]> git.ipfire.org Git - people/ms/linux.git/blob - include/linux/mm.h
Importing "grsecurity-3.1-3.19.2-201503201903.patch"
[people/ms/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23
24 struct mempolicy;
25 struct anon_vma;
26 struct anon_vma_chain;
27 struct file_ra_state;
28 struct user_struct;
29 struct writeback_control;
30
31 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
32 extern unsigned long max_mapnr;
33
34 static inline void set_max_mapnr(unsigned long limit)
35 {
36 max_mapnr = limit;
37 }
38 #else
39 static inline void set_max_mapnr(unsigned long limit) { }
40 #endif
41
42 extern unsigned long totalram_pages;
43 extern void * high_memory;
44 extern int page_cluster;
45
46 #ifdef CONFIG_SYSCTL
47 extern int sysctl_legacy_va_layout;
48 #else
49 #define sysctl_legacy_va_layout 0
50 #endif
51
52 #include <asm/page.h>
53 #include <asm/pgtable.h>
54 #include <asm/processor.h>
55
56 #ifndef __pa_symbol
57 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
58 #endif
59
60 /*
61 * To prevent common memory management code establishing
62 * a zero page mapping on a read fault.
63 * This macro should be defined within <asm/pgtable.h>.
64 * s390 does this to prevent multiplexing of hardware bits
65 * related to the physical page in case of virtualization.
66 */
67 #ifndef mm_forbids_zeropage
68 #define mm_forbids_zeropage(X) (0)
69 #endif
70
71 extern unsigned long sysctl_user_reserve_kbytes;
72 extern unsigned long sysctl_admin_reserve_kbytes;
73
74 extern int sysctl_overcommit_memory;
75 extern int sysctl_overcommit_ratio;
76 extern unsigned long sysctl_overcommit_kbytes;
77
78 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
79 size_t *, loff_t *);
80 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
81 size_t *, loff_t *);
82
83 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
84
85 /* to align the pointer to the (next) page boundary */
86 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
87
88 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
89 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
90
91 /*
92 * Linux kernel virtual memory manager primitives.
93 * The idea being to have a "virtual" mm in the same way
94 * we have a virtual fs - giving a cleaner interface to the
95 * mm details, and allowing different kinds of memory mappings
96 * (from shared memory to executable loading to arbitrary
97 * mmap() functions).
98 */
99
100 extern struct kmem_cache *vm_area_cachep;
101
102 #ifndef CONFIG_MMU
103 extern struct rb_root nommu_region_tree;
104 extern struct rw_semaphore nommu_region_sem;
105
106 extern unsigned int kobjsize(const void *objp);
107 #endif
108
109 /*
110 * vm_flags in vm_area_struct, see mm_types.h.
111 */
112 #define VM_NONE 0x00000000
113
114 #define VM_READ 0x00000001 /* currently active flags */
115 #define VM_WRITE 0x00000002
116 #define VM_EXEC 0x00000004
117 #define VM_SHARED 0x00000008
118
119 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
120 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
121 #define VM_MAYWRITE 0x00000020
122 #define VM_MAYEXEC 0x00000040
123 #define VM_MAYSHARE 0x00000080
124
125 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
126 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
127 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
128
129 #define VM_LOCKED 0x00002000
130 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
131
132 /* Used by sys_madvise() */
133 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
134 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
135
136 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
137 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
138
139 #if defined(CONFIG_PAX_PAGEEXEC) && defined(CONFIG_X86_32)
140 #define VM_PAGEEXEC 0x00080000 /* vma->vm_page_prot needs special handling */
141 #endif
142
143 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
144 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
145 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
146 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
147 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
148 #define VM_ARCH_2 0x02000000
149 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
150
151 #ifdef CONFIG_MEM_SOFT_DIRTY
152 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
153 #else
154 # define VM_SOFTDIRTY 0
155 #endif
156
157 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
158 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
159 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
160 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
161
162 #if defined(CONFIG_X86)
163 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
164 #elif defined(CONFIG_PPC)
165 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
166 #elif defined(CONFIG_PARISC)
167 # define VM_GROWSUP VM_ARCH_1
168 #elif defined(CONFIG_METAG)
169 # define VM_GROWSUP VM_ARCH_1
170 #elif defined(CONFIG_IA64)
171 # define VM_GROWSUP VM_ARCH_1
172 #elif !defined(CONFIG_MMU)
173 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
174 #endif
175
176 #if defined(CONFIG_X86)
177 /* MPX specific bounds table or bounds directory */
178 # define VM_MPX VM_ARCH_2
179 #endif
180
181 #ifndef VM_GROWSUP
182 # define VM_GROWSUP VM_NONE
183 #endif
184
185 /* Bits set in the VMA until the stack is in its final location */
186 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
187
188 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
189 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
190 #endif
191
192 #ifdef CONFIG_STACK_GROWSUP
193 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
194 #else
195 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
196 #endif
197
198 /*
199 * Special vmas that are non-mergable, non-mlock()able.
200 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
201 */
202 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
203
204 /* This mask defines which mm->def_flags a process can inherit its parent */
205 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
206
207 /*
208 * mapping from the currently active vm_flags protection bits (the
209 * low four bits) to a page protection mask..
210 */
211 extern pgprot_t protection_map[16];
212
213 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
214 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
215 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
216 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
217 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
218 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
219 #define FAULT_FLAG_TRIED 0x40 /* second try */
220 #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
221
222 /*
223 * vm_fault is filled by the the pagefault handler and passed to the vma's
224 * ->fault function. The vma's ->fault is responsible for returning a bitmask
225 * of VM_FAULT_xxx flags that give details about how the fault was handled.
226 *
227 * pgoff should be used in favour of virtual_address, if possible. If pgoff
228 * is used, one may implement ->remap_pages to get nonlinear mapping support.
229 */
230 struct vm_fault {
231 unsigned int flags; /* FAULT_FLAG_xxx flags */
232 pgoff_t pgoff; /* Logical page offset based on vma */
233 void __user *virtual_address; /* Faulting virtual address */
234
235 struct page *page; /* ->fault handlers should return a
236 * page here, unless VM_FAULT_NOPAGE
237 * is set (which is also implied by
238 * VM_FAULT_ERROR).
239 */
240 /* for ->map_pages() only */
241 pgoff_t max_pgoff; /* map pages for offset from pgoff till
242 * max_pgoff inclusive */
243 pte_t *pte; /* pte entry associated with ->pgoff */
244 };
245
246 /*
247 * These are the virtual MM functions - opening of an area, closing and
248 * unmapping it (needed to keep files on disk up-to-date etc), pointer
249 * to the functions called when a no-page or a wp-page exception occurs.
250 */
251 struct vm_operations_struct {
252 void (*open)(struct vm_area_struct * area);
253 void (*close)(struct vm_area_struct * area);
254 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
255 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
256
257 /* notification that a previously read-only page is about to become
258 * writable, if an error is returned it will cause a SIGBUS */
259 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
260
261 /* called by access_process_vm when get_user_pages() fails, typically
262 * for use by special VMAs that can switch between memory and hardware
263 */
264 ssize_t (*access)(struct vm_area_struct *vma, unsigned long addr,
265 void *buf, size_t len, int write);
266
267 /* Called by the /proc/PID/maps code to ask the vma whether it
268 * has a special name. Returning non-NULL will also cause this
269 * vma to be dumped unconditionally. */
270 const char *(*name)(struct vm_area_struct *vma);
271
272 #ifdef CONFIG_NUMA
273 /*
274 * set_policy() op must add a reference to any non-NULL @new mempolicy
275 * to hold the policy upon return. Caller should pass NULL @new to
276 * remove a policy and fall back to surrounding context--i.e. do not
277 * install a MPOL_DEFAULT policy, nor the task or system default
278 * mempolicy.
279 */
280 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
281
282 /*
283 * get_policy() op must add reference [mpol_get()] to any policy at
284 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
285 * in mm/mempolicy.c will do this automatically.
286 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
287 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
288 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
289 * must return NULL--i.e., do not "fallback" to task or system default
290 * policy.
