371 return (mask & ~mode) ? -EACCES : 0;
372 }
373
374 /**
375 * generic_permission - check for access rights on a Posix-like filesystem
376 * @mnt_userns: user namespace of the mount the inode was found from
377 * @inode: inode to check access rights for
378 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
379 * %MAY_NOT_BLOCK ...)
380 *
381 * Used to check for read/write/execute permissions on a file.
382 * We use "fsuid" for this, letting us set arbitrary permissions
383 * for filesystem access without changing the "normal" uids which
384 * are used for other things.
385 *
386 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
387 * request cannot be satisfied (eg. requires blocking or too much complexity).
388 * It would then be called again in ref-walk mode.
389 *
390 * If the inode has been found through an idmapped mount the user namespace of
391 * the vfsmount must be passed through @mnt_userns. This function will then take
392 * care to map the inode according to @mnt_userns before checking permissions.
393 * On non-idmapped mounts or if permission checking is to be performed on the
394 * raw inode simply passs init_user_ns.
395 */
396 int generic_permission(struct user_namespace *mnt_userns, struct inode *inode,
397 int mask)
398 {
399 int ret;
400
401 /*
402 * Do the basic permission checks.
403 */
404 ret = acl_permission_check(mnt_userns, inode, mask);
405 if (ret != -EACCES)
406 return ret;
407
408 if (S_ISDIR(inode->i_mode)) {
409 /* DACs are overridable for directories */
410 if (!(mask & MAY_WRITE))
411 if (capable_wrt_inode_uidgid(mnt_userns, inode,
412 CAP_DAC_READ_SEARCH))
413 return 0;
414 if (capable_wrt_inode_uidgid(mnt_userns, inode,
415 CAP_DAC_OVERRIDE))
416 return 0;
417 return -EACCES;
418 }
419
420 /*
421 * Searching includes executable on directories, else just read.
422 */
423 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
424 if (mask == MAY_READ)
425 if (capable_wrt_inode_uidgid(mnt_userns, inode,
426 CAP_DAC_READ_SEARCH))
427 return 0;
428 /*
429 * Read/write DACs are always overridable.
430 * Executable DACs are overridable when there is
431 * at least one exec bit set.
432 */
433 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
434 if (capable_wrt_inode_uidgid(mnt_userns, inode,
435 CAP_DAC_OVERRIDE))
436 return 0;
437
438 return -EACCES;
439 }
440 EXPORT_SYMBOL(generic_permission);
441
442 /**
443 * do_inode_permission - UNIX permission checking
444 * @mnt_userns: user namespace of the mount the inode was found from
445 * @inode: inode to check permissions on
446 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
447 *
448 * We _really_ want to just do "generic_permission()" without
449 * even looking at the inode->i_op values. So we keep a cache
450 * flag in inode->i_opflags, that says "this has not special
451 * permission function, use the fast case".
452 */
453 static inline int do_inode_permission(struct user_namespace *mnt_userns,
454 struct inode *inode, int mask)
455 {
456 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
457 if (likely(inode->i_op->permission))
458 return inode->i_op->permission(mnt_userns, inode, mask);
459
460 /* This gets set once for the inode lifetime */
461 spin_lock(&inode->i_lock);
462 inode->i_opflags |= IOP_FASTPERM;
463 spin_unlock(&inode->i_lock);
464 }
465 return generic_permission(mnt_userns, inode, mask);
466 }
467
468 /**
469 * sb_permission - Check superblock-level permissions
470 * @sb: Superblock of inode to check permission on
471 * @inode: Inode to check permission on
472 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
473 *
474 * Separate out file-system wide checks from inode-specific permission checks.
475 */
476 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
477 {
478 if (unlikely(mask & MAY_WRITE)) {
479 umode_t mode = inode->i_mode;
480
481 /* Nobody gets write access to a read-only fs. */
482 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
483 return -EROFS;
484 }
485 return 0;
486 }
487
488 /**
489 * inode_permission - Check for access rights to a given inode
490 * @mnt_userns: User namespace of the mount the inode was found from
491 * @inode: Inode to check permission on
492 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
493 *
494 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
495 * this, letting us set arbitrary permissions for filesystem access without
496 * changing the "normal" UIDs which are used for other things.
497 *
498 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
499 */
500 int inode_permission(struct user_namespace *mnt_userns,
501 struct inode *inode, int mask)
502 {
503 int retval;
504
505 retval = sb_permission(inode->i_sb, inode, mask);
506 if (retval)
507 return retval;
508
509 if (unlikely(mask & MAY_WRITE)) {
510 /*
511 * Nobody gets write access to an immutable file.
512 */
513 if (IS_IMMUTABLE(inode))
514 return -EPERM;
515
516 /*
517 * Updating mtime will likely cause i_uid and i_gid to be
518 * written back improperly if their true value is unknown
519 * to the vfs.
520 */
521 if (HAS_UNMAPPED_ID(mnt_userns, inode))
522 return -EACCES;
523 }
524
525 retval = do_inode_permission(mnt_userns, inode, mask);
526 if (retval)
527 return retval;
528
529 retval = devcgroup_inode_permission(inode, mask);
530 if (retval)
531 return retval;
532
533 return security_inode_permission(inode, mask);
534 }
535 EXPORT_SYMBOL(inode_permission);
536
537 /**
538 * path_get - get a reference to a path
539 * @path: path to get the reference to
540 *
541 * Given a path increment the reference count to the dentry and the vfsmount.
542 */
543 void path_get(const struct path *path)
544 {
545 mntget(path->mnt);
546 dget(path->dentry);
547 }
548 EXPORT_SYMBOL(path_get);
549
550 /**
551 * path_put - put a reference to a path
552 * @path: path to put the reference to
553 *
554 * Given a path decrement the reference count to the dentry and the vfsmount.
555 */
556 void path_put(const struct path *path)
557 {
558 dput(path->dentry);
559 mntput(path->mnt);
560 }
561 EXPORT_SYMBOL(path_put);
562
563 #define EMBEDDED_LEVELS 2
564 struct nameidata {
565 struct path path;
566 struct qstr last;
567 struct path root;
568 struct inode *inode; /* path.dentry.d_inode */
569 unsigned int flags, state;
570 unsigned seq, next_seq, m_seq, r_seq;
571 int last_type;
572 unsigned depth;
573 int total_link_count;
574 struct saved {
575 struct path link;
576 struct delayed_call done;
577 const char *name;
578 unsigned seq;
579 } *stack, internal[EMBEDDED_LEVELS];
580 struct filename *name;
581 struct nameidata *saved;
582 unsigned root_seq;
583 int dfd;
584 kuid_t dir_uid;
585 umode_t dir_mode;
586 } __randomize_layout;
587
588 #define ND_ROOT_PRESET 1
589 #define ND_ROOT_GRABBED 2
590 #define ND_JUMPED 4
591
592 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
593 {
594 struct nameidata *old = current->nameidata;
595 p->stack = p->internal;
596 p->depth = 0;
597 p->dfd = dfd;
598 p->name = name;
599 p->path.mnt = NULL;
600 p->path.dentry = NULL;
601 p->total_link_count = old ? old->total_link_count : 0;
602 p->saved = old;
603 current->nameidata = p;
604 }
605
606 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
607 const struct path *root)
608 {
609 __set_nameidata(p, dfd, name);
610 p->state = 0;
611 if (unlikely(root)) {
612 p->state = ND_ROOT_PRESET;
613 p->root = *root;
614 }
615 }
616
617 static void restore_nameidata(void)
618 {
619 struct nameidata *now = current->nameidata, *old = now->saved;
620
621 current->nameidata = old;
622 if (old)
623 old->total_link_count = now->total_link_count;
624 if (now->stack != now->internal)
625 kfree(now->stack);
626 }
627
628 static bool nd_alloc_stack(struct nameidata *nd)
629 {
630 struct saved *p;
631
632 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
633 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
634 if (unlikely(!p))
635 return false;
636 memcpy(p, nd->internal, sizeof(nd->internal));
637 nd->stack = p;
638 return true;
639 }
640
641 /**
642 * path_connected - Verify that a dentry is below mnt.mnt_root
643 *
644 * Rename can sometimes move a file or directory outside of a bind
645 * mount, path_connected allows those cases to be detected.
646 */
647 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
648 {
649 struct super_block *sb = mnt->mnt_sb;
650
651 /* Bind mounts can have disconnected paths */
652 if (mnt->mnt_root == sb->s_root)
653 return true;
654
655 return is_subdir(dentry, mnt->mnt_root);
656 }
657
658 static void drop_links(struct nameidata *nd)
659 {
660 int i = nd->depth;
661 while (i--) {
662 struct saved *last = nd->stack + i;
663 do_delayed_call(&last->done);
664 clear_delayed_call(&last->done);
665 }
666 }
667
668 static void leave_rcu(struct nameidata *nd)
669 {
670 nd->flags &= ~LOOKUP_RCU;
671 nd->seq = nd->next_seq = 0;
672 rcu_read_unlock();
673 }
674
675 static void terminate_walk(struct nameidata *nd)
676 {
677 drop_links(nd);
678 if (!(nd->flags & LOOKUP_RCU)) {
679 int i;
680 path_put(&nd->path);
681 for (i = 0; i < nd->depth; i++)
682 path_put(&nd->stack[i].link);
683 if (nd->state & ND_ROOT_GRABBED) {
684 path_put(&nd->root);
685 nd->state &= ~ND_ROOT_GRABBED;
686 }
687 } else {
688 leave_rcu(nd);
689 }
690 nd->depth = 0;
691 nd->path.mnt = NULL;
692 nd->path.dentry = NULL;
693 }
694
695 /* path_put is needed afterwards regardless of success or failure */
696 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
697 {
698 int res = __legitimize_mnt(path->mnt, mseq);
699 if (unlikely(res)) {
700 if (res > 0)
701 path->mnt = NULL;
702 path->dentry = NULL;
703 return false;
704 }
705 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
706 path->dentry = NULL;
707 return false;
708 }
709 return !read_seqcount_retry(&path->dentry->d_seq, seq);
710 }
711
712 static inline bool legitimize_path(struct nameidata *nd,
713 struct path *path, unsigned seq)
714 {
715 return __legitimize_path(path, seq, nd->m_seq);
716 }
717
718 static bool legitimize_links(struct nameidata *nd)
719 {
720 int i;
721 if (unlikely(nd->flags & LOOKUP_CACHED)) {
722 drop_links(nd);
723 nd->depth = 0;
724 return false;
725 }
726 for (i = 0; i < nd->depth; i++) {
727 struct saved *last = nd->stack + i;
728 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
729 drop_links(nd);
730 nd->depth = i + 1;
731 return false;
732 }
733 }
734 return true;
735 }
736
737 static bool legitimize_root(struct nameidata *nd)
738 {
739 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
740 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
741 return true;
742 nd->state |= ND_ROOT_GRABBED;
743 return legitimize_path(nd, &nd->root, nd->root_seq);
744 }
745
746 /*
747 * Path walking has 2 modes, rcu-walk and ref-walk (see
748 * Documentation/filesystems/path-lookup.txt). In situations when we can't
749 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
750 * normal reference counts on dentries and vfsmounts to transition to ref-walk
751 * mode. Refcounts are grabbed at the last known good point before rcu-walk
752 * got stuck, so ref-walk may continue from there. If this is not successful
753 * (eg. a seqcount has changed), then failure is returned and it's up to caller
754 * to restart the path walk from the beginning in ref-walk mode.
755 */
756
757 /**
758 * try_to_unlazy - try to switch to ref-walk mode.
759 * @nd: nameidata pathwalk data
760 * Returns: true on success, false on failure
761 *
762 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
763 * for ref-walk mode.
764 * Must be called from rcu-walk context.
765 * Nothing should touch nameidata between try_to_unlazy() failure and
766 * terminate_walk().
767 */
768 static bool try_to_unlazy(struct nameidata *nd)
769 {
770 struct dentry *parent = nd->path.dentry;
771
772 BUG_ON(!(nd->flags & LOOKUP_RCU));
773
774 if (unlikely(!legitimize_links(nd)))
775 goto out1;
776 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
777 goto out;
778 if (unlikely(!legitimize_root(nd)))
779 goto out;
780 leave_rcu(nd);
781 BUG_ON(nd->inode != parent->d_inode);
782 return true;
783
784 out1:
785 nd->path.mnt = NULL;
786 nd->path.dentry = NULL;
787 out:
788 leave_rcu(nd);
789 return false;
790 }
791
792 /**
793 * try_to_unlazy_next - try to switch to ref-walk mode.
794 * @nd: nameidata pathwalk data
795 * @dentry: next dentry to step into
796 * Returns: true on success, false on failure
797 *
798 * Similar to try_to_unlazy(), but here we have the next dentry already
799 * picked by rcu-walk and want to legitimize that in addition to the current
800 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context.
801 * Nothing should touch nameidata between try_to_unlazy_next() failure and
802 * terminate_walk().
803 */
804 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
805 {
806 int res;
807 BUG_ON(!(nd->flags & LOOKUP_RCU));
808
809 if (unlikely(!legitimize_links(nd)))
810 goto out2;
811 res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
812 if (unlikely(res)) {
813 if (res > 0)
814 goto out2;
815 goto out1;
816 }
817 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
818 goto out1;
819
820 /*
821 * We need to move both the parent and the dentry from the RCU domain
822 * to be properly refcounted. And the sequence number in the dentry
823 * validates *both* dentry counters, since we checked the sequence
824 * number of the parent after we got the child sequence number. So we
825 * know the parent must still be valid if the child sequence number is
826 */
827 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
828 goto out;
829 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
830 goto out_dput;
831 /*
832 * Sequence counts matched. Now make sure that the root is
833 * still valid and get it if required.
834 */
835 if (unlikely(!legitimize_root(nd)))
836 goto out_dput;
837 leave_rcu(nd);
838 return true;
839
840 out2:
841 nd->path.mnt = NULL;
842 out1:
843 nd->path.dentry = NULL;
844 out:
845 leave_rcu(nd);
846 return false;
847 out_dput:
848 leave_rcu(nd);
849 dput(dentry);
850 return false;
851 }
852
853 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
854 {
855 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
856 return dentry->d_op->d_revalidate(dentry, flags);
857 else
858 return 1;
859 }
860
861 /**
862 * complete_walk - successful completion of path walk
863 * @nd: pointer nameidata
864 *
865 * If we had been in RCU mode, drop out of it and legitimize nd->path.
866 * Revalidate the final result, unless we'd already done that during
867 * the path walk or the filesystem doesn't ask for it. Return 0 on
868 * success, -error on failure. In case of failure caller does not
869 * need to drop nd->path.
870 */
871 static int complete_walk(struct nameidata *nd)
872 {
873 struct dentry *dentry = nd->path.dentry;
874 int status;
875
876 if (nd->flags & LOOKUP_RCU) {
877 /*
878 * We don't want to zero nd->root for scoped-lookups or
879 * externally-managed nd->root.
880 */
881 if (!(nd->state & ND_ROOT_PRESET))
882 if (!(nd->flags & LOOKUP_IS_SCOPED))
883 nd->root.mnt = NULL;
884 nd->flags &= ~LOOKUP_CACHED;
885 if (!try_to_unlazy(nd))
886 return -ECHILD;
887 }
888
889 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
890 /*
891 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
892 * ever step outside the root during lookup" and should already
893 * be guaranteed by the rest of namei, we want to avoid a namei
894 * BUG resulting in userspace being given a path that was not
895 * scoped within the root at some point during the lookup.
896 *
897 * So, do a final sanity-check to make sure that in the
898 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
899 * we won't silently return an fd completely outside of the
900 * requested root to userspace.
901 *
902 * Userspace could move the path outside the root after this
903 * check, but as discussed elsewhere this is not a concern (the
904 * resolved file was inside the root at some point).
905 */
906 if (!path_is_under(&nd->path, &nd->root))
907 return -EXDEV;
908 }
909
910 if (likely(!(nd->state & ND_JUMPED)))
911 return 0;
912
913 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
914 return 0;
915
916 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
917 if (status > 0)
918 return 0;
919
920 if (!status)
921 status = -ESTALE;
922
923 return status;
924 }
925
926 static int set_root(struct nameidata *nd)
927 {
928 struct fs_struct *fs = current->fs;
929
930 /*
931 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
932 * still have to ensure it doesn't happen because it will cause a breakout
933 * from the dirfd.
934 */
935 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
936 return -ENOTRECOVERABLE;
937
938 if (nd->flags & LOOKUP_RCU) {
939 unsigned seq;
940
941 do {
942 seq = read_seqcount_begin(&fs->seq);
943 nd->root = fs->root;
944 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
945 } while (read_seqcount_retry(&fs->seq, seq));
946 } else {
947 get_fs_root(fs, &nd->root);
948 nd->state |= ND_ROOT_GRABBED;
949 }
950 return 0;
951 }
952
953 static int nd_jump_root(struct nameidata *nd)
954 {
955 if (unlikely(nd->flags & LOOKUP_BENEATH))
956 return -EXDEV;
957 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
958 /* Absolute path arguments to path_init() are allowed. */
959 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
960 return -EXDEV;
961 }
962 if (!nd->root.mnt) {
963 int error = set_root(nd);
964 if (error)
965 return error;
966 }
967 if (nd->flags & LOOKUP_RCU) {
968 struct dentry *d;
969 nd->path = nd->root;
970 d = nd->path.dentry;
971 nd->inode = d->d_inode;
972 nd->seq = nd->root_seq;
973 if (read_seqcount_retry(&d->d_seq, nd->seq))
974 return -ECHILD;
975 } else {
976 path_put(&nd->path);
977 nd->path = nd->root;
978 path_get(&nd->path);
979 nd->inode = nd->path.dentry->d_inode;
980 }
981 nd->state |= ND_JUMPED;
982 return 0;
983 }
984
985 /*
986 * Helper to directly jump to a known parsed path from ->get_link,
987 * caller must have taken a reference to path beforehand.
