]> git.ipfire.org Git - people/ms/linux.git/blob - fs/namespace.c
Merge tag 'riscv-for-linus-6.0-rc5' of git://git.kernel.org/pub/scm/linux/kernel...
[people/ms/linux.git] / fs / namespace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35
36 #include "pnode.h"
37 #include "internal.h"
38
39 /* Maximum number of mounts in a mount namespace */
40 static unsigned int sysctl_mount_max __read_mostly = 100000;
41
42 static unsigned int m_hash_mask __read_mostly;
43 static unsigned int m_hash_shift __read_mostly;
44 static unsigned int mp_hash_mask __read_mostly;
45 static unsigned int mp_hash_shift __read_mostly;
46
47 static __initdata unsigned long mhash_entries;
48 static int __init set_mhash_entries(char *str)
49 {
50 if (!str)
51 return 0;
52 mhash_entries = simple_strtoul(str, &str, 0);
53 return 1;
54 }
55 __setup("mhash_entries=", set_mhash_entries);
56
57 static __initdata unsigned long mphash_entries;
58 static int __init set_mphash_entries(char *str)
59 {
60 if (!str)
61 return 0;
62 mphash_entries = simple_strtoul(str, &str, 0);
63 return 1;
64 }
65 __setup("mphash_entries=", set_mphash_entries);
66
67 static u64 event;
68 static DEFINE_IDA(mnt_id_ida);
69 static DEFINE_IDA(mnt_group_ida);
70
71 static struct hlist_head *mount_hashtable __read_mostly;
72 static struct hlist_head *mountpoint_hashtable __read_mostly;
73 static struct kmem_cache *mnt_cache __read_mostly;
74 static DECLARE_RWSEM(namespace_sem);
75 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
76 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
77
78 struct mount_kattr {
79 unsigned int attr_set;
80 unsigned int attr_clr;
81 unsigned int propagation;
82 unsigned int lookup_flags;
83 bool recurse;
84 struct user_namespace *mnt_userns;
85 };
86
87 /* /sys/fs */
88 struct kobject *fs_kobj;
89 EXPORT_SYMBOL_GPL(fs_kobj);
90
91 /*
92 * vfsmount lock may be taken for read to prevent changes to the
93 * vfsmount hash, ie. during mountpoint lookups or walking back
94 * up the tree.
95 *
96 * It should be taken for write in all cases where the vfsmount
97 * tree or hash is modified or when a vfsmount structure is modified.
98 */
99 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
100
101 static inline void lock_mount_hash(void)
102 {
103 write_seqlock(&mount_lock);
104 }
105
106 static inline void unlock_mount_hash(void)
107 {
108 write_sequnlock(&mount_lock);
109 }
110
111 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
112 {
113 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
114 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
115 tmp = tmp + (tmp >> m_hash_shift);
116 return &mount_hashtable[tmp & m_hash_mask];
117 }
118
119 static inline struct hlist_head *mp_hash(struct dentry *dentry)
120 {
121 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
122 tmp = tmp + (tmp >> mp_hash_shift);
123 return &mountpoint_hashtable[tmp & mp_hash_mask];
124 }
125
126 static int mnt_alloc_id(struct mount *mnt)
127 {
128 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
129
130 if (res < 0)
131 return res;
132 mnt->mnt_id = res;
133 return 0;
134 }
135
136 static void mnt_free_id(struct mount *mnt)
137 {
138 ida_free(&mnt_id_ida, mnt->mnt_id);
139 }
140
141 /*
142 * Allocate a new peer group ID
143 */
144 static int mnt_alloc_group_id(struct mount *mnt)
145 {
146 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
147
148 if (res < 0)
149 return res;
150 mnt->mnt_group_id = res;
151 return 0;
152 }
153
154 /*
155 * Release a peer group ID
156 */
157 void mnt_release_group_id(struct mount *mnt)
158 {
159 ida_free(&mnt_group_ida, mnt->mnt_group_id);
160 mnt->mnt_group_id = 0;
161 }
162
163 /*
164 * vfsmount lock must be held for read
165 */
166 static inline void mnt_add_count(struct mount *mnt, int n)
167 {
168 #ifdef CONFIG_SMP
169 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
170 #else
171 preempt_disable();
172 mnt->mnt_count += n;
173 preempt_enable();
174 #endif
175 }
176
177 /*
178 * vfsmount lock must be held for write
179 */
180 int mnt_get_count(struct mount *mnt)
181 {
182 #ifdef CONFIG_SMP
183 int count = 0;
184 int cpu;
185
186 for_each_possible_cpu(cpu) {
187 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
188 }
189
190 return count;
191 #else
192 return mnt->mnt_count;
193 #endif
194 }
195
196 static struct mount *alloc_vfsmnt(const char *name)
197 {
198 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
199 if (mnt) {
200 int err;
201
202 err = mnt_alloc_id(mnt);
203 if (err)
204 goto out_free_cache;
205
206 if (name) {
207 mnt->mnt_devname = kstrdup_const(name,
208 GFP_KERNEL_ACCOUNT);
209 if (!mnt->mnt_devname)
210 goto out_free_id;
211 }
212
213 #ifdef CONFIG_SMP
214 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
215 if (!mnt->mnt_pcp)
216 goto out_free_devname;
217
218 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
219 #else
220 mnt->mnt_count = 1;
221 mnt->mnt_writers = 0;
222 #endif
223
224 INIT_HLIST_NODE(&mnt->mnt_hash);
225 INIT_LIST_HEAD(&mnt->mnt_child);
226 INIT_LIST_HEAD(&mnt->mnt_mounts);
227 INIT_LIST_HEAD(&mnt->mnt_list);
228 INIT_LIST_HEAD(&mnt->mnt_expire);
229 INIT_LIST_HEAD(&mnt->mnt_share);
230 INIT_LIST_HEAD(&mnt->mnt_slave_list);
231 INIT_LIST_HEAD(&mnt->mnt_slave);
232 INIT_HLIST_NODE(&mnt->mnt_mp_list);
233 INIT_LIST_HEAD(&mnt->mnt_umounting);
234 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
235 mnt->mnt.mnt_userns = &init_user_ns;
236 }
237 return mnt;
238
239 #ifdef CONFIG_SMP
240 out_free_devname:
241 kfree_const(mnt->mnt_devname);
242 #endif
243 out_free_id:
244 mnt_free_id(mnt);
245 out_free_cache:
246 kmem_cache_free(mnt_cache, mnt);
247 return NULL;
248 }
249
250 /*
251 * Most r/o checks on a fs are for operations that take
252 * discrete amounts of time, like a write() or unlink().
253 * We must keep track of when those operations start
254 * (for permission checks) and when they end, so that
255 * we can determine when writes are able to occur to
256 * a filesystem.
257 */
258 /*
259 * __mnt_is_readonly: check whether a mount is read-only
260 * @mnt: the mount to check for its write status
261 *
262 * This shouldn't be used directly ouside of the VFS.
263 * It does not guarantee that the filesystem will stay
264 * r/w, just that it is right *now*. This can not and
265 * should not be used in place of IS_RDONLY(inode).
266 * mnt_want/drop_write() will _keep_ the filesystem
267 * r/w.
268 */
269 bool __mnt_is_readonly(struct vfsmount *mnt)
270 {
271 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
272 }
273 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
274
275 static inline void mnt_inc_writers(struct mount *mnt)
276 {
277 #ifdef CONFIG_SMP
278 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
279 #else
280 mnt->mnt_writers++;
281 #endif
282 }
283
284 static inline void mnt_dec_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
288 #else
289 mnt->mnt_writers--;
290 #endif
291 }
292
293 static unsigned int mnt_get_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 unsigned int count = 0;
297 int cpu;
298
299 for_each_possible_cpu(cpu) {
300 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
301 }
302
303 return count;
304 #else
305 return mnt->mnt_writers;
306 #endif
307 }
308
309 static int mnt_is_readonly(struct vfsmount *mnt)
310 {
311 if (mnt->mnt_sb->s_readonly_remount)
312 return 1;
313 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
314 smp_rmb();
315 return __mnt_is_readonly(mnt);
316 }
317
318 /*
319 * Most r/o & frozen checks on a fs are for operations that take discrete
320 * amounts of time, like a write() or unlink(). We must keep track of when
321 * those operations start (for permission checks) and when they end, so that we
322 * can determine when writes are able to occur to a filesystem.
323 */
324 /**
325 * __mnt_want_write - get write access to a mount without freeze protection
326 * @m: the mount on which to take a write
327 *
328 * This tells the low-level filesystem that a write is about to be performed to
329 * it, and makes sure that writes are allowed (mnt it read-write) before
330 * returning success. This operation does not protect against filesystem being
331 * frozen. When the write operation is finished, __mnt_drop_write() must be
332 * called. This is effectively a refcount.
333 */
334 int __mnt_want_write(struct vfsmount *m)
335 {
336 struct mount *mnt = real_mount(m);
337 int ret = 0;
338
339 preempt_disable();
340 mnt_inc_writers(mnt);
341 /*
342 * The store to mnt_inc_writers must be visible before we pass
343 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
344 * incremented count after it has set MNT_WRITE_HOLD.
345 */
346 smp_mb();
347 might_lock(&mount_lock.lock);
348 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
349 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
350 cpu_relax();
351 } else {
352 /*
353 * This prevents priority inversion, if the task
354 * setting MNT_WRITE_HOLD got preempted on a remote
355 * CPU, and it prevents life lock if the task setting
356 * MNT_WRITE_HOLD has a lower priority and is bound to
357 * the same CPU as the task that is spinning here.
358 */
359 preempt_enable();
360 lock_mount_hash();
361 unlock_mount_hash();
362 preempt_disable();
363 }
364 }
365 /*
366 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
367 * be set to match its requirements. So we must not load that until
368 * MNT_WRITE_HOLD is cleared.
369 */
370 smp_rmb();
371 if (mnt_is_readonly(m)) {
372 mnt_dec_writers(mnt);
373 ret = -EROFS;
374 }
375 preempt_enable();
376
377 return ret;
378 }
379
380 /**
381 * mnt_want_write - get write access to a mount
382 * @m: the mount on which to take a write
383 *
384 * This tells the low-level filesystem that a write is about to be performed to
385 * it, and makes sure that writes are allowed (mount is read-write, filesystem
386 * is not frozen) before returning success. When the write operation is
387 * finished, mnt_drop_write() must be called. This is effectively a refcount.
388 */
389 int mnt_want_write(struct vfsmount *m)
390 {
391 int ret;
392
393 sb_start_write(m->mnt_sb);
394 ret = __mnt_want_write(m);
395 if (ret)
396 sb_end_write(m->mnt_sb);
397 return ret;
398 }
399 EXPORT_SYMBOL_GPL(mnt_want_write);
400
401 /**
402 * __mnt_want_write_file - get write access to a file's mount
403 * @file: the file who's mount on which to take a write
404 *
405 * This is like __mnt_want_write, but if the file is already open for writing it
406 * skips incrementing mnt_writers (since the open file already has a reference)
407 * and instead only does the check for emergency r/o remounts. This must be
408 * paired with __mnt_drop_write_file.
409 */
410 int __mnt_want_write_file(struct file *file)
411 {
412 if (file->f_mode & FMODE_WRITER) {
413 /*
414 * Superblock may have become readonly while there are still
415 * writable fd's, e.g. due to a fs error with errors=remount-ro
416 */
417 if (__mnt_is_readonly(file->f_path.mnt))
418 return -EROFS;
419 return 0;
420 }
421 return __mnt_want_write(file->f_path.mnt);
422 }
423
424 /**
425 * mnt_want_write_file - get write access to a file's mount
426 * @file: the file who's mount on which to take a write
427 *
428 * This is like mnt_want_write, but if the file is already open for writing it
429 * skips incrementing mnt_writers (since the open file already has a reference)
430 * and instead only does the freeze protection and the check for emergency r/o
431 * remounts. This must be paired with mnt_drop_write_file.
432 */
433 int mnt_want_write_file(struct file *file)
434 {
435 int ret;
436
437 sb_start_write(file_inode(file)->i_sb);
438 ret = __mnt_want_write_file(file);
439 if (ret)
440 sb_end_write(file_inode(file)->i_sb);
441 return ret;
442 }
443 EXPORT_SYMBOL_GPL(mnt_want_write_file);
444
445 /**
446 * __mnt_drop_write - give up write access to a mount
447 * @mnt: the mount on which to give up write access
448 *
449 * Tells the low-level filesystem that we are done
450 * performing writes to it. Must be matched with
451 * __mnt_want_write() call above.
452 */
453 void __mnt_drop_write(struct vfsmount *mnt)
454 {
455 preempt_disable();
456 mnt_dec_writers(real_mount(mnt));
457 preempt_enable();
458 }
459
460 /**
461 * mnt_drop_write - give up write access to a mount
462 * @mnt: the mount on which to give up write access
463 *
464 * Tells the low-level filesystem that we are done performing writes to it and
465 * also allows filesystem to be frozen again. Must be matched with
466 * mnt_want_write() call above.
467 */
468 void mnt_drop_write(struct vfsmount *mnt)
469 {
470 __mnt_drop_write(mnt);
471 sb_end_write(mnt->mnt_sb);
472 }
473 EXPORT_SYMBOL_GPL(mnt_drop_write);
474
475 void __mnt_drop_write_file(struct file *file)
476 {
477 if (!(file->f_mode & FMODE_WRITER))
478 __mnt_drop_write(file->f_path.mnt);
479 }
480
481 void mnt_drop_write_file(struct file *file)
482 {
483 __mnt_drop_write_file(file);
484 sb_end_write(file_inode(file)->i_sb);
485 }
486 EXPORT_SYMBOL(mnt_drop_write_file);
487
488 /**
489 * mnt_hold_writers - prevent write access to the given mount
490 * @mnt: mnt to prevent write access to
491 *
492 * Prevents write access to @mnt if there are no active writers for @mnt.
493 * This function needs to be called and return successfully before changing
494 * properties of @mnt that need to remain stable for callers with write access
495 * to @mnt.
496 *
497 * After this functions has been called successfully callers must pair it with
498 * a call to mnt_unhold_writers() in order to stop preventing write access to
499 * @mnt.
500 *
501 * Context: This function expects lock_mount_hash() to be held serializing
502 * setting MNT_WRITE_HOLD.
503 * Return: On success 0 is returned.
504 * On error, -EBUSY is returned.
505 */
506 static inline int mnt_hold_writers(struct mount *mnt)
507 {
508 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
509 /*
510 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
511 * should be visible before we do.
512 */
513 smp_mb();
514
515 /*
516 * With writers on hold, if this value is zero, then there are
517 * definitely no active writers (although held writers may subsequently
518 * increment the count, they'll have to wait, and decrement it after
519 * seeing MNT_READONLY).
520 *
521 * It is OK to have counter incremented on one CPU and decremented on
522 * another: the sum will add up correctly. The danger would be when we
523 * sum up each counter, if we read a counter before it is incremented,
524 * but then read another CPU's count which it has been subsequently
525 * decremented from -- we would see more decrements than we should.
526 * MNT_WRITE_HOLD protects against this scenario, because
527 * mnt_want_write first increments count, then smp_mb, then spins on
528 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
529 * we're counting up here.
530 */
531 if (mnt_get_writers(mnt) > 0)
532 return -EBUSY;
533
534 return 0;
535 }
536
537 /**
538 * mnt_unhold_writers - stop preventing write access to the given mount
539 * @mnt: mnt to stop preventing write access to
540 *
541 * Stop preventing write access to @mnt allowing callers to gain write access
542 * to @mnt again.
543 *
544 * This function can only be called after a successful call to
545 * mnt_hold_writers().
546 *
547 * Context: This function expects lock_mount_hash() to be held.
548 */
549 static inline void mnt_unhold_writers(struct mount *mnt)
550 {
551 /*
552 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
553 * that become unheld will see MNT_READONLY.
554 */
555 smp_wmb();
556 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
557 }
558
559 static int mnt_make_readonly(struct mount *mnt)
560 {
561 int ret;
562
563 ret = mnt_hold_writers(mnt);
564 if (!ret)
565 mnt->mnt.mnt_flags |= MNT_READONLY;
566 mnt_unhold_writers(mnt);
567 return ret;
568 }
569
570 int sb_prepare_remount_readonly(struct super_block *sb)
571 {
572 struct mount *mnt;
573 int err = 0;
574
575 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
576 if (atomic_long_read(&sb->s_remove_count))
577 return -EBUSY;
578
579 lock_mount_hash();
580 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
581 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
582 err = mnt_hold_writers(mnt);
583 if (err)
584 break;
585 }
586 }
587 if (!err && atomic_long_read(&sb->s_remove_count))
588 err = -EBUSY;
589
590 if (!err) {
591 sb->s_readonly_remount = 1;
592 smp_wmb();
593 }
594 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
595 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
596 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
597 }
598 unlock_mount_hash();
599
600 return err;
601 }
602
603 static void free_vfsmnt(struct mount *mnt)
604 {
605 struct user_namespace *mnt_userns;
606
607 mnt_userns = mnt_user_ns(&mnt->mnt);
608 if (!initial_idmapping(mnt_userns))
609 put_user_ns(mnt_userns);
610 kfree_const(mnt->mnt_devname);
611 #ifdef CONFIG_SMP
612 free_percpu(mnt->mnt_pcp);
613 #endif
614 kmem_cache_free(mnt_cache, mnt);
615 }
616
617 static void delayed_free_vfsmnt(struct rcu_head *head)
618 {
619 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
620 }
621
622 /* call under rcu_read_lock */
623 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
624 {
625 struct mount *mnt;
626 if (read_seqretry(&mount_lock, seq))
627 return 1;
628 if (bastard == NULL)
629 return 0;
630 mnt = real_mount(bastard);
631 mnt_add_count(mnt, 1);
632 smp_mb(); // see mntput_no_expire()
633 if (likely(!read_seqretry(&mount_lock, seq)))
634 return 0;
635 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
636 mnt_add_count(mnt, -1);
637 return 1;
638 }
639 lock_mount_hash();
640 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
641 mnt_add_count(mnt, -1);
642 unlock_mount_hash();
643 return 1;
644 }
645 unlock_mount_hash();
646 /* caller will mntput() */
647 return -1;
648 }
649
650 /* call under rcu_read_lock */
651 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
652 {
653 int res = __legitimize_mnt(bastard, seq);
654 if (likely(!res))
655 return true;
656 if (unlikely(res < 0)) {
657 rcu_read_unlock();
658 mntput(bastard);
659 rcu_read_lock();
660 }
661 return false;
662 }
663
664 /*
665 * find the first mount at @dentry on vfsmount @mnt.