291 */
292 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
293 unsigned long addr);
294 #endif
295 /* called by sys_remap_file_pages() to populate non-linear mapping */
296 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
297 unsigned long size, pgoff_t pgoff);
298 };
299 typedef struct vm_operations_struct __no_const vm_operations_struct_no_const;
300
301 struct mmu_gather;
302 struct inode;
303
304 #define page_private(page) ((page)->private)
305 #define set_page_private(page, v) ((page)->private = (v))
306
307 /* It's valid only if the page is free path or free_list */
308 static inline void set_freepage_migratetype(struct page *page, int migratetype)
309 {
310 page->index = migratetype;
311 }
312
313 /* It's valid only if the page is free path or free_list */
314 static inline int get_freepage_migratetype(struct page *page)
315 {
316 return page->index;
317 }
318
319 /*
320 * FIXME: take this include out, include page-flags.h in
321 * files which need it (119 of them)
322 */
323 #include <linux/page-flags.h>
324 #include <linux/huge_mm.h>
325
326 /*
327 * Methods to modify the page usage count.
328 *
329 * What counts for a page usage:
330 * - cache mapping (page->mapping)
331 * - private data (page->private)
332 * - page mapped in a task's page tables, each mapping
333 * is counted separately
334 *
335 * Also, many kernel routines increase the page count before a critical
336 * routine so they can be sure the page doesn't go away from under them.
337 */
338
339 /*
340 * Drop a ref, return true if the refcount fell to zero (the page has no users)
341 */
342 static inline int put_page_testzero(struct page *page)
343 {
344 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
345 return atomic_dec_and_test(&page->_count);
346 }
347
348 /*
349 * Try to grab a ref unless the page has a refcount of zero, return false if
350 * that is the case.
351 * This can be called when MMU is off so it must not access
352 * any of the virtual mappings.
353 */
354 static inline int get_page_unless_zero(struct page *page)
355 {
356 return atomic_inc_not_zero(&page->_count);
357 }
358
359 /*
360 * Try to drop a ref unless the page has a refcount of one, return false if
361 * that is the case.
362 * This is to make sure that the refcount won't become zero after this drop.
363 * This can be called when MMU is off so it must not access
364 * any of the virtual mappings.
365 */
366 static inline int put_page_unless_one(struct page *page)
367 {
368 return atomic_add_unless(&page->_count, -1, 1);
369 }
370
371 extern int page_is_ram(unsigned long pfn);
372 extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
373
374 /* Support for virtually mapped pages */
375 struct page *vmalloc_to_page(const void *addr);
376 unsigned long vmalloc_to_pfn(const void *addr);
377
378 /*
379 * Determine if an address is within the vmalloc range
380 *
381 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
382 * is no special casing required.
383 */
384 static inline int is_vmalloc_addr(const void *x)
385 {
386 #ifdef CONFIG_MMU
387 unsigned long addr = (unsigned long)x;
388
389 return addr >= VMALLOC_START && addr < VMALLOC_END;
390 #else
391 return 0;
392 #endif
393 }
394 #ifdef CONFIG_MMU
395 extern int is_vmalloc_or_module_addr(const void *x);
396 #else
397 static inline int is_vmalloc_or_module_addr(const void *x)
398 {
399 return 0;
400 }
401 #endif
402
403 extern void kvfree(const void *addr);
404
405 static inline void compound_lock(struct page *page)
406 {
407 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
408 VM_BUG_ON_PAGE(PageSlab(page), page);
409 bit_spin_lock(PG_compound_lock, &page->flags);
410 #endif
411 }
412
413 static inline void compound_unlock(struct page *page)
414 {
415 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
416 VM_BUG_ON_PAGE(PageSlab(page), page);
417 bit_spin_unlock(PG_compound_lock, &page->flags);
418 #endif
419 }
420
421 static inline unsigned long compound_lock_irqsave(struct page *page)
422 {
423 unsigned long uninitialized_var(flags);
424 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
425 local_irq_save(flags);
426 compound_lock(page);
427 #endif
428 return flags;
429 }
430
431 static inline void compound_unlock_irqrestore(struct page *page,
432 unsigned long flags)
433 {
434 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
435 compound_unlock(page);
436 local_irq_restore(flags);
437 #endif
438 }
439
440 static inline struct page *compound_head_by_tail(struct page *tail)
441 {
442 struct page *head = tail->first_page;
443
444 /*
445 * page->first_page may be a dangling pointer to an old
446 * compound page, so recheck that it is still a tail
447 * page before returning.
448 */
449 smp_rmb();
450 if (likely(PageTail(tail)))
451 return head;
452 return tail;
453 }
454
455 static inline struct page *compound_head(struct page *page)
456 {
457 if (unlikely(PageTail(page)))
458 return compound_head_by_tail(page);
459 return page;
460 }
461
462 /*
463 * The atomic page->_mapcount, starts from -1: so that transitions
464 * both from it and to it can be tracked, using atomic_inc_and_test
465 * and atomic_add_negative(-1).
466 */
467 static inline void page_mapcount_reset(struct page *page)
468 {
469 atomic_set(&(page)->_mapcount, -1);
470 }
471
472 static inline int page_mapcount(struct page *page)
473 {
474 return atomic_read(&(page)->_mapcount) + 1;
475 }
476
477 static inline int page_count(struct page *page)
478 {
479 return atomic_read(&compound_head(page)->_count);
480 }
481
482 #ifdef CONFIG_HUGETLB_PAGE
483 extern int PageHeadHuge(struct page *page_head);
484 #else /* CONFIG_HUGETLB_PAGE */
485 static inline int PageHeadHuge(struct page *page_head)
486 {
487 return 0;
488 }
489 #endif /* CONFIG_HUGETLB_PAGE */
490
491 static inline bool __compound_tail_refcounted(struct page *page)
492 {
493 return !PageSlab(page) && !PageHeadHuge(page);
494 }
495
496 /*
497 * This takes a head page as parameter and tells if the
498 * tail page reference counting can be skipped.
499 *
500 * For this to be safe, PageSlab and PageHeadHuge must remain true on
501 * any given page where they return true here, until all tail pins
502 * have been released.
503 */
504 static inline bool compound_tail_refcounted(struct page *page)
505 {
506 VM_BUG_ON_PAGE(!PageHead(page), page);
507 return __compound_tail_refcounted(page);
508 }
509
510 static inline void get_huge_page_tail(struct page *page)
511 {
512 /*
513 * __split_huge_page_refcount() cannot run from under us.
514 */
515 VM_BUG_ON_PAGE(!PageTail(page), page);
516 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
517 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
518 if (compound_tail_refcounted(page->first_page))
519 atomic_inc(&page->_mapcount);
520 }
521
522 extern bool __get_page_tail(struct page *page);
523
524 static inline void get_page(struct page *page)
525 {
526 if (unlikely(PageTail(page)))
527 if (likely(__get_page_tail(page)))
528 return;
529 /*
530 * Getting a normal page or the head of a compound page
531 * requires to already have an elevated page->_count.
532 */
533 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
534 atomic_inc(&page->_count);
535 }
536
537 static inline struct page *virt_to_head_page(const void *x)
538 {
539 struct page *page = virt_to_page(x);
540 return compound_head(page);
541 }
542
543 /*
544 * Setup the page count before being freed into the page allocator for
545 * the first time (boot or memory hotplug)
546 */
547 static inline void init_page_count(struct page *page)
548 {
549 atomic_set(&page->_count, 1);
550 }
551
552 /*
553 * PageBuddy() indicate that the page is free and in the buddy system
554 * (see mm/page_alloc.c).
555 *
556 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
557 * -2 so that an underflow of the page_mapcount() won't be mistaken
558 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
559 * efficiently by most CPU architectures.
560 */
561 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
562
563 static inline int PageBuddy(struct page *page)
564 {
565 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
566 }
567
568 static inline void __SetPageBuddy(struct page *page)
569 {
570 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
571 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
572 }
573
574 static inline void __ClearPageBuddy(struct page *page)
575 {
576 VM_BUG_ON_PAGE(!PageBuddy(page), page);
577 atomic_set(&page->_mapcount, -1);
578 }
579
580 #define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
581
582 static inline int PageBalloon(struct page *page)
583 {
584 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
585 }
586
587 static inline void __SetPageBalloon(struct page *page)
588 {
589 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
590 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
591 }
592
593 static inline void __ClearPageBalloon(struct page *page)
594 {
595 VM_BUG_ON_PAGE(!PageBalloon(page), page);
596 atomic_set(&page->_mapcount, -1);
597 }
598
599 void put_page(struct page *page);
600 void put_pages_list(struct list_head *pages);
601
602 void split_page(struct page *page, unsigned int order);
603 int split_free_page(struct page *page);
604
605 /*
606 * Compound pages have a destructor function. Provide a
607 * prototype for that function and accessor functions.
