]> git.ipfire.org Git - people/ms/linux.git/blob - include/rdma/ib_verbs.h
9a68a19532ba57c27042cec499843f3cebfa273c
[people/ms/linux.git] / include / rdma / ib_verbs.h
1 /*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <uapi/linux/if_ether.h>
53
54 #include <linux/atomic.h>
55 #include <linux/mmu_notifier.h>
56 #include <asm/uaccess.h>
57
58 extern struct workqueue_struct *ib_wq;
59
60 union ib_gid {
61 u8 raw[16];
62 struct {
63 __be64 subnet_prefix;
64 __be64 interface_id;
65 } global;
66 };
67
68 extern union ib_gid zgid;
69
70 struct ib_gid_attr {
71 struct net_device *ndev;
72 };
73
74 enum rdma_node_type {
75 /* IB values map to NodeInfo:NodeType. */
76 RDMA_NODE_IB_CA = 1,
77 RDMA_NODE_IB_SWITCH,
78 RDMA_NODE_IB_ROUTER,
79 RDMA_NODE_RNIC,
80 RDMA_NODE_USNIC,
81 RDMA_NODE_USNIC_UDP,
82 };
83
84 enum rdma_transport_type {
85 RDMA_TRANSPORT_IB,
86 RDMA_TRANSPORT_IWARP,
87 RDMA_TRANSPORT_USNIC,
88 RDMA_TRANSPORT_USNIC_UDP
89 };
90
91 enum rdma_protocol_type {
92 RDMA_PROTOCOL_IB,
93 RDMA_PROTOCOL_IBOE,
94 RDMA_PROTOCOL_IWARP,
95 RDMA_PROTOCOL_USNIC_UDP
96 };
97
98 __attribute_const__ enum rdma_transport_type
99 rdma_node_get_transport(enum rdma_node_type node_type);
100
101 enum rdma_link_layer {
102 IB_LINK_LAYER_UNSPECIFIED,
103 IB_LINK_LAYER_INFINIBAND,
104 IB_LINK_LAYER_ETHERNET,
105 };
106
107 enum ib_device_cap_flags {
108 IB_DEVICE_RESIZE_MAX_WR = 1,
109 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
110 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
111 IB_DEVICE_RAW_MULTI = (1<<3),
112 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
113 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
114 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
115 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
116 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
117 IB_DEVICE_INIT_TYPE = (1<<9),
118 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
119 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
120 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
121 IB_DEVICE_SRQ_RESIZE = (1<<13),
122 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
123 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
124 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
125 IB_DEVICE_MEM_WINDOW = (1<<17),
126 /*
127 * Devices should set IB_DEVICE_UD_IP_SUM if they support
128 * insertion of UDP and TCP checksum on outgoing UD IPoIB
129 * messages and can verify the validity of checksum for
130 * incoming messages. Setting this flag implies that the
131 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
132 */
133 IB_DEVICE_UD_IP_CSUM = (1<<18),
134 IB_DEVICE_UD_TSO = (1<<19),
135 IB_DEVICE_XRC = (1<<20),
136 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
137 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
138 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23),
139 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24),
140 IB_DEVICE_RC_IP_CSUM = (1<<25),
141 IB_DEVICE_RAW_IP_CSUM = (1<<26),
142 IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29),
143 IB_DEVICE_SIGNATURE_HANDOVER = (1<<30),
144 IB_DEVICE_ON_DEMAND_PAGING = (1<<31),
145 };
146
147 enum ib_signature_prot_cap {
148 IB_PROT_T10DIF_TYPE_1 = 1,
149 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
150 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
151 };
152
153 enum ib_signature_guard_cap {
154 IB_GUARD_T10DIF_CRC = 1,
155 IB_GUARD_T10DIF_CSUM = 1 << 1,
156 };
157
158 enum ib_atomic_cap {
159 IB_ATOMIC_NONE,
160 IB_ATOMIC_HCA,
161 IB_ATOMIC_GLOB
162 };
163
164 enum ib_odp_general_cap_bits {
165 IB_ODP_SUPPORT = 1 << 0,
166 };
167
168 enum ib_odp_transport_cap_bits {