666 * call under rcu_read_lock()
667 */
668 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
669 {
670 struct hlist_head *head = m_hash(mnt, dentry);
671 struct mount *p;
672
673 hlist_for_each_entry_rcu(p, head, mnt_hash)
674 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
675 return p;
676 return NULL;
677 }
678
679 /*
680 * lookup_mnt - Return the first child mount mounted at path
681 *
682 * "First" means first mounted chronologically. If you create the
683 * following mounts:
684 *
685 * mount /dev/sda1 /mnt
686 * mount /dev/sda2 /mnt
687 * mount /dev/sda3 /mnt
688 *
689 * Then lookup_mnt() on the base /mnt dentry in the root mount will
690 * return successively the root dentry and vfsmount of /dev/sda1, then
691 * /dev/sda2, then /dev/sda3, then NULL.
692 *
693 * lookup_mnt takes a reference to the found vfsmount.
694 */
695 struct vfsmount *lookup_mnt(const struct path *path)
696 {
697 struct mount *child_mnt;
698 struct vfsmount *m;
699 unsigned seq;
700
701 rcu_read_lock();
702 do {
703 seq = read_seqbegin(&mount_lock);
704 child_mnt = __lookup_mnt(path->mnt, path->dentry);
705 m = child_mnt ? &child_mnt->mnt : NULL;
706 } while (!legitimize_mnt(m, seq));
707 rcu_read_unlock();
708 return m;
709 }
710
711 static inline void lock_ns_list(struct mnt_namespace *ns)
712 {
713 spin_lock(&ns->ns_lock);
714 }
715
716 static inline void unlock_ns_list(struct mnt_namespace *ns)
717 {
718 spin_unlock(&ns->ns_lock);
719 }
720
721 static inline bool mnt_is_cursor(struct mount *mnt)
722 {
723 return mnt->mnt.mnt_flags & MNT_CURSOR;
724 }
725
726 /*
727 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
728 * current mount namespace.
729 *
730 * The common case is dentries are not mountpoints at all and that
731 * test is handled inline. For the slow case when we are actually
732 * dealing with a mountpoint of some kind, walk through all of the
733 * mounts in the current mount namespace and test to see if the dentry
734 * is a mountpoint.
735 *
736 * The mount_hashtable is not usable in the context because we
737 * need to identify all mounts that may be in the current mount
738 * namespace not just a mount that happens to have some specified
739 * parent mount.
740 */
741 bool __is_local_mountpoint(struct dentry *dentry)
742 {
743 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
744 struct mount *mnt;
745 bool is_covered = false;
746
747 down_read(&namespace_sem);
748 lock_ns_list(ns);
749 list_for_each_entry(mnt, &ns->list, mnt_list) {
750 if (mnt_is_cursor(mnt))
751 continue;
752 is_covered = (mnt->mnt_mountpoint == dentry);
753 if (is_covered)
754 break;
755 }
756 unlock_ns_list(ns);
757 up_read(&namespace_sem);
758
759 return is_covered;
760 }
761
762 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
763 {
764 struct hlist_head *chain = mp_hash(dentry);
765 struct mountpoint *mp;
766
767 hlist_for_each_entry(mp, chain, m_hash) {
768 if (mp->m_dentry == dentry) {
769 mp->m_count++;
770 return mp;
771 }
772 }
773 return NULL;
774 }
775
776 static struct mountpoint *get_mountpoint(struct dentry *dentry)
777 {
778 struct mountpoint *mp, *new = NULL;
779 int ret;
780
781 if (d_mountpoint(dentry)) {
782 /* might be worth a WARN_ON() */
783 if (d_unlinked(dentry))
784 return ERR_PTR(-ENOENT);
785 mountpoint:
786 read_seqlock_excl(&mount_lock);
787 mp = lookup_mountpoint(dentry);
788 read_sequnlock_excl(&mount_lock);
789 if (mp)
790 goto done;
791 }
792
793 if (!new)
794 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
795 if (!new)
796 return ERR_PTR(-ENOMEM);
797
798
799 /* Exactly one processes may set d_mounted */
800 ret = d_set_mounted(dentry);
801
802 /* Someone else set d_mounted? */
803 if (ret == -EBUSY)
804 goto mountpoint;
805
806 /* The dentry is not available as a mountpoint? */
807 mp = ERR_PTR(ret);
808 if (ret)
809 goto done;
810
811 /* Add the new mountpoint to the hash table */
812 read_seqlock_excl(&mount_lock);
813 new->m_dentry = dget(dentry);
814 new->m_count = 1;
815 hlist_add_head(&new->m_hash, mp_hash(dentry));
816 INIT_HLIST_HEAD(&new->m_list);
817 read_sequnlock_excl(&mount_lock);
818
819 mp = new;
820 new = NULL;
821 done:
822 kfree(new);
823 return mp;
824 }
825
826 /*
827 * vfsmount lock must be held. Additionally, the caller is responsible
828 * for serializing calls for given disposal list.
829 */
830 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
831 {
832 if (!--mp->m_count) {
833 struct dentry *dentry = mp->m_dentry;
834 BUG_ON(!hlist_empty(&mp->m_list));
835 spin_lock(&dentry->d_lock);
836 dentry->d_flags &= ~DCACHE_MOUNTED;
837 spin_unlock(&dentry->d_lock);
838 dput_to_list(dentry, list);
839 hlist_del(&mp->m_hash);
840 kfree(mp);
841 }
842 }
843
844 /* called with namespace_lock and vfsmount lock */
845 static void put_mountpoint(struct mountpoint *mp)
846 {
847 __put_mountpoint(mp, &ex_mountpoints);
848 }
849
850 static inline int check_mnt(struct mount *mnt)
851 {
852 return mnt->mnt_ns == current->nsproxy->mnt_ns;
853 }
854
855 /*
856 * vfsmount lock must be held for write
857 */
858 static void touch_mnt_namespace(struct mnt_namespace *ns)
859 {
860 if (ns) {
861 ns->event = ++event;
862 wake_up_interruptible(&ns->poll);
863 }
864 }
865
866 /*
867 * vfsmount lock must be held for write
868 */
869 static void __touch_mnt_namespace(struct mnt_namespace *ns)
870 {
871 if (ns && ns->event != event) {
872 ns->event = event;
873 wake_up_interruptible(&ns->poll);
874 }
875 }
876
877 /*
878 * vfsmount lock must be held for write
879 */
880 static struct mountpoint *unhash_mnt(struct mount *mnt)
881 {
882 struct mountpoint *mp;
883 mnt->mnt_parent = mnt;
884 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
885 list_del_init(&mnt->mnt_child);
886 hlist_del_init_rcu(&mnt->mnt_hash);
887 hlist_del_init(&mnt->mnt_mp_list);
888 mp = mnt->mnt_mp;
889 mnt->mnt_mp = NULL;
890 return mp;
891 }
892
893 /*
894 * vfsmount lock must be held for write
895 */
896 static void umount_mnt(struct mount *mnt)
897 {
898 put_mountpoint(unhash_mnt(mnt));
899 }
900
901 /*
902 * vfsmount lock must be held for write
903 */
904 void mnt_set_mountpoint(struct mount *mnt,
905 struct mountpoint *mp,
906 struct mount *child_mnt)
907 {
908 mp->m_count++;
909 mnt_add_count(mnt, 1); /* essentially, that's mntget */
910 child_mnt->mnt_mountpoint = mp->m_dentry;
911 child_mnt->mnt_parent = mnt;
912 child_mnt->mnt_mp = mp;
913 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
914 }
915
916 static void __attach_mnt(struct mount *mnt, struct mount *parent)
917 {
918 hlist_add_head_rcu(&mnt->mnt_hash,
919 m_hash(&parent->mnt, mnt->mnt_mountpoint));
920 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
921 }
922
923 /*
924 * vfsmount lock must be held for write
925 */
926 static void attach_mnt(struct mount *mnt,
927 struct mount *parent,
928 struct mountpoint *mp)
929 {
930 mnt_set_mountpoint(parent, mp, mnt);
931 __attach_mnt(mnt, parent);
932 }
933
934 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
935 {
936 struct mountpoint *old_mp = mnt->mnt_mp;
937 struct mount *old_parent = mnt->mnt_parent;
938
939 list_del_init(&mnt->mnt_child);
940 hlist_del_init(&mnt->mnt_mp_list);
941 hlist_del_init_rcu(&mnt->mnt_hash);
942
943 attach_mnt(mnt, parent, mp);
944
945 put_mountpoint(old_mp);
946 mnt_add_count(old_parent, -1);
947 }
948
949 /*
950 * vfsmount lock must be held for write
951 */
952 static void commit_tree(struct mount *mnt)
953 {
954 struct mount *parent = mnt->mnt_parent;
955 struct mount *m;
956 LIST_HEAD(head);
957 struct mnt_namespace *n = parent->mnt_ns;
958
959 BUG_ON(parent == mnt);
960
961 list_add_tail(&head, &mnt->mnt_list);
962 list_for_each_entry(m, &head, mnt_list)
963 m->mnt_ns = n;
964
965 list_splice(&head, n->list.prev);
966
967 n->mounts += n->pending_mounts;
968 n->pending_mounts = 0;
969
970 __attach_mnt(mnt, parent);
971 touch_mnt_namespace(n);
972 }
973
974 static struct mount *next_mnt(struct mount *p, struct mount *root)
975 {
976 struct list_head *next = p->mnt_mounts.next;
977 if (next == &p->mnt_mounts) {
978 while (1) {
979 if (p == root)
980 return NULL;
981 next = p->mnt_child.next;
982 if (next != &p->mnt_parent->mnt_mounts)
983 break;
984 p = p->mnt_parent;
985 }
986 }
987 return list_entry(next, struct mount, mnt_child);
988 }
989
990 static struct mount *skip_mnt_tree(struct mount *p)
991 {
992 struct list_head *prev = p->mnt_mounts.prev;
993 while (prev != &p->mnt_mounts) {
994 p = list_entry(prev, struct mount, mnt_child);
995 prev = p->mnt_mounts.prev;
996 }
997 return p;
998 }
999
1000 /**
1001 * vfs_create_mount - Create a mount for a configured superblock
1002 * @fc: The configuration context with the superblock attached
1003 *
1004 * Create a mount to an already configured superblock. If necessary, the
1005 * caller should invoke vfs_get_tree() before calling this.
1006 *
1007 * Note that this does not attach the mount to anything.
1008 */
1009 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1010 {
1011 struct mount *mnt;
1012 struct user_namespace *fs_userns;
1013
1014 if (!fc->root)
1015 return ERR_PTR(-EINVAL);
1016
1017 mnt = alloc_vfsmnt(fc->source ?: "none");
1018 if (!mnt)
1019 return ERR_PTR(-ENOMEM);
1020
1021 if (fc->sb_flags & SB_KERNMOUNT)
1022 mnt->mnt.mnt_flags = MNT_INTERNAL;
1023
1024 atomic_inc(&fc->root->d_sb->s_active);
1025 mnt->mnt.mnt_sb = fc->root->d_sb;
1026 mnt->mnt.mnt_root = dget(fc->root);
1027 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1028 mnt->mnt_parent = mnt;
1029
1030 fs_userns = mnt->mnt.mnt_sb->s_user_ns;
1031 if (!initial_idmapping(fs_userns))
1032 mnt->mnt.mnt_userns = get_user_ns(fs_userns);
1033
1034 lock_mount_hash();
1035 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1036 unlock_mount_hash();
1037 return &mnt->mnt;
1038 }
1039 EXPORT_SYMBOL(vfs_create_mount);
1040
1041 struct vfsmount *fc_mount(struct fs_context *fc)
1042 {
1043 int err = vfs_get_tree(fc);
1044 if (!err) {
1045 up_write(&fc->root->d_sb->s_umount);
1046 return vfs_create_mount(fc);
1047 }
1048 return ERR_PTR(err);
1049 }
1050 EXPORT_SYMBOL(fc_mount);
1051
1052 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1053 int flags, const char *name,
1054 void *data)
1055 {
1056 struct fs_context *fc;
1057 struct vfsmount *mnt;
1058 int ret = 0;
1059
1060 if (!type)
1061 return ERR_PTR(-EINVAL);
1062
1063 fc = fs_context_for_mount(type, flags);
1064 if (IS_ERR(fc))
1065 return ERR_CAST(fc);
1066
1067 if (name)
1068 ret = vfs_parse_fs_string(fc, "source",
1069 name, strlen(name));
1070 if (!ret)
1071 ret = parse_monolithic_mount_data(fc, data);
1072 if (!ret)
1073 mnt = fc_mount(fc);
1074 else
1075 mnt = ERR_PTR(ret);
1076
1077 put_fs_context(fc);
1078 return mnt;
1079 }
1080 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1081
1082 struct vfsmount *
1083 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1084 const char *name, void *data)
1085 {
1086 /* Until it is worked out how to pass the user namespace
1087 * through from the parent mount to the submount don't support
1088 * unprivileged mounts with submounts.
1089 */
1090 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1091 return ERR_PTR(-EPERM);
1092
1093 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1094 }
1095 EXPORT_SYMBOL_GPL(vfs_submount);
1096
1097 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1098 int flag)
1099 {
1100 struct super_block *sb = old->mnt.mnt_sb;
1101 struct mount *mnt;
1102 int err;
1103
1104 mnt = alloc_vfsmnt(old->mnt_devname);
1105 if (!mnt)
1106 return ERR_PTR(-ENOMEM);
1107
1108 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1109 mnt->mnt_group_id = 0; /* not a peer of original */
1110 else
1111 mnt->mnt_group_id = old->mnt_group_id;
1112
1113 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1114 err = mnt_alloc_group_id(mnt);
1115 if (err)
1116 goto out_free;
1117 }
1118
1119 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1120 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1121
1122 atomic_inc(&sb->s_active);
1123 mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
1124 if (!initial_idmapping(mnt->mnt.mnt_userns))
1125 mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
1126 mnt->mnt.mnt_sb = sb;
1127 mnt->mnt.mnt_root = dget(root);
1128 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1129 mnt->mnt_parent = mnt;
1130 lock_mount_hash();
1131 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1132 unlock_mount_hash();
1133
1134 if ((flag & CL_SLAVE) ||
1135 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1136 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1137 mnt->mnt_master = old;
1138 CLEAR_MNT_SHARED(mnt);
1139 } else if (!(flag & CL_PRIVATE)) {
1140 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1141 list_add(&mnt->mnt_share, &old->mnt_share);
1142 if (IS_MNT_SLAVE(old))
1143 list_add(&mnt->mnt_slave, &old->mnt_slave);
1144 mnt->mnt_master = old->mnt_master;
1145 } else {
1146 CLEAR_MNT_SHARED(mnt);
1147 }
1148 if (flag & CL_MAKE_SHARED)
1149 set_mnt_shared(mnt);
1150
1151 /* stick the duplicate mount on the same expiry list
1152 * as the original if that was on one */
1153 if (flag & CL_EXPIRE) {
1154 if (!list_empty(&old->mnt_expire))
1155 list_add(&mnt->mnt_expire, &old->mnt_expire);
1156 }
1157
1158 return mnt;
1159
1160 out_free:
1161 mnt_free_id(mnt);
1162 free_vfsmnt(mnt);
1163 return ERR_PTR(err);
1164 }
1165
1166 static void cleanup_mnt(struct mount *mnt)
1167 {
1168 struct hlist_node *p;
1169 struct mount *m;
1170 /*
1171 * The warning here probably indicates that somebody messed
1172 * up a mnt_want/drop_write() pair. If this happens, the
1173 * filesystem was probably unable to make r/w->r/o transitions.
1174 * The locking used to deal with mnt_count decrement provides barriers,
1175 * so mnt_get_writers() below is safe.