608 * These are _only_ valid on the head of a PG_compound page.
609 */
610 typedef void compound_page_dtor(struct page *);
611
612 static inline void set_compound_page_dtor(struct page *page,
613 compound_page_dtor *dtor)
614 {
615 page[1].lru.next = (void *)dtor;
616 }
617
618 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
619 {
620 return (compound_page_dtor *)page[1].lru.next;
621 }
622
623 static inline int compound_order(struct page *page)
624 {
625 if (!PageHead(page))
626 return 0;
627 return (unsigned long)page[1].lru.prev;
628 }
629
630 static inline void set_compound_order(struct page *page, unsigned long order)
631 {
632 page[1].lru.prev = (void *)order;
633 }
634
635 #ifdef CONFIG_MMU
636 /*
637 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
638 * servicing faults for write access. In the normal case, do always want
639 * pte_mkwrite. But get_user_pages can cause write faults for mappings
640 * that do not have writing enabled, when used by access_process_vm.
641 */
642 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
643 {
644 if (likely(vma->vm_flags & VM_WRITE))
645 pte = pte_mkwrite(pte);
646 return pte;
647 }
648
649 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
650 struct page *page, pte_t *pte, bool write, bool anon);
651 #endif
652
653 /*
654 * Multiple processes may "see" the same page. E.g. for untouched
655 * mappings of /dev/null, all processes see the same page full of
656 * zeroes, and text pages of executables and shared libraries have
657 * only one copy in memory, at most, normally.
658 *
659 * For the non-reserved pages, page_count(page) denotes a reference count.
660 * page_count() == 0 means the page is free. page->lru is then used for
661 * freelist management in the buddy allocator.
662 * page_count() > 0 means the page has been allocated.
663 *
664 * Pages are allocated by the slab allocator in order to provide memory
665 * to kmalloc and kmem_cache_alloc. In this case, the management of the
666 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
667 * unless a particular usage is carefully commented. (the responsibility of
668 * freeing the kmalloc memory is the caller's, of course).
669 *
670 * A page may be used by anyone else who does a __get_free_page().
671 * In this case, page_count still tracks the references, and should only
672 * be used through the normal accessor functions. The top bits of page->flags
673 * and page->virtual store page management information, but all other fields
674 * are unused and could be used privately, carefully. The management of this
675 * page is the responsibility of the one who allocated it, and those who have
676 * subsequently been given references to it.
677 *
678 * The other pages (we may call them "pagecache pages") are completely
679 * managed by the Linux memory manager: I/O, buffers, swapping etc.
680 * The following discussion applies only to them.
681 *
682 * A pagecache page contains an opaque `private' member, which belongs to the
683 * page's address_space. Usually, this is the address of a circular list of
684 * the page's disk buffers. PG_private must be set to tell the VM to call
685 * into the filesystem to release these pages.
686 *
687 * A page may belong to an inode's memory mapping. In this case, page->mapping
688 * is the pointer to the inode, and page->index is the file offset of the page,
689 * in units of PAGE_CACHE_SIZE.
690 *
691 * If pagecache pages are not associated with an inode, they are said to be
692 * anonymous pages. These may become associated with the swapcache, and in that
693 * case PG_swapcache is set, and page->private is an offset into the swapcache.
694 *
695 * In either case (swapcache or inode backed), the pagecache itself holds one
696 * reference to the page. Setting PG_private should also increment the
697 * refcount. The each user mapping also has a reference to the page.
698 *
699 * The pagecache pages are stored in a per-mapping radix tree, which is
700 * rooted at mapping->page_tree, and indexed by offset.
701 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
702 * lists, we instead now tag pages as dirty/writeback in the radix tree.
703 *
704 * All pagecache pages may be subject to I/O:
705 * - inode pages may need to be read from disk,
706 * - inode pages which have been modified and are MAP_SHARED may need
707 * to be written back to the inode on disk,
708 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
709 * modified may need to be swapped out to swap space and (later) to be read
710 * back into memory.
711 */
712
713 /*
714 * The zone field is never updated after free_area_init_core()
715 * sets it, so none of the operations on it need to be atomic.
716 */
717
718 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
719 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
720 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
721 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
722 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
723
724 /*
725 * Define the bit shifts to access each section. For non-existent
726 * sections we define the shift as 0; that plus a 0 mask ensures
727 * the compiler will optimise away reference to them.
728 */
729 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
730 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
731 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
732 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
733
734 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
735 #ifdef NODE_NOT_IN_PAGE_FLAGS
736 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
737 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
738 SECTIONS_PGOFF : ZONES_PGOFF)
739 #else
740 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
741 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
742 NODES_PGOFF : ZONES_PGOFF)
743 #endif
744
745 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
746
747 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
748 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
749 #endif
750
751 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
752 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
753 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
754 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
755 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
756
757 static inline enum zone_type page_zonenum(const struct page *page)
758 {
759 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
760 }
761
762 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
763 #define SECTION_IN_PAGE_FLAGS
764 #endif
765
766 /*
767 * The identification function is mainly used by the buddy allocator for
768 * determining if two pages could be buddies. We are not really identifying
769 * the zone since we could be using the section number id if we do not have
770 * node id available in page flags.
771 * We only guarantee that it will return the same value for two combinable
772 * pages in a zone.
773 */
774 static inline int page_zone_id(struct page *page)
775 {
776 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
777 }
778
779 static inline int zone_to_nid(struct zone *zone)
780 {
781 #ifdef CONFIG_NUMA
782 return zone->node;
783 #else
784 return 0;
785 #endif
786 }
787
788 #ifdef NODE_NOT_IN_PAGE_FLAGS
789 extern int page_to_nid(const struct page *page);
790 #else
791 static inline int page_to_nid(const struct page *page)
792 {
793 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
794 }
795 #endif
796
797 #ifdef CONFIG_NUMA_BALANCING
798 static inline int cpu_pid_to_cpupid(int cpu, int pid)
799 {
800 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
801 }
802
803 static inline int cpupid_to_pid(int cpupid)
804 {
805 return cpupid & LAST__PID_MASK;
806 }
807
808 static inline int cpupid_to_cpu(int cpupid)
809 {
810 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
811 }
812
813 static inline int cpupid_to_nid(int cpupid)
814 {
815 return cpu_to_node(cpupid_to_cpu(cpupid));
816 }
817
818 static inline bool cpupid_pid_unset(int cpupid)
819 {
820 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
821 }
822
823 static inline bool cpupid_cpu_unset(int cpupid)
824 {
825 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
826 }
827
828 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
829 {
830 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
831 }
832
833 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
834 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
835 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
836 {
837 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
838 }
839
840 static inline int page_cpupid_last(struct page *page)
841 {
842 return page->_last_cpupid;
843 }
844 static inline void page_cpupid_reset_last(struct page *page)
845 {
846 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
847 }
848 #else
849 static inline int page_cpupid_last(struct page *page)
850 {
851 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
852 }
853
854 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
855
856 static inline void page_cpupid_reset_last(struct page *page)
857 {
858 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
859
860 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
861 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
862 }
863 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
864 #else /* !CONFIG_NUMA_BALANCING */
865 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
866 {
867 return page_to_nid(page); /* XXX */
868 }
869
870 static inline int page_cpupid_last(struct page *page)
871 {
872 return page_to_nid(page); /* XXX */
873 }
874
875 static inline int cpupid_to_nid(int cpupid)
876 {
877 return -1;
878 }
879
880 static inline int cpupid_to_pid(int cpupid)
881 {
882 return -1;
883 }
884
885 static inline int cpupid_to_cpu(int cpupid)
886 {
887 return -1;
888 }
889
890 static inline int cpu_pid_to_cpupid(int nid, int pid)
891 {
892 return -1;
893 }
894
895 static inline bool cpupid_pid_unset(int cpupid)
896 {
897 return 1;
898 }
899
900 static inline void page_cpupid_reset_last(struct page *page)
901 {
902 }
903
904 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
905 {
906 return false;
907 }
908 #endif /* CONFIG_NUMA_BALANCING */
909
910 static inline struct zone *page_zone(const struct page *page)
911 {
912 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
913 }
914
915 #ifdef SECTION_IN_PAGE_FLAGS
916 static inline void set_page_section(struct page *page, unsigned long section)
917 {
918 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
919 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
920 }
921
922 static inline unsigned long page_to_section(const struct page *page)
923 {
924 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
925 }
926 #endif
927
928 static inline void set_page_zone(struct page *page, enum zone_type zone)
929 {
930 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
931 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
932 }
933
934 static inline void set_page_node(struct page *page, unsigned long node)
935 {
936 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
937 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
938 }
939
940 static inline void set_page_links(struct page *page, enum zone_type zone,
941 unsigned long node, unsigned long pfn)
942 {
943 set_page_zone(page, zone);
944 set_page_node(page, node);
945 #ifdef SECTION_IN_PAGE_FLAGS
946 set_page_section(page, pfn_to_section_nr(pfn));
947 #endif
948 }
949
950 /*
951 * Some inline functions in vmstat.h depend on page_zone()
952 */
953 #include <linux/vmstat.h>
954
955 static __always_inline void *lowmem_page_address(const struct page *page)
956 {
957 return __va(PFN_PHYS(page_to_pfn(page)));
958 }
959
960 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
961 #define HASHED_PAGE_VIRTUAL
962 #endif
963
964 #if defined(WANT_PAGE_VIRTUAL)
965 static inline void *page_address(const struct page *page)
966 {
967 return page->virtual;
968 }
969 static inline void set_page_address(struct page *page, void *address)
970 {
971 page->virtual = address;
972 }
973 #define page_address_init() do { } while(0)
974 #endif
975
976 #if defined(HASHED_PAGE_VIRTUAL)
977 void *page_address(const struct page *page);
978 void set_page_address(struct page *page, void *virtual);
979 void page_address_init(void);
980 #endif
981
982 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
983 #define page_address(page) lowmem_page_address(page)
984 #define set_page_address(page, address) do { } while(0)
985 #define page_address_init() do { } while(0)
986 #endif
987
988 /*
989 * On an anonymous page mapped into a user virtual memory area,
990 * page->mapping points to its anon_vma, not to a struct address_space;
991 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
992 *
993 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
994 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
995 * and then page->mapping points, not to an anon_vma, but to a private
996 * structure which KSM associates with that merged page. See ksm.h.