169 IB_ODP_SUPPORT_SEND = 1 << 0,
170 IB_ODP_SUPPORT_RECV = 1 << 1,
171 IB_ODP_SUPPORT_WRITE = 1 << 2,
172 IB_ODP_SUPPORT_READ = 1 << 3,
173 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
174 };
175
176 struct ib_odp_caps {
177 uint64_t general_caps;
178 struct {
179 uint32_t rc_odp_caps;
180 uint32_t uc_odp_caps;
181 uint32_t ud_odp_caps;
182 } per_transport_caps;
183 };
184
185 enum ib_cq_creation_flags {
186 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
187 };
188
189 struct ib_cq_init_attr {
190 unsigned int cqe;
191 int comp_vector;
192 u32 flags;
193 };
194
195 struct ib_device_attr {
196 u64 fw_ver;
197 __be64 sys_image_guid;
198 u64 max_mr_size;
199 u64 page_size_cap;
200 u32 vendor_id;
201 u32 vendor_part_id;
202 u32 hw_ver;
203 int max_qp;
204 int max_qp_wr;
205 int device_cap_flags;
206 int max_sge;
207 int max_sge_rd;
208 int max_cq;
209 int max_cqe;
210 int max_mr;
211 int max_pd;
212 int max_qp_rd_atom;
213 int max_ee_rd_atom;
214 int max_res_rd_atom;
215 int max_qp_init_rd_atom;
216 int max_ee_init_rd_atom;
217 enum ib_atomic_cap atomic_cap;
218 enum ib_atomic_cap masked_atomic_cap;
219 int max_ee;
220 int max_rdd;
221 int max_mw;
222 int max_raw_ipv6_qp;
223 int max_raw_ethy_qp;
224 int max_mcast_grp;
225 int max_mcast_qp_attach;
226 int max_total_mcast_qp_attach;
227 int max_ah;
228 int max_fmr;
229 int max_map_per_fmr;
230 int max_srq;
231 int max_srq_wr;
232 int max_srq_sge;
233 unsigned int max_fast_reg_page_list_len;
234 u16 max_pkeys;
235 u8 local_ca_ack_delay;
236 int sig_prot_cap;
237 int sig_guard_cap;
238 struct ib_odp_caps odp_caps;
239 uint64_t timestamp_mask;
240 uint64_t hca_core_clock; /* in KHZ */
241 };
242
243 enum ib_mtu {
244 IB_MTU_256 = 1,
245 IB_MTU_512 = 2,
246 IB_MTU_1024 = 3,
247 IB_MTU_2048 = 4,
248 IB_MTU_4096 = 5
249 };
250
251 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
252 {
253 switch (mtu) {
254 case IB_MTU_256: return 256;
255 case IB_MTU_512: return 512;
256 case IB_MTU_1024: return 1024;
257 case IB_MTU_2048: return 2048;
258 case IB_MTU_4096: return 4096;
259 default: return -1;
260 }
261 }
262
263 enum ib_port_state {
264 IB_PORT_NOP = 0,
265 IB_PORT_DOWN = 1,
266 IB_PORT_INIT = 2,
267 IB_PORT_ARMED = 3,
268 IB_PORT_ACTIVE = 4,
269 IB_PORT_ACTIVE_DEFER = 5
270 };
271
272 enum ib_port_cap_flags {
273 IB_PORT_SM = 1 << 1,
274 IB_PORT_NOTICE_SUP = 1 << 2,
275 IB_PORT_TRAP_SUP = 1 << 3,
276 IB_PORT_OPT_IPD_SUP = 1 << 4,
277 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
278 IB_PORT_SL_MAP_SUP = 1 << 6,
279 IB_PORT_MKEY_NVRAM = 1 << 7,
280 IB_PORT_PKEY_NVRAM = 1 << 8,
281 IB_PORT_LED_INFO_SUP = 1 << 9,
282 IB_PORT_SM_DISABLED = 1 << 10,
283 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
284 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
285 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
286 IB_PORT_CM_SUP = 1 << 16,
287 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
288 IB_PORT_REINIT_SUP = 1 << 18,
289 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
290 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
291 IB_PORT_DR_NOTICE_SUP = 1 << 21,
292 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
293 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
294 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
295 IB_PORT_CLIENT_REG_SUP = 1 << 25,
296 IB_PORT_IP_BASED_GIDS = 1 << 26,
297 };
298
299 enum ib_port_width {
300 IB_WIDTH_1X = 1,
301 IB_WIDTH_4X = 2,
302 IB_WIDTH_8X = 4,
303 IB_WIDTH_12X = 8
304 };
305
306 static inline int ib_width_enum_to_int(enum ib_port_width width)
307 {
308 switch (width) {
309 case IB_WIDTH_1X: return 1;
310 case IB_WIDTH_4X: return 4;