988 */
989 int nd_jump_link(struct path *path)
990 {
991 int error = -ELOOP;
992 struct nameidata *nd = current->nameidata;
993
994 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
995 goto err;
996
997 error = -EXDEV;
998 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
999 if (nd->path.mnt != path->mnt)
1000 goto err;
1001 }
1002 /* Not currently safe for scoped-lookups. */
1003 if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1004 goto err;
1005
1006 path_put(&nd->path);
1007 nd->path = *path;
1008 nd->inode = nd->path.dentry->d_inode;
1009 nd->state |= ND_JUMPED;
1010 return 0;
1011
1012 err:
1013 path_put(path);
1014 return error;
1015 }
1016
1017 static inline void put_link(struct nameidata *nd)
1018 {
1019 struct saved *last = nd->stack + --nd->depth;
1020 do_delayed_call(&last->done);
1021 if (!(nd->flags & LOOKUP_RCU))
1022 path_put(&last->link);
1023 }
1024
1025 static int sysctl_protected_symlinks __read_mostly;
1026 static int sysctl_protected_hardlinks __read_mostly;
1027 static int sysctl_protected_fifos __read_mostly;
1028 static int sysctl_protected_regular __read_mostly;
1029
1030 #ifdef CONFIG_SYSCTL
1031 static struct ctl_table namei_sysctls[] = {
1032 {
1033 .procname = "protected_symlinks",
1034 .data = &sysctl_protected_symlinks,
1035 .maxlen = sizeof(int),
1036 .mode = 0644,
1037 .proc_handler = proc_dointvec_minmax,
1038 .extra1 = SYSCTL_ZERO,
1039 .extra2 = SYSCTL_ONE,
1040 },
1041 {
1042 .procname = "protected_hardlinks",
1043 .data = &sysctl_protected_hardlinks,
1044 .maxlen = sizeof(int),
1045 .mode = 0644,
1046 .proc_handler = proc_dointvec_minmax,
1047 .extra1 = SYSCTL_ZERO,
1048 .extra2 = SYSCTL_ONE,
1049 },
1050 {
1051 .procname = "protected_fifos",
1052 .data = &sysctl_protected_fifos,
1053 .maxlen = sizeof(int),
1054 .mode = 0644,
1055 .proc_handler = proc_dointvec_minmax,
1056 .extra1 = SYSCTL_ZERO,
1057 .extra2 = SYSCTL_TWO,
1058 },
1059 {
1060 .procname = "protected_regular",
1061 .data = &sysctl_protected_regular,
1062 .maxlen = sizeof(int),
1063 .mode = 0644,
1064 .proc_handler = proc_dointvec_minmax,
1065 .extra1 = SYSCTL_ZERO,
1066 .extra2 = SYSCTL_TWO,
1067 },
1068 { }
1069 };
1070
1071 static int __init init_fs_namei_sysctls(void)
1072 {
1073 register_sysctl_init("fs", namei_sysctls);
1074 return 0;
1075 }
1076 fs_initcall(init_fs_namei_sysctls);
1077
1078 #endif /* CONFIG_SYSCTL */
1079
1080 /**
1081 * may_follow_link - Check symlink following for unsafe situations
1082 * @nd: nameidata pathwalk data
1083 *
1084 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1085 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1086 * in a sticky world-writable directory. This is to protect privileged
1087 * processes from failing races against path names that may change out
1088 * from under them by way of other users creating malicious symlinks.
1089 * It will permit symlinks to be followed only when outside a sticky
1090 * world-writable directory, or when the uid of the symlink and follower
1091 * match, or when the directory owner matches the symlink's owner.
1092 *
1093 * Returns 0 if following the symlink is allowed, -ve on error.
1094 */
1095 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1096 {
1097 struct user_namespace *mnt_userns;
1098 kuid_t i_uid;
1099
1100 if (!sysctl_protected_symlinks)
1101 return 0;
1102
1103 mnt_userns = mnt_user_ns(nd->path.mnt);
1104 i_uid = i_uid_into_mnt(mnt_userns, inode);
1105 /* Allowed if owner and follower match. */
1106 if (uid_eq(current_cred()->fsuid, i_uid))
1107 return 0;
1108
1109 /* Allowed if parent directory not sticky and world-writable. */
1110 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1111 return 0;
1112
1113 /* Allowed if parent directory and link owner match. */
1114 if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, i_uid))
1115 return 0;
1116
1117 if (nd->flags & LOOKUP_RCU)
1118 return -ECHILD;
1119
1120 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1121 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1122 return -EACCES;
1123 }
1124
1125 /**
1126 * safe_hardlink_source - Check for safe hardlink conditions
1127 * @mnt_userns: user namespace of the mount the inode was found from
1128 * @inode: the source inode to hardlink from
1129 *
1130 * Return false if at least one of the following conditions:
1131 * - inode is not a regular file
1132 * - inode is setuid
1133 * - inode is setgid and group-exec
1134 * - access failure for read and write
1135 *
1136 * Otherwise returns true.
1137 */
1138 static bool safe_hardlink_source(struct user_namespace *mnt_userns,
1139 struct inode *inode)
1140 {
1141 umode_t mode = inode->i_mode;
1142
1143 /* Special files should not get pinned to the filesystem. */
1144 if (!S_ISREG(mode))
1145 return false;
1146
1147 /* Setuid files should not get pinned to the filesystem. */
1148 if (mode & S_ISUID)
1149 return false;
1150
1151 /* Executable setgid files should not get pinned to the filesystem. */
1152 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1153 return false;
1154
1155 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1156 if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE))
1157 return false;
1158
1159 return true;
1160 }
1161
1162 /**
1163 * may_linkat - Check permissions for creating a hardlink
1164 * @mnt_userns: user namespace of the mount the inode was found from
1165 * @link: the source to hardlink from
1166 *
1167 * Block hardlink when all of:
1168 * - sysctl_protected_hardlinks enabled
1169 * - fsuid does not match inode
1170 * - hardlink source is unsafe (see safe_hardlink_source() above)
1171 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1172 *
1173 * If the inode has been found through an idmapped mount the user namespace of
1174 * the vfsmount must be passed through @mnt_userns. This function will then take
1175 * care to map the inode according to @mnt_userns before checking permissions.
1176 * On non-idmapped mounts or if permission checking is to be performed on the
1177 * raw inode simply passs init_user_ns.
1178 *
1179 * Returns 0 if successful, -ve on error.
1180 */
1181 int may_linkat(struct user_namespace *mnt_userns, struct path *link)
1182 {
1183 struct inode *inode = link->dentry->d_inode;
1184
1185 /* Inode writeback is not safe when the uid or gid are invalid. */
1186 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
1187 !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
1188 return -EOVERFLOW;
1189
1190 if (!sysctl_protected_hardlinks)
1191 return 0;
1192
1193 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1194 * otherwise, it must be a safe source.
1195 */
1196 if (safe_hardlink_source(mnt_userns, inode) ||
1197 inode_owner_or_capable(mnt_userns, inode))
1198 return 0;
1199
1200 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1201 return -EPERM;
1202 }
1203
1204 /**
1205 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1206 * should be allowed, or not, on files that already
1207 * exist.
1208 * @mnt_userns: user namespace of the mount the inode was found from
1209 * @nd: nameidata pathwalk data
1210 * @inode: the inode of the file to open
1211 *
1212 * Block an O_CREAT open of a FIFO (or a regular file) when:
1213 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1214 * - the file already exists
1215 * - we are in a sticky directory
1216 * - we don't own the file
1217 * - the owner of the directory doesn't own the file
1218 * - the directory is world writable
1219 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1220 * the directory doesn't have to be world writable: being group writable will
1221 * be enough.
1222 *
1223 * If the inode has been found through an idmapped mount the user namespace of
1224 * the vfsmount must be passed through @mnt_userns. This function will then take
1225 * care to map the inode according to @mnt_userns before checking permissions.
1226 * On non-idmapped mounts or if permission checking is to be performed on the
1227 * raw inode simply passs init_user_ns.
1228 *
1229 * Returns 0 if the open is allowed, -ve on error.
1230 */
1231 static int may_create_in_sticky(struct user_namespace *mnt_userns,
1232 struct nameidata *nd, struct inode *const inode)
1233 {
1234 umode_t dir_mode = nd->dir_mode;
1235 kuid_t dir_uid = nd->dir_uid;
1236
1237 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1238 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1239 likely(!(dir_mode & S_ISVTX)) ||
1240 uid_eq(i_uid_into_mnt(mnt_userns, inode), dir_uid) ||
1241 uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode)))
1242 return 0;
1243
1244 if (likely(dir_mode & 0002) ||
1245 (dir_mode & 0020 &&
1246 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1247 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1248 const char *operation = S_ISFIFO(inode->i_mode) ?
1249 "sticky_create_fifo" :
1250 "sticky_create_regular";
1251 audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1252 return -EACCES;
1253 }
1254 return 0;
1255 }
1256
1257 /*
1258 * follow_up - Find the mountpoint of path's vfsmount
1259 *
1260 * Given a path, find the mountpoint of its source file system.
1261 * Replace @path with the path of the mountpoint in the parent mount.
1262 * Up is towards /.
1263 *
1264 * Return 1 if we went up a level and 0 if we were already at the
1265 * root.
1266 */
1267 int follow_up(struct path *path)
1268 {
1269 struct mount *mnt = real_mount(path->mnt);
1270 struct mount *parent;
1271 struct dentry *mountpoint;
1272
1273 read_seqlock_excl(&mount_lock);
1274 parent = mnt->mnt_parent;
1275 if (parent == mnt) {
1276 read_sequnlock_excl(&mount_lock);
1277 return 0;
1278 }
1279 mntget(&parent->mnt);
1280 mountpoint = dget(mnt->mnt_mountpoint);
1281 read_sequnlock_excl(&mount_lock);
1282 dput(path->dentry);
1283 path->dentry = mountpoint;
1284 mntput(path->mnt);
1285 path->mnt = &parent->mnt;
1286 return 1;
1287 }
1288 EXPORT_SYMBOL(follow_up);
1289
1290 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1291 struct path *path, unsigned *seqp)
1292 {
1293 while (mnt_has_parent(m)) {
1294 struct dentry *mountpoint = m->mnt_mountpoint;
1295
1296 m = m->mnt_parent;
1297 if (unlikely(root->dentry == mountpoint &&
1298 root->mnt == &m->mnt))
1299 break;
1300 if (mountpoint != m->mnt.mnt_root) {
1301 path->mnt = &m->mnt;
1302 path->dentry = mountpoint;
1303 *seqp = read_seqcount_begin(&mountpoint->d_seq);
1304 return true;
1305 }
1306 }
1307 return false;
1308 }
1309
1310 static bool choose_mountpoint(struct mount *m, const struct path *root,
1311 struct path *path)
1312 {
1313 bool found;
1314
1315 rcu_read_lock();
1316 while (1) {
1317 unsigned seq, mseq = read_seqbegin(&mount_lock);
1318
1319 found = choose_mountpoint_rcu(m, root, path, &seq);
1320 if (unlikely(!found)) {
1321 if (!read_seqretry(&mount_lock, mseq))
1322 break;
1323 } else {
1324 if (likely(__legitimize_path(path, seq, mseq)))
1325 break;
1326 rcu_read_unlock();
1327 path_put(path);
1328 rcu_read_lock();
1329 }
1330 }
1331 rcu_read_unlock();
1332 return found;
1333 }
1334
1335 /*
1336 * Perform an automount
1337 * - return -EISDIR to tell follow_managed() to stop and return the path we
1338 * were called with.
1339 */
1340 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1341 {
1342 struct dentry *dentry = path->dentry;
1343
1344 /* We don't want to mount if someone's just doing a stat -
1345 * unless they're stat'ing a directory and appended a '/' to
1346 * the name.
1347 *
1348 * We do, however, want to mount if someone wants to open or
1349 * create a file of any type under the mountpoint, wants to
1350 * traverse through the mountpoint or wants to open the
1351 * mounted directory. Also, autofs may mark negative dentries
1352 * as being automount points. These will need the attentions
1353 * of the daemon to instantiate them before they can be used.
1354 */
1355 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1356 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1357 dentry->d_inode)
1358 return -EISDIR;
1359
1360 if (count && (*count)++ >= MAXSYMLINKS)
1361 return -ELOOP;
1362
1363 return finish_automount(dentry->d_op->d_automount(path), path);
1364 }
1365
1366 /*
1367 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1368 * dentries are pinned but not locked here, so negative dentry can go
1369 * positive right under us. Use of smp_load_acquire() provides a barrier
1370 * sufficient for ->d_inode and ->d_flags consistency.
1371 */
1372 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1373 int *count, unsigned lookup_flags)
1374 {
1375 struct vfsmount *mnt = path->mnt;
1376 bool need_mntput = false;
1377 int ret = 0;
1378
1379 while (flags & DCACHE_MANAGED_DENTRY) {
1380 /* Allow the filesystem to manage the transit without i_mutex
1381 * being held. */
1382 if (flags & DCACHE_MANAGE_TRANSIT) {
1383 ret = path->dentry->d_op->d_manage(path, false);
1384 flags = smp_load_acquire(&path->dentry->d_flags);
1385 if (ret < 0)
1386 break;
1387 }
1388
1389 if (flags & DCACHE_MOUNTED) { // something's mounted on it..
1390 struct vfsmount *mounted = lookup_mnt(path);
1391 if (mounted) { // ... in our namespace
1392 dput(path->dentry);
1393 if (need_mntput)
1394 mntput(path->mnt);
1395 path->mnt = mounted;
1396 path->dentry = dget(mounted->mnt_root);
1397 // here we know it's positive
1398 flags = path->dentry->d_flags;
1399 need_mntput = true;
1400 continue;
1401 }
1402 }
1403
1404 if (!(flags & DCACHE_NEED_AUTOMOUNT))
1405 break;
1406
1407 // uncovered automount point
1408 ret = follow_automount(path, count, lookup_flags);
1409 flags = smp_load_acquire(&path->dentry->d_flags);
1410 if (ret < 0)
1411 break;
1412 }
1413
1414 if (ret == -EISDIR)
1415 ret = 0;
1416 // possible if you race with several mount --move
1417 if (need_mntput && path->mnt == mnt)
1418 mntput(path->mnt);
1419 if (!ret && unlikely(d_flags_negative(flags)))
1420 ret = -ENOENT;
1421 *jumped = need_mntput;
1422 return ret;
1423 }
1424
1425 static inline int traverse_mounts(struct path *path, bool *jumped,
1426 int *count, unsigned lookup_flags)
1427 {
1428 unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1429
1430 /* fastpath */
1431 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1432 *jumped = false;
1433 if (unlikely(d_flags_negative(flags)))
1434 return -ENOENT;
1435 return 0;
1436 }
1437 return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1438 }
1439
1440 int follow_down_one(struct path *path)
1441 {
1442 struct vfsmount *mounted;
1443
1444 mounted = lookup_mnt(path);
1445 if (mounted) {
1446 dput(path->dentry);
1447 mntput(path->mnt);
1448 path->mnt = mounted;
1449 path->dentry = dget(mounted->mnt_root);
1450 return 1;
1451 }
1452 return 0;
1453 }
1454 EXPORT_SYMBOL(follow_down_one);
1455
1456 /*
1457 * Follow down to the covering mount currently visible to userspace. At each
1458 * point, the filesystem owning that dentry may be queried as to whether the
1459 * caller is permitted to proceed or not.
1460 */
1461 int follow_down(struct path *path)
1462 {
1463 struct vfsmount *mnt = path->mnt;
1464 bool jumped;
1465 int ret = traverse_mounts(path, &jumped, NULL, 0);
1466
1467 if (path->mnt != mnt)
1468 mntput(mnt);
1469 return ret;
1470 }
1471 EXPORT_SYMBOL(follow_down);
1472
1473 /*
1474 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1475 * we meet a managed dentry that would need blocking.
1476 */
1477 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1478 {
1479 struct dentry *dentry = path->dentry;
1480 unsigned int flags = dentry->d_flags;
1481
1482 if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1483 return true;
1484
1485 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1486 return false;
1487
1488 for (;;) {
1489 /*
1490 * Don't forget we might have a non-mountpoint managed dentry
1491 * that wants to block transit.
1492 */
1493 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1494 int res = dentry->d_op->d_manage(path, true);
1495 if (res)
1496 return res == -EISDIR;
1497 flags = dentry->d_flags;
1498 }
1499
1500 if (flags & DCACHE_MOUNTED) {
1501 struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1502 if (mounted) {
1503 path->mnt = &mounted->mnt;
1504 dentry = path->dentry = mounted->mnt.mnt_root;
1505 nd->state |= ND_JUMPED;
1506 nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1507 flags = dentry->d_flags;
1508 // makes sure that non-RCU pathwalk could reach
1509 // this state.
1510 if (read_seqretry(&mount_lock, nd->m_seq))
1511 return false;
1512 continue;
1513 }
1514 if (read_seqretry(&mount_lock, nd->m_seq))
1515 return false;
1516 }
1517 return !(flags & DCACHE_NEED_AUTOMOUNT);
1518 }
1519 }
1520
1521 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1522 struct path *path)
1523 {
1524 bool jumped;
1525 int ret;
1526
1527 path->mnt = nd->path.mnt;
1528 path->dentry = dentry;
1529 if (nd->flags & LOOKUP_RCU) {
1530 unsigned int seq = nd->next_seq;
1531 if (likely(__follow_mount_rcu(nd, path)))
1532 return 0;
1533 // *path and nd->next_seq might've been clobbered
1534 path->mnt = nd->path.mnt;
1535 path->dentry = dentry;
1536 nd->next_seq = seq;
1537 if (!try_to_unlazy_next(nd, dentry))
1538 return -ECHILD;
1539 }
1540 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1541 if (jumped) {
1542 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1543 ret = -EXDEV;
1544 else
1545 nd->state |= ND_JUMPED;
1546 }
1547 if (unlikely(ret)) {
1548 dput(path->dentry);
1549 if (path->mnt != nd->path.mnt)
1550 mntput(path->mnt);
1551 }
1552 return ret;
1553 }
1554
1555 /*
1556 * This looks up the name in dcache and possibly revalidates the found dentry.
1557 * NULL is returned if the dentry does not exist in the cache.
1558 */
1559 static struct dentry *lookup_dcache(const struct qstr *name,
1560 struct dentry *dir,
1561 unsigned int flags)
1562 {
1563 struct dentry *dentry = d_lookup(dir, name);
1564 if (dentry) {
1565 int error = d_revalidate(dentry, flags);
1566 if (unlikely(error <= 0)) {
1567 if (!error)
1568 d_invalidate(dentry);
1569 dput(dentry);
1570 return ERR_PTR(error);
1571 }
1572 }
1573 return dentry;
1574 }
1575
1576 /*
1577 * Parent directory has inode locked exclusive. This is one
1578 * and only case when ->lookup() gets called on non in-lookup
1579 * dentries - as the matter of fact, this only gets called
1580 * when directory is guaranteed to have no in-lookup children
1581 * at all.