997 *
998 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
999 *
1000 * Please note that, confusingly, "page_mapping" refers to the inode
1001 * address_space which maps the page from disk; whereas "page_mapped"
1002 * refers to user virtual address space into which the page is mapped.
1003 */
1004 #define PAGE_MAPPING_ANON 1
1005 #define PAGE_MAPPING_KSM 2
1006 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1007
1008 extern struct address_space *page_mapping(struct page *page);
1009
1010 /* Neutral page->mapping pointer to address_space or anon_vma or other */
1011 static inline void *page_rmapping(struct page *page)
1012 {
1013 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
1014 }
1015
1016 extern struct address_space *__page_file_mapping(struct page *);
1017
1018 static inline
1019 struct address_space *page_file_mapping(struct page *page)
1020 {
1021 if (unlikely(PageSwapCache(page)))
1022 return __page_file_mapping(page);
1023
1024 return page->mapping;
1025 }
1026
1027 static inline int PageAnon(struct page *page)
1028 {
1029 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
1030 }
1031
1032 /*
1033 * Return the pagecache index of the passed page. Regular pagecache pages
1034 * use ->index whereas swapcache pages use ->private
1035 */
1036 static inline pgoff_t page_index(struct page *page)
1037 {
1038 if (unlikely(PageSwapCache(page)))
1039 return page_private(page);
1040 return page->index;
1041 }
1042
1043 extern pgoff_t __page_file_index(struct page *page);
1044
1045 /*
1046 * Return the file index of the page. Regular pagecache pages use ->index
1047 * whereas swapcache pages use swp_offset(->private)
1048 */
1049 static inline pgoff_t page_file_index(struct page *page)
1050 {
1051 if (unlikely(PageSwapCache(page)))
1052 return __page_file_index(page);
1053
1054 return page->index;
1055 }
1056
1057 /*
1058 * Return true if this page is mapped into pagetables.
1059 */
1060 static inline int page_mapped(struct page *page)
1061 {
1062 return atomic_read(&(page)->_mapcount) >= 0;
1063 }
1064
1065 /*
1066 * Different kinds of faults, as returned by handle_mm_fault().
1067 * Used to decide whether a process gets delivered SIGBUS or
1068 * just gets major/minor fault counters bumped up.
1069 */
1070
1071 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1072
1073 #define VM_FAULT_OOM 0x0001
1074 #define VM_FAULT_SIGBUS 0x0002
1075 #define VM_FAULT_MAJOR 0x0004
1076 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1077 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1078 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1079 #define VM_FAULT_SIGSEGV 0x0040
1080
1081 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1082 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1083 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1084 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1085
1086 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1087
1088 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1089 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1090 VM_FAULT_FALLBACK)
1091
1092 /* Encode hstate index for a hwpoisoned large page */
1093 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1094 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1095
1096 /*
1097 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1098 */
1099 extern void pagefault_out_of_memory(void);
1100
1101 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1102
1103 /*
1104 * Flags passed to show_mem() and show_free_areas() to suppress output in
1105 * various contexts.
1106 */
1107 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1108
1109 extern void show_free_areas(unsigned int flags);
1110 extern bool skip_free_areas_node(unsigned int flags, int nid);
1111
1112 int shmem_zero_setup(struct vm_area_struct *);
1113 #ifdef CONFIG_SHMEM
1114 bool shmem_mapping(struct address_space *mapping);
1115 #else
1116 static inline bool shmem_mapping(struct address_space *mapping)
1117 {
1118 return false;
1119 }
1120 #endif
1121
1122 extern int can_do_mlock(void);
1123 extern int user_shm_lock(size_t, struct user_struct *);
1124 extern void user_shm_unlock(size_t, struct user_struct *);
1125
1126 /*
1127 * Parameter block passed down to zap_pte_range in exceptional cases.
1128 */
1129 struct zap_details {
1130 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1131 struct address_space *check_mapping; /* Check page->mapping if set */
1132 pgoff_t first_index; /* Lowest page->index to unmap */
1133 pgoff_t last_index; /* Highest page->index to unmap */
1134 };
1135
1136 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1137 pte_t pte);
1138
1139 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1140 unsigned long size);
1141 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1142 unsigned long size, struct zap_details *);
1143 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1144 unsigned long start, unsigned long end);
1145
1146 /**
1147 * mm_walk - callbacks for walk_page_range
1148 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1149 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1150 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1151 * this handler is required to be able to handle
1152 * pmd_trans_huge() pmds. They may simply choose to
1153 * split_huge_page() instead of handling it explicitly.
1154 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1155 * @pte_hole: if set, called for each hole at all levels
1156 * @hugetlb_entry: if set, called for each hugetlb entry
1157 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1158 * is used.