1176 */
1177 WARN_ON(mnt_get_writers(mnt));
1178 if (unlikely(mnt->mnt_pins.first))
1179 mnt_pin_kill(mnt);
1180 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1181 hlist_del(&m->mnt_umount);
1182 mntput(&m->mnt);
1183 }
1184 fsnotify_vfsmount_delete(&mnt->mnt);
1185 dput(mnt->mnt.mnt_root);
1186 deactivate_super(mnt->mnt.mnt_sb);
1187 mnt_free_id(mnt);
1188 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1189 }
1190
1191 static void __cleanup_mnt(struct rcu_head *head)
1192 {
1193 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1194 }
1195
1196 static LLIST_HEAD(delayed_mntput_list);
1197 static void delayed_mntput(struct work_struct *unused)
1198 {
1199 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1200 struct mount *m, *t;
1201
1202 llist_for_each_entry_safe(m, t, node, mnt_llist)
1203 cleanup_mnt(m);
1204 }
1205 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1206
1207 static void mntput_no_expire(struct mount *mnt)
1208 {
1209 LIST_HEAD(list);
1210 int count;
1211
1212 rcu_read_lock();
1213 if (likely(READ_ONCE(mnt->mnt_ns))) {
1214 /*
1215 * Since we don't do lock_mount_hash() here,
1216 * ->mnt_ns can change under us. However, if it's
1217 * non-NULL, then there's a reference that won't
1218 * be dropped until after an RCU delay done after
1219 * turning ->mnt_ns NULL. So if we observe it
1220 * non-NULL under rcu_read_lock(), the reference
1221 * we are dropping is not the final one.
1222 */
1223 mnt_add_count(mnt, -1);
1224 rcu_read_unlock();
1225 return;
1226 }
1227 lock_mount_hash();
1228 /*
1229 * make sure that if __legitimize_mnt() has not seen us grab
1230 * mount_lock, we'll see their refcount increment here.
1231 */
1232 smp_mb();
1233 mnt_add_count(mnt, -1);
1234 count = mnt_get_count(mnt);
1235 if (count != 0) {
1236 WARN_ON(count < 0);
1237 rcu_read_unlock();
1238 unlock_mount_hash();
1239 return;
1240 }
1241 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1242 rcu_read_unlock();
1243 unlock_mount_hash();
1244 return;
1245 }
1246 mnt->mnt.mnt_flags |= MNT_DOOMED;
1247 rcu_read_unlock();
1248
1249 list_del(&mnt->mnt_instance);
1250
1251 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1252 struct mount *p, *tmp;
1253 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1254 __put_mountpoint(unhash_mnt(p), &list);
1255 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1256 }
1257 }
1258 unlock_mount_hash();
1259 shrink_dentry_list(&list);
1260
1261 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1262 struct task_struct *task = current;
1263 if (likely(!(task->flags & PF_KTHREAD))) {
1264 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1265 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1266 return;
1267 }
1268 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1269 schedule_delayed_work(&delayed_mntput_work, 1);
1270 return;
1271 }
1272 cleanup_mnt(mnt);
1273 }
1274
1275 void mntput(struct vfsmount *mnt)
1276 {
1277 if (mnt) {
1278 struct mount *m = real_mount(mnt);
1279 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1280 if (unlikely(m->mnt_expiry_mark))
1281 m->mnt_expiry_mark = 0;
1282 mntput_no_expire(m);
1283 }
1284 }
1285 EXPORT_SYMBOL(mntput);
1286
1287 struct vfsmount *mntget(struct vfsmount *mnt)
1288 {
1289 if (mnt)
1290 mnt_add_count(real_mount(mnt), 1);
1291 return mnt;
1292 }
1293 EXPORT_SYMBOL(mntget);
1294
1295 /**
1296 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1297 * @path: path to check
1298 *
1299 * d_mountpoint() can only be used reliably to establish if a dentry is
1300 * not mounted in any namespace and that common case is handled inline.
1301 * d_mountpoint() isn't aware of the possibility there may be multiple
1302 * mounts using a given dentry in a different namespace. This function
1303 * checks if the passed in path is a mountpoint rather than the dentry
1304 * alone.
1305 */
1306 bool path_is_mountpoint(const struct path *path)
1307 {
1308 unsigned seq;
1309 bool res;
1310
1311 if (!d_mountpoint(path->dentry))
1312 return false;
1313
1314 rcu_read_lock();
1315 do {
1316 seq = read_seqbegin(&mount_lock);
1317 res = __path_is_mountpoint(path);
1318 } while (read_seqretry(&mount_lock, seq));
1319 rcu_read_unlock();
1320
1321 return res;
1322 }
1323 EXPORT_SYMBOL(path_is_mountpoint);
1324
1325 struct vfsmount *mnt_clone_internal(const struct path *path)
1326 {
1327 struct mount *p;
1328 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1329 if (IS_ERR(p))
1330 return ERR_CAST(p);
1331 p->mnt.mnt_flags |= MNT_INTERNAL;
1332 return &p->mnt;
1333 }
1334
1335 #ifdef CONFIG_PROC_FS
1336 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1337 struct list_head *p)
1338 {
1339 struct mount *mnt, *ret = NULL;
1340
1341 lock_ns_list(ns);
1342 list_for_each_continue(p, &ns->list) {
1343 mnt = list_entry(p, typeof(*mnt), mnt_list);
1344 if (!mnt_is_cursor(mnt)) {
1345 ret = mnt;
1346 break;
1347 }
1348 }
1349 unlock_ns_list(ns);
1350
1351 return ret;
1352 }
1353
1354 /* iterator; we want it to have access to namespace_sem, thus here... */
1355 static void *m_start(struct seq_file *m, loff_t *pos)
1356 {
1357 struct proc_mounts *p = m->private;
1358 struct list_head *prev;
1359
1360 down_read(&namespace_sem);
1361 if (!*pos) {
1362 prev = &p->ns->list;
1363 } else {
1364 prev = &p->cursor.mnt_list;
1365
1366 /* Read after we'd reached the end? */
1367 if (list_empty(prev))
1368 return NULL;
1369 }
1370
1371 return mnt_list_next(p->ns, prev);
1372 }
1373
1374 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1375 {
1376 struct proc_mounts *p = m->private;
1377 struct mount *mnt = v;
1378
1379 ++*pos;
1380 return mnt_list_next(p->ns, &mnt->mnt_list);
1381 }
1382
1383 static void m_stop(struct seq_file *m, void *v)
1384 {
1385 struct proc_mounts *p = m->private;
1386 struct mount *mnt = v;
1387
1388 lock_ns_list(p->ns);
1389 if (mnt)
1390 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1391 else
1392 list_del_init(&p->cursor.mnt_list);
1393 unlock_ns_list(p->ns);
1394 up_read(&namespace_sem);
1395 }
1396
1397 static int m_show(struct seq_file *m, void *v)
1398 {
1399 struct proc_mounts *p = m->private;
1400 struct mount *r = v;
1401 return p->show(m, &r->mnt);
1402 }
1403
1404 const struct seq_operations mounts_op = {
1405 .start = m_start,
1406 .next = m_next,
1407 .stop = m_stop,
1408 .show = m_show,
1409 };
1410
1411 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1412 {
1413 down_read(&namespace_sem);
1414 lock_ns_list(ns);
1415 list_del(&cursor->mnt_list);
1416 unlock_ns_list(ns);
1417 up_read(&namespace_sem);
1418 }
1419 #endif /* CONFIG_PROC_FS */
1420
1421 /**
1422 * may_umount_tree - check if a mount tree is busy
1423 * @m: root of mount tree
1424 *
1425 * This is called to check if a tree of mounts has any
1426 * open files, pwds, chroots or sub mounts that are
1427 * busy.
1428 */
1429 int may_umount_tree(struct vfsmount *m)
1430 {
1431 struct mount *mnt = real_mount(m);
1432 int actual_refs = 0;
1433 int minimum_refs = 0;
1434 struct mount *p;
1435 BUG_ON(!m);
1436
1437 /* write lock needed for mnt_get_count */
1438 lock_mount_hash();
1439 for (p = mnt; p; p = next_mnt(p, mnt)) {
1440 actual_refs += mnt_get_count(p);
1441 minimum_refs += 2;
1442 }
1443 unlock_mount_hash();
1444
1445 if (actual_refs > minimum_refs)
1446 return 0;
1447
1448 return 1;
1449 }
1450
1451 EXPORT_SYMBOL(may_umount_tree);
1452
1453 /**
1454 * may_umount - check if a mount point is busy
1455 * @mnt: root of mount
1456 *
1457 * This is called to check if a mount point has any
1458 * open files, pwds, chroots or sub mounts. If the
1459 * mount has sub mounts this will return busy
1460 * regardless of whether the sub mounts are busy.
1461 *
1462 * Doesn't take quota and stuff into account. IOW, in some cases it will
1463 * give false negatives. The main reason why it's here is that we need
1464 * a non-destructive way to look for easily umountable filesystems.
1465 */
1466 int may_umount(struct vfsmount *mnt)
1467 {
1468 int ret = 1;
1469 down_read(&namespace_sem);
1470 lock_mount_hash();
1471 if (propagate_mount_busy(real_mount(mnt), 2))
1472 ret = 0;
1473 unlock_mount_hash();
1474 up_read(&namespace_sem);
1475 return ret;
1476 }
1477
1478 EXPORT_SYMBOL(may_umount);
1479
1480 static void namespace_unlock(void)
1481 {
1482 struct hlist_head head;
1483 struct hlist_node *p;
1484 struct mount *m;
1485 LIST_HEAD(list);
1486
1487 hlist_move_list(&unmounted, &head);
1488 list_splice_init(&ex_mountpoints, &list);
1489
1490 up_write(&namespace_sem);
1491
1492 shrink_dentry_list(&list);
1493
1494 if (likely(hlist_empty(&head)))
1495 return;
1496
1497 synchronize_rcu_expedited();
1498
1499 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1500 hlist_del(&m->mnt_umount);
1501 mntput(&m->mnt);
1502 }
1503 }
1504
1505 static inline void namespace_lock(void)
1506 {
1507 down_write(&namespace_sem);
1508 }
1509
1510 enum umount_tree_flags {
1511 UMOUNT_SYNC = 1,
1512 UMOUNT_PROPAGATE = 2,
1513 UMOUNT_CONNECTED = 4,
1514 };
1515
1516 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1517 {
1518 /* Leaving mounts connected is only valid for lazy umounts */
1519 if (how & UMOUNT_SYNC)
1520 return true;
1521
1522 /* A mount without a parent has nothing to be connected to */
1523 if (!mnt_has_parent(mnt))
1524 return true;
1525
1526 /* Because the reference counting rules change when mounts are
1527 * unmounted and connected, umounted mounts may not be
1528 * connected to mounted mounts.
1529 */
1530 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1531 return true;
1532
1533 /* Has it been requested that the mount remain connected? */
1534 if (how & UMOUNT_CONNECTED)
1535 return false;
1536
1537 /* Is the mount locked such that it needs to remain connected? */
1538 if (IS_MNT_LOCKED(mnt))
1539 return false;
1540
1541 /* By default disconnect the mount */
1542 return true;
1543 }
1544
1545 /*
1546 * mount_lock must be held
1547 * namespace_sem must be held for write
1548 */
1549 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1550 {
1551 LIST_HEAD(tmp_list);
1552 struct mount *p;
1553
1554 if (how & UMOUNT_PROPAGATE)
1555 propagate_mount_unlock(mnt);
1556
1557 /* Gather the mounts to umount */
1558 for (p = mnt; p; p = next_mnt(p, mnt)) {
1559 p->mnt.mnt_flags |= MNT_UMOUNT;
1560 list_move(&p->mnt_list, &tmp_list);
1561 }
1562
1563 /* Hide the mounts from mnt_mounts */
1564 list_for_each_entry(p, &tmp_list, mnt_list) {
1565 list_del_init(&p->mnt_child);
1566 }
1567
1568 /* Add propogated mounts to the tmp_list */
1569 if (how & UMOUNT_PROPAGATE)
1570 propagate_umount(&tmp_list);
1571
1572 while (!list_empty(&tmp_list)) {
1573 struct mnt_namespace *ns;
1574 bool disconnect;
1575 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1576 list_del_init(&p->mnt_expire);
1577 list_del_init(&p->mnt_list);
1578 ns = p->mnt_ns;
1579 if (ns) {
1580 ns->mounts--;
1581 __touch_mnt_namespace(ns);
1582 }
1583 p->mnt_ns = NULL;
1584 if (how & UMOUNT_SYNC)
1585 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1586
1587 disconnect = disconnect_mount(p, how);
1588 if (mnt_has_parent(p)) {
1589 mnt_add_count(p->mnt_parent, -1);
1590 if (!disconnect) {
1591 /* Don't forget about p */
1592 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1593 } else {
1594 umount_mnt(p);
1595 }
1596 }
1597 change_mnt_propagation(p, MS_PRIVATE);
1598 if (disconnect)
1599 hlist_add_head(&p->mnt_umount, &unmounted);
1600 }
1601 }
1602
1603 static void shrink_submounts(struct mount *mnt);
1604
1605 static int do_umount_root(struct super_block *sb)
1606 {
1607 int ret = 0;
1608
1609 down_write(&sb->s_umount);
1610 if (!sb_rdonly(sb)) {
1611 struct fs_context *fc;
1612
1613 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1614 SB_RDONLY);
1615 if (IS_ERR(fc)) {
1616 ret = PTR_ERR(fc);
1617 } else {
1618 ret = parse_monolithic_mount_data(fc, NULL);
1619 if (!ret)
1620 ret = reconfigure_super(fc);
1621 put_fs_context(fc);
1622 }
1623 }
1624 up_write(&sb->s_umount);
1625 return ret;
1626 }
1627
1628 static int do_umount(struct mount *mnt, int flags)
1629 {
1630 struct super_block *sb = mnt->mnt.mnt_sb;
1631 int retval;
1632
1633 retval = security_sb_umount(&mnt->mnt, flags);
1634 if (retval)
1635 return retval;
1636
1637 /*
1638 * Allow userspace to request a mountpoint be expired rather than
1639 * unmounting unconditionally. Unmount only happens if:
1640 * (1) the mark is already set (the mark is cleared by mntput())
1641 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1642 */
1643 if (flags & MNT_EXPIRE) {
1644 if (&mnt->mnt == current->fs->root.mnt ||
1645 flags & (MNT_FORCE | MNT_DETACH))
1646 return -EINVAL;
1647
1648 /*
1649 * probably don't strictly need the lock here if we examined
1650 * all race cases, but it's a slowpath.
1651 */
1652 lock_mount_hash();
1653 if (mnt_get_count(mnt) != 2) {
1654 unlock_mount_hash();
1655 return -EBUSY;
1656 }
1657 unlock_mount_hash();
1658
1659 if (!xchg(&mnt->mnt_expiry_mark, 1))
1660 return -EAGAIN;
1661 }
1662
1663 /*
1664 * If we may have to abort operations to get out of this
1665 * mount, and they will themselves hold resources we must
1666 * allow the fs to do things. In the Unix tradition of
1667 * 'Gee thats tricky lets do it in userspace' the umount_begin
1668 * might fail to complete on the first run through as other tasks
1669 * must return, and the like. Thats for the mount program to worry
1670 * about for the moment.
1671 */
1672
1673 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1674 sb->s_op->umount_begin(sb);
1675 }
1676
1677 /*
1678 * No sense to grab the lock for this test, but test itself looks
1679 * somewhat bogus. Suggestions for better replacement?
1680 * Ho-hum... In principle, we might treat that as umount + switch
1681 * to rootfs. GC would eventually take care of the old vfsmount.
1682 * Actually it makes sense, especially if rootfs would contain a
1683 * /reboot - static binary that would close all descriptors and
1684 * call reboot(9). Then init(8) could umount root and exec /reboot.
1685 */
1686 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1687 /*
1688 * Special case for "unmounting" root ...
1689 * we just try to remount it readonly.
1690 */
1691 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1692 return -EPERM;
1693 return do_umount_root(sb);
1694 }
1695
1696 namespace_lock();
1697 lock_mount_hash();
1698
1699 /* Recheck MNT_LOCKED with the locks held */
1700 retval = -EINVAL;
1701 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1702 goto out;
1703
1704 event++;
1705 if (flags & MNT_DETACH) {
1706 if (!list_empty(&mnt->mnt_list))
1707 umount_tree(mnt, UMOUNT_PROPAGATE);
1708 retval = 0;
1709 } else {
1710 shrink_submounts(mnt);
1711 retval = -EBUSY;
1712 if (!propagate_mount_busy(mnt, 2)) {
1713 if (!list_empty(&mnt->mnt_list))
1714 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1715 retval = 0;
1716 }
1717 }
1718 out:
1719 unlock_mount_hash();
1720 namespace_unlock();
1721 return retval;
1722 }
1723
1724 /*
1725 * __detach_mounts - lazily unmount all mounts on the specified dentry
1726 *
1727 * During unlink, rmdir, and d_drop it is possible to loose the path
1728 * to an existing mountpoint, and wind up leaking the mount.
1729 * detach_mounts allows lazily unmounting those mounts instead of
1730 * leaking them.
1731 *
1732 * The caller may hold dentry->d_inode->i_mutex.
1733 */
1734 void __detach_mounts(struct dentry *dentry)
1735 {
1736 struct mountpoint *mp;
1737 struct mount *mnt;
1738
1739 namespace_lock();
1740 lock_mount_hash();
1741 mp = lookup_mountpoint(dentry);
1742 if (!mp)
1743 goto out_unlock;
1744
1745 event++;
1746 while (!hlist_empty(&mp->m_list)) {
1747 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1748 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1749 umount_mnt(mnt);
1750 hlist_add_head(&mnt->mnt_umount, &unmounted);
1751 }
1752 else umount_tree(mnt, UMOUNT_CONNECTED);
1753 }
1754 put_mountpoint(mp);
1755 out_unlock:
1756 unlock_mount_hash();
1757 namespace_unlock();
1758 }
1759
1760 /*
1761 * Is the caller allowed to modify his namespace?