311 case IB_WIDTH_8X: return 8;
312 case IB_WIDTH_12X: return 12;
313 default: return -1;
314 }
315 }
316
317 enum ib_port_speed {
318 IB_SPEED_SDR = 1,
319 IB_SPEED_DDR = 2,
320 IB_SPEED_QDR = 4,
321 IB_SPEED_FDR10 = 8,
322 IB_SPEED_FDR = 16,
323 IB_SPEED_EDR = 32
324 };
325
326 struct ib_protocol_stats {
327 /* TBD... */
328 };
329
330 struct iw_protocol_stats {
331 u64 ipInReceives;
332 u64 ipInHdrErrors;
333 u64 ipInTooBigErrors;
334 u64 ipInNoRoutes;
335 u64 ipInAddrErrors;
336 u64 ipInUnknownProtos;
337 u64 ipInTruncatedPkts;
338 u64 ipInDiscards;
339 u64 ipInDelivers;
340 u64 ipOutForwDatagrams;
341 u64 ipOutRequests;
342 u64 ipOutDiscards;
343 u64 ipOutNoRoutes;
344 u64 ipReasmTimeout;
345 u64 ipReasmReqds;
346 u64 ipReasmOKs;
347 u64 ipReasmFails;
348 u64 ipFragOKs;
349 u64 ipFragFails;
350 u64 ipFragCreates;
351 u64 ipInMcastPkts;
352 u64 ipOutMcastPkts;
353 u64 ipInBcastPkts;
354 u64 ipOutBcastPkts;
355
356 u64 tcpRtoAlgorithm;
357 u64 tcpRtoMin;
358 u64 tcpRtoMax;
359 u64 tcpMaxConn;
360 u64 tcpActiveOpens;
361 u64 tcpPassiveOpens;
362 u64 tcpAttemptFails;
363 u64 tcpEstabResets;
364 u64 tcpCurrEstab;
365 u64 tcpInSegs;
366 u64 tcpOutSegs;
367 u64 tcpRetransSegs;
368 u64 tcpInErrs;
369 u64 tcpOutRsts;
370 };
371
372 union rdma_protocol_stats {
373 struct ib_protocol_stats ib;
374 struct iw_protocol_stats iw;
375 };
376
377 /* Define bits for the various functionality this port needs to be supported by
378 * the core.
379 */
380 /* Management 0x00000FFF */
381 #define RDMA_CORE_CAP_IB_MAD 0x00000001
382 #define RDMA_CORE_CAP_IB_SMI 0x00000002
383 #define RDMA_CORE_CAP_IB_CM 0x00000004
384 #define RDMA_CORE_CAP_IW_CM 0x00000008
385 #define RDMA_CORE_CAP_IB_SA 0x00000010
386 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
387
388 /* Address format 0x000FF000 */
389 #define RDMA_CORE_CAP_AF_IB 0x00001000
390 #define RDMA_CORE_CAP_ETH_AH 0x00002000
391
392 /* Protocol 0xFFF00000 */
393 #define RDMA_CORE_CAP_PROT_IB 0x00100000
394 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
395 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
396
397 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
398 | RDMA_CORE_CAP_IB_MAD \
399 | RDMA_CORE_CAP_IB_SMI \
400 | RDMA_CORE_CAP_IB_CM \
401 | RDMA_CORE_CAP_IB_SA \
402 | RDMA_CORE_CAP_AF_IB)
403 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
404 | RDMA_CORE_CAP_IB_MAD \
405 | RDMA_CORE_CAP_IB_CM \
406 | RDMA_CORE_CAP_AF_IB \
407 | RDMA_CORE_CAP_ETH_AH)
408 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
409 | RDMA_CORE_CAP_IW_CM)
410 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
411 | RDMA_CORE_CAP_OPA_MAD)
412
413 struct ib_port_attr {
414 enum ib_port_state state;
415 enum ib_mtu max_mtu;
416 enum ib_mtu active_mtu;
417 int gid_tbl_len;
418 u32 port_cap_flags;
419 u32 max_msg_sz;
420 u32 bad_pkey_cntr;
421 u32 qkey_viol_cntr;
422 u16 pkey_tbl_len;
423 u16 lid;
424 u16 sm_lid;
425 u8 lmc;
426 u8 max_vl_num;
427 u8 sm_sl;
428 u8 subnet_timeout;
429 u8 init_type_reply;
430 u8 active_width;
431 u8 active_speed;
432 u8 phys_state;
433 };
434
435 enum ib_device_modify_flags {
436 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
437 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
438 };
439
440 struct ib_device_modify {
441 u64 sys_image_guid;
442 char node_desc[64];
443 };
444
445 enum ib_port_modify_flags {
446 IB_PORT_SHUTDOWN = 1,
447 IB_PORT_INIT_TYPE = (1<<2),
448 IB_PORT_RESET_QKEY_CNTR = (1<<3)
449 };
450
451 struct ib_port_modify {
452 u32 set_port_cap_mask;
453 u32 clr_port_cap_mask;
454 u8 init_type;
455 };
456
457 enum ib_event_type {
458 IB_EVENT_CQ_ERR,
459 IB_EVENT_QP_FATAL,
460 IB_EVENT_QP_REQ_ERR,