1159 *
1160 * (see walk_page_range for more details)
1161 */
1162 struct mm_walk {
1163 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1164 unsigned long next, struct mm_walk *walk);
1165 int (*pud_entry)(pud_t *pud, unsigned long addr,
1166 unsigned long next, struct mm_walk *walk);
1167 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1168 unsigned long next, struct mm_walk *walk);
1169 int (*pte_entry)(pte_t *pte, unsigned long addr,
1170 unsigned long next, struct mm_walk *walk);
1171 int (*pte_hole)(unsigned long addr, unsigned long next,
1172 struct mm_walk *walk);
1173 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1174 unsigned long addr, unsigned long next,
1175 struct mm_walk *walk);
1176 struct mm_struct *mm;
1177 void *private;
1178 };
1179
1180 int walk_page_range(unsigned long addr, unsigned long end,
1181 struct mm_walk *walk);
1182 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1183 unsigned long end, unsigned long floor, unsigned long ceiling);
1184 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1185 struct vm_area_struct *vma);
1186 void unmap_mapping_range(struct address_space *mapping,
1187 loff_t const holebegin, loff_t const holelen, int even_cows);
1188 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1189 unsigned long *pfn);
1190 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1191 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1192 ssize_t generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1193 void *buf, size_t len, int write);
1194
1195 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1196 loff_t const holebegin, loff_t const holelen)
1197 {
1198 unmap_mapping_range(mapping, holebegin, holelen, 0);
1199 }
1200
1201 extern void truncate_pagecache(struct inode *inode, loff_t new);
1202 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1203 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1204 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1205 int truncate_inode_page(struct address_space *mapping, struct page *page);
1206 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1207 int invalidate_inode_page(struct page *page);
1208
1209 #ifdef CONFIG_MMU
1210 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1211 unsigned long address, unsigned int flags);
1212 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1213 unsigned long address, unsigned int fault_flags);
1214 #else
1215 static inline int handle_mm_fault(struct mm_struct *mm,
1216 struct vm_area_struct *vma, unsigned long address,
1217 unsigned int flags)
1218 {
1219 /* should never happen if there's no MMU */
1220 BUG();
1221 return VM_FAULT_SIGBUS;
1222 }
1223 static inline int fixup_user_fault(struct task_struct *tsk,
1224 struct mm_struct *mm, unsigned long address,
1225 unsigned int fault_flags)
1226 {
1227 /* should never happen if there's no MMU */
1228 BUG();
1229 return -EFAULT;
1230 }
1231 #endif
1232
1233 extern ssize_t access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, size_t len, int write);
1234 extern ssize_t access_remote_vm(struct mm_struct *mm, unsigned long addr,
1235 void *buf, size_t len, int write);
1236
1237 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1238 unsigned long start, unsigned long nr_pages,
1239 unsigned int foll_flags, struct page **pages,
1240 struct vm_area_struct **vmas, int *nonblocking);
1241 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1242 unsigned long start, unsigned long nr_pages,
1243 int write, int force, struct page **pages,
1244 struct vm_area_struct **vmas);
1245 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1246 struct page **pages);
1247 struct kvec;
1248 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1249 struct page **pages);
1250 int get_kernel_page(unsigned long start, int write, struct page **pages);
1251 struct page *get_dump_page(unsigned long addr);
1252
1253 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1254 extern void do_invalidatepage(struct page *page, unsigned int offset,
1255 unsigned int length);
1256
1257 int __set_page_dirty_nobuffers(struct page *page);
1258 int __set_page_dirty_no_writeback(struct page *page);
1259 int redirty_page_for_writepage(struct writeback_control *wbc,
1260 struct page *page);
1261 void account_page_dirtied(struct page *page, struct address_space *mapping);
1262 int set_page_dirty(struct page *page);
1263 int set_page_dirty_lock(struct page *page);
1264 int clear_page_dirty_for_io(struct page *page);
1265 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1266
1267 extern struct task_struct *task_of_stack(struct task_struct *task,
1268 struct vm_area_struct *vma, bool in_group);
1269
1270 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1271 unsigned long old_addr, struct vm_area_struct *new_vma,
1272 unsigned long new_addr, unsigned long len,
1273 bool need_rmap_locks);
1274 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1275 unsigned long end, pgprot_t newprot,
1276 int dirty_accountable, int prot_numa);
1277 extern int mprotect_fixup(struct vm_area_struct *vma,
1278 struct vm_area_struct **pprev, unsigned long start,
1279 unsigned long end, unsigned long newflags);
1280
1281 /*
1282 * doesn't attempt to fault and will return short.
1283 */
1284 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1285 struct page **pages);
1286 /*
1287 * per-process(per-mm_struct) statistics.
1288 */
1289 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1290 {
1291 long val = atomic_long_read(&mm->rss_stat.count[member]);
1292
1293 #ifdef SPLIT_RSS_COUNTING
1294 /*
1295 * counter is updated in asynchronous manner and may go to minus.
1296 * But it's never be expected number for users.
1297 */
1298 if (val < 0)
1299 val = 0;
1300 #endif
1301 return (unsigned long)val;
1302 }
1303
1304 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1305 {
1306 atomic_long_add(value, &mm->rss_stat.count[member]);
1307 }
1308
1309 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1310 {
1311 atomic_long_inc(&mm->rss_stat.count[member]);
1312 }
1313
1314 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1315 {
1316 atomic_long_dec(&mm->rss_stat.count[member]);
1317 }
1318
1319 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1320 {
1321 return get_mm_counter(mm, MM_FILEPAGES) +
1322 get_mm_counter(mm, MM_ANONPAGES);
1323 }
1324
1325 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1326 {
1327 return max(mm->hiwater_rss, get_mm_rss(mm));
1328 }
1329
1330 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1331 {
1332 return max(mm->hiwater_vm, mm->total_vm);
1333 }
1334
1335 static inline void update_hiwater_rss(struct mm_struct *mm)
1336 {
1337 unsigned long _rss = get_mm_rss(mm);
1338
1339 if ((mm)->hiwater_rss < _rss)
1340 (mm)->hiwater_rss = _rss;
1341 }
1342
1343 static inline void update_hiwater_vm(struct mm_struct *mm)
1344 {
1345 if (mm->hiwater_vm < mm->total_vm)
1346 mm->hiwater_vm = mm->total_vm;
1347 }
1348
1349 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1350 struct mm_struct *mm)
1351 {
1352 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1353
1354 if (*maxrss < hiwater_rss)
1355 *maxrss = hiwater_rss;
1356 }
1357
1358 #if defined(SPLIT_RSS_COUNTING)
1359 void sync_mm_rss(struct mm_struct *mm);
1360 #else
1361 static inline void sync_mm_rss(struct mm_struct *mm)
1362 {
1363 }
1364 #endif
1365
1366 int vma_wants_writenotify(struct vm_area_struct *vma);
1367
1368 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1369 spinlock_t **ptl);
1370 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1371 spinlock_t **ptl)
1372 {
1373 pte_t *ptep;
1374 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1375 return ptep;
1376 }
1377
1378 #ifdef __PAGETABLE_PUD_FOLDED
1379 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1380 unsigned long address)
1381 {
1382 return 0;
1383 }
1384
1385 static inline int __pud_alloc_kernel(struct mm_struct *mm, pgd_t *pgd,
1386 unsigned long address)
1387 {
1388 return 0;
1389 }
1390 #else
1391 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1392 int __pud_alloc_kernel(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1393 #endif
1394
1395 #ifdef __PAGETABLE_PMD_FOLDED
1396 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1397 unsigned long address)
1398 {
1399 return 0;
1400 }
1401
1402 static inline int __pmd_alloc_kernel(struct mm_struct *mm, pud_t *pud,
1403 unsigned long address)
1404 {
1405 return 0;
1406 }
1407 #else
1408 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1409 int __pmd_alloc_kernel(struct mm_struct *mm, pud_t *pud, unsigned long address);
1410 #endif
1411
1412 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1413 pmd_t *pmd, unsigned long address);
1414 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1415
1416 /*
1417 * The following ifdef needed to get the 4level-fixup.h header to work.
1418 * Remove it when 4level-fixup.h has been removed.
1419 */
1420 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1421 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1422 {
1423 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1424 NULL: pud_offset(pgd, address);
1425 }
1426
1427 static inline pud_t *pud_alloc_kernel(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1428 {
1429 return (unlikely(pgd_none(*pgd)) && __pud_alloc_kernel(mm, pgd, address))?
1430 NULL: pud_offset(pgd, address);
1431 }
1432
1433 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1434 {
1435 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1436 NULL: pmd_offset(pud, address);
1437 }
1438
1439 static inline pmd_t *pmd_alloc_kernel(struct mm_struct *mm, pud_t *pud, unsigned long address)
1440 {
1441 return (unlikely(pud_none(*pud)) && __pmd_alloc_kernel(mm, pud, address))?