1582 */
1583 static struct dentry *__lookup_hash(const struct qstr *name,
1584 struct dentry *base, unsigned int flags)
1585 {
1586 struct dentry *dentry = lookup_dcache(name, base, flags);
1587 struct dentry *old;
1588 struct inode *dir = base->d_inode;
1589
1590 if (dentry)
1591 return dentry;
1592
1593 /* Don't create child dentry for a dead directory. */
1594 if (unlikely(IS_DEADDIR(dir)))
1595 return ERR_PTR(-ENOENT);
1596
1597 dentry = d_alloc(base, name);
1598 if (unlikely(!dentry))
1599 return ERR_PTR(-ENOMEM);
1600
1601 old = dir->i_op->lookup(dir, dentry, flags);
1602 if (unlikely(old)) {
1603 dput(dentry);
1604 dentry = old;
1605 }
1606 return dentry;
1607 }
1608
1609 static struct dentry *lookup_fast(struct nameidata *nd)
1610 {
1611 struct dentry *dentry, *parent = nd->path.dentry;
1612 int status = 1;
1613
1614 /*
1615 * Rename seqlock is not required here because in the off chance
1616 * of a false negative due to a concurrent rename, the caller is
1617 * going to fall back to non-racy lookup.
1618 */
1619 if (nd->flags & LOOKUP_RCU) {
1620 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1621 if (unlikely(!dentry)) {
1622 if (!try_to_unlazy(nd))
1623 return ERR_PTR(-ECHILD);
1624 return NULL;
1625 }
1626
1627 /*
1628 * This sequence count validates that the parent had no
1629 * changes while we did the lookup of the dentry above.
1630 */
1631 if (read_seqcount_retry(&parent->d_seq, nd->seq))
1632 return ERR_PTR(-ECHILD);
1633
1634 status = d_revalidate(dentry, nd->flags);
1635 if (likely(status > 0))
1636 return dentry;
1637 if (!try_to_unlazy_next(nd, dentry))
1638 return ERR_PTR(-ECHILD);
1639 if (status == -ECHILD)
1640 /* we'd been told to redo it in non-rcu mode */
1641 status = d_revalidate(dentry, nd->flags);
1642 } else {
1643 dentry = __d_lookup(parent, &nd->last);
1644 if (unlikely(!dentry))
1645 return NULL;
1646 status = d_revalidate(dentry, nd->flags);
1647 }
1648 if (unlikely(status <= 0)) {
1649 if (!status)
1650 d_invalidate(dentry);
1651 dput(dentry);
1652 return ERR_PTR(status);
1653 }
1654 return dentry;
1655 }
1656
1657 /* Fast lookup failed, do it the slow way */
1658 static struct dentry *__lookup_slow(const struct qstr *name,
1659 struct dentry *dir,
1660 unsigned int flags)
1661 {
1662 struct dentry *dentry, *old;
1663 struct inode *inode = dir->d_inode;
1664 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1665
1666 /* Don't go there if it's already dead */
1667 if (unlikely(IS_DEADDIR(inode)))
1668 return ERR_PTR(-ENOENT);
1669 again:
1670 dentry = d_alloc_parallel(dir, name, &wq);
1671 if (IS_ERR(dentry))
1672 return dentry;
1673 if (unlikely(!d_in_lookup(dentry))) {
1674 int error = d_revalidate(dentry, flags);
1675 if (unlikely(error <= 0)) {
1676 if (!error) {
1677 d_invalidate(dentry);
1678 dput(dentry);
1679 goto again;
1680 }
1681 dput(dentry);
1682 dentry = ERR_PTR(error);
1683 }
1684 } else {
1685 old = inode->i_op->lookup(inode, dentry, flags);
1686 d_lookup_done(dentry);
1687 if (unlikely(old)) {
1688 dput(dentry);
1689 dentry = old;
1690 }
1691 }
1692 return dentry;
1693 }
1694
1695 static struct dentry *lookup_slow(const struct qstr *name,
1696 struct dentry *dir,
1697 unsigned int flags)
1698 {
1699 struct inode *inode = dir->d_inode;
1700 struct dentry *res;
1701 inode_lock_shared(inode);
1702 res = __lookup_slow(name, dir, flags);
1703 inode_unlock_shared(inode);
1704 return res;
1705 }
1706
1707 static inline int may_lookup(struct user_namespace *mnt_userns,
1708 struct nameidata *nd)
1709 {
1710 if (nd->flags & LOOKUP_RCU) {
1711 int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1712 if (err != -ECHILD || !try_to_unlazy(nd))
1713 return err;
1714 }
1715 return inode_permission(mnt_userns, nd->inode, MAY_EXEC);
1716 }
1717
1718 static int reserve_stack(struct nameidata *nd, struct path *link)
1719 {
1720 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1721 return -ELOOP;
1722
1723 if (likely(nd->depth != EMBEDDED_LEVELS))
1724 return 0;
1725 if (likely(nd->stack != nd->internal))
1726 return 0;
1727 if (likely(nd_alloc_stack(nd)))
1728 return 0;
1729
1730 if (nd->flags & LOOKUP_RCU) {
1731 // we need to grab link before we do unlazy. And we can't skip
1732 // unlazy even if we fail to grab the link - cleanup needs it
1733 bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1734
1735 if (!try_to_unlazy(nd) || !grabbed_link)
1736 return -ECHILD;
1737
1738 if (nd_alloc_stack(nd))
1739 return 0;
1740 }
1741 return -ENOMEM;
1742 }
1743
1744 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1745
1746 static const char *pick_link(struct nameidata *nd, struct path *link,
1747 struct inode *inode, int flags)
1748 {
1749 struct saved *last;
1750 const char *res;
1751 int error = reserve_stack(nd, link);
1752
1753 if (unlikely(error)) {
1754 if (!(nd->flags & LOOKUP_RCU))
1755 path_put(link);
1756 return ERR_PTR(error);
1757 }
1758 last = nd->stack + nd->depth++;
1759 last->link = *link;
1760 clear_delayed_call(&last->done);
1761 last->seq = nd->next_seq;
1762
1763 if (flags & WALK_TRAILING) {
1764 error = may_follow_link(nd, inode);
1765 if (unlikely(error))
1766 return ERR_PTR(error);
1767 }
1768
1769 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1770 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1771 return ERR_PTR(-ELOOP);
1772
1773 if (!(nd->flags & LOOKUP_RCU)) {
1774 touch_atime(&last->link);
1775 cond_resched();
1776 } else if (atime_needs_update(&last->link, inode)) {
1777 if (!try_to_unlazy(nd))
1778 return ERR_PTR(-ECHILD);
1779 touch_atime(&last->link);
1780 }
1781
1782 error = security_inode_follow_link(link->dentry, inode,
1783 nd->flags & LOOKUP_RCU);
1784 if (unlikely(error))
1785 return ERR_PTR(error);
1786
1787 res = READ_ONCE(inode->i_link);
1788 if (!res) {
1789 const char * (*get)(struct dentry *, struct inode *,
1790 struct delayed_call *);
1791 get = inode->i_op->get_link;
1792 if (nd->flags & LOOKUP_RCU) {
1793 res = get(NULL, inode, &last->done);
1794 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1795 res = get(link->dentry, inode, &last->done);
1796 } else {
1797 res = get(link->dentry, inode, &last->done);
1798 }
1799 if (!res)
1800 goto all_done;
1801 if (IS_ERR(res))
1802 return res;
1803 }
1804 if (*res == '/') {
1805 error = nd_jump_root(nd);
1806 if (unlikely(error))
1807 return ERR_PTR(error);
1808 while (unlikely(*++res == '/'))
1809 ;
1810 }
1811 if (*res)
1812 return res;
1813 all_done: // pure jump
1814 put_link(nd);
1815 return NULL;
1816 }
1817
1818 /*
1819 * Do we need to follow links? We _really_ want to be able
1820 * to do this check without having to look at inode->i_op,
1821 * so we keep a cache of "no, this doesn't need follow_link"
1822 * for the common case.
1823 *
1824 * NOTE: dentry must be what nd->next_seq had been sampled from.
1825 */
1826 static const char *step_into(struct nameidata *nd, int flags,
1827 struct dentry *dentry)
1828 {
1829 struct path path;
1830 struct inode *inode;
1831 int err = handle_mounts(nd, dentry, &path);
1832
1833 if (err < 0)
1834 return ERR_PTR(err);
1835 inode = path.dentry->d_inode;
1836 if (likely(!d_is_symlink(path.dentry)) ||
1837 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1838 (flags & WALK_NOFOLLOW)) {
1839 /* not a symlink or should not follow */
1840 if (nd->flags & LOOKUP_RCU) {
1841 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1842 return ERR_PTR(-ECHILD);
1843 if (unlikely(!inode))
1844 return ERR_PTR(-ENOENT);
1845 } else {
1846 dput(nd->path.dentry);
1847 if (nd->path.mnt != path.mnt)
1848 mntput(nd->path.mnt);
1849 }
1850 nd->path = path;
1851 nd->inode = inode;
1852 nd->seq = nd->next_seq;
1853 return NULL;
1854 }
1855 if (nd->flags & LOOKUP_RCU) {
1856 /* make sure that d_is_symlink above matches inode */
1857 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1858 return ERR_PTR(-ECHILD);
1859 } else {
1860 if (path.mnt == nd->path.mnt)
1861 mntget(path.mnt);
1862 }
1863 return pick_link(nd, &path, inode, flags);
1864 }
1865
1866 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
1867 {
1868 struct dentry *parent, *old;
1869
1870 if (path_equal(&nd->path, &nd->root))
1871 goto in_root;
1872 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1873 struct path path;
1874 unsigned seq;
1875 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1876 &nd->root, &path, &seq))
1877 goto in_root;
1878 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1879 return ERR_PTR(-ECHILD);
1880 nd->path = path;
1881 nd->inode = path.dentry->d_inode;
1882 nd->seq = seq;
1883 // makes sure that non-RCU pathwalk could reach this state
1884 if (read_seqretry(&mount_lock, nd->m_seq))
1885 return ERR_PTR(-ECHILD);
1886 /* we know that mountpoint was pinned */
1887 }
1888 old = nd->path.dentry;
1889 parent = old->d_parent;
1890 nd->next_seq = read_seqcount_begin(&parent->d_seq);
1891 // makes sure that non-RCU pathwalk could reach this state
1892 if (read_seqcount_retry(&old->d_seq, nd->seq))
1893 return ERR_PTR(-ECHILD);
1894 if (unlikely(!path_connected(nd->path.mnt, parent)))
1895 return ERR_PTR(-ECHILD);
1896 return parent;
1897 in_root:
1898 if (read_seqretry(&mount_lock, nd->m_seq))
1899 return ERR_PTR(-ECHILD);
1900 if (unlikely(nd->flags & LOOKUP_BENEATH))
1901 return ERR_PTR(-ECHILD);
1902 nd->next_seq = nd->seq;
1903 return nd->path.dentry;
1904 }
1905
1906 static struct dentry *follow_dotdot(struct nameidata *nd)
1907 {
1908 struct dentry *parent;
1909
1910 if (path_equal(&nd->path, &nd->root))
1911 goto in_root;
1912 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1913 struct path path;
1914
1915 if (!choose_mountpoint(real_mount(nd->path.mnt),
1916 &nd->root, &path))
1917 goto in_root;
1918 path_put(&nd->path);
1919 nd->path = path;
1920 nd->inode = path.dentry->d_inode;
1921 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1922 return ERR_PTR(-EXDEV);
1923 }
1924 /* rare case of legitimate dget_parent()... */
1925 parent = dget_parent(nd->path.dentry);
1926 if (unlikely(!path_connected(nd->path.mnt, parent))) {
1927 dput(parent);
1928 return ERR_PTR(-ENOENT);
1929 }
1930 return parent;
1931
1932 in_root:
1933 if (unlikely(nd->flags & LOOKUP_BENEATH))
1934 return ERR_PTR(-EXDEV);
1935 return dget(nd->path.dentry);
1936 }
1937
1938 static const char *handle_dots(struct nameidata *nd, int type)
1939 {
1940 if (type == LAST_DOTDOT) {
1941 const char *error = NULL;
1942 struct dentry *parent;
1943
1944 if (!nd->root.mnt) {
1945 error = ERR_PTR(set_root(nd));
1946 if (error)
1947 return error;
1948 }
1949 if (nd->flags & LOOKUP_RCU)
1950 parent = follow_dotdot_rcu(nd);
1951 else
1952 parent = follow_dotdot(nd);
1953 if (IS_ERR(parent))
1954 return ERR_CAST(parent);
1955 error = step_into(nd, WALK_NOFOLLOW, parent);
1956 if (unlikely(error))
1957 return error;
1958
1959 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1960 /*
1961 * If there was a racing rename or mount along our
1962 * path, then we can't be sure that ".." hasn't jumped
1963 * above nd->root (and so userspace should retry or use
1964 * some fallback).
1965 */
1966 smp_rmb();
1967 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
1968 return ERR_PTR(-EAGAIN);
1969 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
1970 return ERR_PTR(-EAGAIN);
1971 }
1972 }
1973 return NULL;
1974 }
1975
1976 static const char *walk_component(struct nameidata *nd, int flags)
1977 {
1978 struct dentry *dentry;
1979 /*
1980 * "." and ".." are special - ".." especially so because it has
1981 * to be able to know about the current root directory and
1982 * parent relationships.
1983 */
1984 if (unlikely(nd->last_type != LAST_NORM)) {
1985 if (!(flags & WALK_MORE) && nd->depth)
1986 put_link(nd);
1987 return handle_dots(nd, nd->last_type);
1988 }
1989 dentry = lookup_fast(nd);
1990 if (IS_ERR(dentry))
1991 return ERR_CAST(dentry);
1992 if (unlikely(!dentry)) {
1993 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1994 if (IS_ERR(dentry))
1995 return ERR_CAST(dentry);
1996 }
1997 if (!(flags & WALK_MORE) && nd->depth)
1998 put_link(nd);
1999 return step_into(nd, flags, dentry);
2000 }
2001
2002 /*
2003 * We can do the critical dentry name comparison and hashing
2004 * operations one word at a time, but we are limited to:
2005 *
2006 * - Architectures with fast unaligned word accesses. We could
2007 * do a "get_unaligned()" if this helps and is sufficiently
2008 * fast.
2009 *
2010 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2011 * do not trap on the (extremely unlikely) case of a page
2012 * crossing operation.
2013 *
2014 * - Furthermore, we need an efficient 64-bit compile for the
2015 * 64-bit case in order to generate the "number of bytes in
2016 * the final mask". Again, that could be replaced with a
2017 * efficient population count instruction or similar.
2018 */
2019 #ifdef CONFIG_DCACHE_WORD_ACCESS
2020
2021 #include <asm/word-at-a-time.h>
2022
2023 #ifdef HASH_MIX
2024
2025 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2026
2027 #elif defined(CONFIG_64BIT)
2028 /*
2029 * Register pressure in the mixing function is an issue, particularly
2030 * on 32-bit x86, but almost any function requires one state value and
2031 * one temporary. Instead, use a function designed for two state values
2032 * and no temporaries.
2033 *
2034 * This function cannot create a collision in only two iterations, so
2035 * we have two iterations to achieve avalanche. In those two iterations,
2036 * we have six layers of mixing, which is enough to spread one bit's
2037 * influence out to 2^6 = 64 state bits.
2038 *
2039 * Rotate constants are scored by considering either 64 one-bit input
2040 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2041 * probability of that delta causing a change to each of the 128 output
2042 * bits, using a sample of random initial states.
2043 *
2044 * The Shannon entropy of the computed probabilities is then summed
2045 * to produce a score. Ideally, any input change has a 50% chance of
2046 * toggling any given output bit.
2047 *
2048 * Mixing scores (in bits) for (12,45):
2049 * Input delta: 1-bit 2-bit
2050 * 1 round: 713.3 42542.6
2051 * 2 rounds: 2753.7 140389.8
2052 * 3 rounds: 5954.1 233458.2
2053 * 4 rounds: 7862.6 256672.2
2054 * Perfect: 8192 258048
2055 * (64*128) (64*63/2 * 128)
2056 */
2057 #define HASH_MIX(x, y, a) \
2058 ( x ^= (a), \
2059 y ^= x, x = rol64(x,12),\
2060 x += y, y = rol64(y,45),\
2061 y *= 9 )
2062
2063 /*
2064 * Fold two longs into one 32-bit hash value. This must be fast, but
2065 * latency isn't quite as critical, as there is a fair bit of additional
2066 * work done before the hash value is used.
2067 */
2068 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2069 {
2070 y ^= x * GOLDEN_RATIO_64;
2071 y *= GOLDEN_RATIO_64;
2072 return y >> 32;
2073 }
2074
2075 #else /* 32-bit case */
2076
2077 /*
2078 * Mixing scores (in bits) for (7,20):
2079 * Input delta: 1-bit 2-bit
2080 * 1 round: 330.3 9201.6
2081 * 2 rounds: 1246.4 25475.4
2082 * 3 rounds: 1907.1 31295.1
2083 * 4 rounds: 2042.3 31718.6
2084 * Perfect: 2048 31744
2085 * (32*64) (32*31/2 * 64)
2086 */
2087 #define HASH_MIX(x, y, a) \
2088 ( x ^= (a), \
2089 y ^= x, x = rol32(x, 7),\
2090 x += y, y = rol32(y,20),\
2091 y *= 9 )
2092
2093 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2094 {
2095 /* Use arch-optimized multiply if one exists */
2096 return __hash_32(y ^ __hash_32(x));
2097 }
2098
2099 #endif
2100
2101 /*
2102 * Return the hash of a string of known length. This is carfully
2103 * designed to match hash_name(), which is the more critical function.
2104 * In particular, we must end by hashing a final word containing 0..7
2105 * payload bytes, to match the way that hash_name() iterates until it
2106 * finds the delimiter after the name.
2107 */
2108 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2109 {
2110 unsigned long a, x = 0, y = (unsigned long)salt;
2111
2112 for (;;) {
2113 if (!len)
2114 goto done;
2115 a = load_unaligned_zeropad(name);
2116 if (len < sizeof(unsigned long))
2117 break;
2118 HASH_MIX(x, y, a);
2119 name += sizeof(unsigned long);
2120 len -= sizeof(unsigned long);
2121 }
2122 x ^= a & bytemask_from_count(len);
2123 done:
2124 return fold_hash(x, y);
2125 }
2126 EXPORT_SYMBOL(full_name_hash);
2127
2128 /* Return the "hash_len" (hash and length) of a null-terminated string */
2129 u64 hashlen_string(const void *salt, const char *name)
2130 {
2131 unsigned long a = 0, x = 0, y = (unsigned long)salt;
2132 unsigned long adata, mask, len;
2133 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2134
2135 len = 0;
2136 goto inside;
2137
2138 do {
2139 HASH_MIX(x, y, a);
2140 len += sizeof(unsigned long);
2141 inside:
2142 a = load_unaligned_zeropad(name+len);
2143 } while (!has_zero(a, &adata, &constants));
2144
2145 adata = prep_zero_mask(a, adata, &constants);
2146 mask = create_zero_mask(adata);
2147 x ^= a & zero_bytemask(mask);
2148
2149 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2150 }
2151 EXPORT_SYMBOL(hashlen_string);
2152
2153 /*
2154 * Calculate the length and hash of the path component, and
2155 * return the "hash_len" as the result.