461 IB_EVENT_QP_ACCESS_ERR,
462 IB_EVENT_COMM_EST,
463 IB_EVENT_SQ_DRAINED,
464 IB_EVENT_PATH_MIG,
465 IB_EVENT_PATH_MIG_ERR,
466 IB_EVENT_DEVICE_FATAL,
467 IB_EVENT_PORT_ACTIVE,
468 IB_EVENT_PORT_ERR,
469 IB_EVENT_LID_CHANGE,
470 IB_EVENT_PKEY_CHANGE,
471 IB_EVENT_SM_CHANGE,
472 IB_EVENT_SRQ_ERR,
473 IB_EVENT_SRQ_LIMIT_REACHED,
474 IB_EVENT_QP_LAST_WQE_REACHED,
475 IB_EVENT_CLIENT_REREGISTER,
476 IB_EVENT_GID_CHANGE,
477 };
478
479 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
480
481 struct ib_event {
482 struct ib_device *device;
483 union {
484 struct ib_cq *cq;
485 struct ib_qp *qp;
486 struct ib_srq *srq;
487 u8 port_num;
488 } element;
489 enum ib_event_type event;
490 };
491
492 struct ib_event_handler {
493 struct ib_device *device;
494 void (*handler)(struct ib_event_handler *, struct ib_event *);
495 struct list_head list;
496 };
497
498 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
499 do { \
500 (_ptr)->device = _device; \
501 (_ptr)->handler = _handler; \
502 INIT_LIST_HEAD(&(_ptr)->list); \
503 } while (0)
504
505 struct ib_global_route {
506 union ib_gid dgid;
507 u32 flow_label;
508 u8 sgid_index;
509 u8 hop_limit;
510 u8 traffic_class;
511 };
512
513 struct ib_grh {
514 __be32 version_tclass_flow;
515 __be16 paylen;
516 u8 next_hdr;
517 u8 hop_limit;
518 union ib_gid sgid;
519 union ib_gid dgid;
520 };
521
522 enum {
523 IB_MULTICAST_QPN = 0xffffff
524 };
525
526 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
527
528 enum ib_ah_flags {
529 IB_AH_GRH = 1
530 };
531
532 enum ib_rate {
533 IB_RATE_PORT_CURRENT = 0,
534 IB_RATE_2_5_GBPS = 2,
535 IB_RATE_5_GBPS = 5,
536 IB_RATE_10_GBPS = 3,
537 IB_RATE_20_GBPS = 6,
538 IB_RATE_30_GBPS = 4,
539 IB_RATE_40_GBPS = 7,
540 IB_RATE_60_GBPS = 8,
541 IB_RATE_80_GBPS = 9,
542 IB_RATE_120_GBPS = 10,
543 IB_RATE_14_GBPS = 11,
544 IB_RATE_56_GBPS = 12,
545 IB_RATE_112_GBPS = 13,
546 IB_RATE_168_GBPS = 14,
547 IB_RATE_25_GBPS = 15,
548 IB_RATE_100_GBPS = 16,
549 IB_RATE_200_GBPS = 17,
550 IB_RATE_300_GBPS = 18
551 };
552
553 /**
554 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
555 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
556 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
557 * @rate: rate to convert.
558 */
559 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
560
561 /**
562 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
563 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
564 * @rate: rate to convert.
565 */
566 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
567
568
569 /**
570 * enum ib_mr_type - memory region type
571 * @IB_MR_TYPE_MEM_REG: memory region that is used for
572 * normal registration
573 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
574 * signature operations (data-integrity
575 * capable regions)
576 */
577 enum ib_mr_type {
578 IB_MR_TYPE_MEM_REG,
579 IB_MR_TYPE_SIGNATURE,
580 };
581
582 /**
583 * Signature types
584 * IB_SIG_TYPE_NONE: Unprotected.
585 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
586 */
587 enum ib_signature_type {
588 IB_SIG_TYPE_NONE,
589 IB_SIG_TYPE_T10_DIF,
590 };
591
592 /**
593 * Signature T10-DIF block-guard types
594 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
595 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
596 */
597 enum ib_t10_dif_bg_type {
598 IB_T10DIF_CRC,
599 IB_T10DIF_CSUM
600 };
601
602 /**
603 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
604 * domain.
605 * @bg_type: T10-DIF block guard type (CRC|CSUM)
606 * @pi_interval: protection information interval.
607 * @bg: seed of guard computation.
608 * @app_tag: application tag of guard block
609 * @ref_tag: initial guard block reference tag.