1442 NULL: pmd_offset(pud, address);
1443 }
1444 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1445
1446 #if USE_SPLIT_PTE_PTLOCKS
1447 #if ALLOC_SPLIT_PTLOCKS
1448 void __init ptlock_cache_init(void);
1449 extern bool ptlock_alloc(struct page *page);
1450 extern void ptlock_free(struct page *page);
1451
1452 static inline spinlock_t *ptlock_ptr(struct page *page)
1453 {
1454 return page->ptl;
1455 }
1456 #else /* ALLOC_SPLIT_PTLOCKS */
1457 static inline void ptlock_cache_init(void)
1458 {
1459 }
1460
1461 static inline bool ptlock_alloc(struct page *page)
1462 {
1463 return true;
1464 }
1465
1466 static inline void ptlock_free(struct page *page)
1467 {
1468 }
1469
1470 static inline spinlock_t *ptlock_ptr(struct page *page)
1471 {
1472 return &page->ptl;
1473 }
1474 #endif /* ALLOC_SPLIT_PTLOCKS */
1475
1476 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1477 {
1478 return ptlock_ptr(pmd_page(*pmd));
1479 }
1480
1481 static inline bool ptlock_init(struct page *page)
1482 {
1483 /*
1484 * prep_new_page() initialize page->private (and therefore page->ptl)
1485 * with 0. Make sure nobody took it in use in between.
1486 *
1487 * It can happen if arch try to use slab for page table allocation:
1488 * slab code uses page->slab_cache and page->first_page (for tail
1489 * pages), which share storage with page->ptl.
1490 */
1491 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1492 if (!ptlock_alloc(page))
1493 return false;
1494 spin_lock_init(ptlock_ptr(page));
1495 return true;
1496 }
1497
1498 /* Reset page->mapping so free_pages_check won't complain. */
1499 static inline void pte_lock_deinit(struct page *page)
1500 {
1501 page->mapping = NULL;
1502 ptlock_free(page);
1503 }
1504
1505 #else /* !USE_SPLIT_PTE_PTLOCKS */
1506 /*
1507 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1508 */
1509 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1510 {
1511 return &mm->page_table_lock;
1512 }
1513 static inline void ptlock_cache_init(void) {}
1514 static inline bool ptlock_init(struct page *page) { return true; }
1515 static inline void pte_lock_deinit(struct page *page) {}
1516 #endif /* USE_SPLIT_PTE_PTLOCKS */
1517
1518 static inline void pgtable_init(void)
1519 {
1520 ptlock_cache_init();
1521 pgtable_cache_init();
1522 }
1523
1524 static inline bool pgtable_page_ctor(struct page *page)
1525 {
1526 inc_zone_page_state(page, NR_PAGETABLE);
1527 return ptlock_init(page);
1528 }
1529
1530 static inline void pgtable_page_dtor(struct page *page)
1531 {
1532 pte_lock_deinit(page);
1533 dec_zone_page_state(page, NR_PAGETABLE);
1534 }
1535
1536 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1537 ({ \
1538 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1539 pte_t *__pte = pte_offset_map(pmd, address); \
1540 *(ptlp) = __ptl; \
1541 spin_lock(__ptl); \
1542 __pte; \
1543 })
1544
1545 #define pte_unmap_unlock(pte, ptl) do { \
1546 spin_unlock(ptl); \
1547 pte_unmap(pte); \
1548 } while (0)
1549
1550 #define pte_alloc_map(mm, vma, pmd, address) \
1551 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1552 pmd, address))? \
1553 NULL: pte_offset_map(pmd, address))
1554
1555 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1556 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1557 pmd, address))? \
1558 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1559
1560 #define pte_alloc_kernel(pmd, address) \
1561 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1562 NULL: pte_offset_kernel(pmd, address))
1563
1564 #if USE_SPLIT_PMD_PTLOCKS
1565
1566 static struct page *pmd_to_page(pmd_t *pmd)
1567 {
1568 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1569 return virt_to_page((void *)((unsigned long) pmd & mask));
1570 }
1571
1572 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1573 {
1574 return ptlock_ptr(pmd_to_page(pmd));
1575 }
1576
1577 static inline bool pgtable_pmd_page_ctor(struct page *page)
1578 {
1579 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1580 page->pmd_huge_pte = NULL;
1581 #endif
1582 return ptlock_init(page);
1583 }
1584
1585 static inline void pgtable_pmd_page_dtor(struct page *page)
1586 {
1587 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1588 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1589 #endif
1590 ptlock_free(page);
1591 }
1592
1593 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1594
1595 #else
1596
1597 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1598 {
1599 return &mm->page_table_lock;
1600 }
1601
1602 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1603 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1604
1605 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1606
1607 #endif
1608
1609 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1610 {
1611 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1612 spin_lock(ptl);
1613 return ptl;
1614 }
1615
1616 extern void free_area_init(unsigned long * zones_size);
1617 extern void free_area_init_node(int nid, unsigned long * zones_size,
1618 unsigned long zone_start_pfn, unsigned long *zholes_size);
1619 extern void free_initmem(void);
1620
1621 /*
1622 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1623 * into the buddy system. The freed pages will be poisoned with pattern
1624 * "poison" if it's within range [0, UCHAR_MAX].
1625 * Return pages freed into the buddy system.
1626 */
1627 extern unsigned long free_reserved_area(void *start, void *end,
1628 int poison, char *s);
1629
1630 #ifdef CONFIG_HIGHMEM
1631 /*
1632 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1633 * and totalram_pages.
1634 */
1635 extern void free_highmem_page(struct page *page);
1636 #endif
1637
1638 extern void adjust_managed_page_count(struct page *page, long count);
1639 extern void mem_init_print_info(const char *str);
1640
1641 /* Free the reserved page into the buddy system, so it gets managed. */
1642 static inline void __free_reserved_page(struct page *page)
1643 {
1644 ClearPageReserved(page);
1645 init_page_count(page);
1646 __free_page(page);
1647 }
1648
1649 static inline void free_reserved_page(struct page *page)
1650 {
1651 __free_reserved_page(page);
1652 adjust_managed_page_count(page, 1);
1653 }
1654
1655 static inline void mark_page_reserved(struct page *page)
1656 {
1657 SetPageReserved(page);
1658 adjust_managed_page_count(page, -1);
1659 }
1660
1661 /*
1662 * Default method to free all the __init memory into the buddy system.
1663 * The freed pages will be poisoned with pattern "poison" if it's within
1664 * range [0, UCHAR_MAX].
1665 * Return pages freed into the buddy system.
1666 */
1667 static inline unsigned long free_initmem_default(int poison)
1668 {
1669 extern char __init_begin[], __init_end[];
1670
1671 return free_reserved_area(&__init_begin, &__init_end,
1672 poison, "unused kernel");
1673 }
1674
1675 static inline unsigned long get_num_physpages(void)
1676 {
1677 int nid;
1678 unsigned long phys_pages = 0;
1679
1680 for_each_online_node(nid)
1681 phys_pages += node_present_pages(nid);
1682
1683 return phys_pages;
1684 }
1685
1686 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1687 /*
1688 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1689 * zones, allocate the backing mem_map and account for memory holes in a more
1690 * architecture independent manner. This is a substitute for creating the
1691 * zone_sizes[] and zholes_size[] arrays and passing them to
1692 * free_area_init_node()
1693 *
1694 * An architecture is expected to register range of page frames backed by
1695 * physical memory with memblock_add[_node]() before calling
1696 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1697 * usage, an architecture is expected to do something like
1698 *
1699 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1700 * max_highmem_pfn};
1701 * for_each_valid_physical_page_range()
1702 * memblock_add_node(base, size, nid)
1703 * free_area_init_nodes(max_zone_pfns);
1704 *
1705 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1706 * registered physical page range. Similarly
1707 * sparse_memory_present_with_active_regions() calls memory_present() for
1708 * each range when SPARSEMEM is enabled.