1762 */
1763 bool may_mount(void)
1764 {
1765 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1766 }
1767
1768 static void warn_mandlock(void)
1769 {
1770 pr_warn_once("=======================================================\n"
1771 "WARNING: The mand mount option has been deprecated and\n"
1772 " and is ignored by this kernel. Remove the mand\n"
1773 " option from the mount to silence this warning.\n"
1774 "=======================================================\n");
1775 }
1776
1777 static int can_umount(const struct path *path, int flags)
1778 {
1779 struct mount *mnt = real_mount(path->mnt);
1780
1781 if (!may_mount())
1782 return -EPERM;
1783 if (path->dentry != path->mnt->mnt_root)
1784 return -EINVAL;
1785 if (!check_mnt(mnt))
1786 return -EINVAL;
1787 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1788 return -EINVAL;
1789 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1790 return -EPERM;
1791 return 0;
1792 }
1793
1794 // caller is responsible for flags being sane
1795 int path_umount(struct path *path, int flags)
1796 {
1797 struct mount *mnt = real_mount(path->mnt);
1798 int ret;
1799
1800 ret = can_umount(path, flags);
1801 if (!ret)
1802 ret = do_umount(mnt, flags);
1803
1804 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1805 dput(path->dentry);
1806 mntput_no_expire(mnt);
1807 return ret;
1808 }
1809
1810 static int ksys_umount(char __user *name, int flags)
1811 {
1812 int lookup_flags = LOOKUP_MOUNTPOINT;
1813 struct path path;
1814 int ret;
1815
1816 // basic validity checks done first
1817 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1818 return -EINVAL;
1819
1820 if (!(flags & UMOUNT_NOFOLLOW))
1821 lookup_flags |= LOOKUP_FOLLOW;
1822 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1823 if (ret)
1824 return ret;
1825 return path_umount(&path, flags);
1826 }
1827
1828 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1829 {
1830 return ksys_umount(name, flags);
1831 }
1832
1833 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1834
1835 /*
1836 * The 2.0 compatible umount. No flags.
1837 */
1838 SYSCALL_DEFINE1(oldumount, char __user *, name)
1839 {
1840 return ksys_umount(name, 0);
1841 }
1842
1843 #endif
1844
1845 static bool is_mnt_ns_file(struct dentry *dentry)
1846 {
1847 /* Is this a proxy for a mount namespace? */
1848 return dentry->d_op == &ns_dentry_operations &&
1849 dentry->d_fsdata == &mntns_operations;
1850 }
1851
1852 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1853 {
1854 return container_of(ns, struct mnt_namespace, ns);
1855 }
1856
1857 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1858 {
1859 return &mnt->ns;
1860 }
1861
1862 static bool mnt_ns_loop(struct dentry *dentry)
1863 {
1864 /* Could bind mounting the mount namespace inode cause a
1865 * mount namespace loop?
1866 */
1867 struct mnt_namespace *mnt_ns;
1868 if (!is_mnt_ns_file(dentry))
1869 return false;
1870
1871 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1872 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1873 }
1874
1875 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1876 int flag)
1877 {
1878 struct mount *res, *p, *q, *r, *parent;
1879
1880 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1881 return ERR_PTR(-EINVAL);
1882
1883 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1884 return ERR_PTR(-EINVAL);
1885
1886 res = q = clone_mnt(mnt, dentry, flag);
1887 if (IS_ERR(q))
1888 return q;
1889
1890 q->mnt_mountpoint = mnt->mnt_mountpoint;
1891
1892 p = mnt;
1893 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1894 struct mount *s;
1895 if (!is_subdir(r->mnt_mountpoint, dentry))
1896 continue;
1897
1898 for (s = r; s; s = next_mnt(s, r)) {
1899 if (!(flag & CL_COPY_UNBINDABLE) &&
1900 IS_MNT_UNBINDABLE(s)) {
1901 if (s->mnt.mnt_flags & MNT_LOCKED) {
1902 /* Both unbindable and locked. */
1903 q = ERR_PTR(-EPERM);
1904 goto out;
1905 } else {
1906 s = skip_mnt_tree(s);
1907 continue;
1908 }
1909 }
1910 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1911 is_mnt_ns_file(s->mnt.mnt_root)) {
1912 s = skip_mnt_tree(s);
1913 continue;
1914 }
1915 while (p != s->mnt_parent) {
1916 p = p->mnt_parent;
1917 q = q->mnt_parent;
1918 }
1919 p = s;
1920 parent = q;
1921 q = clone_mnt(p, p->mnt.mnt_root, flag);
1922 if (IS_ERR(q))
1923 goto out;
1924 lock_mount_hash();
1925 list_add_tail(&q->mnt_list, &res->mnt_list);
1926 attach_mnt(q, parent, p->mnt_mp);
1927 unlock_mount_hash();
1928 }
1929 }
1930 return res;
1931 out:
1932 if (res) {
1933 lock_mount_hash();
1934 umount_tree(res, UMOUNT_SYNC);
1935 unlock_mount_hash();
1936 }
1937 return q;
1938 }
1939
1940 /* Caller should check returned pointer for errors */
1941
1942 struct vfsmount *collect_mounts(const struct path *path)
1943 {
1944 struct mount *tree;
1945 namespace_lock();
1946 if (!check_mnt(real_mount(path->mnt)))
1947 tree = ERR_PTR(-EINVAL);
1948 else
1949 tree = copy_tree(real_mount(path->mnt), path->dentry,
1950 CL_COPY_ALL | CL_PRIVATE);
1951 namespace_unlock();
1952 if (IS_ERR(tree))
1953 return ERR_CAST(tree);
1954 return &tree->mnt;
1955 }
1956
1957 static void free_mnt_ns(struct mnt_namespace *);
1958 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1959
1960 void dissolve_on_fput(struct vfsmount *mnt)
1961 {
1962 struct mnt_namespace *ns;
1963 namespace_lock();
1964 lock_mount_hash();
1965 ns = real_mount(mnt)->mnt_ns;
1966 if (ns) {
1967 if (is_anon_ns(ns))
1968 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1969 else
1970 ns = NULL;
1971 }
1972 unlock_mount_hash();
1973 namespace_unlock();
1974 if (ns)
1975 free_mnt_ns(ns);
1976 }
1977
1978 void drop_collected_mounts(struct vfsmount *mnt)
1979 {
1980 namespace_lock();
1981 lock_mount_hash();
1982 umount_tree(real_mount(mnt), 0);
1983 unlock_mount_hash();
1984 namespace_unlock();
1985 }
1986
1987 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1988 {
1989 struct mount *child;
1990
1991 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1992 if (!is_subdir(child->mnt_mountpoint, dentry))
1993 continue;
1994
1995 if (child->mnt.mnt_flags & MNT_LOCKED)
1996 return true;
1997 }
1998 return false;
1999 }
2000
2001 /**
2002 * clone_private_mount - create a private clone of a path
2003 * @path: path to clone
2004 *
2005 * This creates a new vfsmount, which will be the clone of @path. The new mount
2006 * will not be attached anywhere in the namespace and will be private (i.e.
2007 * changes to the originating mount won't be propagated into this).
2008 *
2009 * Release with mntput().
2010 */
2011 struct vfsmount *clone_private_mount(const struct path *path)
2012 {
2013 struct mount *old_mnt = real_mount(path->mnt);
2014 struct mount *new_mnt;
2015
2016 down_read(&namespace_sem);
2017 if (IS_MNT_UNBINDABLE(old_mnt))
2018 goto invalid;
2019
2020 if (!check_mnt(old_mnt))
2021 goto invalid;
2022
2023 if (has_locked_children(old_mnt, path->dentry))
2024 goto invalid;
2025
2026 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2027 up_read(&namespace_sem);
2028
2029 if (IS_ERR(new_mnt))
2030 return ERR_CAST(new_mnt);
2031
2032 /* Longterm mount to be removed by kern_unmount*() */
2033 new_mnt->mnt_ns = MNT_NS_INTERNAL;
2034
2035 return &new_mnt->mnt;
2036
2037 invalid:
2038 up_read(&namespace_sem);
2039 return ERR_PTR(-EINVAL);
2040 }
2041 EXPORT_SYMBOL_GPL(clone_private_mount);
2042
2043 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2044 struct vfsmount *root)
2045 {
2046 struct mount *mnt;
2047 int res = f(root, arg);
2048 if (res)
2049 return res;
2050 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2051 res = f(&mnt->mnt, arg);
2052 if (res)
2053 return res;
2054 }
2055 return 0;
2056 }
2057
2058 static void lock_mnt_tree(struct mount *mnt)
2059 {
2060 struct mount *p;
2061
2062 for (p = mnt; p; p = next_mnt(p, mnt)) {
2063 int flags = p->mnt.mnt_flags;
2064 /* Don't allow unprivileged users to change mount flags */
2065 flags |= MNT_LOCK_ATIME;
2066
2067 if (flags & MNT_READONLY)
2068 flags |= MNT_LOCK_READONLY;
2069
2070 if (flags & MNT_NODEV)
2071 flags |= MNT_LOCK_NODEV;
2072
2073 if (flags & MNT_NOSUID)
2074 flags |= MNT_LOCK_NOSUID;
2075
2076 if (flags & MNT_NOEXEC)
2077 flags |= MNT_LOCK_NOEXEC;
2078 /* Don't allow unprivileged users to reveal what is under a mount */
2079 if (list_empty(&p->mnt_expire))
2080 flags |= MNT_LOCKED;
2081 p->mnt.mnt_flags = flags;
2082 }
2083 }
2084
2085 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2086 {
2087 struct mount *p;
2088
2089 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2090 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2091 mnt_release_group_id(p);
2092 }
2093 }
2094
2095 static int invent_group_ids(struct mount *mnt, bool recurse)
2096 {
2097 struct mount *p;
2098
2099 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2100 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2101 int err = mnt_alloc_group_id(p);
2102 if (err) {
2103 cleanup_group_ids(mnt, p);
2104 return err;
2105 }
2106 }
2107 }
2108
2109 return 0;
2110 }
2111
2112 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2113 {
2114 unsigned int max = READ_ONCE(sysctl_mount_max);
2115 unsigned int mounts = 0;
2116 struct mount *p;
2117
2118 if (ns->mounts >= max)
2119 return -ENOSPC;
2120 max -= ns->mounts;
2121 if (ns->pending_mounts >= max)
2122 return -ENOSPC;
2123 max -= ns->pending_mounts;
2124
2125 for (p = mnt; p; p = next_mnt(p, mnt))
2126 mounts++;
2127
2128 if (mounts > max)
2129 return -ENOSPC;
2130
2131 ns->pending_mounts += mounts;
2132 return 0;
2133 }
2134
2135 /*
2136 * @source_mnt : mount tree to be attached
2137 * @nd : place the mount tree @source_mnt is attached
2138 * @parent_nd : if non-null, detach the source_mnt from its parent and
2139 * store the parent mount and mountpoint dentry.
2140 * (done when source_mnt is moved)
2141 *
2142 * NOTE: in the table below explains the semantics when a source mount
2143 * of a given type is attached to a destination mount of a given type.
2144 * ---------------------------------------------------------------------------
2145 * | BIND MOUNT OPERATION |
2146 * |**************************************************************************
2147 * | source-->| shared | private | slave | unbindable |
2148 * | dest | | | | |
2149 * | | | | | | |
2150 * | v | | | | |
2151 * |**************************************************************************
2152 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2153 * | | | | | |
2154 * |non-shared| shared (+) | private | slave (*) | invalid |
2155 * ***************************************************************************
2156 * A bind operation clones the source mount and mounts the clone on the
2157 * destination mount.
2158 *
2159 * (++) the cloned mount is propagated to all the mounts in the propagation
2160 * tree of the destination mount and the cloned mount is added to
2161 * the peer group of the source mount.
2162 * (+) the cloned mount is created under the destination mount and is marked
2163 * as shared. The cloned mount is added to the peer group of the source
2164 * mount.
2165 * (+++) the mount is propagated to all the mounts in the propagation tree
2166 * of the destination mount and the cloned mount is made slave
2167 * of the same master as that of the source mount. The cloned mount
2168 * is marked as 'shared and slave'.
2169 * (*) the cloned mount is made a slave of the same master as that of the
2170 * source mount.
2171 *
2172 * ---------------------------------------------------------------------------
2173 * | MOVE MOUNT OPERATION |
2174 * |**************************************************************************
2175 * | source-->| shared | private | slave | unbindable |
2176 * | dest | | | | |
2177 * | | | | | | |
2178 * | v | | | | |
2179 * |**************************************************************************
2180 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2181 * | | | | | |
2182 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2183 * ***************************************************************************
2184 *
2185 * (+) the mount is moved to the destination. And is then propagated to
2186 * all the mounts in the propagation tree of the destination mount.
2187 * (+*) the mount is moved to the destination.
2188 * (+++) the mount is moved to the destination and is then propagated to
2189 * all the mounts belonging to the destination mount's propagation tree.
2190 * the mount is marked as 'shared and slave'.
2191 * (*) the mount continues to be a slave at the new location.
2192 *
2193 * if the source mount is a tree, the operations explained above is
2194 * applied to each mount in the tree.
2195 * Must be called without spinlocks held, since this function can sleep
2196 * in allocations.
2197 */
2198 static int attach_recursive_mnt(struct mount *source_mnt,
2199 struct mount *dest_mnt,
2200 struct mountpoint *dest_mp,
2201 bool moving)
2202 {
2203 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2204 HLIST_HEAD(tree_list);
2205 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2206 struct mountpoint *smp;
2207 struct mount *child, *p;
2208 struct hlist_node *n;
2209 int err;
2210
2211 /* Preallocate a mountpoint in case the new mounts need
2212 * to be tucked under other mounts.
2213 */
2214 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2215 if (IS_ERR(smp))
2216 return PTR_ERR(smp);
2217
2218 /* Is there space to add these mounts to the mount namespace? */
2219 if (!moving) {
2220 err = count_mounts(ns, source_mnt);
2221 if (err)
2222 goto out;
2223 }
2224
2225 if (IS_MNT_SHARED(dest_mnt)) {
2226 err = invent_group_ids(source_mnt, true);
2227 if (err)
2228 goto out;
2229 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2230 lock_mount_hash();
2231 if (err)
2232 goto out_cleanup_ids;
2233 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2234 set_mnt_shared(p);
2235 } else {
2236 lock_mount_hash();
2237 }
2238 if (moving) {
2239 unhash_mnt(source_mnt);
2240 attach_mnt(source_mnt, dest_mnt, dest_mp);
2241 touch_mnt_namespace(source_mnt->mnt_ns);
2242 } else {
2243 if (source_mnt->mnt_ns) {
2244 /* move from anon - the caller will destroy */
2245 list_del_init(&source_mnt->mnt_ns->list);
2246 }
2247 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2248 commit_tree(source_mnt);
2249 }
2250
2251 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2252 struct mount *q;
2253 hlist_del_init(&child->mnt_hash);
2254 q = __lookup_mnt(&child->mnt_parent->mnt,
2255 child->mnt_mountpoint);
2256 if (q)
2257 mnt_change_mountpoint(child, smp, q);
2258 /* Notice when we are propagating across user namespaces */
2259 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2260 lock_mnt_tree(child);
2261 child->mnt.mnt_flags &= ~MNT_LOCKED;
2262 commit_tree(child);
2263 }
2264 put_mountpoint(smp);
2265 unlock_mount_hash();
2266
2267 return 0;
2268
2269 out_cleanup_ids:
2270 while (!hlist_empty(&tree_list)) {
2271 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2272 child->mnt_parent->mnt_ns->pending_mounts = 0;
2273 umount_tree(child, UMOUNT_SYNC);
2274 }
2275 unlock_mount_hash();
2276 cleanup_group_ids(source_mnt, NULL);
2277 out:
2278 ns->pending_mounts = 0;
2279
2280 read_seqlock_excl(&mount_lock);
2281 put_mountpoint(smp);
2282 read_sequnlock_excl(&mount_lock);
2283
2284 return err;
2285 }
2286
2287 static struct mountpoint *lock_mount(struct path *path)
2288 {
2289 struct vfsmount *mnt;
2290 struct dentry *dentry = path->dentry;
2291 retry:
2292 inode_lock(dentry->d_inode);
2293 if (unlikely(cant_mount(dentry))) {
2294 inode_unlock(dentry->d_inode);
2295 return ERR_PTR(-ENOENT);
2296 }
2297 namespace_lock();
2298 mnt = lookup_mnt(path);
2299 if (likely(!mnt)) {
2300 struct mountpoint *mp = get_mountpoint(dentry);
2301 if (IS_ERR(mp)) {
2302 namespace_unlock();
2303 inode_unlock(dentry->d_inode);
2304 return mp;
2305 }
2306 return mp;
2307 }
2308 namespace_unlock();
2309 inode_unlock(path->dentry->d_inode);
2310 path_put(path);
2311 path->mnt = mnt;
2312 dentry = path->dentry = dget(mnt->mnt_root);
2313 goto retry;
2314 }
2315
2316 static void unlock_mount(struct mountpoint *where)
2317 {
2318 struct dentry *dentry = where->m_dentry;
2319
2320 read_seqlock_excl(&mount_lock);
2321 put_mountpoint(where);
2322 read_sequnlock_excl(&mount_lock);
2323
2324 namespace_unlock();
2325 inode_unlock(dentry->d_inode);
2326 }
2327
2328 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2329 {
2330 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2331 return -EINVAL;
2332
2333 if (d_is_dir(mp->m_dentry) !=
2334 d_is_dir(mnt->mnt.mnt_root))
2335 return -ENOTDIR;
2336
2337 return attach_recursive_mnt(mnt, p, mp, false);
2338 }
2339
2340 /*
2341 * Sanity check the flags to change_mnt_propagation.