610 * @ref_remap: Indicate wethear the reftag increments each block
611 * @app_escape: Indicate to skip block check if apptag=0xffff
612 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
613 * @apptag_check_mask: check bitmask of application tag.
614 */
615 struct ib_t10_dif_domain {
616 enum ib_t10_dif_bg_type bg_type;
617 u16 pi_interval;
618 u16 bg;
619 u16 app_tag;
620 u32 ref_tag;
621 bool ref_remap;
622 bool app_escape;
623 bool ref_escape;
624 u16 apptag_check_mask;
625 };
626
627 /**
628 * struct ib_sig_domain - Parameters for signature domain
629 * @sig_type: specific signauture type
630 * @sig: union of all signature domain attributes that may
631 * be used to set domain layout.
632 */
633 struct ib_sig_domain {
634 enum ib_signature_type sig_type;
635 union {
636 struct ib_t10_dif_domain dif;
637 } sig;
638 };
639
640 /**
641 * struct ib_sig_attrs - Parameters for signature handover operation
642 * @check_mask: bitmask for signature byte check (8 bytes)
643 * @mem: memory domain layout desciptor.
644 * @wire: wire domain layout desciptor.
645 */
646 struct ib_sig_attrs {
647 u8 check_mask;
648 struct ib_sig_domain mem;
649 struct ib_sig_domain wire;
650 };
651
652 enum ib_sig_err_type {
653 IB_SIG_BAD_GUARD,
654 IB_SIG_BAD_REFTAG,
655 IB_SIG_BAD_APPTAG,
656 };
657
658 /**
659 * struct ib_sig_err - signature error descriptor
660 */
661 struct ib_sig_err {
662 enum ib_sig_err_type err_type;
663 u32 expected;
664 u32 actual;
665 u64 sig_err_offset;
666 u32 key;
667 };
668
669 enum ib_mr_status_check {
670 IB_MR_CHECK_SIG_STATUS = 1,
671 };
672
673 /**
674 * struct ib_mr_status - Memory region status container
675 *
676 * @fail_status: Bitmask of MR checks status. For each
677 * failed check a corresponding status bit is set.
678 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
679 * failure.
680 */
681 struct ib_mr_status {
682 u32 fail_status;
683 struct ib_sig_err sig_err;
684 };
685
686 /**
687 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
688 * enum.
689 * @mult: multiple to convert.
690 */
691 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
692
693 struct ib_ah_attr {
694 struct ib_global_route grh;
695 u16 dlid;
696 u8 sl;
697 u8 src_path_bits;
698 u8 static_rate;
699 u8 ah_flags;
700 u8 port_num;
701 u8 dmac[ETH_ALEN];
702 };
703
704 enum ib_wc_status {
705 IB_WC_SUCCESS,
706 IB_WC_LOC_LEN_ERR,
707 IB_WC_LOC_QP_OP_ERR,
708 IB_WC_LOC_EEC_OP_ERR,
709 IB_WC_LOC_PROT_ERR,
710 IB_WC_WR_FLUSH_ERR,
711 IB_WC_MW_BIND_ERR,
712 IB_WC_BAD_RESP_ERR,
713 IB_WC_LOC_ACCESS_ERR,
714 IB_WC_REM_INV_REQ_ERR,
715 IB_WC_REM_ACCESS_ERR,
716 IB_WC_REM_OP_ERR,
717 IB_WC_RETRY_EXC_ERR,
718 IB_WC_RNR_RETRY_EXC_ERR,
719 IB_WC_LOC_RDD_VIOL_ERR,
720 IB_WC_REM_INV_RD_REQ_ERR,
721 IB_WC_REM_ABORT_ERR,
722 IB_WC_INV_EECN_ERR,
723 IB_WC_INV_EEC_STATE_ERR,
724 IB_WC_FATAL_ERR,
725 IB_WC_RESP_TIMEOUT_ERR,
726 IB_WC_GENERAL_ERR
727 };
728
729 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
730
731 enum ib_wc_opcode {
732 IB_WC_SEND,
733 IB_WC_RDMA_WRITE,
734 IB_WC_RDMA_READ,
735 IB_WC_COMP_SWAP,
736 IB_WC_FETCH_ADD,
737 IB_WC_BIND_MW,
738 IB_WC_LSO,
739 IB_WC_LOCAL_INV,
740 IB_WC_REG_MR,
741 IB_WC_MASKED_COMP_SWAP,
742 IB_WC_MASKED_FETCH_ADD,
743 /*
744 * Set value of IB_WC_RECV so consumers can test if a completion is a
745 * receive by testing (opcode & IB_WC_RECV).