2156 */
2157 static inline u64 hash_name(const void *salt, const char *name)
2158 {
2159 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2160 unsigned long adata, bdata, mask, len;
2161 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2162
2163 len = 0;
2164 goto inside;
2165
2166 do {
2167 HASH_MIX(x, y, a);
2168 len += sizeof(unsigned long);
2169 inside:
2170 a = load_unaligned_zeropad(name+len);
2171 b = a ^ REPEAT_BYTE('/');
2172 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2173
2174 adata = prep_zero_mask(a, adata, &constants);
2175 bdata = prep_zero_mask(b, bdata, &constants);
2176 mask = create_zero_mask(adata | bdata);
2177 x ^= a & zero_bytemask(mask);
2178
2179 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2180 }
2181
2182 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2183
2184 /* Return the hash of a string of known length */
2185 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2186 {
2187 unsigned long hash = init_name_hash(salt);
2188 while (len--)
2189 hash = partial_name_hash((unsigned char)*name++, hash);
2190 return end_name_hash(hash);
2191 }
2192 EXPORT_SYMBOL(full_name_hash);
2193
2194 /* Return the "hash_len" (hash and length) of a null-terminated string */
2195 u64 hashlen_string(const void *salt, const char *name)
2196 {
2197 unsigned long hash = init_name_hash(salt);
2198 unsigned long len = 0, c;
2199
2200 c = (unsigned char)*name;
2201 while (c) {
2202 len++;
2203 hash = partial_name_hash(c, hash);
2204 c = (unsigned char)name[len];
2205 }
2206 return hashlen_create(end_name_hash(hash), len);
2207 }
2208 EXPORT_SYMBOL(hashlen_string);
2209
2210 /*
2211 * We know there's a real path component here of at least
2212 * one character.
2213 */
2214 static inline u64 hash_name(const void *salt, const char *name)
2215 {
2216 unsigned long hash = init_name_hash(salt);
2217 unsigned long len = 0, c;
2218
2219 c = (unsigned char)*name;
2220 do {
2221 len++;
2222 hash = partial_name_hash(c, hash);
2223 c = (unsigned char)name[len];
2224 } while (c && c != '/');
2225 return hashlen_create(end_name_hash(hash), len);
2226 }
2227
2228 #endif
2229
2230 /*
2231 * Name resolution.
2232 * This is the basic name resolution function, turning a pathname into
2233 * the final dentry. We expect 'base' to be positive and a directory.
2234 *
2235 * Returns 0 and nd will have valid dentry and mnt on success.
2236 * Returns error and drops reference to input namei data on failure.
2237 */
2238 static int link_path_walk(const char *name, struct nameidata *nd)
2239 {
2240 int depth = 0; // depth <= nd->depth
2241 int err;
2242
2243 nd->last_type = LAST_ROOT;
2244 nd->flags |= LOOKUP_PARENT;
2245 if (IS_ERR(name))
2246 return PTR_ERR(name);
2247 while (*name=='/')
2248 name++;
2249 if (!*name) {
2250 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2251 return 0;
2252 }
2253
2254 /* At this point we know we have a real path component. */
2255 for(;;) {
2256 struct user_namespace *mnt_userns;
2257 const char *link;
2258 u64 hash_len;
2259 int type;
2260
2261 mnt_userns = mnt_user_ns(nd->path.mnt);
2262 err = may_lookup(mnt_userns, nd);
2263 if (err)
2264 return err;
2265
2266 hash_len = hash_name(nd->path.dentry, name);
2267
2268 type = LAST_NORM;
2269 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2270 case 2:
2271 if (name[1] == '.') {
2272 type = LAST_DOTDOT;
2273 nd->state |= ND_JUMPED;
2274 }
2275 break;
2276 case 1:
2277 type = LAST_DOT;
2278 }
2279 if (likely(type == LAST_NORM)) {
2280 struct dentry *parent = nd->path.dentry;
2281 nd->state &= ~ND_JUMPED;
2282 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2283 struct qstr this = { { .hash_len = hash_len }, .name = name };
2284 err = parent->d_op->d_hash(parent, &this);
2285 if (err < 0)
2286 return err;
2287 hash_len = this.hash_len;
2288 name = this.name;
2289 }
2290 }
2291
2292 nd->last.hash_len = hash_len;
2293 nd->last.name = name;
2294 nd->last_type = type;
2295
2296 name += hashlen_len(hash_len);
2297 if (!*name)
2298 goto OK;
2299 /*
2300 * If it wasn't NUL, we know it was '/'. Skip that
2301 * slash, and continue until no more slashes.
2302 */
2303 do {
2304 name++;
2305 } while (unlikely(*name == '/'));
2306 if (unlikely(!*name)) {
2307 OK:
2308 /* pathname or trailing symlink, done */
2309 if (!depth) {
2310 nd->dir_uid = i_uid_into_mnt(mnt_userns, nd->inode);
2311 nd->dir_mode = nd->inode->i_mode;
2312 nd->flags &= ~LOOKUP_PARENT;
2313 return 0;
2314 }
2315 /* last component of nested symlink */
2316 name = nd->stack[--depth].name;
2317 link = walk_component(nd, 0);
2318 } else {
2319 /* not the last component */
2320 link = walk_component(nd, WALK_MORE);
2321 }
2322 if (unlikely(link)) {
2323 if (IS_ERR(link))
2324 return PTR_ERR(link);
2325 /* a symlink to follow */
2326 nd->stack[depth++].name = name;
2327 name = link;
2328 continue;
2329 }
2330 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2331 if (nd->flags & LOOKUP_RCU) {
2332 if (!try_to_unlazy(nd))
2333 return -ECHILD;
2334 }
2335 return -ENOTDIR;
2336 }
2337 }
2338 }
2339
2340 /* must be paired with terminate_walk() */
2341 static const char *path_init(struct nameidata *nd, unsigned flags)
2342 {
2343 int error;
2344 const char *s = nd->name->name;
2345
2346 /* LOOKUP_CACHED requires RCU, ask caller to retry */
2347 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2348 return ERR_PTR(-EAGAIN);
2349
2350 if (!*s)
2351 flags &= ~LOOKUP_RCU;
2352 if (flags & LOOKUP_RCU)
2353 rcu_read_lock();
2354 else
2355 nd->seq = nd->next_seq = 0;
2356
2357 nd->flags = flags;
2358 nd->state |= ND_JUMPED;
2359
2360 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2361 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2362 smp_rmb();
2363
2364 if (nd->state & ND_ROOT_PRESET) {
2365 struct dentry *root = nd->root.dentry;
2366 struct inode *inode = root->d_inode;
2367 if (*s && unlikely(!d_can_lookup(root)))
2368 return ERR_PTR(-ENOTDIR);
2369 nd->path = nd->root;
2370 nd->inode = inode;
2371 if (flags & LOOKUP_RCU) {
2372 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2373 nd->root_seq = nd->seq;
2374 } else {
2375 path_get(&nd->path);
2376 }
2377 return s;
2378 }
2379
2380 nd->root.mnt = NULL;
2381
2382 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2383 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2384 error = nd_jump_root(nd);
2385 if (unlikely(error))
2386 return ERR_PTR(error);
2387 return s;
2388 }
2389
2390 /* Relative pathname -- get the starting-point it is relative to. */
2391 if (nd->dfd == AT_FDCWD) {
2392 if (flags & LOOKUP_RCU) {
2393 struct fs_struct *fs = current->fs;
2394 unsigned seq;
2395
2396 do {
2397 seq = read_seqcount_begin(&fs->seq);
2398 nd->path = fs->pwd;
2399 nd->inode = nd->path.dentry->d_inode;
2400 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2401 } while (read_seqcount_retry(&fs->seq, seq));
2402 } else {
2403 get_fs_pwd(current->fs, &nd->path);
2404 nd->inode = nd->path.dentry->d_inode;
2405 }
2406 } else {
2407 /* Caller must check execute permissions on the starting path component */
2408 struct fd f = fdget_raw(nd->dfd);
2409 struct dentry *dentry;
2410
2411 if (!f.file)
2412 return ERR_PTR(-EBADF);
2413
2414 dentry = f.file->f_path.dentry;
2415
2416 if (*s && unlikely(!d_can_lookup(dentry))) {
2417 fdput(f);
2418 return ERR_PTR(-ENOTDIR);
2419 }
2420
2421 nd->path = f.file->f_path;
2422 if (flags & LOOKUP_RCU) {
2423 nd->inode = nd->path.dentry->d_inode;
2424 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2425 } else {
2426 path_get(&nd->path);
2427 nd->inode = nd->path.dentry->d_inode;
2428 }
2429 fdput(f);
2430 }
2431
2432 /* For scoped-lookups we need to set the root to the dirfd as well. */
2433 if (flags & LOOKUP_IS_SCOPED) {
2434 nd->root = nd->path;
2435 if (flags & LOOKUP_RCU) {
2436 nd->root_seq = nd->seq;
2437 } else {
2438 path_get(&nd->root);
2439 nd->state |= ND_ROOT_GRABBED;
2440 }
2441 }
2442 return s;
2443 }
2444
2445 static inline const char *lookup_last(struct nameidata *nd)
2446 {
2447 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2448 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2449
2450 return walk_component(nd, WALK_TRAILING);
2451 }
2452
2453 static int handle_lookup_down(struct nameidata *nd)
2454 {
2455 if (!(nd->flags & LOOKUP_RCU))
2456 dget(nd->path.dentry);
2457 nd->next_seq = nd->seq;
2458 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2459 }
2460
2461 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2462 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2463 {
2464 const char *s = path_init(nd, flags);
2465 int err;
2466
2467 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2468 err = handle_lookup_down(nd);
2469 if (unlikely(err < 0))
2470 s = ERR_PTR(err);
2471 }
2472
2473 while (!(err = link_path_walk(s, nd)) &&
2474 (s = lookup_last(nd)) != NULL)
2475 ;
2476 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2477 err = handle_lookup_down(nd);
2478 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2479 }
2480 if (!err)
2481 err = complete_walk(nd);
2482
2483 if (!err && nd->flags & LOOKUP_DIRECTORY)
2484 if (!d_can_lookup(nd->path.dentry))
2485 err = -ENOTDIR;
2486 if (!err) {
2487 *path = nd->path;
2488 nd->path.mnt = NULL;
2489 nd->path.dentry = NULL;
2490 }
2491 terminate_walk(nd);
2492 return err;
2493 }
2494
2495 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2496 struct path *path, struct path *root)
2497 {
2498 int retval;
2499 struct nameidata nd;
2500 if (IS_ERR(name))
2501 return PTR_ERR(name);
2502 set_nameidata(&nd, dfd, name, root);
2503 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2504 if (unlikely(retval == -ECHILD))
2505 retval = path_lookupat(&nd, flags, path);
2506 if (unlikely(retval == -ESTALE))
2507 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2508
2509 if (likely(!retval))
2510 audit_inode(name, path->dentry,
2511 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2512 restore_nameidata();
2513 return retval;
2514 }
2515
2516 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2517 static int path_parentat(struct nameidata *nd, unsigned flags,
2518 struct path *parent)
2519 {
2520 const char *s = path_init(nd, flags);
2521 int err = link_path_walk(s, nd);
2522 if (!err)
2523 err = complete_walk(nd);
2524 if (!err) {
2525 *parent = nd->path;
2526 nd->path.mnt = NULL;
2527 nd->path.dentry = NULL;
2528 }
2529 terminate_walk(nd);
2530 return err;
2531 }
2532
2533 /* Note: this does not consume "name" */
2534 static int filename_parentat(int dfd, struct filename *name,
2535 unsigned int flags, struct path *parent,
2536 struct qstr *last, int *type)
2537 {
2538 int retval;
2539 struct nameidata nd;
2540
2541 if (IS_ERR(name))
2542 return PTR_ERR(name);
2543 set_nameidata(&nd, dfd, name, NULL);
2544 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2545 if (unlikely(retval == -ECHILD))
2546 retval = path_parentat(&nd, flags, parent);
2547 if (unlikely(retval == -ESTALE))
2548 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2549 if (likely(!retval)) {
2550 *last = nd.last;
2551 *type = nd.last_type;
2552 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2553 }
2554 restore_nameidata();
2555 return retval;
2556 }
2557
2558 /* does lookup, returns the object with parent locked */
2559 static struct dentry *__kern_path_locked(struct filename *name, struct path *path)
2560 {
2561 struct dentry *d;
2562 struct qstr last;
2563 int type, error;
2564
2565 error = filename_parentat(AT_FDCWD, name, 0, path, &last, &type);
2566 if (error)
2567 return ERR_PTR(error);
2568 if (unlikely(type != LAST_NORM)) {
2569 path_put(path);
2570 return ERR_PTR(-EINVAL);
2571 }
2572 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2573 d = __lookup_hash(&last, path->dentry, 0);
2574 if (IS_ERR(d)) {
2575 inode_unlock(path->dentry->d_inode);
2576 path_put(path);
2577 }
2578 return d;
2579 }
2580
2581 struct dentry *kern_path_locked(const char *name, struct path *path)
2582 {
2583 struct filename *filename = getname_kernel(name);
2584 struct dentry *res = __kern_path_locked(filename, path);
2585
2586 putname(filename);
2587 return res;
2588 }
2589
2590 int kern_path(const char *name, unsigned int flags, struct path *path)
2591 {
2592 struct filename *filename = getname_kernel(name);
2593 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2594
2595 putname(filename);
2596 return ret;
2597
2598 }
2599 EXPORT_SYMBOL(kern_path);
2600
2601 /**
2602 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2603 * @dentry: pointer to dentry of the base directory
2604 * @mnt: pointer to vfs mount of the base directory
2605 * @name: pointer to file name
2606 * @flags: lookup flags
2607 * @path: pointer to struct path to fill
2608 */
2609 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2610 const char *name, unsigned int flags,
2611 struct path *path)
2612 {
2613 struct filename *filename;
2614 struct path root = {.mnt = mnt, .dentry = dentry};
2615 int ret;
2616
2617 filename = getname_kernel(name);
2618 /* the first argument of filename_lookup() is ignored with root */
2619 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2620 putname(filename);
2621 return ret;
2622 }
2623 EXPORT_SYMBOL(vfs_path_lookup);
2624
2625 static int lookup_one_common(struct user_namespace *mnt_userns,
2626 const char *name, struct dentry *base, int len,
2627 struct qstr *this)
2628 {
2629 this->name = name;
2630 this->len = len;
2631 this->hash = full_name_hash(base, name, len);
2632 if (!len)
2633 return -EACCES;
2634
2635 if (unlikely(name[0] == '.')) {
2636 if (len < 2 || (len == 2 && name[1] == '.'))
2637 return -EACCES;
2638 }
2639
2640 while (len--) {
2641 unsigned int c = *(const unsigned char *)name++;
2642 if (c == '/' || c == '\0')
2643 return -EACCES;
2644 }
2645 /*
2646 * See if the low-level filesystem might want
2647 * to use its own hash..
2648 */
2649 if (base->d_flags & DCACHE_OP_HASH) {
2650 int err = base->d_op->d_hash(base, this);
2651 if (err < 0)
2652 return err;
2653 }
2654
2655 return inode_permission(mnt_userns, base->d_inode, MAY_EXEC);
2656 }
2657
2658 /**
2659 * try_lookup_one_len - filesystem helper to lookup single pathname component
2660 * @name: pathname component to lookup
2661 * @base: base directory to lookup from
2662 * @len: maximum length @len should be interpreted to
2663 *
2664 * Look up a dentry by name in the dcache, returning NULL if it does not
2665 * currently exist. The function does not try to create a dentry.
2666 *
2667 * Note that this routine is purely a helper for filesystem usage and should
2668 * not be called by generic code.
2669 *
2670 * The caller must hold base->i_mutex.
2671 */
2672 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2673 {
2674 struct qstr this;
2675 int err;
2676
2677 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2678
2679 err = lookup_one_common(&init_user_ns, name, base, len, &this);
2680 if (err)
2681 return ERR_PTR(err);
2682
2683 return lookup_dcache(&this, base, 0);
2684 }
2685 EXPORT_SYMBOL(try_lookup_one_len);
2686
2687 /**
2688 * lookup_one_len - filesystem helper to lookup single pathname component
2689 * @name: pathname component to lookup
2690 * @base: base directory to lookup from
2691 * @len: maximum length @len should be interpreted to
2692 *
2693 * Note that this routine is purely a helper for filesystem usage and should
2694 * not be called by generic code.
2695 *
2696 * The caller must hold base->i_mutex.
2697 */
2698 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2699 {
2700 struct dentry *dentry;
2701 struct qstr this;
2702 int err;
2703
2704 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2705
2706 err = lookup_one_common(&init_user_ns, name, base, len, &this);
2707 if (err)
2708 return ERR_PTR(err);
2709
2710 dentry = lookup_dcache(&this, base, 0);
2711 return dentry ? dentry : __lookup_slow(&this, base, 0);
2712 }
2713 EXPORT_SYMBOL(lookup_one_len);
2714
2715 /**
2716 * lookup_one - filesystem helper to lookup single pathname component
2717 * @mnt_userns: user namespace of the mount the lookup is performed from
2718 * @name: pathname component to lookup
2719 * @base: base directory to lookup from
2720 * @len: maximum length @len should be interpreted to
2721 *
2722 * Note that this routine is purely a helper for filesystem usage and should
2723 * not be called by generic code.
2724 *
2725 * The caller must hold base->i_mutex.
2726 */
2727 struct dentry *lookup_one(struct user_namespace *mnt_userns, const char *name,
2728 struct dentry *base, int len)
2729 {
2730 struct dentry *dentry;
2731 struct qstr this;
2732 int err;
2733
2734 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2735
2736 err = lookup_one_common(mnt_userns, name, base, len, &this);
2737 if (err)
2738 return ERR_PTR(err);
2739
2740 dentry = lookup_dcache(&this, base, 0);
2741 return dentry ? dentry : __lookup_slow(&this, base, 0);
2742 }
2743 EXPORT_SYMBOL(lookup_one);
2744
2745 /**
2746 * lookup_one_unlocked - filesystem helper to lookup single pathname component
2747 * @mnt_userns: idmapping of the mount the lookup is performed from
2748 * @name: pathname component to lookup
2749 * @base: base directory to lookup from
2750 * @len: maximum length @len should be interpreted to
2751 *
2752 * Note that this routine is purely a helper for filesystem usage and should
2753 * not be called by generic code.
2754 *
2755 * Unlike lookup_one_len, it should be called without the parent
2756 * i_mutex held, and will take the i_mutex itself if necessary.