2342 */
2343
2344 static int flags_to_propagation_type(int ms_flags)
2345 {
2346 int type = ms_flags & ~(MS_REC | MS_SILENT);
2347
2348 /* Fail if any non-propagation flags are set */
2349 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2350 return 0;
2351 /* Only one propagation flag should be set */
2352 if (!is_power_of_2(type))
2353 return 0;
2354 return type;
2355 }
2356
2357 /*
2358 * recursively change the type of the mountpoint.
2359 */
2360 static int do_change_type(struct path *path, int ms_flags)
2361 {
2362 struct mount *m;
2363 struct mount *mnt = real_mount(path->mnt);
2364 int recurse = ms_flags & MS_REC;
2365 int type;
2366 int err = 0;
2367
2368 if (path->dentry != path->mnt->mnt_root)
2369 return -EINVAL;
2370
2371 type = flags_to_propagation_type(ms_flags);
2372 if (!type)
2373 return -EINVAL;
2374
2375 namespace_lock();
2376 if (type == MS_SHARED) {
2377 err = invent_group_ids(mnt, recurse);
2378 if (err)
2379 goto out_unlock;
2380 }
2381
2382 lock_mount_hash();
2383 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2384 change_mnt_propagation(m, type);
2385 unlock_mount_hash();
2386
2387 out_unlock:
2388 namespace_unlock();
2389 return err;
2390 }
2391
2392 static struct mount *__do_loopback(struct path *old_path, int recurse)
2393 {
2394 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2395
2396 if (IS_MNT_UNBINDABLE(old))
2397 return mnt;
2398
2399 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2400 return mnt;
2401
2402 if (!recurse && has_locked_children(old, old_path->dentry))
2403 return mnt;
2404
2405 if (recurse)
2406 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2407 else
2408 mnt = clone_mnt(old, old_path->dentry, 0);
2409
2410 if (!IS_ERR(mnt))
2411 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2412
2413 return mnt;
2414 }
2415
2416 /*
2417 * do loopback mount.
2418 */
2419 static int do_loopback(struct path *path, const char *old_name,
2420 int recurse)
2421 {
2422 struct path old_path;
2423 struct mount *mnt = NULL, *parent;
2424 struct mountpoint *mp;
2425 int err;
2426 if (!old_name || !*old_name)
2427 return -EINVAL;
2428 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2429 if (err)
2430 return err;
2431
2432 err = -EINVAL;
2433 if (mnt_ns_loop(old_path.dentry))
2434 goto out;
2435
2436 mp = lock_mount(path);
2437 if (IS_ERR(mp)) {
2438 err = PTR_ERR(mp);
2439 goto out;
2440 }
2441
2442 parent = real_mount(path->mnt);
2443 if (!check_mnt(parent))
2444 goto out2;
2445
2446 mnt = __do_loopback(&old_path, recurse);
2447 if (IS_ERR(mnt)) {
2448 err = PTR_ERR(mnt);
2449 goto out2;
2450 }
2451
2452 err = graft_tree(mnt, parent, mp);
2453 if (err) {
2454 lock_mount_hash();
2455 umount_tree(mnt, UMOUNT_SYNC);
2456 unlock_mount_hash();
2457 }
2458 out2:
2459 unlock_mount(mp);
2460 out:
2461 path_put(&old_path);
2462 return err;
2463 }
2464
2465 static struct file *open_detached_copy(struct path *path, bool recursive)
2466 {
2467 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2468 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2469 struct mount *mnt, *p;
2470 struct file *file;
2471
2472 if (IS_ERR(ns))
2473 return ERR_CAST(ns);
2474
2475 namespace_lock();
2476 mnt = __do_loopback(path, recursive);
2477 if (IS_ERR(mnt)) {
2478 namespace_unlock();
2479 free_mnt_ns(ns);
2480 return ERR_CAST(mnt);
2481 }
2482
2483 lock_mount_hash();
2484 for (p = mnt; p; p = next_mnt(p, mnt)) {
2485 p->mnt_ns = ns;
2486 ns->mounts++;
2487 }
2488 ns->root = mnt;
2489 list_add_tail(&ns->list, &mnt->mnt_list);
2490 mntget(&mnt->mnt);
2491 unlock_mount_hash();
2492 namespace_unlock();
2493
2494 mntput(path->mnt);
2495 path->mnt = &mnt->mnt;
2496 file = dentry_open(path, O_PATH, current_cred());
2497 if (IS_ERR(file))
2498 dissolve_on_fput(path->mnt);
2499 else
2500 file->f_mode |= FMODE_NEED_UNMOUNT;
2501 return file;
2502 }
2503
2504 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2505 {
2506 struct file *file;
2507 struct path path;
2508 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2509 bool detached = flags & OPEN_TREE_CLONE;
2510 int error;
2511 int fd;
2512
2513 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2514
2515 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2516 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2517 OPEN_TREE_CLOEXEC))
2518 return -EINVAL;
2519
2520 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2521 return -EINVAL;
2522
2523 if (flags & AT_NO_AUTOMOUNT)
2524 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2525 if (flags & AT_SYMLINK_NOFOLLOW)
2526 lookup_flags &= ~LOOKUP_FOLLOW;
2527 if (flags & AT_EMPTY_PATH)
2528 lookup_flags |= LOOKUP_EMPTY;
2529
2530 if (detached && !may_mount())
2531 return -EPERM;
2532
2533 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2534 if (fd < 0)
2535 return fd;
2536
2537 error = user_path_at(dfd, filename, lookup_flags, &path);
2538 if (unlikely(error)) {
2539 file = ERR_PTR(error);
2540 } else {
2541 if (detached)
2542 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2543 else
2544 file = dentry_open(&path, O_PATH, current_cred());
2545 path_put(&path);
2546 }
2547 if (IS_ERR(file)) {
2548 put_unused_fd(fd);
2549 return PTR_ERR(file);
2550 }
2551 fd_install(fd, file);
2552 return fd;
2553 }
2554
2555 /*
2556 * Don't allow locked mount flags to be cleared.
2557 *
2558 * No locks need to be held here while testing the various MNT_LOCK
2559 * flags because those flags can never be cleared once they are set.
2560 */
2561 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2562 {
2563 unsigned int fl = mnt->mnt.mnt_flags;
2564
2565 if ((fl & MNT_LOCK_READONLY) &&
2566 !(mnt_flags & MNT_READONLY))
2567 return false;
2568
2569 if ((fl & MNT_LOCK_NODEV) &&
2570 !(mnt_flags & MNT_NODEV))
2571 return false;
2572
2573 if ((fl & MNT_LOCK_NOSUID) &&
2574 !(mnt_flags & MNT_NOSUID))
2575 return false;
2576
2577 if ((fl & MNT_LOCK_NOEXEC) &&
2578 !(mnt_flags & MNT_NOEXEC))
2579 return false;
2580
2581 if ((fl & MNT_LOCK_ATIME) &&
2582 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2583 return false;
2584
2585 return true;
2586 }
2587
2588 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2589 {
2590 bool readonly_request = (mnt_flags & MNT_READONLY);
2591
2592 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2593 return 0;
2594
2595 if (readonly_request)
2596 return mnt_make_readonly(mnt);
2597
2598 mnt->mnt.mnt_flags &= ~MNT_READONLY;
2599 return 0;
2600 }
2601
2602 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2603 {
2604 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2605 mnt->mnt.mnt_flags = mnt_flags;
2606 touch_mnt_namespace(mnt->mnt_ns);
2607 }
2608
2609 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2610 {
2611 struct super_block *sb = mnt->mnt_sb;
2612
2613 if (!__mnt_is_readonly(mnt) &&
2614 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2615 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2616 char *buf = (char *)__get_free_page(GFP_KERNEL);
2617 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2618 struct tm tm;
2619
2620 time64_to_tm(sb->s_time_max, 0, &tm);
2621
2622 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2623 sb->s_type->name,
2624 is_mounted(mnt) ? "remounted" : "mounted",
2625 mntpath,
2626 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2627
2628 free_page((unsigned long)buf);
2629 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2630 }
2631 }
2632
2633 /*
2634 * Handle reconfiguration of the mountpoint only without alteration of the
2635 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2636 * to mount(2).
2637 */
2638 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2639 {
2640 struct super_block *sb = path->mnt->mnt_sb;
2641 struct mount *mnt = real_mount(path->mnt);
2642 int ret;
2643
2644 if (!check_mnt(mnt))
2645 return -EINVAL;
2646
2647 if (path->dentry != mnt->mnt.mnt_root)
2648 return -EINVAL;
2649
2650 if (!can_change_locked_flags(mnt, mnt_flags))
2651 return -EPERM;
2652
2653 /*
2654 * We're only checking whether the superblock is read-only not
2655 * changing it, so only take down_read(&sb->s_umount).
2656 */
2657 down_read(&sb->s_umount);
2658 lock_mount_hash();
2659 ret = change_mount_ro_state(mnt, mnt_flags);
2660 if (ret == 0)
2661 set_mount_attributes(mnt, mnt_flags);
2662 unlock_mount_hash();
2663 up_read(&sb->s_umount);
2664
2665 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2666
2667 return ret;
2668 }
2669
2670 /*
2671 * change filesystem flags. dir should be a physical root of filesystem.
2672 * If you've mounted a non-root directory somewhere and want to do remount
2673 * on it - tough luck.
2674 */
2675 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2676 int mnt_flags, void *data)
2677 {
2678 int err;
2679 struct super_block *sb = path->mnt->mnt_sb;
2680 struct mount *mnt = real_mount(path->mnt);
2681 struct fs_context *fc;
2682
2683 if (!check_mnt(mnt))
2684 return -EINVAL;
2685
2686 if (path->dentry != path->mnt->mnt_root)
2687 return -EINVAL;
2688
2689 if (!can_change_locked_flags(mnt, mnt_flags))
2690 return -EPERM;
2691
2692 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2693 if (IS_ERR(fc))
2694 return PTR_ERR(fc);
2695
2696 fc->oldapi = true;
2697 err = parse_monolithic_mount_data(fc, data);
2698 if (!err) {
2699 down_write(&sb->s_umount);
2700 err = -EPERM;
2701 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2702 err = reconfigure_super(fc);
2703 if (!err) {
2704 lock_mount_hash();
2705 set_mount_attributes(mnt, mnt_flags);
2706 unlock_mount_hash();
2707 }
2708 }
2709 up_write(&sb->s_umount);
2710 }
2711
2712 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2713
2714 put_fs_context(fc);
2715 return err;
2716 }
2717
2718 static inline int tree_contains_unbindable(struct mount *mnt)
2719 {
2720 struct mount *p;
2721 for (p = mnt; p; p = next_mnt(p, mnt)) {
2722 if (IS_MNT_UNBINDABLE(p))
2723 return 1;
2724 }
2725 return 0;
2726 }
2727
2728 /*
2729 * Check that there aren't references to earlier/same mount namespaces in the
2730 * specified subtree. Such references can act as pins for mount namespaces
2731 * that aren't checked by the mount-cycle checking code, thereby allowing
2732 * cycles to be made.
2733 */
2734 static bool check_for_nsfs_mounts(struct mount *subtree)
2735 {
2736 struct mount *p;
2737 bool ret = false;
2738
2739 lock_mount_hash();
2740 for (p = subtree; p; p = next_mnt(p, subtree))
2741 if (mnt_ns_loop(p->mnt.mnt_root))
2742 goto out;
2743
2744 ret = true;
2745 out:
2746 unlock_mount_hash();
2747 return ret;
2748 }
2749
2750 static int do_set_group(struct path *from_path, struct path *to_path)
2751 {
2752 struct mount *from, *to;
2753 int err;
2754
2755 from = real_mount(from_path->mnt);
2756 to = real_mount(to_path->mnt);
2757
2758 namespace_lock();
2759
2760 err = -EINVAL;
2761 /* To and From must be mounted */
2762 if (!is_mounted(&from->mnt))
2763 goto out;
2764 if (!is_mounted(&to->mnt))
2765 goto out;
2766
2767 err = -EPERM;
2768 /* We should be allowed to modify mount namespaces of both mounts */
2769 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2770 goto out;
2771 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2772 goto out;
2773
2774 err = -EINVAL;
2775 /* To and From paths should be mount roots */
2776 if (from_path->dentry != from_path->mnt->mnt_root)
2777 goto out;
2778 if (to_path->dentry != to_path->mnt->mnt_root)
2779 goto out;
2780
2781 /* Setting sharing groups is only allowed across same superblock */
2782 if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2783 goto out;
2784
2785 /* From mount root should be wider than To mount root */
2786 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2787 goto out;
2788
2789 /* From mount should not have locked children in place of To's root */
2790 if (has_locked_children(from, to->mnt.mnt_root))
2791 goto out;
2792
2793 /* Setting sharing groups is only allowed on private mounts */
2794 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2795 goto out;
2796
2797 /* From should not be private */
2798 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2799 goto out;
2800
2801 if (IS_MNT_SLAVE(from)) {
2802 struct mount *m = from->mnt_master;
2803
2804 list_add(&to->mnt_slave, &m->mnt_slave_list);
2805 to->mnt_master = m;
2806 }
2807
2808 if (IS_MNT_SHARED(from)) {
2809 to->mnt_group_id = from->mnt_group_id;
2810 list_add(&to->mnt_share, &from->mnt_share);
2811 lock_mount_hash();
2812 set_mnt_shared(to);
2813 unlock_mount_hash();
2814 }
2815
2816 err = 0;
2817 out:
2818 namespace_unlock();
2819 return err;
2820 }
2821
2822 static int do_move_mount(struct path *old_path, struct path *new_path)
2823 {
2824 struct mnt_namespace *ns;
2825 struct mount *p;
2826 struct mount *old;
2827 struct mount *parent;
2828 struct mountpoint *mp, *old_mp;
2829 int err;
2830 bool attached;
2831
2832 mp = lock_mount(new_path);
2833 if (IS_ERR(mp))
2834 return PTR_ERR(mp);
2835
2836 old = real_mount(old_path->mnt);
2837 p = real_mount(new_path->mnt);
2838 parent = old->mnt_parent;
2839 attached = mnt_has_parent(old);
2840 old_mp = old->mnt_mp;
2841 ns = old->mnt_ns;
2842
2843 err = -EINVAL;
2844 /* The mountpoint must be in our namespace. */
2845 if (!check_mnt(p))
2846 goto out;
2847
2848 /* The thing moved must be mounted... */
2849 if (!is_mounted(&old->mnt))
2850 goto out;
2851
2852 /* ... and either ours or the root of anon namespace */
2853 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2854 goto out;
2855
2856 if (old->mnt.mnt_flags & MNT_LOCKED)
2857 goto out;
2858
2859 if (old_path->dentry != old_path->mnt->mnt_root)
2860 goto out;
2861
2862 if (d_is_dir(new_path->dentry) !=
2863 d_is_dir(old_path->dentry))
2864 goto out;
2865 /*
2866 * Don't move a mount residing in a shared parent.
2867 */
2868 if (attached && IS_MNT_SHARED(parent))
2869 goto out;
2870 /*
2871 * Don't move a mount tree containing unbindable mounts to a destination
2872 * mount which is shared.
2873 */
2874 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2875 goto out;
2876 err = -ELOOP;
2877 if (!check_for_nsfs_mounts(old))
2878 goto out;
2879 for (; mnt_has_parent(p); p = p->mnt_parent)
2880 if (p == old)
2881 goto out;
2882
2883 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2884 attached);
2885 if (err)
2886 goto out;
2887
2888 /* if the mount is moved, it should no longer be expire
2889 * automatically */
2890 list_del_init(&old->mnt_expire);
2891 if (attached)
2892 put_mountpoint(old_mp);
2893 out:
2894 unlock_mount(mp);
2895 if (!err) {
2896 if (attached)
2897 mntput_no_expire(parent);
2898 else
2899 free_mnt_ns(ns);
2900 }
2901 return err;
2902 }
2903
2904 static int do_move_mount_old(struct path *path, const char *old_name)
2905 {
2906 struct path old_path;
2907 int err;
2908
2909 if (!old_name || !*old_name)
2910 return -EINVAL;
2911
2912 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2913 if (err)
2914 return err;
2915
2916 err = do_move_mount(&old_path, path);
2917 path_put(&old_path);
2918 return err;
2919 }
2920
2921 /*
2922 * add a mount into a namespace's mount tree
2923 */
2924 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2925 const struct path *path, int mnt_flags)
2926 {
2927 struct mount *parent = real_mount(path->mnt);
2928
2929 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2930
2931 if (unlikely(!check_mnt(parent))) {
2932 /* that's acceptable only for automounts done in private ns */
2933 if (!(mnt_flags & MNT_SHRINKABLE))
2934 return -EINVAL;
2935 /* ... and for those we'd better have mountpoint still alive */
2936 if (!parent->mnt_ns)
2937 return -EINVAL;
2938 }
2939
2940 /* Refuse the same filesystem on the same mount point */
2941 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2942 path->mnt->mnt_root == path->dentry)
2943 return -EBUSY;
2944
2945 if (d_is_symlink(newmnt->mnt.mnt_root))
2946 return -EINVAL;
2947
2948 newmnt->mnt.mnt_flags = mnt_flags;
2949 return graft_tree(newmnt, parent, mp);
2950 }
2951
2952 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2953
2954 /*
2955 * Create a new mount using a superblock configuration and request it
2956 * be added to the namespace tree.