746 */
747 IB_WC_RECV = 1 << 7,
748 IB_WC_RECV_RDMA_WITH_IMM
749 };
750
751 enum ib_wc_flags {
752 IB_WC_GRH = 1,
753 IB_WC_WITH_IMM = (1<<1),
754 IB_WC_WITH_INVALIDATE = (1<<2),
755 IB_WC_IP_CSUM_OK = (1<<3),
756 IB_WC_WITH_SMAC = (1<<4),
757 IB_WC_WITH_VLAN = (1<<5),
758 };
759
760 struct ib_wc {
761 u64 wr_id;
762 enum ib_wc_status status;
763 enum ib_wc_opcode opcode;
764 u32 vendor_err;
765 u32 byte_len;
766 struct ib_qp *qp;
767 union {
768 __be32 imm_data;
769 u32 invalidate_rkey;
770 } ex;
771 u32 src_qp;
772 int wc_flags;
773 u16 pkey_index;
774 u16 slid;
775 u8 sl;
776 u8 dlid_path_bits;
777 u8 port_num; /* valid only for DR SMPs on switches */
778 u8 smac[ETH_ALEN];
779 u16 vlan_id;
780 };
781
782 enum ib_cq_notify_flags {
783 IB_CQ_SOLICITED = 1 << 0,
784 IB_CQ_NEXT_COMP = 1 << 1,
785 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
786 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
787 };
788
789 enum ib_srq_type {
790 IB_SRQT_BASIC,
791 IB_SRQT_XRC
792 };
793
794 enum ib_srq_attr_mask {
795 IB_SRQ_MAX_WR = 1 << 0,
796 IB_SRQ_LIMIT = 1 << 1,
797 };
798
799 struct ib_srq_attr {
800 u32 max_wr;
801 u32 max_sge;
802 u32 srq_limit;
803 };
804
805 struct ib_srq_init_attr {
806 void (*event_handler)(struct ib_event *, void *);
807 void *srq_context;
808 struct ib_srq_attr attr;
809 enum ib_srq_type srq_type;
810
811 union {
812 struct {
813 struct ib_xrcd *xrcd;
814 struct ib_cq *cq;
815 } xrc;
816 } ext;
817 };
818
819 struct ib_qp_cap {
820 u32 max_send_wr;
821 u32 max_recv_wr;
822 u32 max_send_sge;
823 u32 max_recv_sge;
824 u32 max_inline_data;
825 };
826
827 enum ib_sig_type {
828 IB_SIGNAL_ALL_WR,
829 IB_SIGNAL_REQ_WR
830 };
831
832 enum ib_qp_type {
833 /*
834 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
835 * here (and in that order) since the MAD layer uses them as
836 * indices into a 2-entry table.
837 */
838 IB_QPT_SMI,
839 IB_QPT_GSI,
840
841 IB_QPT_RC,
842 IB_QPT_UC,
843 IB_QPT_UD,
844 IB_QPT_RAW_IPV6,
845 IB_QPT_RAW_ETHERTYPE,
846 IB_QPT_RAW_PACKET = 8,
847 IB_QPT_XRC_INI = 9,
848 IB_QPT_XRC_TGT,
849 IB_QPT_MAX,
850 /* Reserve a range for qp types internal to the low level driver.
851 * These qp types will not be visible at the IB core layer, so the
852 * IB_QPT_MAX usages should not be affected in the core layer
853 */
854 IB_QPT_RESERVED1 = 0x1000,
855 IB_QPT_RESERVED2,
856 IB_QPT_RESERVED3,
857 IB_QPT_RESERVED4,
858 IB_QPT_RESERVED5,
859 IB_QPT_RESERVED6,
860 IB_QPT_RESERVED7,
861 IB_QPT_RESERVED8,
862 IB_QPT_RESERVED9,
863 IB_QPT_RESERVED10,
864 };
865
866 enum ib_qp_create_flags {
867 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
868 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
869 IB_QP_CREATE_NETIF_QP = 1 << 5,
870 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
871 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
872 /* reserve bits 26-31 for low level drivers' internal use */
873 IB_QP_CREATE_RESERVED_START = 1 << 26,
874 IB_QP_CREATE_RESERVED_END = 1 << 31,
875 };
876
877 /*
878 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
879 * callback to destroy the passed in QP.