2757 */
2758 struct dentry *lookup_one_unlocked(struct user_namespace *mnt_userns,
2759 const char *name, struct dentry *base,
2760 int len)
2761 {
2762 struct qstr this;
2763 int err;
2764 struct dentry *ret;
2765
2766 err = lookup_one_common(mnt_userns, name, base, len, &this);
2767 if (err)
2768 return ERR_PTR(err);
2769
2770 ret = lookup_dcache(&this, base, 0);
2771 if (!ret)
2772 ret = lookup_slow(&this, base, 0);
2773 return ret;
2774 }
2775 EXPORT_SYMBOL(lookup_one_unlocked);
2776
2777 /**
2778 * lookup_one_positive_unlocked - filesystem helper to lookup single
2779 * pathname component
2780 * @mnt_userns: idmapping of the mount the lookup is performed from
2781 * @name: pathname component to lookup
2782 * @base: base directory to lookup from
2783 * @len: maximum length @len should be interpreted to
2784 *
2785 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2786 * known positive or ERR_PTR(). This is what most of the users want.
2787 *
2788 * Note that pinned negative with unlocked parent _can_ become positive at any
2789 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2790 * positives have >d_inode stable, so this one avoids such problems.
2791 *
2792 * Note that this routine is purely a helper for filesystem usage and should
2793 * not be called by generic code.
2794 *
2795 * The helper should be called without i_mutex held.
2796 */
2797 struct dentry *lookup_one_positive_unlocked(struct user_namespace *mnt_userns,
2798 const char *name,
2799 struct dentry *base, int len)
2800 {
2801 struct dentry *ret = lookup_one_unlocked(mnt_userns, name, base, len);
2802
2803 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2804 dput(ret);
2805 ret = ERR_PTR(-ENOENT);
2806 }
2807 return ret;
2808 }
2809 EXPORT_SYMBOL(lookup_one_positive_unlocked);
2810
2811 /**
2812 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2813 * @name: pathname component to lookup
2814 * @base: base directory to lookup from
2815 * @len: maximum length @len should be interpreted to
2816 *
2817 * Note that this routine is purely a helper for filesystem usage and should
2818 * not be called by generic code.
2819 *
2820 * Unlike lookup_one_len, it should be called without the parent
2821 * i_mutex held, and will take the i_mutex itself if necessary.
2822 */
2823 struct dentry *lookup_one_len_unlocked(const char *name,
2824 struct dentry *base, int len)
2825 {
2826 return lookup_one_unlocked(&init_user_ns, name, base, len);
2827 }
2828 EXPORT_SYMBOL(lookup_one_len_unlocked);
2829
2830 /*
2831 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2832 * on negatives. Returns known positive or ERR_PTR(); that's what
2833 * most of the users want. Note that pinned negative with unlocked parent
2834 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2835 * need to be very careful; pinned positives have ->d_inode stable, so
2836 * this one avoids such problems.
2837 */
2838 struct dentry *lookup_positive_unlocked(const char *name,
2839 struct dentry *base, int len)
2840 {
2841 return lookup_one_positive_unlocked(&init_user_ns, name, base, len);
2842 }
2843 EXPORT_SYMBOL(lookup_positive_unlocked);
2844
2845 #ifdef CONFIG_UNIX98_PTYS
2846 int path_pts(struct path *path)
2847 {
2848 /* Find something mounted on "pts" in the same directory as
2849 * the input path.
2850 */
2851 struct dentry *parent = dget_parent(path->dentry);
2852 struct dentry *child;
2853 struct qstr this = QSTR_INIT("pts", 3);
2854
2855 if (unlikely(!path_connected(path->mnt, parent))) {
2856 dput(parent);
2857 return -ENOENT;
2858 }
2859 dput(path->dentry);
2860 path->dentry = parent;
2861 child = d_hash_and_lookup(parent, &this);
2862 if (!child)
2863 return -ENOENT;
2864
2865 path->dentry = child;
2866 dput(parent);
2867 follow_down(path);
2868 return 0;
2869 }
2870 #endif
2871
2872 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2873 struct path *path, int *empty)
2874 {
2875 struct filename *filename = getname_flags(name, flags, empty);
2876 int ret = filename_lookup(dfd, filename, flags, path, NULL);
2877
2878 putname(filename);
2879 return ret;
2880 }
2881 EXPORT_SYMBOL(user_path_at_empty);
2882
2883 int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir,
2884 struct inode *inode)
2885 {
2886 kuid_t fsuid = current_fsuid();
2887
2888 if (uid_eq(i_uid_into_mnt(mnt_userns, inode), fsuid))
2889 return 0;
2890 if (uid_eq(i_uid_into_mnt(mnt_userns, dir), fsuid))
2891 return 0;
2892 return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER);
2893 }
2894 EXPORT_SYMBOL(__check_sticky);
2895
2896 /*
2897 * Check whether we can remove a link victim from directory dir, check
2898 * whether the type of victim is right.
2899 * 1. We can't do it if dir is read-only (done in permission())
2900 * 2. We should have write and exec permissions on dir
2901 * 3. We can't remove anything from append-only dir
2902 * 4. We can't do anything with immutable dir (done in permission())
2903 * 5. If the sticky bit on dir is set we should either
2904 * a. be owner of dir, or
2905 * b. be owner of victim, or
2906 * c. have CAP_FOWNER capability
2907 * 6. If the victim is append-only or immutable we can't do antyhing with
2908 * links pointing to it.
2909 * 7. If the victim has an unknown uid or gid we can't change the inode.
2910 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2911 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2912 * 10. We can't remove a root or mountpoint.
2913 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2914 * nfs_async_unlink().
2915 */
2916 static int may_delete(struct user_namespace *mnt_userns, struct inode *dir,
2917 struct dentry *victim, bool isdir)
2918 {
2919 struct inode *inode = d_backing_inode(victim);
2920 int error;
2921
2922 if (d_is_negative(victim))
2923 return -ENOENT;
2924 BUG_ON(!inode);
2925
2926 BUG_ON(victim->d_parent->d_inode != dir);
2927
2928 /* Inode writeback is not safe when the uid or gid are invalid. */
2929 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
2930 !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
2931 return -EOVERFLOW;
2932
2933 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2934
2935 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2936 if (error)
2937 return error;
2938 if (IS_APPEND(dir))
2939 return -EPERM;
2940
2941 if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) ||
2942 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2943 HAS_UNMAPPED_ID(mnt_userns, inode))
2944 return -EPERM;
2945 if (isdir) {
2946 if (!d_is_dir(victim))
2947 return -ENOTDIR;
2948 if (IS_ROOT(victim))
2949 return -EBUSY;
2950 } else if (d_is_dir(victim))
2951 return -EISDIR;
2952 if (IS_DEADDIR(dir))
2953 return -ENOENT;
2954 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2955 return -EBUSY;
2956 return 0;
2957 }
2958
2959 /* Check whether we can create an object with dentry child in directory
2960 * dir.
2961 * 1. We can't do it if child already exists (open has special treatment for
2962 * this case, but since we are inlined it's OK)
2963 * 2. We can't do it if dir is read-only (done in permission())
2964 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2965 * 4. We should have write and exec permissions on dir
2966 * 5. We can't do it if dir is immutable (done in permission())
2967 */
2968 static inline int may_create(struct user_namespace *mnt_userns,
2969 struct inode *dir, struct dentry *child)
2970 {
2971 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2972 if (child->d_inode)
2973 return -EEXIST;
2974 if (IS_DEADDIR(dir))
2975 return -ENOENT;
2976 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
2977 return -EOVERFLOW;
2978
2979 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2980 }
2981
2982 /*
2983 * p1 and p2 should be directories on the same fs.
2984 */
2985 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2986 {
2987 struct dentry *p;
2988
2989 if (p1 == p2) {
2990 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2991 return NULL;
2992 }
2993
2994 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2995
2996 p = d_ancestor(p2, p1);
2997 if (p) {
2998 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2999 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
3000 return p;
3001 }
3002
3003 p = d_ancestor(p1, p2);
3004 if (p) {
3005 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3006 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
3007 return p;
3008 }
3009
3010 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3011 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3012 return NULL;
3013 }
3014 EXPORT_SYMBOL(lock_rename);
3015
3016 void unlock_rename(struct dentry *p1, struct dentry *p2)
3017 {
3018 inode_unlock(p1->d_inode);
3019 if (p1 != p2) {
3020 inode_unlock(p2->d_inode);
3021 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3022 }
3023 }
3024 EXPORT_SYMBOL(unlock_rename);
3025
3026 /**
3027 * mode_strip_umask - handle vfs umask stripping
3028 * @dir: parent directory of the new inode
3029 * @mode: mode of the new inode to be created in @dir
3030 *
3031 * Umask stripping depends on whether or not the filesystem supports POSIX
3032 * ACLs. If the filesystem doesn't support it umask stripping is done directly
3033 * in here. If the filesystem does support POSIX ACLs umask stripping is
3034 * deferred until the filesystem calls posix_acl_create().
3035 *
3036 * Returns: mode
3037 */
3038 static inline umode_t mode_strip_umask(const struct inode *dir, umode_t mode)
3039 {
3040 if (!IS_POSIXACL(dir))
3041 mode &= ~current_umask();
3042 return mode;
3043 }
3044
3045 /**
3046 * vfs_prepare_mode - prepare the mode to be used for a new inode
3047 * @mnt_userns: user namespace of the mount the inode was found from
3048 * @dir: parent directory of the new inode
3049 * @mode: mode of the new inode
3050 * @mask_perms: allowed permission by the vfs
3051 * @type: type of file to be created
3052 *
3053 * This helper consolidates and enforces vfs restrictions on the @mode of a new
3054 * object to be created.
3055 *
3056 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3057 * the kernel documentation for mode_strip_umask()). Moving umask stripping
3058 * after setgid stripping allows the same ordering for both non-POSIX ACL and
3059 * POSIX ACL supporting filesystems.
3060 *
3061 * Note that it's currently valid for @type to be 0 if a directory is created.
3062 * Filesystems raise that flag individually and we need to check whether each
3063 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3064 * non-zero type.
3065 *
3066 * Returns: mode to be passed to the filesystem
3067 */
3068 static inline umode_t vfs_prepare_mode(struct user_namespace *mnt_userns,
3069 const struct inode *dir, umode_t mode,
3070 umode_t mask_perms, umode_t type)
3071 {
3072 mode = mode_strip_sgid(mnt_userns, dir, mode);
3073 mode = mode_strip_umask(dir, mode);
3074
3075 /*
3076 * Apply the vfs mandated allowed permission mask and set the type of
3077 * file to be created before we call into the filesystem.
3078 */
3079 mode &= (mask_perms & ~S_IFMT);
3080 mode |= (type & S_IFMT);
3081
3082 return mode;
3083 }
3084
3085 /**
3086 * vfs_create - create new file
3087 * @mnt_userns: user namespace of the mount the inode was found from
3088 * @dir: inode of @dentry
3089 * @dentry: pointer to dentry of the base directory
3090 * @mode: mode of the new file
3091 * @want_excl: whether the file must not yet exist
3092 *
3093 * Create a new file.
3094 *
3095 * If the inode has been found through an idmapped mount the user namespace of
3096 * the vfsmount must be passed through @mnt_userns. This function will then take
3097 * care to map the inode according to @mnt_userns before checking permissions.
3098 * On non-idmapped mounts or if permission checking is to be performed on the
3099 * raw inode simply passs init_user_ns.
3100 */
3101 int vfs_create(struct user_namespace *mnt_userns, struct inode *dir,
3102 struct dentry *dentry, umode_t mode, bool want_excl)
3103 {
3104 int error = may_create(mnt_userns, dir, dentry);
3105 if (error)
3106 return error;
3107
3108 if (!dir->i_op->create)
3109 return -EACCES; /* shouldn't it be ENOSYS? */
3110
3111 mode = vfs_prepare_mode(mnt_userns, dir, mode, S_IALLUGO, S_IFREG);
3112 error = security_inode_create(dir, dentry, mode);
3113 if (error)
3114 return error;
3115 error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl);
3116 if (!error)
3117 fsnotify_create(dir, dentry);
3118 return error;
3119 }
3120 EXPORT_SYMBOL(vfs_create);
3121
3122 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3123 int (*f)(struct dentry *, umode_t, void *),
3124 void *arg)
3125 {
3126 struct inode *dir = dentry->d_parent->d_inode;
3127 int error = may_create(&init_user_ns, dir, dentry);
3128 if (error)
3129 return error;
3130
3131 mode &= S_IALLUGO;
3132 mode |= S_IFREG;
3133 error = security_inode_create(dir, dentry, mode);
3134 if (error)
3135 return error;
3136 error = f(dentry, mode, arg);
3137 if (!error)
3138 fsnotify_create(dir, dentry);
3139 return error;
3140 }
3141 EXPORT_SYMBOL(vfs_mkobj);
3142
3143 bool may_open_dev(const struct path *path)
3144 {
3145 return !(path->mnt->mnt_flags & MNT_NODEV) &&
3146 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3147 }
3148
3149 static int may_open(struct user_namespace *mnt_userns, const struct path *path,
3150 int acc_mode, int flag)
3151 {
3152 struct dentry *dentry = path->dentry;
3153 struct inode *inode = dentry->d_inode;
3154 int error;
3155
3156 if (!inode)
3157 return -ENOENT;
3158
3159 switch (inode->i_mode & S_IFMT) {
3160 case S_IFLNK:
3161 return -ELOOP;
3162 case S_IFDIR:
3163 if (acc_mode & MAY_WRITE)
3164 return -EISDIR;
3165 if (acc_mode & MAY_EXEC)
3166 return -EACCES;
3167 break;
3168 case S_IFBLK:
3169 case S_IFCHR:
3170 if (!may_open_dev(path))
3171 return -EACCES;
3172 fallthrough;
3173 case S_IFIFO:
3174 case S_IFSOCK:
3175 if (acc_mode & MAY_EXEC)
3176 return -EACCES;
3177 flag &= ~O_TRUNC;
3178 break;
3179 case S_IFREG:
3180 if ((acc_mode & MAY_EXEC) && path_noexec(path))
3181 return -EACCES;
3182 break;
3183 }
3184
3185 error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode);
3186 if (error)
3187 return error;
3188
3189 /*
3190 * An append-only file must be opened in append mode for writing.
3191 */
3192 if (IS_APPEND(inode)) {
3193 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3194 return -EPERM;
3195 if (flag & O_TRUNC)
3196 return -EPERM;
3197 }
3198
3199 /* O_NOATIME can only be set by the owner or superuser */
3200 if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode))
3201 return -EPERM;
3202
3203 return 0;
3204 }
3205
3206 static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp)
3207 {
3208 const struct path *path = &filp->f_path;
3209 struct inode *inode = path->dentry->d_inode;
3210 int error = get_write_access(inode);
3211 if (error)
3212 return error;
3213
3214 error = security_path_truncate(path);
3215 if (!error) {
3216 error = do_truncate(mnt_userns, path->dentry, 0,
3217 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3218 filp);
3219 }
3220 put_write_access(inode);
3221 return error;
3222 }
3223
3224 static inline int open_to_namei_flags(int flag)
3225 {
3226 if ((flag & O_ACCMODE) == 3)
3227 flag--;
3228 return flag;
3229 }
3230
3231 static int may_o_create(struct user_namespace *mnt_userns,
3232 const struct path *dir, struct dentry *dentry,
3233 umode_t mode)
3234 {
3235 int error = security_path_mknod(dir, dentry, mode, 0);
3236 if (error)
3237 return error;
3238
3239 if (!fsuidgid_has_mapping(dir->dentry->d_sb, mnt_userns))
3240 return -EOVERFLOW;
3241
3242 error = inode_permission(mnt_userns, dir->dentry->d_inode,
3243 MAY_WRITE | MAY_EXEC);
3244 if (error)
3245 return error;
3246
3247 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3248 }
3249
3250 /*
3251 * Attempt to atomically look up, create and open a file from a negative
3252 * dentry.
3253 *
3254 * Returns 0 if successful. The file will have been created and attached to
3255 * @file by the filesystem calling finish_open().
3256 *
3257 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3258 * be set. The caller will need to perform the open themselves. @path will
3259 * have been updated to point to the new dentry. This may be negative.
3260 *
3261 * Returns an error code otherwise.
3262 */
3263 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3264 struct file *file,
3265 int open_flag, umode_t mode)
3266 {
3267 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3268 struct inode *dir = nd->path.dentry->d_inode;
3269 int error;
3270
3271 if (nd->flags & LOOKUP_DIRECTORY)
3272 open_flag |= O_DIRECTORY;
3273
3274 file->f_path.dentry = DENTRY_NOT_SET;
3275 file->f_path.mnt = nd->path.mnt;
3276 error = dir->i_op->atomic_open(dir, dentry, file,
3277 open_to_namei_flags(open_flag), mode);
3278 d_lookup_done(dentry);
3279 if (!error) {
3280 if (file->f_mode & FMODE_OPENED) {
3281 if (unlikely(dentry != file->f_path.dentry)) {
3282 dput(dentry);
3283 dentry = dget(file->f_path.dentry);
3284 }
3285 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3286 error = -EIO;
3287 } else {
3288 if (file->f_path.dentry) {
3289 dput(dentry);
3290 dentry = file->f_path.dentry;
3291 }
3292 if (unlikely(d_is_negative(dentry)))
3293 error = -ENOENT;
3294 }
3295 }
3296 if (error) {
3297 dput(dentry);
3298 dentry = ERR_PTR(error);
3299 }
3300 return dentry;
3301 }
3302
3303 /*
3304 * Look up and maybe create and open the last component.
3305 *
3306 * Must be called with parent locked (exclusive in O_CREAT case).
3307 *
3308 * Returns 0 on success, that is, if
3309 * the file was successfully atomically created (if necessary) and opened, or
3310 * the file was not completely opened at this time, though lookups and
3311 * creations were performed.
3312 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3313 * In the latter case dentry returned in @path might be negative if O_CREAT
3314 * hadn't been specified.
3315 *
3316 * An error code is returned on failure.