2957 */
2958 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2959 unsigned int mnt_flags)
2960 {
2961 struct vfsmount *mnt;
2962 struct mountpoint *mp;
2963 struct super_block *sb = fc->root->d_sb;
2964 int error;
2965
2966 error = security_sb_kern_mount(sb);
2967 if (!error && mount_too_revealing(sb, &mnt_flags))
2968 error = -EPERM;
2969
2970 if (unlikely(error)) {
2971 fc_drop_locked(fc);
2972 return error;
2973 }
2974
2975 up_write(&sb->s_umount);
2976
2977 mnt = vfs_create_mount(fc);
2978 if (IS_ERR(mnt))
2979 return PTR_ERR(mnt);
2980
2981 mnt_warn_timestamp_expiry(mountpoint, mnt);
2982
2983 mp = lock_mount(mountpoint);
2984 if (IS_ERR(mp)) {
2985 mntput(mnt);
2986 return PTR_ERR(mp);
2987 }
2988 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2989 unlock_mount(mp);
2990 if (error < 0)
2991 mntput(mnt);
2992 return error;
2993 }
2994
2995 /*
2996 * create a new mount for userspace and request it to be added into the
2997 * namespace's tree
2998 */
2999 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3000 int mnt_flags, const char *name, void *data)
3001 {
3002 struct file_system_type *type;
3003 struct fs_context *fc;
3004 const char *subtype = NULL;
3005 int err = 0;
3006
3007 if (!fstype)
3008 return -EINVAL;
3009
3010 type = get_fs_type(fstype);
3011 if (!type)
3012 return -ENODEV;
3013
3014 if (type->fs_flags & FS_HAS_SUBTYPE) {
3015 subtype = strchr(fstype, '.');
3016 if (subtype) {
3017 subtype++;
3018 if (!*subtype) {
3019 put_filesystem(type);
3020 return -EINVAL;
3021 }
3022 }
3023 }
3024
3025 fc = fs_context_for_mount(type, sb_flags);
3026 put_filesystem(type);
3027 if (IS_ERR(fc))
3028 return PTR_ERR(fc);
3029
3030 if (subtype)
3031 err = vfs_parse_fs_string(fc, "subtype",
3032 subtype, strlen(subtype));
3033 if (!err && name)
3034 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3035 if (!err)
3036 err = parse_monolithic_mount_data(fc, data);
3037 if (!err && !mount_capable(fc))
3038 err = -EPERM;
3039 if (!err)
3040 err = vfs_get_tree(fc);
3041 if (!err)
3042 err = do_new_mount_fc(fc, path, mnt_flags);
3043
3044 put_fs_context(fc);
3045 return err;
3046 }
3047
3048 int finish_automount(struct vfsmount *m, const struct path *path)
3049 {
3050 struct dentry *dentry = path->dentry;
3051 struct mountpoint *mp;
3052 struct mount *mnt;
3053 int err;
3054
3055 if (!m)
3056 return 0;
3057 if (IS_ERR(m))
3058 return PTR_ERR(m);
3059
3060 mnt = real_mount(m);
3061 /* The new mount record should have at least 2 refs to prevent it being
3062 * expired before we get a chance to add it
3063 */
3064 BUG_ON(mnt_get_count(mnt) < 2);
3065
3066 if (m->mnt_sb == path->mnt->mnt_sb &&
3067 m->mnt_root == dentry) {
3068 err = -ELOOP;
3069 goto discard;
3070 }
3071
3072 /*
3073 * we don't want to use lock_mount() - in this case finding something
3074 * that overmounts our mountpoint to be means "quitely drop what we've
3075 * got", not "try to mount it on top".
3076 */
3077 inode_lock(dentry->d_inode);
3078 namespace_lock();
3079 if (unlikely(cant_mount(dentry))) {
3080 err = -ENOENT;
3081 goto discard_locked;
3082 }
3083 rcu_read_lock();
3084 if (unlikely(__lookup_mnt(path->mnt, dentry))) {
3085 rcu_read_unlock();
3086 err = 0;
3087 goto discard_locked;
3088 }
3089 rcu_read_unlock();
3090 mp = get_mountpoint(dentry);
3091 if (IS_ERR(mp)) {
3092 err = PTR_ERR(mp);
3093 goto discard_locked;
3094 }
3095
3096 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3097 unlock_mount(mp);
3098 if (unlikely(err))
3099 goto discard;
3100 mntput(m);
3101 return 0;
3102
3103 discard_locked:
3104 namespace_unlock();
3105 inode_unlock(dentry->d_inode);
3106 discard:
3107 /* remove m from any expiration list it may be on */
3108 if (!list_empty(&mnt->mnt_expire)) {
3109 namespace_lock();
3110 list_del_init(&mnt->mnt_expire);
3111 namespace_unlock();
3112 }
3113 mntput(m);
3114 mntput(m);
3115 return err;
3116 }
3117
3118 /**
3119 * mnt_set_expiry - Put a mount on an expiration list
3120 * @mnt: The mount to list.
3121 * @expiry_list: The list to add the mount to.
3122 */
3123 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3124 {
3125 namespace_lock();
3126
3127 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3128
3129 namespace_unlock();
3130 }
3131 EXPORT_SYMBOL(mnt_set_expiry);
3132
3133 /*
3134 * process a list of expirable mountpoints with the intent of discarding any
3135 * mountpoints that aren't in use and haven't been touched since last we came
3136 * here
3137 */
3138 void mark_mounts_for_expiry(struct list_head *mounts)
3139 {
3140 struct mount *mnt, *next;
3141 LIST_HEAD(graveyard);
3142
3143 if (list_empty(mounts))
3144 return;
3145
3146 namespace_lock();
3147 lock_mount_hash();
3148
3149 /* extract from the expiration list every vfsmount that matches the
3150 * following criteria:
3151 * - only referenced by its parent vfsmount
3152 * - still marked for expiry (marked on the last call here; marks are
3153 * cleared by mntput())
3154 */
3155 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3156 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3157 propagate_mount_busy(mnt, 1))
3158 continue;
3159 list_move(&mnt->mnt_expire, &graveyard);
3160 }
3161 while (!list_empty(&graveyard)) {
3162 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3163 touch_mnt_namespace(mnt->mnt_ns);
3164 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3165 }
3166 unlock_mount_hash();
3167 namespace_unlock();
3168 }
3169
3170 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3171
3172 /*
3173 * Ripoff of 'select_parent()'
3174 *
3175 * search the list of submounts for a given mountpoint, and move any
3176 * shrinkable submounts to the 'graveyard' list.
3177 */
3178 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3179 {
3180 struct mount *this_parent = parent;
3181 struct list_head *next;
3182 int found = 0;
3183
3184 repeat:
3185 next = this_parent->mnt_mounts.next;
3186 resume:
3187 while (next != &this_parent->mnt_mounts) {
3188 struct list_head *tmp = next;
3189 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3190
3191 next = tmp->next;
3192 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3193 continue;
3194 /*
3195 * Descend a level if the d_mounts list is non-empty.
3196 */
3197 if (!list_empty(&mnt->mnt_mounts)) {
3198 this_parent = mnt;
3199 goto repeat;
3200 }
3201
3202 if (!propagate_mount_busy(mnt, 1)) {
3203 list_move_tail(&mnt->mnt_expire, graveyard);
3204 found++;
3205 }
3206 }
3207 /*
3208 * All done at this level ... ascend and resume the search
3209 */
3210 if (this_parent != parent) {
3211 next = this_parent->mnt_child.next;
3212 this_parent = this_parent->mnt_parent;
3213 goto resume;
3214 }
3215 return found;
3216 }
3217
3218 /*
3219 * process a list of expirable mountpoints with the intent of discarding any
3220 * submounts of a specific parent mountpoint
3221 *
3222 * mount_lock must be held for write
3223 */
3224 static void shrink_submounts(struct mount *mnt)
3225 {
3226 LIST_HEAD(graveyard);
3227 struct mount *m;
3228
3229 /* extract submounts of 'mountpoint' from the expiration list */
3230 while (select_submounts(mnt, &graveyard)) {
3231 while (!list_empty(&graveyard)) {
3232 m = list_first_entry(&graveyard, struct mount,
3233 mnt_expire);
3234 touch_mnt_namespace(m->mnt_ns);
3235 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3236 }
3237 }
3238 }
3239
3240 static void *copy_mount_options(const void __user * data)
3241 {
3242 char *copy;
3243 unsigned left, offset;
3244
3245 if (!data)
3246 return NULL;
3247
3248 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3249 if (!copy)
3250 return ERR_PTR(-ENOMEM);
3251
3252 left = copy_from_user(copy, data, PAGE_SIZE);
3253
3254 /*
3255 * Not all architectures have an exact copy_from_user(). Resort to
3256 * byte at a time.
3257 */
3258 offset = PAGE_SIZE - left;
3259 while (left) {
3260 char c;
3261 if (get_user(c, (const char __user *)data + offset))
3262 break;
3263 copy[offset] = c;
3264 left--;
3265 offset++;
3266 }
3267
3268 if (left == PAGE_SIZE) {
3269 kfree(copy);
3270 return ERR_PTR(-EFAULT);
3271 }
3272
3273 return copy;
3274 }
3275
3276 static char *copy_mount_string(const void __user *data)
3277 {
3278 return data ? strndup_user(data, PATH_MAX) : NULL;
3279 }
3280
3281 /*
3282 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3283 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3284 *
3285 * data is a (void *) that can point to any structure up to
3286 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3287 * information (or be NULL).
3288 *
3289 * Pre-0.97 versions of mount() didn't have a flags word.
3290 * When the flags word was introduced its top half was required
3291 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3292 * Therefore, if this magic number is present, it carries no information
3293 * and must be discarded.
3294 */
3295 int path_mount(const char *dev_name, struct path *path,
3296 const char *type_page, unsigned long flags, void *data_page)
3297 {
3298 unsigned int mnt_flags = 0, sb_flags;
3299 int ret;
3300
3301 /* Discard magic */
3302 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3303 flags &= ~MS_MGC_MSK;
3304
3305 /* Basic sanity checks */
3306 if (data_page)
3307 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3308
3309 if (flags & MS_NOUSER)
3310 return -EINVAL;
3311
3312 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3313 if (ret)
3314 return ret;
3315 if (!may_mount())
3316 return -EPERM;
3317 if (flags & SB_MANDLOCK)
3318 warn_mandlock();
3319
3320 /* Default to relatime unless overriden */
3321 if (!(flags & MS_NOATIME))
3322 mnt_flags |= MNT_RELATIME;
3323
3324 /* Separate the per-mountpoint flags */
3325 if (flags & MS_NOSUID)
3326 mnt_flags |= MNT_NOSUID;
3327 if (flags & MS_NODEV)
3328 mnt_flags |= MNT_NODEV;
3329 if (flags & MS_NOEXEC)
3330 mnt_flags |= MNT_NOEXEC;
3331 if (flags & MS_NOATIME)
3332 mnt_flags |= MNT_NOATIME;
3333 if (flags & MS_NODIRATIME)
3334 mnt_flags |= MNT_NODIRATIME;
3335 if (flags & MS_STRICTATIME)
3336 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3337 if (flags & MS_RDONLY)
3338 mnt_flags |= MNT_READONLY;
3339 if (flags & MS_NOSYMFOLLOW)
3340 mnt_flags |= MNT_NOSYMFOLLOW;
3341
3342 /* The default atime for remount is preservation */
3343 if ((flags & MS_REMOUNT) &&
3344 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3345 MS_STRICTATIME)) == 0)) {
3346 mnt_flags &= ~MNT_ATIME_MASK;
3347 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3348 }
3349
3350 sb_flags = flags & (SB_RDONLY |
3351 SB_SYNCHRONOUS |
3352 SB_MANDLOCK |
3353 SB_DIRSYNC |
3354 SB_SILENT |
3355 SB_POSIXACL |
3356 SB_LAZYTIME |
3357 SB_I_VERSION);
3358
3359 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3360 return do_reconfigure_mnt(path, mnt_flags);
3361 if (flags & MS_REMOUNT)
3362 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3363 if (flags & MS_BIND)
3364 return do_loopback(path, dev_name, flags & MS_REC);
3365 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3366 return do_change_type(path, flags);
3367 if (flags & MS_MOVE)
3368 return do_move_mount_old(path, dev_name);
3369
3370 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3371 data_page);
3372 }
3373
3374 long do_mount(const char *dev_name, const char __user *dir_name,
3375 const char *type_page, unsigned long flags, void *data_page)
3376 {
3377 struct path path;
3378 int ret;
3379
3380 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3381 if (ret)
3382 return ret;
3383 ret = path_mount(dev_name, &path, type_page, flags, data_page);
3384 path_put(&path);
3385 return ret;
3386 }
3387
3388 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3389 {
3390 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3391 }
3392
3393 static void dec_mnt_namespaces(struct ucounts *ucounts)
3394 {
3395 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3396 }
3397
3398 static void free_mnt_ns(struct mnt_namespace *ns)
3399 {
3400 if (!is_anon_ns(ns))
3401 ns_free_inum(&ns->ns);
3402 dec_mnt_namespaces(ns->ucounts);
3403 put_user_ns(ns->user_ns);
3404 kfree(ns);
3405 }
3406
3407 /*
3408 * Assign a sequence number so we can detect when we attempt to bind
3409 * mount a reference to an older mount namespace into the current
3410 * mount namespace, preventing reference counting loops. A 64bit
3411 * number incrementing at 10Ghz will take 12,427 years to wrap which
3412 * is effectively never, so we can ignore the possibility.
3413 */
3414 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3415
3416 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3417 {
3418 struct mnt_namespace *new_ns;
3419 struct ucounts *ucounts;
3420 int ret;
3421
3422 ucounts = inc_mnt_namespaces(user_ns);
3423 if (!ucounts)
3424 return ERR_PTR(-ENOSPC);
3425
3426 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3427 if (!new_ns) {
3428 dec_mnt_namespaces(ucounts);
3429 return ERR_PTR(-ENOMEM);
3430 }
3431 if (!anon) {
3432 ret = ns_alloc_inum(&new_ns->ns);
3433 if (ret) {
3434 kfree(new_ns);
3435 dec_mnt_namespaces(ucounts);
3436 return ERR_PTR(ret);
3437 }
3438 }
3439 new_ns->ns.ops = &mntns_operations;
3440 if (!anon)
3441 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3442 refcount_set(&new_ns->ns.count, 1);
3443 INIT_LIST_HEAD(&new_ns->list);
3444 init_waitqueue_head(&new_ns->poll);
3445 spin_lock_init(&new_ns->ns_lock);
3446 new_ns->user_ns = get_user_ns(user_ns);
3447 new_ns->ucounts = ucounts;
3448 return new_ns;
3449 }
3450
3451 __latent_entropy
3452 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3453 struct user_namespace *user_ns, struct fs_struct *new_fs)
3454 {
3455 struct mnt_namespace *new_ns;
3456 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3457 struct mount *p, *q;
3458 struct mount *old;
3459 struct mount *new;
3460 int copy_flags;
3461
3462 BUG_ON(!ns);
3463
3464 if (likely(!(flags & CLONE_NEWNS))) {
3465 get_mnt_ns(ns);
3466 return ns;
3467 }
3468
3469 old = ns->root;
3470
3471 new_ns = alloc_mnt_ns(user_ns, false);
3472 if (IS_ERR(new_ns))
3473 return new_ns;
3474
3475 namespace_lock();
3476 /* First pass: copy the tree topology */
3477 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3478 if (user_ns != ns->user_ns)
3479 copy_flags |= CL_SHARED_TO_SLAVE;
3480 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3481 if (IS_ERR(new)) {
3482 namespace_unlock();
3483 free_mnt_ns(new_ns);
3484 return ERR_CAST(new);
3485 }
3486 if (user_ns != ns->user_ns) {
3487 lock_mount_hash();
3488 lock_mnt_tree(new);
3489 unlock_mount_hash();
3490 }
3491 new_ns->root = new;
3492 list_add_tail(&new_ns->list, &new->mnt_list);
3493
3494 /*
3495 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3496 * as belonging to new namespace. We have already acquired a private
3497 * fs_struct, so tsk->fs->lock is not needed.