1709 *
1710 * See mm/page_alloc.c for more information on each function exposed by
1711 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1712 */
1713 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1714 unsigned long node_map_pfn_alignment(void);
1715 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1716 unsigned long end_pfn);
1717 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1718 unsigned long end_pfn);
1719 extern void get_pfn_range_for_nid(unsigned int nid,
1720 unsigned long *start_pfn, unsigned long *end_pfn);
1721 extern unsigned long find_min_pfn_with_active_regions(void);
1722 extern void free_bootmem_with_active_regions(int nid,
1723 unsigned long max_low_pfn);
1724 extern void sparse_memory_present_with_active_regions(int nid);
1725
1726 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1727
1728 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1729 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1730 static inline int __early_pfn_to_nid(unsigned long pfn)
1731 {
1732 return 0;
1733 }
1734 #else
1735 /* please see mm/page_alloc.c */
1736 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1737 /* there is a per-arch backend function. */
1738 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1739 #endif
1740
1741 extern void set_dma_reserve(unsigned long new_dma_reserve);
1742 extern void memmap_init_zone(unsigned long, int, unsigned long,
1743 unsigned long, enum memmap_context);
1744 extern void setup_per_zone_wmarks(void);
1745 extern int __meminit init_per_zone_wmark_min(void);
1746 extern void mem_init(void);
1747 extern void __init mmap_init(void);
1748 extern void show_mem(unsigned int flags);
1749 extern void si_meminfo(struct sysinfo * val);
1750 extern void si_meminfo_node(struct sysinfo *val, int nid);
1751
1752 extern __printf(3, 4)
1753 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1754
1755 extern void setup_per_cpu_pageset(void);
1756
1757 extern void zone_pcp_update(struct zone *zone);
1758 extern void zone_pcp_reset(struct zone *zone);
1759
1760 /* page_alloc.c */
1761 extern int min_free_kbytes;
1762
1763 /* nommu.c */
1764 extern atomic_long_t mmap_pages_allocated;
1765 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1766
1767 /* interval_tree.c */
1768 void vma_interval_tree_insert(struct vm_area_struct *node,
1769 struct rb_root *root);
1770 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1771 struct vm_area_struct *prev,
1772 struct rb_root *root);
1773 void vma_interval_tree_remove(struct vm_area_struct *node,
1774 struct rb_root *root);
1775 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1776 unsigned long start, unsigned long last);
1777 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1778 unsigned long start, unsigned long last);
1779
1780 #define vma_interval_tree_foreach(vma, root, start, last) \
1781 for (vma = vma_interval_tree_iter_first(root, start, last); \
1782 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1783
1784 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1785 struct list_head *list)
1786 {
1787 list_add_tail(&vma->shared.nonlinear, list);
1788 }
1789
1790 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1791 struct rb_root *root);
1792 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1793 struct rb_root *root);
1794 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1795 struct rb_root *root, unsigned long start, unsigned long last);
1796 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1797 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1798 #ifdef CONFIG_DEBUG_VM_RB
1799 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1800 #endif
1801
1802 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1803 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1804 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1805
1806 /* mmap.c */
1807 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1808 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1809 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1810 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1811 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1812 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1813 struct mempolicy *);
1814 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1815 extern int split_vma(struct mm_struct *,
1816 struct vm_area_struct *, unsigned long addr, int new_below);
1817 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1818 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1819 struct rb_node **, struct rb_node *);
1820 extern void unlink_file_vma(struct vm_area_struct *);
1821 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1822 unsigned long addr, unsigned long len, pgoff_t pgoff,
1823 bool *need_rmap_locks);
1824 extern void exit_mmap(struct mm_struct *);
1825
1826 #if defined(CONFIG_GRKERNSEC) && (defined(CONFIG_GRKERNSEC_RESLOG) || !defined(CONFIG_GRKERNSEC_NO_RBAC))
1827 extern void gr_learn_resource(const struct task_struct *task, const int res,
1828 const unsigned long wanted, const int gt);
1829 #else
1830 static inline void gr_learn_resource(const struct task_struct *task, const int res,
1831 const unsigned long wanted, const int gt)
1832 {
1833 }
1834 #endif
1835
1836 static inline int check_data_rlimit(unsigned long rlim,
1837 unsigned long new,
1838 unsigned long start,
1839 unsigned long end_data,
1840 unsigned long start_data)
1841 {
1842 gr_learn_resource(current, RLIMIT_DATA, (new - start) + (end_data - start_data), 1);
1843 if (rlim < RLIM_INFINITY) {
1844 if (((new - start) + (end_data - start_data)) > rlim)
1845 return -ENOSPC;
1846 }
1847
1848 return 0;
1849 }
1850
1851 extern int mm_take_all_locks(struct mm_struct *mm);
1852 extern void mm_drop_all_locks(struct mm_struct *mm);
1853
1854 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1855 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1856
1857 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1858 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1859 unsigned long addr, unsigned long len,
1860 unsigned long flags,
1861 const struct vm_special_mapping *spec);
1862 /* This is an obsolete alternative to _install_special_mapping. */
1863 extern int install_special_mapping(struct mm_struct *mm,
1864 unsigned long addr, unsigned long len,
1865 unsigned long flags, struct page **pages);
1866
1867 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long) __intentional_overflow(-1);
1868
1869 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1870 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1871 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1872 unsigned long len, unsigned long prot, unsigned long flags,
1873 unsigned long pgoff, unsigned long *populate);
1874 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1875 extern int __do_munmap(struct mm_struct *, unsigned long, size_t);
1876
1877 #ifdef CONFIG_MMU
1878 extern int __mm_populate(unsigned long addr, unsigned long len,
1879 int ignore_errors);
1880 static inline void mm_populate(unsigned long addr, unsigned long len)
1881 {
1882 /* Ignore errors */
1883 (void) __mm_populate(addr, len, 1);
1884 }
1885 #else
1886 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1887 #endif
1888
1889 /* These take the mm semaphore themselves */
1890 extern unsigned long vm_brk(unsigned long, unsigned long);
1891 extern int vm_munmap(unsigned long, size_t);
1892 extern unsigned long vm_mmap(struct file *, unsigned long,
1893 unsigned long, unsigned long,
1894 unsigned long, unsigned long);
1895
1896 struct vm_unmapped_area_info {
1897 #define VM_UNMAPPED_AREA_TOPDOWN 1
1898 unsigned long flags;
1899 unsigned long length;
1900 unsigned long low_limit;
1901 unsigned long high_limit;
1902 unsigned long align_mask;
1903 unsigned long align_offset;
1904 unsigned long threadstack_offset;
1905 };
1906
1907 extern unsigned long unmapped_area(const struct vm_unmapped_area_info *info);
1908 extern unsigned long unmapped_area_topdown(const struct vm_unmapped_area_info *info);
1909
1910 /*
1911 * Search for an unmapped address range.
1912 *
1913 * We are looking for a range that:
1914 * - does not intersect with any VMA;
1915 * - is contained within the [low_limit, high_limit) interval;
1916 * - is at least the desired size.