3317 */
3318 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3319 const struct open_flags *op,
3320 bool got_write)
3321 {
3322 struct user_namespace *mnt_userns;
3323 struct dentry *dir = nd->path.dentry;
3324 struct inode *dir_inode = dir->d_inode;
3325 int open_flag = op->open_flag;
3326 struct dentry *dentry;
3327 int error, create_error = 0;
3328 umode_t mode = op->mode;
3329 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3330
3331 if (unlikely(IS_DEADDIR(dir_inode)))
3332 return ERR_PTR(-ENOENT);
3333
3334 file->f_mode &= ~FMODE_CREATED;
3335 dentry = d_lookup(dir, &nd->last);
3336 for (;;) {
3337 if (!dentry) {
3338 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3339 if (IS_ERR(dentry))
3340 return dentry;
3341 }
3342 if (d_in_lookup(dentry))
3343 break;
3344
3345 error = d_revalidate(dentry, nd->flags);
3346 if (likely(error > 0))
3347 break;
3348 if (error)
3349 goto out_dput;
3350 d_invalidate(dentry);
3351 dput(dentry);
3352 dentry = NULL;
3353 }
3354 if (dentry->d_inode) {
3355 /* Cached positive dentry: will open in f_op->open */
3356 return dentry;
3357 }
3358
3359 /*
3360 * Checking write permission is tricky, bacuse we don't know if we are
3361 * going to actually need it: O_CREAT opens should work as long as the
3362 * file exists. But checking existence breaks atomicity. The trick is
3363 * to check access and if not granted clear O_CREAT from the flags.
3364 *
3365 * Another problem is returing the "right" error value (e.g. for an
3366 * O_EXCL open we want to return EEXIST not EROFS).
3367 */
3368 if (unlikely(!got_write))
3369 open_flag &= ~O_TRUNC;
3370 mnt_userns = mnt_user_ns(nd->path.mnt);
3371 if (open_flag & O_CREAT) {
3372 if (open_flag & O_EXCL)
3373 open_flag &= ~O_TRUNC;
3374 mode = vfs_prepare_mode(mnt_userns, dir->d_inode, mode, mode, mode);
3375 if (likely(got_write))
3376 create_error = may_o_create(mnt_userns, &nd->path,
3377 dentry, mode);
3378 else
3379 create_error = -EROFS;
3380 }
3381 if (create_error)
3382 open_flag &= ~O_CREAT;
3383 if (dir_inode->i_op->atomic_open) {
3384 dentry = atomic_open(nd, dentry, file, open_flag, mode);
3385 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3386 dentry = ERR_PTR(create_error);
3387 return dentry;
3388 }
3389
3390 if (d_in_lookup(dentry)) {
3391 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3392 nd->flags);
3393 d_lookup_done(dentry);
3394 if (unlikely(res)) {
3395 if (IS_ERR(res)) {
3396 error = PTR_ERR(res);
3397 goto out_dput;
3398 }
3399 dput(dentry);
3400 dentry = res;
3401 }
3402 }
3403
3404 /* Negative dentry, just create the file */
3405 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3406 file->f_mode |= FMODE_CREATED;
3407 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3408 if (!dir_inode->i_op->create) {
3409 error = -EACCES;
3410 goto out_dput;
3411 }
3412
3413 error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry,
3414 mode, open_flag & O_EXCL);
3415 if (error)
3416 goto out_dput;
3417 }
3418 if (unlikely(create_error) && !dentry->d_inode) {
3419 error = create_error;
3420 goto out_dput;
3421 }
3422 return dentry;
3423
3424 out_dput:
3425 dput(dentry);
3426 return ERR_PTR(error);
3427 }
3428
3429 static const char *open_last_lookups(struct nameidata *nd,
3430 struct file *file, const struct open_flags *op)
3431 {
3432 struct dentry *dir = nd->path.dentry;
3433 int open_flag = op->open_flag;
3434 bool got_write = false;
3435 struct dentry *dentry;
3436 const char *res;
3437
3438 nd->flags |= op->intent;
3439
3440 if (nd->last_type != LAST_NORM) {
3441 if (nd->depth)
3442 put_link(nd);
3443 return handle_dots(nd, nd->last_type);
3444 }
3445
3446 if (!(open_flag & O_CREAT)) {
3447 if (nd->last.name[nd->last.len])
3448 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3449 /* we _can_ be in RCU mode here */
3450 dentry = lookup_fast(nd);
3451 if (IS_ERR(dentry))
3452 return ERR_CAST(dentry);
3453 if (likely(dentry))
3454 goto finish_lookup;
3455
3456 BUG_ON(nd->flags & LOOKUP_RCU);
3457 } else {
3458 /* create side of things */
3459 if (nd->flags & LOOKUP_RCU) {
3460 if (!try_to_unlazy(nd))
3461 return ERR_PTR(-ECHILD);
3462 }
3463 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3464 /* trailing slashes? */
3465 if (unlikely(nd->last.name[nd->last.len]))
3466 return ERR_PTR(-EISDIR);
3467 }
3468
3469 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3470 got_write = !mnt_want_write(nd->path.mnt);
3471 /*
3472 * do _not_ fail yet - we might not need that or fail with
3473 * a different error; let lookup_open() decide; we'll be
3474 * dropping this one anyway.
3475 */
3476 }
3477 if (open_flag & O_CREAT)
3478 inode_lock(dir->d_inode);
3479 else
3480 inode_lock_shared(dir->d_inode);
3481 dentry = lookup_open(nd, file, op, got_write);
3482 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3483 fsnotify_create(dir->d_inode, dentry);
3484 if (open_flag & O_CREAT)
3485 inode_unlock(dir->d_inode);
3486 else
3487 inode_unlock_shared(dir->d_inode);
3488
3489 if (got_write)
3490 mnt_drop_write(nd->path.mnt);
3491
3492 if (IS_ERR(dentry))
3493 return ERR_CAST(dentry);
3494
3495 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3496 dput(nd->path.dentry);
3497 nd->path.dentry = dentry;
3498 return NULL;
3499 }
3500
3501 finish_lookup:
3502 if (nd->depth)
3503 put_link(nd);
3504 res = step_into(nd, WALK_TRAILING, dentry);
3505 if (unlikely(res))
3506 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3507 return res;
3508 }
3509
3510 /*
3511 * Handle the last step of open()
3512 */
3513 static int do_open(struct nameidata *nd,
3514 struct file *file, const struct open_flags *op)
3515 {
3516 struct user_namespace *mnt_userns;
3517 int open_flag = op->open_flag;
3518 bool do_truncate;
3519 int acc_mode;
3520 int error;
3521
3522 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3523 error = complete_walk(nd);
3524 if (error)
3525 return error;
3526 }
3527 if (!(file->f_mode & FMODE_CREATED))
3528 audit_inode(nd->name, nd->path.dentry, 0);
3529 mnt_userns = mnt_user_ns(nd->path.mnt);
3530 if (open_flag & O_CREAT) {
3531 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3532 return -EEXIST;
3533 if (d_is_dir(nd->path.dentry))
3534 return -EISDIR;
3535 error = may_create_in_sticky(mnt_userns, nd,
3536 d_backing_inode(nd->path.dentry));
3537 if (unlikely(error))
3538 return error;
3539 }
3540 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3541 return -ENOTDIR;
3542
3543 do_truncate = false;
3544 acc_mode = op->acc_mode;
3545 if (file->f_mode & FMODE_CREATED) {
3546 /* Don't check for write permission, don't truncate */
3547 open_flag &= ~O_TRUNC;
3548 acc_mode = 0;
3549 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3550 error = mnt_want_write(nd->path.mnt);
3551 if (error)
3552 return error;
3553 do_truncate = true;
3554 }
3555 error = may_open(mnt_userns, &nd->path, acc_mode, open_flag);
3556 if (!error && !(file->f_mode & FMODE_OPENED))
3557 error = vfs_open(&nd->path, file);
3558 if (!error)
3559 error = ima_file_check(file, op->acc_mode);
3560 if (!error && do_truncate)
3561 error = handle_truncate(mnt_userns, file);
3562 if (unlikely(error > 0)) {
3563 WARN_ON(1);
3564 error = -EINVAL;
3565 }
3566 if (do_truncate)
3567 mnt_drop_write(nd->path.mnt);
3568 return error;
3569 }
3570
3571 /**
3572 * vfs_tmpfile - create tmpfile
3573 * @mnt_userns: user namespace of the mount the inode was found from
3574 * @dentry: pointer to dentry of the base directory
3575 * @mode: mode of the new tmpfile
3576 * @open_flag: flags
3577 *
3578 * Create a temporary file.
3579 *
3580 * If the inode has been found through an idmapped mount the user namespace of
3581 * the vfsmount must be passed through @mnt_userns. This function will then take
3582 * care to map the inode according to @mnt_userns before checking permissions.
3583 * On non-idmapped mounts or if permission checking is to be performed on the
3584 * raw inode simply passs init_user_ns.
3585 */
3586 struct dentry *vfs_tmpfile(struct user_namespace *mnt_userns,
3587 struct dentry *dentry, umode_t mode, int open_flag)
3588 {
3589 struct dentry *child = NULL;
3590 struct inode *dir = dentry->d_inode;
3591 struct inode *inode;
3592 int error;
3593
3594 /* we want directory to be writable */
3595 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
3596 if (error)
3597 goto out_err;
3598 error = -EOPNOTSUPP;
3599 if (!dir->i_op->tmpfile)
3600 goto out_err;
3601 error = -ENOMEM;
3602 child = d_alloc(dentry, &slash_name);
3603 if (unlikely(!child))
3604 goto out_err;
3605 mode = vfs_prepare_mode(mnt_userns, dir, mode, mode, mode);
3606 error = dir->i_op->tmpfile(mnt_userns, dir, child, mode);
3607 if (error)
3608 goto out_err;
3609 error = -ENOENT;
3610 inode = child->d_inode;
3611 if (unlikely(!inode))
3612 goto out_err;
3613 if (!(open_flag & O_EXCL)) {
3614 spin_lock(&inode->i_lock);
3615 inode->i_state |= I_LINKABLE;
3616 spin_unlock(&inode->i_lock);
3617 }
3618 ima_post_create_tmpfile(mnt_userns, inode);
3619 return child;
3620
3621 out_err:
3622 dput(child);
3623 return ERR_PTR(error);
3624 }
3625 EXPORT_SYMBOL(vfs_tmpfile);
3626
3627 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3628 const struct open_flags *op,
3629 struct file *file)
3630 {
3631 struct user_namespace *mnt_userns;
3632 struct dentry *child;
3633 struct path path;
3634 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3635 if (unlikely(error))
3636 return error;
3637 error = mnt_want_write(path.mnt);
3638 if (unlikely(error))
3639 goto out;
3640 mnt_userns = mnt_user_ns(path.mnt);
3641 child = vfs_tmpfile(mnt_userns, path.dentry, op->mode, op->open_flag);
3642 error = PTR_ERR(child);
3643 if (IS_ERR(child))
3644 goto out2;
3645 dput(path.dentry);
3646 path.dentry = child;
3647 audit_inode(nd->name, child, 0);
3648 /* Don't check for other permissions, the inode was just created */
3649 error = may_open(mnt_userns, &path, 0, op->open_flag);
3650 if (!error)
3651 error = vfs_open(&path, file);
3652 out2:
3653 mnt_drop_write(path.mnt);
3654 out:
3655 path_put(&path);
3656 return error;
3657 }
3658
3659 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3660 {
3661 struct path path;
3662 int error = path_lookupat(nd, flags, &path);
3663 if (!error) {
3664 audit_inode(nd->name, path.dentry, 0);
3665 error = vfs_open(&path, file);
3666 path_put(&path);
3667 }
3668 return error;
3669 }
3670
3671 static struct file *path_openat(struct nameidata *nd,
3672 const struct open_flags *op, unsigned flags)
3673 {
3674 struct file *file;
3675 int error;
3676
3677 file = alloc_empty_file(op->open_flag, current_cred());
3678 if (IS_ERR(file))
3679 return file;
3680
3681 if (unlikely(file->f_flags & __O_TMPFILE)) {
3682 error = do_tmpfile(nd, flags, op, file);
3683 } else if (unlikely(file->f_flags & O_PATH)) {
3684 error = do_o_path(nd, flags, file);
3685 } else {
3686 const char *s = path_init(nd, flags);
3687 while (!(error = link_path_walk(s, nd)) &&
3688 (s = open_last_lookups(nd, file, op)) != NULL)
3689 ;
3690 if (!error)
3691 error = do_open(nd, file, op);
3692 terminate_walk(nd);
3693 }
3694 if (likely(!error)) {
3695 if (likely(file->f_mode & FMODE_OPENED))
3696 return file;
3697 WARN_ON(1);
3698 error = -EINVAL;
3699 }
3700 fput(file);
3701 if (error == -EOPENSTALE) {
3702 if (flags & LOOKUP_RCU)
3703 error = -ECHILD;
3704 else
3705 error = -ESTALE;
3706 }
3707 return ERR_PTR(error);
3708 }
3709
3710 struct file *do_filp_open(int dfd, struct filename *pathname,
3711 const struct open_flags *op)
3712 {
3713 struct nameidata nd;
3714 int flags = op->lookup_flags;
3715 struct file *filp;
3716
3717 set_nameidata(&nd, dfd, pathname, NULL);
3718 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3719 if (unlikely(filp == ERR_PTR(-ECHILD)))
3720 filp = path_openat(&nd, op, flags);
3721 if (unlikely(filp == ERR_PTR(-ESTALE)))
3722 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3723 restore_nameidata();
3724 return filp;
3725 }
3726
3727 struct file *do_file_open_root(const struct path *root,
3728 const char *name, const struct open_flags *op)
3729 {
3730 struct nameidata nd;
3731 struct file *file;
3732 struct filename *filename;
3733 int flags = op->lookup_flags;
3734
3735 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3736 return ERR_PTR(-ELOOP);
3737
3738 filename = getname_kernel(name);
3739 if (IS_ERR(filename))
3740 return ERR_CAST(filename);
3741
3742 set_nameidata(&nd, -1, filename, root);
3743 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3744 if (unlikely(file == ERR_PTR(-ECHILD)))
3745 file = path_openat(&nd, op, flags);
3746 if (unlikely(file == ERR_PTR(-ESTALE)))
3747 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3748 restore_nameidata();
3749 putname(filename);
3750 return file;
3751 }
3752
3753 static struct dentry *filename_create(int dfd, struct filename *name,
3754 struct path *path, unsigned int lookup_flags)
3755 {
3756 struct dentry *dentry = ERR_PTR(-EEXIST);
3757 struct qstr last;
3758 bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
3759 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
3760 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
3761 int type;
3762 int err2;
3763 int error;
3764
3765 error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
3766 if (error)
3767 return ERR_PTR(error);
3768
3769 /*
3770 * Yucky last component or no last component at all?
3771 * (foo/., foo/.., /////)
3772 */
3773 if (unlikely(type != LAST_NORM))
3774 goto out;
3775
3776 /* don't fail immediately if it's r/o, at least try to report other errors */
3777 err2 = mnt_want_write(path->mnt);
3778 /*
3779 * Do the final lookup. Suppress 'create' if there is a trailing
3780 * '/', and a directory wasn't requested.
3781 */
3782 if (last.name[last.len] && !want_dir)
3783 create_flags = 0;
3784 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3785 dentry = __lookup_hash(&last, path->dentry, reval_flag | create_flags);
3786 if (IS_ERR(dentry))
3787 goto unlock;
3788
3789 error = -EEXIST;
3790 if (d_is_positive(dentry))
3791 goto fail;
3792
3793 /*
3794 * Special case - lookup gave negative, but... we had foo/bar/
3795 * From the vfs_mknod() POV we just have a negative dentry -
3796 * all is fine. Let's be bastards - you had / on the end, you've
3797 * been asking for (non-existent) directory. -ENOENT for you.
3798 */
3799 if (unlikely(!create_flags)) {
3800 error = -ENOENT;
3801 goto fail;
3802 }
3803 if (unlikely(err2)) {
3804 error = err2;
3805 goto fail;
3806 }
3807 return dentry;
3808 fail:
3809 dput(dentry);
3810 dentry = ERR_PTR(error);
3811 unlock:
3812 inode_unlock(path->dentry->d_inode);
3813 if (!err2)
3814 mnt_drop_write(path->mnt);
3815 out:
3816 path_put(path);
3817 return dentry;
3818 }
3819
3820 struct dentry *kern_path_create(int dfd, const char *pathname,
3821 struct path *path, unsigned int lookup_flags)
3822 {
3823 struct filename *filename = getname_kernel(pathname);
3824 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3825
3826 putname(filename);
3827 return res;
3828 }
3829 EXPORT_SYMBOL(kern_path_create);
3830
3831 void done_path_create(struct path *path, struct dentry *dentry)
3832 {
3833 dput(dentry);
3834 inode_unlock(path->dentry->d_inode);
3835 mnt_drop_write(path->mnt);
3836 path_put(path);
3837 }
3838 EXPORT_SYMBOL(done_path_create);
3839
3840 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3841 struct path *path, unsigned int lookup_flags)
3842 {
3843 struct filename *filename = getname(pathname);
3844 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3845
3846 putname(filename);
3847 return res;
3848 }
3849 EXPORT_SYMBOL(user_path_create);
3850
3851 /**
3852 * vfs_mknod - create device node or file
3853 * @mnt_userns: user namespace of the mount the inode was found from
3854 * @dir: inode of @dentry
3855 * @dentry: pointer to dentry of the base directory
3856 * @mode: mode of the new device node or file
3857 * @dev: device number of device to create
3858 *
3859 * Create a device node or file.
3860 *
3861 * If the inode has been found through an idmapped mount the user namespace of
3862 * the vfsmount must be passed through @mnt_userns. This function will then take
3863 * care to map the inode according to @mnt_userns before checking permissions.
3864 * On non-idmapped mounts or if permission checking is to be performed on the
3865 * raw inode simply passs init_user_ns.