3498 */
3499 p = old;
3500 q = new;
3501 while (p) {
3502 q->mnt_ns = new_ns;
3503 new_ns->mounts++;
3504 if (new_fs) {
3505 if (&p->mnt == new_fs->root.mnt) {
3506 new_fs->root.mnt = mntget(&q->mnt);
3507 rootmnt = &p->mnt;
3508 }
3509 if (&p->mnt == new_fs->pwd.mnt) {
3510 new_fs->pwd.mnt = mntget(&q->mnt);
3511 pwdmnt = &p->mnt;
3512 }
3513 }
3514 p = next_mnt(p, old);
3515 q = next_mnt(q, new);
3516 if (!q)
3517 break;
3518 while (p->mnt.mnt_root != q->mnt.mnt_root)
3519 p = next_mnt(p, old);
3520 }
3521 namespace_unlock();
3522
3523 if (rootmnt)
3524 mntput(rootmnt);
3525 if (pwdmnt)
3526 mntput(pwdmnt);
3527
3528 return new_ns;
3529 }
3530
3531 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3532 {
3533 struct mount *mnt = real_mount(m);
3534 struct mnt_namespace *ns;
3535 struct super_block *s;
3536 struct path path;
3537 int err;
3538
3539 ns = alloc_mnt_ns(&init_user_ns, true);
3540 if (IS_ERR(ns)) {
3541 mntput(m);
3542 return ERR_CAST(ns);
3543 }
3544 mnt->mnt_ns = ns;
3545 ns->root = mnt;
3546 ns->mounts++;
3547 list_add(&mnt->mnt_list, &ns->list);
3548
3549 err = vfs_path_lookup(m->mnt_root, m,
3550 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3551
3552 put_mnt_ns(ns);
3553
3554 if (err)
3555 return ERR_PTR(err);
3556
3557 /* trade a vfsmount reference for active sb one */
3558 s = path.mnt->mnt_sb;
3559 atomic_inc(&s->s_active);
3560 mntput(path.mnt);
3561 /* lock the sucker */
3562 down_write(&s->s_umount);
3563 /* ... and return the root of (sub)tree on it */
3564 return path.dentry;
3565 }
3566 EXPORT_SYMBOL(mount_subtree);
3567
3568 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3569 char __user *, type, unsigned long, flags, void __user *, data)
3570 {
3571 int ret;
3572 char *kernel_type;
3573 char *kernel_dev;
3574 void *options;
3575
3576 kernel_type = copy_mount_string(type);
3577 ret = PTR_ERR(kernel_type);
3578 if (IS_ERR(kernel_type))
3579 goto out_type;
3580
3581 kernel_dev = copy_mount_string(dev_name);
3582 ret = PTR_ERR(kernel_dev);
3583 if (IS_ERR(kernel_dev))
3584 goto out_dev;
3585
3586 options = copy_mount_options(data);
3587 ret = PTR_ERR(options);
3588 if (IS_ERR(options))
3589 goto out_data;
3590
3591 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3592
3593 kfree(options);
3594 out_data:
3595 kfree(kernel_dev);
3596 out_dev:
3597 kfree(kernel_type);
3598 out_type:
3599 return ret;
3600 }
3601
3602 #define FSMOUNT_VALID_FLAGS \
3603 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
3604 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \
3605 MOUNT_ATTR_NOSYMFOLLOW)
3606
3607 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3608
3609 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3610 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3611
3612 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3613 {
3614 unsigned int mnt_flags = 0;
3615
3616 if (attr_flags & MOUNT_ATTR_RDONLY)
3617 mnt_flags |= MNT_READONLY;
3618 if (attr_flags & MOUNT_ATTR_NOSUID)
3619 mnt_flags |= MNT_NOSUID;
3620 if (attr_flags & MOUNT_ATTR_NODEV)
3621 mnt_flags |= MNT_NODEV;
3622 if (attr_flags & MOUNT_ATTR_NOEXEC)
3623 mnt_flags |= MNT_NOEXEC;
3624 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3625 mnt_flags |= MNT_NODIRATIME;
3626 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3627 mnt_flags |= MNT_NOSYMFOLLOW;
3628
3629 return mnt_flags;
3630 }
3631
3632 /*
3633 * Create a kernel mount representation for a new, prepared superblock
3634 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3635 */
3636 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3637 unsigned int, attr_flags)
3638 {
3639 struct mnt_namespace *ns;
3640 struct fs_context *fc;
3641 struct file *file;
3642 struct path newmount;
3643 struct mount *mnt;
3644 struct fd f;
3645 unsigned int mnt_flags = 0;
3646 long ret;
3647
3648 if (!may_mount())
3649 return -EPERM;
3650
3651 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3652 return -EINVAL;
3653
3654 if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3655 return -EINVAL;
3656
3657 mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3658
3659 switch (attr_flags & MOUNT_ATTR__ATIME) {
3660 case MOUNT_ATTR_STRICTATIME:
3661 break;
3662 case MOUNT_ATTR_NOATIME:
3663 mnt_flags |= MNT_NOATIME;
3664 break;
3665 case MOUNT_ATTR_RELATIME:
3666 mnt_flags |= MNT_RELATIME;
3667 break;
3668 default:
3669 return -EINVAL;
3670 }
3671
3672 f = fdget(fs_fd);
3673 if (!f.file)
3674 return -EBADF;
3675
3676 ret = -EINVAL;
3677 if (f.file->f_op != &fscontext_fops)
3678 goto err_fsfd;
3679
3680 fc = f.file->private_data;
3681
3682 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3683 if (ret < 0)
3684 goto err_fsfd;
3685
3686 /* There must be a valid superblock or we can't mount it */
3687 ret = -EINVAL;
3688 if (!fc->root)
3689 goto err_unlock;
3690
3691 ret = -EPERM;
3692 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3693 pr_warn("VFS: Mount too revealing\n");
3694 goto err_unlock;
3695 }
3696
3697 ret = -EBUSY;
3698 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3699 goto err_unlock;
3700
3701 if (fc->sb_flags & SB_MANDLOCK)
3702 warn_mandlock();
3703
3704 newmount.mnt = vfs_create_mount(fc);
3705 if (IS_ERR(newmount.mnt)) {
3706 ret = PTR_ERR(newmount.mnt);
3707 goto err_unlock;
3708 }
3709 newmount.dentry = dget(fc->root);
3710 newmount.mnt->mnt_flags = mnt_flags;
3711
3712 /* We've done the mount bit - now move the file context into more or
3713 * less the same state as if we'd done an fspick(). We don't want to
3714 * do any memory allocation or anything like that at this point as we
3715 * don't want to have to handle any errors incurred.
3716 */
3717 vfs_clean_context(fc);
3718
3719 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3720 if (IS_ERR(ns)) {
3721 ret = PTR_ERR(ns);
3722 goto err_path;
3723 }
3724 mnt = real_mount(newmount.mnt);
3725 mnt->mnt_ns = ns;
3726 ns->root = mnt;
3727 ns->mounts = 1;
3728 list_add(&mnt->mnt_list, &ns->list);
3729 mntget(newmount.mnt);
3730
3731 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3732 * it, not just simply put it.
3733 */
3734 file = dentry_open(&newmount, O_PATH, fc->cred);
3735 if (IS_ERR(file)) {
3736 dissolve_on_fput(newmount.mnt);
3737 ret = PTR_ERR(file);
3738 goto err_path;
3739 }
3740 file->f_mode |= FMODE_NEED_UNMOUNT;
3741
3742 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3743 if (ret >= 0)
3744 fd_install(ret, file);
3745 else
3746 fput(file);
3747
3748 err_path:
3749 path_put(&newmount);
3750 err_unlock:
3751 mutex_unlock(&fc->uapi_mutex);
3752 err_fsfd:
3753 fdput(f);
3754 return ret;
3755 }
3756
3757 /*
3758 * Move a mount from one place to another. In combination with
3759 * fsopen()/fsmount() this is used to install a new mount and in combination
3760 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3761 * a mount subtree.
3762 *
3763 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3764 */
3765 SYSCALL_DEFINE5(move_mount,
3766 int, from_dfd, const char __user *, from_pathname,
3767 int, to_dfd, const char __user *, to_pathname,
3768 unsigned int, flags)
3769 {
3770 struct path from_path, to_path;
3771 unsigned int lflags;
3772 int ret = 0;
3773
3774 if (!may_mount())
3775 return -EPERM;
3776
3777 if (flags & ~MOVE_MOUNT__MASK)
3778 return -EINVAL;
3779
3780 /* If someone gives a pathname, they aren't permitted to move
3781 * from an fd that requires unmount as we can't get at the flag
3782 * to clear it afterwards.
3783 */
3784 lflags = 0;
3785 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3786 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3787 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3788
3789 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3790 if (ret < 0)
3791 return ret;
3792
3793 lflags = 0;
3794 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3795 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3796 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3797
3798 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3799 if (ret < 0)
3800 goto out_from;
3801
3802 ret = security_move_mount(&from_path, &to_path);
3803 if (ret < 0)
3804 goto out_to;
3805
3806 if (flags & MOVE_MOUNT_SET_GROUP)
3807 ret = do_set_group(&from_path, &to_path);
3808 else
3809 ret = do_move_mount(&from_path, &to_path);
3810
3811 out_to:
3812 path_put(&to_path);
3813 out_from:
3814 path_put(&from_path);
3815 return ret;
3816 }
3817
3818 /*
3819 * Return true if path is reachable from root
3820 *
3821 * namespace_sem or mount_lock is held
3822 */
3823 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3824 const struct path *root)
3825 {
3826 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3827 dentry = mnt->mnt_mountpoint;
3828 mnt = mnt->mnt_parent;
3829 }
3830 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3831 }
3832
3833 bool path_is_under(const struct path *path1, const struct path *path2)
3834 {
3835 bool res;
3836 read_seqlock_excl(&mount_lock);
3837 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3838 read_sequnlock_excl(&mount_lock);
3839 return res;
3840 }
3841 EXPORT_SYMBOL(path_is_under);
3842
3843 /*
3844 * pivot_root Semantics:
3845 * Moves the root file system of the current process to the directory put_old,
3846 * makes new_root as the new root file system of the current process, and sets
3847 * root/cwd of all processes which had them on the current root to new_root.
3848 *
3849 * Restrictions:
3850 * The new_root and put_old must be directories, and must not be on the
3851 * same file system as the current process root. The put_old must be
3852 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3853 * pointed to by put_old must yield the same directory as new_root. No other
3854 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3855 *
3856 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3857 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3858 * in this situation.
3859 *
3860 * Notes:
3861 * - we don't move root/cwd if they are not at the root (reason: if something
3862 * cared enough to change them, it's probably wrong to force them elsewhere)
3863 * - it's okay to pick a root that isn't the root of a file system, e.g.
3864 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3865 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3866 * first.
3867 */
3868 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3869 const char __user *, put_old)
3870 {
3871 struct path new, old, root;
3872 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3873 struct mountpoint *old_mp, *root_mp;
3874 int error;
3875
3876 if (!may_mount())
3877 return -EPERM;
3878
3879 error = user_path_at(AT_FDCWD, new_root,
3880 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3881 if (error)
3882 goto out0;
3883
3884 error = user_path_at(AT_FDCWD, put_old,
3885 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3886 if (error)
3887 goto out1;
3888
3889 error = security_sb_pivotroot(&old, &new);
3890 if (error)
3891 goto out2;
3892
3893 get_fs_root(current->fs, &root);
3894 old_mp = lock_mount(&old);
3895 error = PTR_ERR(old_mp);
3896 if (IS_ERR(old_mp))
3897 goto out3;
3898
3899 error = -EINVAL;
3900 new_mnt = real_mount(new.mnt);
3901 root_mnt = real_mount(root.mnt);
3902 old_mnt = real_mount(old.mnt);
3903 ex_parent = new_mnt->mnt_parent;
3904 root_parent = root_mnt->mnt_parent;
3905 if (IS_MNT_SHARED(old_mnt) ||
3906 IS_MNT_SHARED(ex_parent) ||
3907 IS_MNT_SHARED(root_parent))
3908 goto out4;
3909 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3910 goto out4;
3911 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3912 goto out4;
3913 error = -ENOENT;
3914 if (d_unlinked(new.dentry))
3915 goto out4;
3916 error = -EBUSY;
3917 if (new_mnt == root_mnt || old_mnt == root_mnt)
3918 goto out4; /* loop, on the same file system */
3919 error = -EINVAL;
3920 if (root.mnt->mnt_root != root.dentry)
3921 goto out4; /* not a mountpoint */
3922 if (!mnt_has_parent(root_mnt))
3923 goto out4; /* not attached */
3924 if (new.mnt->mnt_root != new.dentry)
3925 goto out4; /* not a mountpoint */
3926 if (!mnt_has_parent(new_mnt))
3927 goto out4; /* not attached */
3928 /* make sure we can reach put_old from new_root */
3929 if (!is_path_reachable(old_mnt, old.dentry, &new))
3930 goto out4;
3931 /* make certain new is below the root */
3932 if (!is_path_reachable(new_mnt, new.dentry, &root))
3933 goto out4;
3934 lock_mount_hash();
3935 umount_mnt(new_mnt);
3936 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
3937 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3938 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3939 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3940 }
3941 /* mount old root on put_old */
3942 attach_mnt(root_mnt, old_mnt, old_mp);
3943 /* mount new_root on / */
3944 attach_mnt(new_mnt, root_parent, root_mp);
3945 mnt_add_count(root_parent, -1);
3946 touch_mnt_namespace(current->nsproxy->mnt_ns);
3947 /* A moved mount should not expire automatically */
3948 list_del_init(&new_mnt->mnt_expire);
3949 put_mountpoint(root_mp);
3950 unlock_mount_hash();
3951 chroot_fs_refs(&root, &new);
3952 error = 0;
3953 out4:
3954 unlock_mount(old_mp);
3955 if (!error)
3956 mntput_no_expire(ex_parent);
3957 out3:
3958 path_put(&root);
3959 out2:
3960 path_put(&old);
3961 out1:
3962 path_put(&new);
3963 out0:
3964 return error;
3965 }
3966
3967 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3968 {
3969 unsigned int flags = mnt->mnt.mnt_flags;
3970
3971 /* flags to clear */
3972 flags &= ~kattr->attr_clr;
3973 /* flags to raise */
3974 flags |= kattr->attr_set;
3975
3976 return flags;
3977 }
3978
3979 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3980 {
3981 struct vfsmount *m = &mnt->mnt;
3982 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
3983
3984 if (!kattr->mnt_userns)
3985 return 0;
3986
3987 /*
3988 * Creating an idmapped mount with the filesystem wide idmapping
3989 * doesn't make sense so block that. We don't allow mushy semantics.
3990 */
3991 if (kattr->mnt_userns == fs_userns)
3992 return -EINVAL;
3993
3994 /*
3995 * Once a mount has been idmapped we don't allow it to change its
3996 * mapping. It makes things simpler and callers can just create
3997 * another bind-mount they can idmap if they want to.
3998 */
3999 if (is_idmapped_mnt(m))
4000 return -EPERM;
4001
4002 /* The underlying filesystem doesn't support idmapped mounts yet. */
4003 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4004 return -EINVAL;
4005
4006 /* We're not controlling the superblock. */
4007 if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4008 return -EPERM;
4009
4010 /* Mount has already been visible in the filesystem hierarchy. */
4011 if (!is_anon_ns(mnt->mnt_ns))
4012 return -EINVAL;
4013
4014 return 0;
4015 }
4016
4017 /**
4018 * mnt_allow_writers() - check whether the attribute change allows writers
4019 * @kattr: the new mount attributes
4020 * @mnt: the mount to which @kattr will be applied
4021 *
4022 * Check whether thew new mount attributes in @kattr allow concurrent writers.
4023 *
4024 * Return: true if writers need to be held, false if not
4025 */
4026 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4027 const struct mount *mnt)
4028 {
4029 return (!(kattr->attr_set & MNT_READONLY) ||
4030 (mnt->mnt.mnt_flags & MNT_READONLY)) &&
4031 !kattr->mnt_userns;
4032 }
4033
4034 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4035 {
4036 struct mount *m;
4037 int err;
4038
4039 for (m = mnt; m; m = next_mnt(m, mnt)) {
4040 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4041 err = -EPERM;
4042 break;
4043 }
4044
4045 err = can_idmap_mount(kattr, m);
4046 if (err)
4047 break;
4048
4049 if (!mnt_allow_writers(kattr, m)) {
4050 err = mnt_hold_writers(m);
4051 if (err)
4052 break;
4053 }
4054
4055 if (!kattr->recurse)
4056 return 0;
4057 }
4058
4059 if (err) {
4060 struct mount *p;
4061
4062 /*
4063 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4064 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4065 * mounts and needs to take care to include the first mount.
4066 */
4067 for (p = mnt; p; p = next_mnt(p, mnt)) {
4068 /* If we had to hold writers unblock them. */
4069 if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4070 mnt_unhold_writers(p);
4071
4072 /*
4073 * We're done once the first mount we changed got
4074 * MNT_WRITE_HOLD unset.
4075 */
4076 if (p == m)
4077 break;
4078 }
4079 }
4080 return err;
4081 }
4082
4083 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4084 {
4085 struct user_namespace *mnt_userns, *old_mnt_userns;
4086
4087 if (!kattr->mnt_userns)
4088 return;
4089
4090 /*
4091 * We're the only ones able to change the mount's idmapping. So
4092 * mnt->mnt.mnt_userns is stable and we can retrieve it directly.
4093 */
4094 old_mnt_userns = mnt->mnt.mnt_userns;
4095
4096 mnt_userns = get_user_ns(kattr->mnt_userns);
4097 /* Pairs with smp_load_acquire() in mnt_user_ns(). */
4098 smp_store_release(&mnt->mnt.mnt_userns, mnt_userns);
4099
4100 /*
4101 * If this is an idmapped filesystem drop the reference we've taken
4102 * in vfs_create_mount() before.
4103 */
4104 if (!initial_idmapping(old_mnt_userns))
4105 put_user_ns(old_mnt_userns);
4106 }
4107
4108 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4109 {
4110 struct mount *m;
4111
4112 for (m = mnt; m; m = next_mnt(m, mnt)) {
4113 unsigned int flags;
4114
4115 do_idmap_mount(kattr, m);
4116 flags = recalc_flags(kattr, m);
4117 WRITE_ONCE(m->mnt.mnt_flags, flags);
4118
4119 /* If we had to hold writers unblock them. */
4120 if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4121 mnt_unhold_writers(m);
4122
4123 if (kattr->propagation)
4124 change_mnt_propagation(m, kattr->propagation);
4125 if (!kattr->recurse)
4126 break;
4127 }
4128 touch_mnt_namespace(mnt->mnt_ns);
4129 }
4130
4131 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4132 {
4133 struct mount *mnt = real_mount(path->mnt);
4134 int err = 0;
4135
4136 if (path->dentry != mnt->mnt.mnt_root)
4137 return -EINVAL;
4138
4139 if (kattr->propagation) {
4140 /*
4141 * Only take namespace_lock() if we're actually changing
4142 * propagation.