880 */
881
882 struct ib_qp_init_attr {
883 void (*event_handler)(struct ib_event *, void *);
884 void *qp_context;
885 struct ib_cq *send_cq;
886 struct ib_cq *recv_cq;
887 struct ib_srq *srq;
888 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
889 struct ib_qp_cap cap;
890 enum ib_sig_type sq_sig_type;
891 enum ib_qp_type qp_type;
892 enum ib_qp_create_flags create_flags;
893 u8 port_num; /* special QP types only */
894 };
895
896 struct ib_qp_open_attr {
897 void (*event_handler)(struct ib_event *, void *);
898 void *qp_context;
899 u32 qp_num;
900 enum ib_qp_type qp_type;
901 };
902
903 enum ib_rnr_timeout {
904 IB_RNR_TIMER_655_36 = 0,
905 IB_RNR_TIMER_000_01 = 1,
906 IB_RNR_TIMER_000_02 = 2,
907 IB_RNR_TIMER_000_03 = 3,
908 IB_RNR_TIMER_000_04 = 4,
909 IB_RNR_TIMER_000_06 = 5,
910 IB_RNR_TIMER_000_08 = 6,
911 IB_RNR_TIMER_000_12 = 7,
912 IB_RNR_TIMER_000_16 = 8,
913 IB_RNR_TIMER_000_24 = 9,
914 IB_RNR_TIMER_000_32 = 10,
915 IB_RNR_TIMER_000_48 = 11,
916 IB_RNR_TIMER_000_64 = 12,
917 IB_RNR_TIMER_000_96 = 13,
918 IB_RNR_TIMER_001_28 = 14,
919 IB_RNR_TIMER_001_92 = 15,
920 IB_RNR_TIMER_002_56 = 16,
921 IB_RNR_TIMER_003_84 = 17,
922 IB_RNR_TIMER_005_12 = 18,
923 IB_RNR_TIMER_007_68 = 19,
924 IB_RNR_TIMER_010_24 = 20,
925 IB_RNR_TIMER_015_36 = 21,
926 IB_RNR_TIMER_020_48 = 22,
927 IB_RNR_TIMER_030_72 = 23,
928 IB_RNR_TIMER_040_96 = 24,
929 IB_RNR_TIMER_061_44 = 25,
930 IB_RNR_TIMER_081_92 = 26,
931 IB_RNR_TIMER_122_88 = 27,
932 IB_RNR_TIMER_163_84 = 28,
933 IB_RNR_TIMER_245_76 = 29,
934 IB_RNR_TIMER_327_68 = 30,
935 IB_RNR_TIMER_491_52 = 31
936 };
937
938 enum ib_qp_attr_mask {
939 IB_QP_STATE = 1,
940 IB_QP_CUR_STATE = (1<<1),
941 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
942 IB_QP_ACCESS_FLAGS = (1<<3),
943 IB_QP_PKEY_INDEX = (1<<4),
944 IB_QP_PORT = (1<<5),
945 IB_QP_QKEY = (1<<6),
946 IB_QP_AV = (1<<7),
947 IB_QP_PATH_MTU = (1<<8),
948 IB_QP_TIMEOUT = (1<<9),
949 IB_QP_RETRY_CNT = (1<<10),
950 IB_QP_RNR_RETRY = (1<<11),
951 IB_QP_RQ_PSN = (1<<12),
952 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
953 IB_QP_ALT_PATH = (1<<14),
954 IB_QP_MIN_RNR_TIMER = (1<<15),
955 IB_QP_SQ_PSN = (1<<16),
956 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
957 IB_QP_PATH_MIG_STATE = (1<<18),
958 IB_QP_CAP = (1<<19),
959 IB_QP_DEST_QPN = (1<<20),
960 IB_QP_RESERVED1 = (1<<21),
961 IB_QP_RESERVED2 = (1<<22),
962 IB_QP_RESERVED3 = (1<<23),
963 IB_QP_RESERVED4 = (1<<24),
964 };
965
966 enum ib_qp_state {
967 IB_QPS_RESET,
968 IB_QPS_INIT,
969 IB_QPS_RTR,
970 IB_QPS_RTS,
971 IB_QPS_SQD,
972 IB_QPS_SQE,
973 IB_QPS_ERR
974 };
975
976 enum ib_mig_state {
977 IB_MIG_MIGRATED,
978 IB_MIG_REARM,
979 IB_MIG_ARMED
980 };
981
982 enum ib_mw_type {
983 IB_MW_TYPE_1 = 1,
984 IB_MW_TYPE_2 = 2
985 };
986
987 struct ib_qp_attr {
988 enum ib_qp_state qp_state;
989 enum ib_qp_state cur_qp_state;
990 enum ib_mtu path_mtu;
991 enum ib_mig_state path_mig_state;
992 u32 qkey;
993 u32 rq_psn;
994 u32 sq_psn;
995 u32 dest_qp_num;
996 int qp_access_flags;
997 struct ib_qp_cap cap;
998 struct ib_ah_attr ah_attr;
999 struct ib_ah_attr alt_ah_attr;
1000 u16 pkey_index;
1001 u16 alt_pkey_index;
1002 u8 en_sqd_async_notify;
1003 u8 sq_draining;
1004 u8 max_rd_atomic;
1005 u8 max_dest_rd_atomic;
1006 u8 min_rnr_timer;
1007 u8 port_num;
1008 u8 timeout;
1009 u8 retry_cnt;
1010 u8 rnr_retry;
1011 u8 alt_port_num;
1012 u8 alt_timeout;
1013 };
1014
1015 enum ib_wr_opcode {
1016 IB_WR_RDMA_WRITE,
1017 IB_WR_RDMA_WRITE_WITH_IMM,
1018 IB_WR_SEND,
1019 IB_WR_SEND_WITH_IMM,
1020 IB_WR_RDMA_READ,
1021 IB_WR_ATOMIC_CMP_AND_SWP,
1022 IB_WR_ATOMIC_FETCH_AND_ADD,
1023 IB_WR_LSO,
1024 IB_WR_SEND_WITH_INV,
1025 IB_WR_RDMA_READ_WITH_INV,
1026 IB_WR_LOCAL_INV,
1027 IB_WR_REG_MR,
1028 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1029 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1030 IB_WR_BIND_MW,
1031 IB_WR_REG_SIG_MR,
1032 /* reserve values for low level drivers' internal use.