3866 */
3867 int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
3868 struct dentry *dentry, umode_t mode, dev_t dev)
3869 {
3870 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3871 int error = may_create(mnt_userns, dir, dentry);
3872
3873 if (error)
3874 return error;
3875
3876 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3877 !capable(CAP_MKNOD))
3878 return -EPERM;
3879
3880 if (!dir->i_op->mknod)
3881 return -EPERM;
3882
3883 mode = vfs_prepare_mode(mnt_userns, dir, mode, mode, mode);
3884 error = devcgroup_inode_mknod(mode, dev);
3885 if (error)
3886 return error;
3887
3888 error = security_inode_mknod(dir, dentry, mode, dev);
3889 if (error)
3890 return error;
3891
3892 error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev);
3893 if (!error)
3894 fsnotify_create(dir, dentry);
3895 return error;
3896 }
3897 EXPORT_SYMBOL(vfs_mknod);
3898
3899 static int may_mknod(umode_t mode)
3900 {
3901 switch (mode & S_IFMT) {
3902 case S_IFREG:
3903 case S_IFCHR:
3904 case S_IFBLK:
3905 case S_IFIFO:
3906 case S_IFSOCK:
3907 case 0: /* zero mode translates to S_IFREG */
3908 return 0;
3909 case S_IFDIR:
3910 return -EPERM;
3911 default:
3912 return -EINVAL;
3913 }
3914 }
3915
3916 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
3917 unsigned int dev)
3918 {
3919 struct user_namespace *mnt_userns;
3920 struct dentry *dentry;
3921 struct path path;
3922 int error;
3923 unsigned int lookup_flags = 0;
3924
3925 error = may_mknod(mode);
3926 if (error)
3927 goto out1;
3928 retry:
3929 dentry = filename_create(dfd, name, &path, lookup_flags);
3930 error = PTR_ERR(dentry);
3931 if (IS_ERR(dentry))
3932 goto out1;
3933
3934 error = security_path_mknod(&path, dentry,
3935 mode_strip_umask(path.dentry->d_inode, mode), dev);
3936 if (error)
3937 goto out2;
3938
3939 mnt_userns = mnt_user_ns(path.mnt);
3940 switch (mode & S_IFMT) {
3941 case 0: case S_IFREG:
3942 error = vfs_create(mnt_userns, path.dentry->d_inode,
3943 dentry, mode, true);
3944 if (!error)
3945 ima_post_path_mknod(mnt_userns, dentry);
3946 break;
3947 case S_IFCHR: case S_IFBLK:
3948 error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3949 dentry, mode, new_decode_dev(dev));
3950 break;
3951 case S_IFIFO: case S_IFSOCK:
3952 error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3953 dentry, mode, 0);
3954 break;
3955 }
3956 out2:
3957 done_path_create(&path, dentry);
3958 if (retry_estale(error, lookup_flags)) {
3959 lookup_flags |= LOOKUP_REVAL;
3960 goto retry;
3961 }
3962 out1:
3963 putname(name);
3964 return error;
3965 }
3966
3967 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3968 unsigned int, dev)
3969 {
3970 return do_mknodat(dfd, getname(filename), mode, dev);
3971 }
3972
3973 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3974 {
3975 return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
3976 }
3977
3978 /**
3979 * vfs_mkdir - create directory
3980 * @mnt_userns: user namespace of the mount the inode was found from
3981 * @dir: inode of @dentry
3982 * @dentry: pointer to dentry of the base directory
3983 * @mode: mode of the new directory
3984 *
3985 * Create a directory.
3986 *
3987 * If the inode has been found through an idmapped mount the user namespace of
3988 * the vfsmount must be passed through @mnt_userns. This function will then take
3989 * care to map the inode according to @mnt_userns before checking permissions.
3990 * On non-idmapped mounts or if permission checking is to be performed on the
3991 * raw inode simply passs init_user_ns.
3992 */
3993 int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
3994 struct dentry *dentry, umode_t mode)
3995 {
3996 int error = may_create(mnt_userns, dir, dentry);
3997 unsigned max_links = dir->i_sb->s_max_links;
3998
3999 if (error)
4000 return error;
4001
4002 if (!dir->i_op->mkdir)
4003 return -EPERM;
4004
4005 mode = vfs_prepare_mode(mnt_userns, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4006 error = security_inode_mkdir(dir, dentry, mode);
4007 if (error)
4008 return error;
4009
4010 if (max_links && dir->i_nlink >= max_links)
4011 return -EMLINK;
4012
4013 error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode);
4014 if (!error)
4015 fsnotify_mkdir(dir, dentry);
4016 return error;
4017 }
4018 EXPORT_SYMBOL(vfs_mkdir);
4019
4020 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4021 {
4022 struct dentry *dentry;
4023 struct path path;
4024 int error;
4025 unsigned int lookup_flags = LOOKUP_DIRECTORY;
4026
4027 retry:
4028 dentry = filename_create(dfd, name, &path, lookup_flags);
4029 error = PTR_ERR(dentry);
4030 if (IS_ERR(dentry))
4031 goto out_putname;
4032
4033 error = security_path_mkdir(&path, dentry,
4034 mode_strip_umask(path.dentry->d_inode, mode));
4035 if (!error) {
4036 struct user_namespace *mnt_userns;
4037 mnt_userns = mnt_user_ns(path.mnt);
4038 error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry,
4039 mode);
4040 }
4041 done_path_create(&path, dentry);
4042 if (retry_estale(error, lookup_flags)) {
4043 lookup_flags |= LOOKUP_REVAL;
4044 goto retry;
4045 }
4046 out_putname:
4047 putname(name);
4048 return error;
4049 }
4050
4051 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4052 {
4053 return do_mkdirat(dfd, getname(pathname), mode);
4054 }
4055
4056 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4057 {
4058 return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4059 }
4060
4061 /**
4062 * vfs_rmdir - remove directory
4063 * @mnt_userns: user namespace of the mount the inode was found from
4064 * @dir: inode of @dentry
4065 * @dentry: pointer to dentry of the base directory
4066 *
4067 * Remove a directory.
4068 *
4069 * If the inode has been found through an idmapped mount the user namespace of
4070 * the vfsmount must be passed through @mnt_userns. This function will then take
4071 * care to map the inode according to @mnt_userns before checking permissions.
4072 * On non-idmapped mounts or if permission checking is to be performed on the
4073 * raw inode simply passs init_user_ns.
4074 */
4075 int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir,
4076 struct dentry *dentry)
4077 {
4078 int error = may_delete(mnt_userns, dir, dentry, 1);
4079
4080 if (error)
4081 return error;
4082
4083 if (!dir->i_op->rmdir)
4084 return -EPERM;
4085
4086 dget(dentry);
4087 inode_lock(dentry->d_inode);
4088
4089 error = -EBUSY;
4090 if (is_local_mountpoint(dentry) ||
4091 (dentry->d_inode->i_flags & S_KERNEL_FILE))
4092 goto out;
4093
4094 error = security_inode_rmdir(dir, dentry);
4095 if (error)
4096 goto out;
4097
4098 error = dir->i_op->rmdir(dir, dentry);
4099 if (error)
4100 goto out;
4101
4102 shrink_dcache_parent(dentry);
4103 dentry->d_inode->i_flags |= S_DEAD;
4104 dont_mount(dentry);
4105 detach_mounts(dentry);
4106
4107 out:
4108 inode_unlock(dentry->d_inode);
4109 dput(dentry);
4110 if (!error)
4111 d_delete_notify(dir, dentry);
4112 return error;
4113 }
4114 EXPORT_SYMBOL(vfs_rmdir);
4115
4116 int do_rmdir(int dfd, struct filename *name)
4117 {
4118 struct user_namespace *mnt_userns;
4119 int error;
4120 struct dentry *dentry;
4121 struct path path;
4122 struct qstr last;
4123 int type;
4124 unsigned int lookup_flags = 0;
4125 retry:
4126 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4127 if (error)
4128 goto exit1;
4129
4130 switch (type) {
4131 case LAST_DOTDOT:
4132 error = -ENOTEMPTY;
4133 goto exit2;
4134 case LAST_DOT:
4135 error = -EINVAL;
4136 goto exit2;
4137 case LAST_ROOT:
4138 error = -EBUSY;
4139 goto exit2;
4140 }
4141
4142 error = mnt_want_write(path.mnt);
4143 if (error)
4144 goto exit2;
4145
4146 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4147 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4148 error = PTR_ERR(dentry);
4149 if (IS_ERR(dentry))
4150 goto exit3;
4151 if (!dentry->d_inode) {
4152 error = -ENOENT;
4153 goto exit4;
4154 }
4155 error = security_path_rmdir(&path, dentry);
4156 if (error)
4157 goto exit4;
4158 mnt_userns = mnt_user_ns(path.mnt);
4159 error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry);
4160 exit4:
4161 dput(dentry);
4162 exit3:
4163 inode_unlock(path.dentry->d_inode);
4164 mnt_drop_write(path.mnt);
4165 exit2:
4166 path_put(&path);
4167 if (retry_estale(error, lookup_flags)) {
4168 lookup_flags |= LOOKUP_REVAL;
4169 goto retry;
4170 }
4171 exit1:
4172 putname(name);
4173 return error;
4174 }
4175
4176 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4177 {
4178 return do_rmdir(AT_FDCWD, getname(pathname));
4179 }
4180
4181 /**
4182 * vfs_unlink - unlink a filesystem object
4183 * @mnt_userns: user namespace of the mount the inode was found from
4184 * @dir: parent directory
4185 * @dentry: victim
4186 * @delegated_inode: returns victim inode, if the inode is delegated.
4187 *
4188 * The caller must hold dir->i_mutex.
4189 *
4190 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4191 * return a reference to the inode in delegated_inode. The caller
4192 * should then break the delegation on that inode and retry. Because
4193 * breaking a delegation may take a long time, the caller should drop
4194 * dir->i_mutex before doing so.
4195 *
4196 * Alternatively, a caller may pass NULL for delegated_inode. This may
4197 * be appropriate for callers that expect the underlying filesystem not
4198 * to be NFS exported.
4199 *
4200 * If the inode has been found through an idmapped mount the user namespace of
4201 * the vfsmount must be passed through @mnt_userns. This function will then take
4202 * care to map the inode according to @mnt_userns before checking permissions.
4203 * On non-idmapped mounts or if permission checking is to be performed on the
4204 * raw inode simply passs init_user_ns.
4205 */
4206 int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir,
4207 struct dentry *dentry, struct inode **delegated_inode)
4208 {
4209 struct inode *target = dentry->d_inode;
4210 int error = may_delete(mnt_userns, dir, dentry, 0);
4211
4212 if (error)
4213 return error;
4214
4215 if (!dir->i_op->unlink)
4216 return -EPERM;
4217
4218 inode_lock(target);
4219 if (IS_SWAPFILE(target))
4220 error = -EPERM;
4221 else if (is_local_mountpoint(dentry))
4222 error = -EBUSY;
4223 else {
4224 error = security_inode_unlink(dir, dentry);
4225 if (!error) {
4226 error = try_break_deleg(target, delegated_inode);
4227 if (error)
4228 goto out;
4229 error = dir->i_op->unlink(dir, dentry);
4230 if (!error) {
4231 dont_mount(dentry);
4232 detach_mounts(dentry);
4233 }
4234 }
4235 }
4236 out:
4237 inode_unlock(target);
4238
4239 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4240 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4241 fsnotify_unlink(dir, dentry);
4242 } else if (!error) {
4243 fsnotify_link_count(target);
4244 d_delete_notify(dir, dentry);
4245 }
4246
4247 return error;
4248 }
4249 EXPORT_SYMBOL(vfs_unlink);
4250
4251 /*
4252 * Make sure that the actual truncation of the file will occur outside its
4253 * directory's i_mutex. Truncate can take a long time if there is a lot of
4254 * writeout happening, and we don't want to prevent access to the directory
4255 * while waiting on the I/O.
4256 */
4257 int do_unlinkat(int dfd, struct filename *name)
4258 {
4259 int error;
4260 struct dentry *dentry;
4261 struct path path;
4262 struct qstr last;
4263 int type;
4264 struct inode *inode = NULL;
4265 struct inode *delegated_inode = NULL;
4266 unsigned int lookup_flags = 0;
4267 retry:
4268 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4269 if (error)
4270 goto exit1;
4271
4272 error = -EISDIR;
4273 if (type != LAST_NORM)
4274 goto exit2;
4275
4276 error = mnt_want_write(path.mnt);
4277 if (error)
4278 goto exit2;
4279 retry_deleg:
4280 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4281 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4282 error = PTR_ERR(dentry);
4283 if (!IS_ERR(dentry)) {
4284 struct user_namespace *mnt_userns;
4285
4286 /* Why not before? Because we want correct error value */
4287 if (last.name[last.len])
4288 goto slashes;
4289 inode = dentry->d_inode;
4290 if (d_is_negative(dentry))
4291 goto slashes;
4292 ihold(inode);
4293 error = security_path_unlink(&path, dentry);
4294 if (error)
4295 goto exit3;
4296 mnt_userns = mnt_user_ns(path.mnt);
4297 error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry,
4298 &delegated_inode);
4299 exit3:
4300 dput(dentry);
4301 }
4302 inode_unlock(path.dentry->d_inode);
4303 if (inode)
4304 iput(inode); /* truncate the inode here */
4305 inode = NULL;
4306 if (delegated_inode) {
4307 error = break_deleg_wait(&delegated_inode);
4308 if (!error)
4309 goto retry_deleg;
4310 }
4311 mnt_drop_write(path.mnt);
4312 exit2:
4313 path_put(&path);
4314 if (retry_estale(error, lookup_flags)) {
4315 lookup_flags |= LOOKUP_REVAL;
4316 inode = NULL;
4317 goto retry;
4318 }
4319 exit1:
4320 putname(name);
4321 return error;
4322
4323 slashes:
4324 if (d_is_negative(dentry))
4325 error = -ENOENT;
4326 else if (d_is_dir(dentry))
4327 error = -EISDIR;
4328 else
4329 error = -ENOTDIR;
4330 goto exit3;
4331 }
4332
4333 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4334 {
4335 if ((flag & ~AT_REMOVEDIR) != 0)
4336 return -EINVAL;
4337
4338 if (flag & AT_REMOVEDIR)
4339 return do_rmdir(dfd, getname(pathname));
4340 return do_unlinkat(dfd, getname(pathname));
4341 }
4342
4343 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4344 {
4345 return do_unlinkat(AT_FDCWD, getname(pathname));
4346 }
4347
4348 /**
4349 * vfs_symlink - create symlink
4350 * @mnt_userns: user namespace of the mount the inode was found from
4351 * @dir: inode of @dentry
4352 * @dentry: pointer to dentry of the base directory
4353 * @oldname: name of the file to link to
4354 *
4355 * Create a symlink.
4356 *
4357 * If the inode has been found through an idmapped mount the user namespace of
4358 * the vfsmount must be passed through @mnt_userns. This function will then take
4359 * care to map the inode according to @mnt_userns before checking permissions.
4360 * On non-idmapped mounts or if permission checking is to be performed on the
4361 * raw inode simply passs init_user_ns.
4362 */
4363 int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
4364 struct dentry *dentry, const char *oldname)
4365 {
4366 int error = may_create(mnt_userns, dir, dentry);
4367
4368 if (error)
4369 return error;
4370
4371 if (!dir->i_op->symlink)
4372 return -EPERM;
4373
4374 error = security_inode_symlink(dir, dentry, oldname);
4375 if (error)
4376 return error;
4377
4378 error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname);
4379 if (!error)
4380 fsnotify_create(dir, dentry);
4381 return error;
4382 }
4383 EXPORT_SYMBOL(vfs_symlink);
4384
4385 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4386 {
4387 int error;
4388 struct dentry *dentry;
4389 struct path path;
4390 unsigned int lookup_flags = 0;
4391
4392 if (IS_ERR(from)) {
4393 error = PTR_ERR(from);
4394 goto out_putnames;
4395 }
4396 retry:
4397 dentry = filename_create(newdfd, to, &path, lookup_flags);
4398 error = PTR_ERR(dentry);
4399 if (IS_ERR(dentry))
4400 goto out_putnames;
4401
4402 error = security_path_symlink(&path, dentry, from->name);
4403 if (!error) {
4404 struct user_namespace *mnt_userns;
4405
4406 mnt_userns = mnt_user_ns(path.mnt);
4407 error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry,
4408 from->name);
4409 }
4410 done_path_create(&path, dentry);
4411 if (retry_estale(error, lookup_flags)) {
4412 lookup_flags |= LOOKUP_REVAL;
4413 goto retry;
4414 }
4415 out_putnames:
4416 putname(to);
4417 putname(from);
4418 return error;
4419 }
4420
4421 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4422 int, newdfd, const char __user *, newname)
4423 {
4424 return do_symlinkat(getname(oldname), newdfd, getname(newname));
4425 }
4426
4427 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4428 {
4429 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4430 }
4431
4432 /**
4433 * vfs_link - create a new link
4434 * @old_dentry: object to be linked
4435 * @mnt_userns: the user namespace of the mount
4436 * @dir: new parent
4437 * @new_dentry: where to create the new link
4438 * @delegated_inode: returns inode needing a delegation break
4439 *
4440 * The caller must hold dir->i_mutex
4441 *
4442 * If vfs_link discovers a delegation on the to-be-linked file in need
4443 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4444 * inode in delegated_inode. The caller should then break the delegation
4445 * and retry. Because breaking a delegation may take a long time, the
4446 * caller should drop the i_mutex before doing so.
4447 *
4448 * Alternatively, a caller may pass NULL for delegated_inode. This may
4449 * be appropriate for callers that expect the underlying filesystem not
4450 * to be NFS exported.
4451 *
4452 * If the inode has been found through an idmapped mount the user namespace of
4453 * the vfsmount must be passed through @mnt_userns. This function will then take
4454 * care to map the inode according to @mnt_userns before checking permissions.
4455 * On non-idmapped mounts or if permission checking is to be performed on the
4456 * raw inode simply passs init_user_ns.
4457 */
4458 int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns,
4459 struct inode *dir, struct dentry *new_dentry,
4460 struct inode **delegated_inode)
4461 {
4462 struct inode *inode = old_dentry->d_inode;
4463 unsigned max_links = dir->i_sb->s_max_links;
4464 int error;
4465
4466 if (!inode)
4467 return -ENOENT;
4468
4469 error = may_create(mnt_userns, dir, new_dentry);
4470 if (error)
4471 return error;
4472
4473 if (dir->i_sb != inode->i_sb)
4474 return -EXDEV;
4475
4476 /*
4477 * A link to an append-only or immutable file cannot be created.
4478 */
4479 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4480 return -EPERM;
4481 /*
4482 * Updating the link count will likely cause i_uid and i_gid to
4483 * be writen back improperly if their true value is unknown to
4484 * the vfs.
4485 */
4486 if (HAS_UNMAPPED_ID(mnt_userns, inode))
4487 return -EPERM;
4488 if (!dir->i_op->link)
4489 return -EPERM;
4490 if (S_ISDIR(inode->i_mode))
4491 return -EPERM;
4492
4493 error = security_inode_link(old_dentry, dir, new_dentry);
4494 if (error)
4495 return error;
4496
4497 inode_lock(inode);
4498 /* Make sure we don't allow creating hardlink to an unlinked file */
4499 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4500 error = -ENOENT;
4501 else if (max_links && inode->i_nlink >= max_links)
4502 error = -EMLINK;
4503 else {
4504 error = try_break_deleg(inode, delegated_inode);
4505 if (!error)
4506 error = dir->i_op->link(old_dentry, dir, new_dentry);
4507 }
4508
4509 if (!error && (inode->i_state & I_LINKABLE)) {
4510 spin_lock(&inode->i_lock);
4511 inode->i_state &= ~I_LINKABLE;
4512 spin_unlock(&inode->i_lock);
4513 }
4514 inode_unlock(inode);
4515 if (!error)
4516 fsnotify_link(dir, inode, new_dentry);
4517 return error;
4518 }
4519 EXPORT_SYMBOL(vfs_link);
4520
4521 /*
4522 * Hardlinks are often used in delicate situations. We avoid
4523 * security-related surprises by not following symlinks on the
4524 * newname. --KAB
4525 *
4526 * We don't follow them on the oldname either to be compatible
4527 * with linux 2.0, and to avoid hard-linking to directories
4528 * and other special files. --ADM
4529 */
4530 int do_linkat(int olddfd, struct filename *old, int newdfd,
4531 struct filename *new, int flags)
4532 {
4533 struct user_namespace *mnt_userns;
4534 struct dentry *new_dentry;
4535 struct path old_path, new_path;
4536 struct inode *delegated_inode = NULL;
4537 int how = 0;
4538 int error;
4539
4540 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4541 error = -EINVAL;
4542 goto out_putnames;
4543 }
4544 /*
4545 * To use null names we require CAP_DAC_READ_SEARCH
4546 * This ensures that not everyone will be able to create
4547 * handlink using the passed filedescriptor.