4143 */
4144 namespace_lock();
4145 if (kattr->propagation == MS_SHARED) {
4146 err = invent_group_ids(mnt, kattr->recurse);
4147 if (err) {
4148 namespace_unlock();
4149 return err;
4150 }
4151 }
4152 }
4153
4154 err = -EINVAL;
4155 lock_mount_hash();
4156
4157 /* Ensure that this isn't anything purely vfs internal. */
4158 if (!is_mounted(&mnt->mnt))
4159 goto out;
4160
4161 /*
4162 * If this is an attached mount make sure it's located in the callers
4163 * mount namespace. If it's not don't let the caller interact with it.
4164 * If this is a detached mount make sure it has an anonymous mount
4165 * namespace attached to it, i.e. we've created it via OPEN_TREE_CLONE.
4166 */
4167 if (!(mnt_has_parent(mnt) ? check_mnt(mnt) : is_anon_ns(mnt->mnt_ns)))
4168 goto out;
4169
4170 /*
4171 * First, we get the mount tree in a shape where we can change mount
4172 * properties without failure. If we succeeded to do so we commit all
4173 * changes and if we failed we clean up.
4174 */
4175 err = mount_setattr_prepare(kattr, mnt);
4176 if (!err)
4177 mount_setattr_commit(kattr, mnt);
4178
4179 out:
4180 unlock_mount_hash();
4181
4182 if (kattr->propagation) {
4183 namespace_unlock();
4184 if (err)
4185 cleanup_group_ids(mnt, NULL);
4186 }
4187
4188 return err;
4189 }
4190
4191 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4192 struct mount_kattr *kattr, unsigned int flags)
4193 {
4194 int err = 0;
4195 struct ns_common *ns;
4196 struct user_namespace *mnt_userns;
4197 struct file *file;
4198
4199 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4200 return 0;
4201
4202 /*
4203 * We currently do not support clearing an idmapped mount. If this ever
4204 * is a use-case we can revisit this but for now let's keep it simple
4205 * and not allow it.
4206 */
4207 if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4208 return -EINVAL;
4209
4210 if (attr->userns_fd > INT_MAX)
4211 return -EINVAL;
4212
4213 file = fget(attr->userns_fd);
4214 if (!file)
4215 return -EBADF;
4216
4217 if (!proc_ns_file(file)) {
4218 err = -EINVAL;
4219 goto out_fput;
4220 }
4221
4222 ns = get_proc_ns(file_inode(file));
4223 if (ns->ops->type != CLONE_NEWUSER) {
4224 err = -EINVAL;
4225 goto out_fput;
4226 }
4227
4228 /*
4229 * The initial idmapping cannot be used to create an idmapped
4230 * mount. We use the initial idmapping as an indicator of a mount
4231 * that is not idmapped. It can simply be passed into helpers that
4232 * are aware of idmapped mounts as a convenient shortcut. A user
4233 * can just create a dedicated identity mapping to achieve the same
4234 * result.
4235 */
4236 mnt_userns = container_of(ns, struct user_namespace, ns);
4237 if (initial_idmapping(mnt_userns)) {
4238 err = -EPERM;
4239 goto out_fput;
4240 }
4241
4242 /* We're not controlling the target namespace. */
4243 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) {
4244 err = -EPERM;
4245 goto out_fput;
4246 }
4247
4248 kattr->mnt_userns = get_user_ns(mnt_userns);
4249
4250 out_fput:
4251 fput(file);
4252 return err;
4253 }
4254
4255 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4256 struct mount_kattr *kattr, unsigned int flags)
4257 {
4258 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4259
4260 if (flags & AT_NO_AUTOMOUNT)
4261 lookup_flags &= ~LOOKUP_AUTOMOUNT;
4262 if (flags & AT_SYMLINK_NOFOLLOW)
4263 lookup_flags &= ~LOOKUP_FOLLOW;
4264 if (flags & AT_EMPTY_PATH)
4265 lookup_flags |= LOOKUP_EMPTY;
4266
4267 *kattr = (struct mount_kattr) {
4268 .lookup_flags = lookup_flags,
4269 .recurse = !!(flags & AT_RECURSIVE),
4270 };
4271
4272 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4273 return -EINVAL;
4274 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4275 return -EINVAL;
4276 kattr->propagation = attr->propagation;
4277
4278 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4279 return -EINVAL;
4280
4281 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4282 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4283
4284 /*
4285 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4286 * users wanting to transition to a different atime setting cannot
4287 * simply specify the atime setting in @attr_set, but must also
4288 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4289 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4290 * @attr_clr and that @attr_set can't have any atime bits set if
4291 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4292 */
4293 if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4294 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4295 return -EINVAL;
4296
4297 /*
4298 * Clear all previous time settings as they are mutually
4299 * exclusive.
4300 */
4301 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4302 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4303 case MOUNT_ATTR_RELATIME:
4304 kattr->attr_set |= MNT_RELATIME;
4305 break;
4306 case MOUNT_ATTR_NOATIME:
4307 kattr->attr_set |= MNT_NOATIME;
4308 break;
4309 case MOUNT_ATTR_STRICTATIME:
4310 break;
4311 default:
4312 return -EINVAL;
4313 }
4314 } else {
4315 if (attr->attr_set & MOUNT_ATTR__ATIME)
4316 return -EINVAL;
4317 }
4318
4319 return build_mount_idmapped(attr, usize, kattr, flags);
4320 }
4321
4322 static void finish_mount_kattr(struct mount_kattr *kattr)
4323 {
4324 put_user_ns(kattr->mnt_userns);
4325 kattr->mnt_userns = NULL;
4326 }
4327
4328 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4329 unsigned int, flags, struct mount_attr __user *, uattr,
4330 size_t, usize)
4331 {
4332 int err;
4333 struct path target;
4334 struct mount_attr attr;
4335 struct mount_kattr kattr;
4336
4337 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4338
4339 if (flags & ~(AT_EMPTY_PATH |
4340 AT_RECURSIVE |
4341 AT_SYMLINK_NOFOLLOW |
4342 AT_NO_AUTOMOUNT))
4343 return -EINVAL;
4344
4345 if (unlikely(usize > PAGE_SIZE))
4346 return -E2BIG;
4347 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4348 return -EINVAL;
4349
4350 if (!may_mount())
4351 return -EPERM;
4352
4353 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4354 if (err)
4355 return err;
4356
4357 /* Don't bother walking through the mounts if this is a nop. */
4358 if (attr.attr_set == 0 &&
4359 attr.attr_clr == 0 &&
4360 attr.propagation == 0)
4361 return 0;
4362
4363 err = build_mount_kattr(&attr, usize, &kattr, flags);
4364 if (err)
4365 return err;
4366
4367 err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4368 if (!err) {
4369 err = do_mount_setattr(&target, &kattr);
4370 path_put(&target);
4371 }
4372 finish_mount_kattr(&kattr);
4373 return err;
4374 }
4375
4376 static void __init init_mount_tree(void)
4377 {
4378 struct vfsmount *mnt;
4379 struct mount *m;
4380 struct mnt_namespace *ns;
4381 struct path root;
4382
4383 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4384 if (IS_ERR(mnt))
4385 panic("Can't create rootfs");
4386
4387 ns = alloc_mnt_ns(&init_user_ns, false);
4388 if (IS_ERR(ns))
4389 panic("Can't allocate initial namespace");
4390 m = real_mount(mnt);
4391 m->mnt_ns = ns;
4392 ns->root = m;
4393 ns->mounts = 1;
4394 list_add(&m->mnt_list, &ns->list);
4395 init_task.nsproxy->mnt_ns = ns;
4396 get_mnt_ns(ns);
4397
4398 root.mnt = mnt;
4399 root.dentry = mnt->mnt_root;
4400 mnt->mnt_flags |= MNT_LOCKED;
4401
4402 set_fs_pwd(current->fs, &root);
4403 set_fs_root(current->fs, &root);
4404 }
4405
4406 void __init mnt_init(void)
4407 {
4408 int err;
4409
4410 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4411 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
4412
4413 mount_hashtable = alloc_large_system_hash("Mount-cache",
4414 sizeof(struct hlist_head),
4415 mhash_entries, 19,
4416 HASH_ZERO,
4417 &m_hash_shift, &m_hash_mask, 0, 0);
4418 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4419 sizeof(struct hlist_head),
4420 mphash_entries, 19,
4421 HASH_ZERO,
4422 &mp_hash_shift, &mp_hash_mask, 0, 0);
4423
4424 if (!mount_hashtable || !mountpoint_hashtable)
4425 panic("Failed to allocate mount hash table\n");
4426
4427 kernfs_init();
4428
4429 err = sysfs_init();
4430 if (err)
4431 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4432 __func__, err);
4433 fs_kobj = kobject_create_and_add("fs", NULL);
4434 if (!fs_kobj)
4435 printk(KERN_WARNING "%s: kobj create error\n", __func__);
4436 shmem_init();
4437 init_rootfs();
4438 init_mount_tree();
4439 }
4440
4441 void put_mnt_ns(struct mnt_namespace *ns)
4442 {
4443 if (!refcount_dec_and_test(&ns->ns.count))
4444 return;
4445 drop_collected_mounts(&ns->root->mnt);
4446 free_mnt_ns(ns);
4447 }
4448
4449 struct vfsmount *kern_mount(struct file_system_type *type)
4450 {
4451 struct vfsmount *mnt;
4452 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4453 if (!IS_ERR(mnt)) {
4454 /*
4455 * it is a longterm mount, don't release mnt until
4456 * we unmount before file sys is unregistered
4457 */
4458 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4459 }
4460 return mnt;
4461 }
4462 EXPORT_SYMBOL_GPL(kern_mount);
4463
4464 void kern_unmount(struct vfsmount *mnt)
4465 {
4466 /* release long term mount so mount point can be released */
4467 if (!IS_ERR_OR_NULL(mnt)) {
4468 real_mount(mnt)->mnt_ns = NULL;
4469 synchronize_rcu(); /* yecchhh... */
4470 mntput(mnt);
4471 }
4472 }
4473 EXPORT_SYMBOL(kern_unmount);
4474
4475 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4476 {
4477 unsigned int i;
4478
4479 for (i = 0; i < num; i++)
4480 if (mnt[i])
4481 real_mount(mnt[i])->mnt_ns = NULL;
4482 synchronize_rcu_expedited();
4483 for (i = 0; i < num; i++)
4484 mntput(mnt[i]);
4485 }
4486 EXPORT_SYMBOL(kern_unmount_array);
4487
4488 bool our_mnt(struct vfsmount *mnt)
4489 {
4490 return check_mnt(real_mount(mnt));
4491 }
4492
4493 bool current_chrooted(void)
4494 {
4495 /* Does the current process have a non-standard root */
4496 struct path ns_root;
4497 struct path fs_root;
4498 bool chrooted;
4499
4500 /* Find the namespace root */
4501 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4502 ns_root.dentry = ns_root.mnt->mnt_root;
4503 path_get(&ns_root);
4504 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4505 ;
4506
4507 get_fs_root(current->fs, &fs_root);
4508
4509 chrooted = !path_equal(&fs_root, &ns_root);
4510
4511 path_put(&fs_root);
4512 path_put(&ns_root);
4513
4514 return chrooted;
4515 }
4516
4517 static bool mnt_already_visible(struct mnt_namespace *ns,
4518 const struct super_block *sb,
4519 int *new_mnt_flags)
4520 {
4521 int new_flags = *new_mnt_flags;
4522 struct mount *mnt;
4523 bool visible = false;
4524
4525 down_read(&namespace_sem);
4526 lock_ns_list(ns);
4527 list_for_each_entry(mnt, &ns->list, mnt_list) {
4528 struct mount *child;
4529 int mnt_flags;
4530
4531 if (mnt_is_cursor(mnt))
4532 continue;
4533
4534 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4535 continue;
4536
4537 /* This mount is not fully visible if it's root directory
4538 * is not the root directory of the filesystem.
4539 */
4540 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4541 continue;
4542
4543 /* A local view of the mount flags */
4544 mnt_flags = mnt->mnt.mnt_flags;
4545
4546 /* Don't miss readonly hidden in the superblock flags */
4547 if (sb_rdonly(mnt->mnt.mnt_sb))
4548 mnt_flags |= MNT_LOCK_READONLY;
4549
4550 /* Verify the mount flags are equal to or more permissive
4551 * than the proposed new mount.
4552 */
4553 if ((mnt_flags & MNT_LOCK_READONLY) &&
4554 !(new_flags & MNT_READONLY))
4555 continue;
4556 if ((mnt_flags & MNT_LOCK_ATIME) &&
4557 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4558 continue;
4559
4560 /* This mount is not fully visible if there are any
4561 * locked child mounts that cover anything except for
4562 * empty directories.
4563 */
4564 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4565 struct inode *inode = child->mnt_mountpoint->d_inode;
4566 /* Only worry about locked mounts */
4567 if (!(child->mnt.mnt_flags & MNT_LOCKED))
4568 continue;
4569 /* Is the directory permanetly empty? */
4570 if (!is_empty_dir_inode(inode))
4571 goto next;
4572 }
4573 /* Preserve the locked attributes */
4574 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4575 MNT_LOCK_ATIME);
4576 visible = true;
4577 goto found;
4578 next: ;
4579 }
4580 found:
4581 unlock_ns_list(ns);
4582 up_read(&namespace_sem);
4583 return visible;
4584 }
4585
4586 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4587 {
4588 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4589 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4590 unsigned long s_iflags;
4591
4592 if (ns->user_ns == &init_user_ns)
4593 return false;
4594
4595 /* Can this filesystem be too revealing? */
4596 s_iflags = sb->s_iflags;
4597 if (!(s_iflags & SB_I_USERNS_VISIBLE))
4598 return false;
4599
4600 if ((s_iflags & required_iflags) != required_iflags) {
4601 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4602 required_iflags);
4603 return true;
4604 }
4605
4606 return !mnt_already_visible(ns, sb, new_mnt_flags);
4607 }
4608
4609 bool mnt_may_suid(struct vfsmount *mnt)
4610 {
4611 /*
4612 * Foreign mounts (accessed via fchdir or through /proc
4613 * symlinks) are always treated as if they are nosuid. This
4614 * prevents namespaces from trusting potentially unsafe
4615 * suid/sgid bits, file caps, or security labels that originate
4616 * in other namespaces.
4617 */
4618 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4619 current_in_userns(mnt->mnt_sb->s_user_ns);
4620 }
4621
4622 static struct ns_common *mntns_get(struct task_struct *task)
4623 {
4624 struct ns_common *ns = NULL;
4625 struct nsproxy *nsproxy;
4626
4627 task_lock(task);
4628 nsproxy = task->nsproxy;
4629 if (nsproxy) {
4630 ns = &nsproxy->mnt_ns->ns;
4631 get_mnt_ns(to_mnt_ns(ns));
4632 }
4633 task_unlock(task);
4634
4635 return ns;
4636 }
4637
4638 static void mntns_put(struct ns_common *ns)
4639 {
4640 put_mnt_ns(to_mnt_ns(ns));
4641 }
4642
4643 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4644 {
4645 struct nsproxy *nsproxy = nsset->nsproxy;
4646 struct fs_struct *fs = nsset->fs;
4647 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4648 struct user_namespace *user_ns = nsset->cred->user_ns;
4649 struct path root;
4650 int err;
4651
4652 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4653 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4654 !ns_capable(user_ns, CAP_SYS_ADMIN))
4655 return -EPERM;
4656
4657 if (is_anon_ns(mnt_ns))
4658 return -EINVAL;
4659
4660 if (fs->users != 1)
4661 return -EINVAL;
4662
4663 get_mnt_ns(mnt_ns);
4664 old_mnt_ns = nsproxy->mnt_ns;
4665 nsproxy->mnt_ns = mnt_ns;
4666
4667 /* Find the root */
4668 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4669 "/", LOOKUP_DOWN, &root);
4670 if (err) {
4671 /* revert to old namespace */
4672 nsproxy->mnt_ns = old_mnt_ns;
4673 put_mnt_ns(mnt_ns);
4674 return err;
4675 }
4676
4677 put_mnt_ns(old_mnt_ns);
4678
4679 /* Update the pwd and root */
4680 set_fs_pwd(fs, &root);
4681 set_fs_root(fs, &root);
4682
4683 path_put(&root);
4684 return 0;
4685 }
4686
4687 static struct user_namespace *mntns_owner(struct ns_common *ns)
4688 {
4689 return to_mnt_ns(ns)->user_ns;
4690 }
4691
4692 const struct proc_ns_operations mntns_operations = {
4693 .name = "mnt",
4694 .type = CLONE_NEWNS,
4695 .get = mntns_get,
4696 .put = mntns_put,
4697 .install = mntns_install,
4698 .owner = mntns_owner,
4699 };
4700
4701 #ifdef CONFIG_SYSCTL
4702 static struct ctl_table fs_namespace_sysctls[] = {
4703 {
4704 .procname = "mount-max",
4705 .data = &sysctl_mount_max,
4706 .maxlen = sizeof(unsigned int),
4707 .mode = 0644,
4708 .proc_handler = proc_dointvec_minmax,
4709 .extra1 = SYSCTL_ONE,
4710 },
4711 { }
4712 };
4713
4714 static int __init init_fs_namespace_sysctls(void)
4715 {
4716 register_sysctl_init("fs", fs_namespace_sysctls);
4717 return 0;
4718 }
4719 fs_initcall(init_fs_namespace_sysctls);
4720
4721 #endif /* CONFIG_SYSCTL */