1917 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1918 */
1919 static inline unsigned long
1920 vm_unmapped_area(const struct vm_unmapped_area_info *info)
1921 {
1922 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1923 return unmapped_area(info);
1924 else
1925 return unmapped_area_topdown(info);
1926 }
1927
1928 /* truncate.c */
1929 extern void truncate_inode_pages(struct address_space *, loff_t);
1930 extern void truncate_inode_pages_range(struct address_space *,
1931 loff_t lstart, loff_t lend);
1932 extern void truncate_inode_pages_final(struct address_space *);
1933
1934 /* generic vm_area_ops exported for stackable file systems */
1935 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1936 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1937 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1938
1939 /* mm/page-writeback.c */
1940 int write_one_page(struct page *page, int wait);
1941 void task_dirty_inc(struct task_struct *tsk);
1942
1943 /* readahead.c */
1944 #define VM_MAX_READAHEAD 128 /* kbytes */
1945 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1946
1947 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1948 pgoff_t offset, unsigned long nr_to_read);
1949
1950 void page_cache_sync_readahead(struct address_space *mapping,
1951 struct file_ra_state *ra,
1952 struct file *filp,
1953 pgoff_t offset,
1954 unsigned long size);
1955
1956 void page_cache_async_readahead(struct address_space *mapping,
1957 struct file_ra_state *ra,
1958 struct file *filp,
1959 struct page *pg,
1960 pgoff_t offset,
1961 unsigned long size);
1962
1963 unsigned long max_sane_readahead(unsigned long nr);
1964
1965 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1966 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1967
1968 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1969 extern int expand_downwards(struct vm_area_struct *vma,
1970 unsigned long address);
1971 #if VM_GROWSUP
1972 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1973 #else
1974 #define expand_upwards(vma, address) (0)
1975 #endif
1976
1977 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1978 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1979 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1980 struct vm_area_struct **pprev);
1981
1982 extern struct vm_area_struct *pax_find_mirror_vma(struct vm_area_struct *vma);
1983 extern __must_check long pax_mirror_vma(struct vm_area_struct *vma_m, struct vm_area_struct *vma);
1984 extern void pax_mirror_file_pte(struct vm_area_struct *vma, unsigned long address, struct page *page_m, spinlock_t *ptl);
1985
1986 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1987 NULL if none. Assume start_addr < end_addr. */
1988 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1989 {
1990 struct vm_area_struct * vma = find_vma(mm,start_addr);
1991
1992 if (vma && end_addr <= vma->vm_start)
1993 vma = NULL;
1994 return vma;
1995 }
1996
1997 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1998 {
1999 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2000 }
2001
2002 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2003 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2004 unsigned long vm_start, unsigned long vm_end)
2005 {
2006 struct vm_area_struct *vma = find_vma(mm, vm_start);
2007
2008 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2009 vma = NULL;
2010
2011 return vma;
2012 }
2013
2014 #ifdef CONFIG_MMU
2015 pgprot_t vm_get_page_prot(vm_flags_t vm_flags);
2016 void vma_set_page_prot(struct vm_area_struct *vma);
2017 #else
2018 static inline pgprot_t vm_get_page_prot(vm_flags_t vm_flags)
2019 {
2020 return __pgprot(0);
2021 }
2022 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2023 {
2024 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2025 }
2026 #endif
2027
2028 #ifdef CONFIG_NUMA_BALANCING
2029 unsigned long change_prot_numa(struct vm_area_struct *vma,
2030 unsigned long start, unsigned long end);
2031 #endif
2032
2033 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2034 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2035 unsigned long pfn, unsigned long size, pgprot_t);
2036 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2037 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2038 unsigned long pfn);
2039 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2040 unsigned long pfn);
2041 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2042
2043
2044 struct page *follow_page_mask(struct vm_area_struct *vma,
2045 unsigned long address, unsigned int foll_flags,
2046 unsigned int *page_mask);
2047
2048 static inline struct page *follow_page(struct vm_area_struct *vma,
2049 unsigned long address, unsigned int foll_flags)
2050 {
2051 unsigned int unused_page_mask;
2052 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2053 }
2054
2055 #define FOLL_WRITE 0x01 /* check pte is writable */
2056 #define FOLL_TOUCH 0x02 /* mark page accessed */
2057 #define FOLL_GET 0x04 /* do get_page on page */
2058 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2059 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2060 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2061 * and return without waiting upon it */
2062 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
2063 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2064 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2065 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2066 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2067 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2068
2069 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2070 void *data);
2071 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2072 unsigned long size, pte_fn_t fn, void *data);
2073
2074 #ifdef CONFIG_PROC_FS
2075 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2076 #else
2077 static inline void vm_stat_account(struct mm_struct *mm,
2078 unsigned long flags, struct file *file, long pages)
2079 {
2080
2081 #ifdef CONFIG_PAX_RANDMMAP
2082 if (!(mm->pax_flags & MF_PAX_RANDMMAP) || (flags & (VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)))
2083 #endif
2084
2085 mm->total_vm += pages;
2086 }
2087 #endif /* CONFIG_PROC_FS */
2088
2089 #ifdef CONFIG_DEBUG_PAGEALLOC
2090 extern bool _debug_pagealloc_enabled;
2091 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2092
2093 static inline bool debug_pagealloc_enabled(void)
2094 {
2095 return _debug_pagealloc_enabled;
2096 }
2097
2098 static inline void
2099 kernel_map_pages(struct page *page, int numpages, int enable)
2100 {
2101 if (!debug_pagealloc_enabled())
2102 return;
2103
2104 __kernel_map_pages(page, numpages, enable);
2105 }
2106 #ifdef CONFIG_HIBERNATION
2107 extern bool kernel_page_present(struct page *page);
2108 #endif /* CONFIG_HIBERNATION */
2109 #else
2110 static inline void
2111 kernel_map_pages(struct page *page, int numpages, int enable) {}
2112 #ifdef CONFIG_HIBERNATION
2113 static inline bool kernel_page_present(struct page *page) { return true; }
2114 #endif /* CONFIG_HIBERNATION */
2115 #endif
2116
2117 #ifdef __HAVE_ARCH_GATE_AREA
2118 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2119 extern int in_gate_area_no_mm(unsigned long addr);
2120 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2121 #else
2122 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2123 {
2124 return NULL;
2125 }
2126 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2127 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2128 {
2129 return 0;
2130 }
2131 #endif /* __HAVE_ARCH_GATE_AREA */
2132
2133 #ifdef CONFIG_SYSCTL
2134 extern int sysctl_drop_caches;
2135 int drop_caches_sysctl_handler(struct ctl_table *, int,
2136 void __user *, size_t *, loff_t *);
2137 #endif
2138
2139 unsigned long shrink_node_slabs(gfp_t gfp_mask, int nid,
2140 unsigned long nr_scanned,
2141 unsigned long nr_eligible);
2142
2143 #ifndef CONFIG_MMU
2144 #define randomize_va_space 0
2145 #else
2146 extern int randomize_va_space;
2147 #endif
2148
2149 const char * arch_vma_name(struct vm_area_struct *vma);
2150 void print_vma_addr(char *prefix, unsigned long rip);
2151
2152 void sparse_mem_maps_populate_node(struct page **map_map,
2153 unsigned long pnum_begin,
2154 unsigned long pnum_end,
2155 unsigned long map_count,
2156 int nodeid);
2157
2158 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2159 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2160 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2161 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2162 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2163 void *vmemmap_alloc_block(unsigned long size, int node);
2164 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2165 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2166 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2167 int node);
2168 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2169 void vmemmap_populate_print_last(void);
2170 #ifdef CONFIG_MEMORY_HOTPLUG
2171 void vmemmap_free(unsigned long start, unsigned long end);
2172 #endif
2173 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2174 unsigned long size);
2175
2176 enum mf_flags {
2177 MF_COUNT_INCREASED = 1 << 0,
2178 MF_ACTION_REQUIRED = 1 << 1,
2179 MF_MUST_KILL = 1 << 2,
2180 MF_SOFT_OFFLINE = 1 << 3,
2181 };
2182 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2183 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2184 extern int unpoison_memory(unsigned long pfn);
2185 extern int sysctl_memory_failure_early_kill;
2186 extern int sysctl_memory_failure_recovery;
2187 extern void shake_page(struct page *p, int access);
2188 extern atomic_long_unchecked_t num_poisoned_pages;
2189 extern int soft_offline_page(struct page *page, int flags);
2190
2191 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2192 extern void clear_huge_page(struct page *page,
2193 unsigned long addr,
2194 unsigned int pages_per_huge_page);
2195 extern void copy_user_huge_page(struct page *dst, struct page *src,
2196 unsigned long addr, struct vm_area_struct *vma,
2197 unsigned int pages_per_huge_page);
2198 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2199
2200 extern struct page_ext_operations debug_guardpage_ops;
2201 extern struct page_ext_operations page_poisoning_ops;
2202
2203 #ifdef CONFIG_DEBUG_PAGEALLOC
2204 extern unsigned int _debug_guardpage_minorder;
2205 extern bool _debug_guardpage_enabled;
2206
2207 static inline unsigned int debug_guardpage_minorder(void)
2208 {
2209 return _debug_guardpage_minorder;
2210 }
2211
2212 static inline bool debug_guardpage_enabled(void)
2213 {
2214 return _debug_guardpage_enabled;
2215 }
2216
2217 static inline bool page_is_guard(struct page *page)
2218 {
2219 struct page_ext *page_ext;
2220
2221 if (!debug_guardpage_enabled())
2222 return false;
2223
2224 page_ext = lookup_page_ext(page);
2225 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2226 }
2227 #else
2228 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2229 static inline bool debug_guardpage_enabled(void) { return false; }
2230 static inline bool page_is_guard(struct page *page) { return false; }
2231 #endif /* CONFIG_DEBUG_PAGEALLOC */
2232
2233 #if MAX_NUMNODES > 1
2234 void __init setup_nr_node_ids(void);
2235 #else
2236 static inline void setup_nr_node_ids(void) {}
2237 #endif
2238
2239 #ifdef CONFIG_ARCH_TRACK_EXEC_LIMIT
2240 extern void track_exec_limit(struct mm_struct *mm, unsigned long start, unsigned long end, unsigned long prot);
2241 #else
2242 static inline void track_exec_limit(struct mm_struct *mm, unsigned long start, unsigned long end, unsigned long prot) {}
2243 #endif
2244
2245 #endif /* __KERNEL__ */
2246 #endif /* _LINUX_MM_H */