4548 */
4549 if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) {
4550 error = -ENOENT;
4551 goto out_putnames;
4552 }
4553
4554 if (flags & AT_SYMLINK_FOLLOW)
4555 how |= LOOKUP_FOLLOW;
4556 retry:
4557 error = filename_lookup(olddfd, old, how, &old_path, NULL);
4558 if (error)
4559 goto out_putnames;
4560
4561 new_dentry = filename_create(newdfd, new, &new_path,
4562 (how & LOOKUP_REVAL));
4563 error = PTR_ERR(new_dentry);
4564 if (IS_ERR(new_dentry))
4565 goto out_putpath;
4566
4567 error = -EXDEV;
4568 if (old_path.mnt != new_path.mnt)
4569 goto out_dput;
4570 mnt_userns = mnt_user_ns(new_path.mnt);
4571 error = may_linkat(mnt_userns, &old_path);
4572 if (unlikely(error))
4573 goto out_dput;
4574 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4575 if (error)
4576 goto out_dput;
4577 error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode,
4578 new_dentry, &delegated_inode);
4579 out_dput:
4580 done_path_create(&new_path, new_dentry);
4581 if (delegated_inode) {
4582 error = break_deleg_wait(&delegated_inode);
4583 if (!error) {
4584 path_put(&old_path);
4585 goto retry;
4586 }
4587 }
4588 if (retry_estale(error, how)) {
4589 path_put(&old_path);
4590 how |= LOOKUP_REVAL;
4591 goto retry;
4592 }
4593 out_putpath:
4594 path_put(&old_path);
4595 out_putnames:
4596 putname(old);
4597 putname(new);
4598
4599 return error;
4600 }
4601
4602 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4603 int, newdfd, const char __user *, newname, int, flags)
4604 {
4605 return do_linkat(olddfd, getname_uflags(oldname, flags),
4606 newdfd, getname(newname), flags);
4607 }
4608
4609 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4610 {
4611 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4612 }
4613
4614 /**
4615 * vfs_rename - rename a filesystem object
4616 * @rd: pointer to &struct renamedata info
4617 *
4618 * The caller must hold multiple mutexes--see lock_rename()).
4619 *
4620 * If vfs_rename discovers a delegation in need of breaking at either
4621 * the source or destination, it will return -EWOULDBLOCK and return a
4622 * reference to the inode in delegated_inode. The caller should then
4623 * break the delegation and retry. Because breaking a delegation may
4624 * take a long time, the caller should drop all locks before doing
4625 * so.
4626 *
4627 * Alternatively, a caller may pass NULL for delegated_inode. This may
4628 * be appropriate for callers that expect the underlying filesystem not
4629 * to be NFS exported.
4630 *
4631 * The worst of all namespace operations - renaming directory. "Perverted"
4632 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4633 * Problems:
4634 *
4635 * a) we can get into loop creation.
4636 * b) race potential - two innocent renames can create a loop together.
4637 * That's where 4.4 screws up. Current fix: serialization on
4638 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4639 * story.
4640 * c) we have to lock _four_ objects - parents and victim (if it exists),
4641 * and source (if it is not a directory).
4642 * And that - after we got ->i_mutex on parents (until then we don't know
4643 * whether the target exists). Solution: try to be smart with locking
4644 * order for inodes. We rely on the fact that tree topology may change
4645 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4646 * move will be locked. Thus we can rank directories by the tree
4647 * (ancestors first) and rank all non-directories after them.
4648 * That works since everybody except rename does "lock parent, lookup,
4649 * lock child" and rename is under ->s_vfs_rename_mutex.
4650 * HOWEVER, it relies on the assumption that any object with ->lookup()
4651 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4652 * we'd better make sure that there's no link(2) for them.
4653 * d) conversion from fhandle to dentry may come in the wrong moment - when
4654 * we are removing the target. Solution: we will have to grab ->i_mutex
4655 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4656 * ->i_mutex on parents, which works but leads to some truly excessive
4657 * locking].
4658 */
4659 int vfs_rename(struct renamedata *rd)
4660 {
4661 int error;
4662 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4663 struct dentry *old_dentry = rd->old_dentry;
4664 struct dentry *new_dentry = rd->new_dentry;
4665 struct inode **delegated_inode = rd->delegated_inode;
4666 unsigned int flags = rd->flags;
4667 bool is_dir = d_is_dir(old_dentry);
4668 struct inode *source = old_dentry->d_inode;
4669 struct inode *target = new_dentry->d_inode;
4670 bool new_is_dir = false;
4671 unsigned max_links = new_dir->i_sb->s_max_links;
4672 struct name_snapshot old_name;
4673
4674 if (source == target)
4675 return 0;
4676
4677 error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir);
4678 if (error)
4679 return error;
4680
4681 if (!target) {
4682 error = may_create(rd->new_mnt_userns, new_dir, new_dentry);
4683 } else {
4684 new_is_dir = d_is_dir(new_dentry);
4685
4686 if (!(flags & RENAME_EXCHANGE))
4687 error = may_delete(rd->new_mnt_userns, new_dir,
4688 new_dentry, is_dir);
4689 else
4690 error = may_delete(rd->new_mnt_userns, new_dir,
4691 new_dentry, new_is_dir);
4692 }
4693 if (error)
4694 return error;
4695
4696 if (!old_dir->i_op->rename)
4697 return -EPERM;
4698
4699 /*
4700 * If we are going to change the parent - check write permissions,
4701 * we'll need to flip '..'.
4702 */
4703 if (new_dir != old_dir) {
4704 if (is_dir) {
4705 error = inode_permission(rd->old_mnt_userns, source,
4706 MAY_WRITE);
4707 if (error)
4708 return error;
4709 }
4710 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4711 error = inode_permission(rd->new_mnt_userns, target,
4712 MAY_WRITE);
4713 if (error)
4714 return error;
4715 }
4716 }
4717
4718 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4719 flags);
4720 if (error)
4721 return error;
4722
4723 take_dentry_name_snapshot(&old_name, old_dentry);
4724 dget(new_dentry);
4725 if (!is_dir || (flags & RENAME_EXCHANGE))
4726 lock_two_nondirectories(source, target);
4727 else if (target)
4728 inode_lock(target);
4729
4730 error = -EPERM;
4731 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4732 goto out;
4733
4734 error = -EBUSY;
4735 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4736 goto out;
4737
4738 if (max_links && new_dir != old_dir) {
4739 error = -EMLINK;
4740 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4741 goto out;
4742 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4743 old_dir->i_nlink >= max_links)
4744 goto out;
4745 }
4746 if (!is_dir) {
4747 error = try_break_deleg(source, delegated_inode);
4748 if (error)
4749 goto out;
4750 }
4751 if (target && !new_is_dir) {
4752 error = try_break_deleg(target, delegated_inode);
4753 if (error)
4754 goto out;
4755 }
4756 error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry,
4757 new_dir, new_dentry, flags);
4758 if (error)
4759 goto out;
4760
4761 if (!(flags & RENAME_EXCHANGE) && target) {
4762 if (is_dir) {
4763 shrink_dcache_parent(new_dentry);
4764 target->i_flags |= S_DEAD;
4765 }
4766 dont_mount(new_dentry);
4767 detach_mounts(new_dentry);
4768 }
4769 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4770 if (!(flags & RENAME_EXCHANGE))
4771 d_move(old_dentry, new_dentry);
4772 else
4773 d_exchange(old_dentry, new_dentry);
4774 }
4775 out:
4776 if (!is_dir || (flags & RENAME_EXCHANGE))
4777 unlock_two_nondirectories(source, target);
4778 else if (target)
4779 inode_unlock(target);
4780 dput(new_dentry);
4781 if (!error) {
4782 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4783 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4784 if (flags & RENAME_EXCHANGE) {
4785 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4786 new_is_dir, NULL, new_dentry);
4787 }
4788 }
4789 release_dentry_name_snapshot(&old_name);
4790
4791 return error;
4792 }
4793 EXPORT_SYMBOL(vfs_rename);
4794
4795 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4796 struct filename *to, unsigned int flags)
4797 {
4798 struct renamedata rd;
4799 struct dentry *old_dentry, *new_dentry;
4800 struct dentry *trap;
4801 struct path old_path, new_path;
4802 struct qstr old_last, new_last;
4803 int old_type, new_type;
4804 struct inode *delegated_inode = NULL;
4805 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4806 bool should_retry = false;
4807 int error = -EINVAL;
4808
4809 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4810 goto put_names;
4811
4812 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4813 (flags & RENAME_EXCHANGE))
4814 goto put_names;
4815
4816 if (flags & RENAME_EXCHANGE)
4817 target_flags = 0;
4818
4819 retry:
4820 error = filename_parentat(olddfd, from, lookup_flags, &old_path,
4821 &old_last, &old_type);
4822 if (error)
4823 goto put_names;
4824
4825 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4826 &new_type);
4827 if (error)
4828 goto exit1;
4829
4830 error = -EXDEV;
4831 if (old_path.mnt != new_path.mnt)
4832 goto exit2;
4833
4834 error = -EBUSY;
4835 if (old_type != LAST_NORM)
4836 goto exit2;
4837
4838 if (flags & RENAME_NOREPLACE)
4839 error = -EEXIST;
4840 if (new_type != LAST_NORM)
4841 goto exit2;
4842
4843 error = mnt_want_write(old_path.mnt);
4844 if (error)
4845 goto exit2;
4846
4847 retry_deleg:
4848 trap = lock_rename(new_path.dentry, old_path.dentry);
4849
4850 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4851 error = PTR_ERR(old_dentry);
4852 if (IS_ERR(old_dentry))
4853 goto exit3;
4854 /* source must exist */
4855 error = -ENOENT;
4856 if (d_is_negative(old_dentry))
4857 goto exit4;
4858 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4859 error = PTR_ERR(new_dentry);
4860 if (IS_ERR(new_dentry))
4861 goto exit4;
4862 error = -EEXIST;
4863 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4864 goto exit5;
4865 if (flags & RENAME_EXCHANGE) {
4866 error = -ENOENT;
4867 if (d_is_negative(new_dentry))
4868 goto exit5;
4869
4870 if (!d_is_dir(new_dentry)) {
4871 error = -ENOTDIR;
4872 if (new_last.name[new_last.len])
4873 goto exit5;
4874 }
4875 }
4876 /* unless the source is a directory trailing slashes give -ENOTDIR */
4877 if (!d_is_dir(old_dentry)) {
4878 error = -ENOTDIR;
4879 if (old_last.name[old_last.len])
4880 goto exit5;
4881 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4882 goto exit5;
4883 }
4884 /* source should not be ancestor of target */
4885 error = -EINVAL;
4886 if (old_dentry == trap)
4887 goto exit5;
4888 /* target should not be an ancestor of source */
4889 if (!(flags & RENAME_EXCHANGE))
4890 error = -ENOTEMPTY;
4891 if (new_dentry == trap)
4892 goto exit5;
4893
4894 error = security_path_rename(&old_path, old_dentry,
4895 &new_path, new_dentry, flags);
4896 if (error)
4897 goto exit5;
4898
4899 rd.old_dir = old_path.dentry->d_inode;
4900 rd.old_dentry = old_dentry;
4901 rd.old_mnt_userns = mnt_user_ns(old_path.mnt);
4902 rd.new_dir = new_path.dentry->d_inode;
4903 rd.new_dentry = new_dentry;
4904 rd.new_mnt_userns = mnt_user_ns(new_path.mnt);
4905 rd.delegated_inode = &delegated_inode;
4906 rd.flags = flags;
4907 error = vfs_rename(&rd);
4908 exit5:
4909 dput(new_dentry);
4910 exit4:
4911 dput(old_dentry);
4912 exit3:
4913 unlock_rename(new_path.dentry, old_path.dentry);
4914 if (delegated_inode) {
4915 error = break_deleg_wait(&delegated_inode);
4916 if (!error)
4917 goto retry_deleg;
4918 }
4919 mnt_drop_write(old_path.mnt);
4920 exit2:
4921 if (retry_estale(error, lookup_flags))
4922 should_retry = true;
4923 path_put(&new_path);
4924 exit1:
4925 path_put(&old_path);
4926 if (should_retry) {
4927 should_retry = false;
4928 lookup_flags |= LOOKUP_REVAL;
4929 goto retry;
4930 }
4931 put_names:
4932 putname(from);
4933 putname(to);
4934 return error;
4935 }
4936
4937 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4938 int, newdfd, const char __user *, newname, unsigned int, flags)
4939 {
4940 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4941 flags);
4942 }
4943
4944 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4945 int, newdfd, const char __user *, newname)
4946 {
4947 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4948 0);
4949 }
4950
4951 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4952 {
4953 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
4954 getname(newname), 0);
4955 }
4956
4957 int readlink_copy(char __user *buffer, int buflen, const char *link)
4958 {
4959 int len = PTR_ERR(link);
4960 if (IS_ERR(link))
4961 goto out;
4962
4963 len = strlen(link);
4964 if (len > (unsigned) buflen)
4965 len = buflen;
4966 if (copy_to_user(buffer, link, len))
4967 len = -EFAULT;
4968 out:
4969 return len;
4970 }
4971
4972 /**
4973 * vfs_readlink - copy symlink body into userspace buffer
4974 * @dentry: dentry on which to get symbolic link
4975 * @buffer: user memory pointer
4976 * @buflen: size of buffer
4977 *
4978 * Does not touch atime. That's up to the caller if necessary
4979 *
4980 * Does not call security hook.
4981 */
4982 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4983 {
4984 struct inode *inode = d_inode(dentry);
4985 DEFINE_DELAYED_CALL(done);
4986 const char *link;
4987 int res;
4988
4989 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4990 if (unlikely(inode->i_op->readlink))
4991 return inode->i_op->readlink(dentry, buffer, buflen);
4992
4993 if (!d_is_symlink(dentry))
4994 return -EINVAL;
4995
4996 spin_lock(&inode->i_lock);
4997 inode->i_opflags |= IOP_DEFAULT_READLINK;
4998 spin_unlock(&inode->i_lock);
4999 }
5000
5001 link = READ_ONCE(inode->i_link);
5002 if (!link) {
5003 link = inode->i_op->get_link(dentry, inode, &done);
5004 if (IS_ERR(link))
5005 return PTR_ERR(link);
5006 }
5007 res = readlink_copy(buffer, buflen, link);
5008 do_delayed_call(&done);
5009 return res;
5010 }
5011 EXPORT_SYMBOL(vfs_readlink);
5012
5013 /**
5014 * vfs_get_link - get symlink body
5015 * @dentry: dentry on which to get symbolic link
5016 * @done: caller needs to free returned data with this
5017 *
5018 * Calls security hook and i_op->get_link() on the supplied inode.
5019 *
5020 * It does not touch atime. That's up to the caller if necessary.
5021 *
5022 * Does not work on "special" symlinks like /proc/$$/fd/N
5023 */
5024 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5025 {
5026 const char *res = ERR_PTR(-EINVAL);
5027 struct inode *inode = d_inode(dentry);
5028
5029 if (d_is_symlink(dentry)) {
5030 res = ERR_PTR(security_inode_readlink(dentry));
5031 if (!res)
5032 res = inode->i_op->get_link(dentry, inode, done);
5033 }
5034 return res;
5035 }
5036 EXPORT_SYMBOL(vfs_get_link);
5037
5038 /* get the link contents into pagecache */
5039 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5040 struct delayed_call *callback)
5041 {
5042 char *kaddr;
5043 struct page *page;
5044 struct address_space *mapping = inode->i_mapping;
5045
5046 if (!dentry) {
5047 page = find_get_page(mapping, 0);
5048 if (!page)
5049 return ERR_PTR(-ECHILD);
5050 if (!PageUptodate(page)) {
5051 put_page(page);
5052 return ERR_PTR(-ECHILD);
5053 }
5054 } else {
5055 page = read_mapping_page(mapping, 0, NULL);
5056 if (IS_ERR(page))
5057 return (char*)page;
5058 }
5059 set_delayed_call(callback, page_put_link, page);
5060 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5061 kaddr = page_address(page);
5062 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5063 return kaddr;
5064 }
5065
5066 EXPORT_SYMBOL(page_get_link);
5067
5068 void page_put_link(void *arg)
5069 {
5070 put_page(arg);
5071 }
5072 EXPORT_SYMBOL(page_put_link);
5073
5074 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5075 {
5076 DEFINE_DELAYED_CALL(done);
5077 int res = readlink_copy(buffer, buflen,
5078 page_get_link(dentry, d_inode(dentry),
5079 &done));
5080 do_delayed_call(&done);
5081 return res;
5082 }
5083 EXPORT_SYMBOL(page_readlink);
5084
5085 int page_symlink(struct inode *inode, const char *symname, int len)
5086 {
5087 struct address_space *mapping = inode->i_mapping;
5088 const struct address_space_operations *aops = mapping->a_ops;
5089 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5090 struct page *page;
5091 void *fsdata;
5092 int err;
5093 unsigned int flags;
5094
5095 retry:
5096 if (nofs)
5097 flags = memalloc_nofs_save();
5098 err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata);
5099 if (nofs)
5100 memalloc_nofs_restore(flags);
5101 if (err)
5102 goto fail;
5103
5104 memcpy(page_address(page), symname, len-1);
5105
5106 err = aops->write_end(NULL, mapping, 0, len-1, len-1,
5107 page, fsdata);
5108 if (err < 0)
5109 goto fail;
5110 if (err < len-1)
5111 goto retry;
5112
5113 mark_inode_dirty(inode);
5114 return 0;
5115 fail:
5116 return err;
5117 }
5118 EXPORT_SYMBOL(page_symlink);
5119
5120 const struct inode_operations page_symlink_inode_operations = {
5121 .get_link = page_get_link,
5122 };
5123 EXPORT_SYMBOL(page_symlink_inode_operations);