1033 * These values will not be used at all in the ib core layer.
1034 */
1035 IB_WR_RESERVED1 = 0xf0,
1036 IB_WR_RESERVED2,
1037 IB_WR_RESERVED3,
1038 IB_WR_RESERVED4,
1039 IB_WR_RESERVED5,
1040 IB_WR_RESERVED6,
1041 IB_WR_RESERVED7,
1042 IB_WR_RESERVED8,
1043 IB_WR_RESERVED9,
1044 IB_WR_RESERVED10,
1045 };
1046
1047 enum ib_send_flags {
1048 IB_SEND_FENCE = 1,
1049 IB_SEND_SIGNALED = (1<<1),
1050 IB_SEND_SOLICITED = (1<<2),
1051 IB_SEND_INLINE = (1<<3),
1052 IB_SEND_IP_CSUM = (1<<4),
1053
1054 /* reserve bits 26-31 for low level drivers' internal use */
1055 IB_SEND_RESERVED_START = (1 << 26),
1056 IB_SEND_RESERVED_END = (1 << 31),
1057 };
1058
1059 struct ib_sge {
1060 u64 addr;
1061 u32 length;
1062 u32 lkey;
1063 };
1064
1065 /**
1066 * struct ib_mw_bind_info - Parameters for a memory window bind operation.
1067 * @mr: A memory region to bind the memory window to.
1068 * @addr: The address where the memory window should begin.
1069 * @length: The length of the memory window, in bytes.
1070 * @mw_access_flags: Access flags from enum ib_access_flags for the window.
1071 *
1072 * This struct contains the shared parameters for type 1 and type 2
1073 * memory window bind operations.
1074 */
1075 struct ib_mw_bind_info {
1076 struct ib_mr *mr;
1077 u64 addr;
1078 u64 length;
1079 int mw_access_flags;
1080 };
1081
1082 struct ib_send_wr {
1083 struct ib_send_wr *next;
1084 u64 wr_id;
1085 struct ib_sge *sg_list;
1086 int num_sge;
1087 enum ib_wr_opcode opcode;
1088 int send_flags;
1089 union {
1090 __be32 imm_data;
1091 u32 invalidate_rkey;
1092 } ex;
1093 };
1094
1095 struct ib_rdma_wr {
1096 struct ib_send_wr wr;
1097 u64 remote_addr;
1098 u32 rkey;
1099 };
1100
1101 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1102 {
1103 return container_of(wr, struct ib_rdma_wr, wr);
1104 }
1105
1106 struct ib_atomic_wr {
1107 struct ib_send_wr wr;
1108 u64 remote_addr;
1109 u64 compare_add;
1110 u64 swap;
1111 u64 compare_add_mask;
1112 u64 swap_mask;
1113 u32 rkey;
1114 };
1115
1116 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1117 {
1118 return container_of(wr, struct ib_atomic_wr, wr);
1119 }
1120
1121 struct ib_ud_wr {
1122 struct ib_send_wr wr;
1123 struct ib_ah *ah;
1124 void *header;
1125 int hlen;
1126 int mss;
1127 u32 remote_qpn;
1128 u32 remote_qkey;
1129 u16 pkey_index; /* valid for GSI only */
1130 u8 port_num; /* valid for DR SMPs on switch only */
1131 };
1132
1133 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1134 {
1135 return container_of(wr, struct ib_ud_wr, wr);
1136 }
1137
1138 struct ib_reg_wr {
1139 struct ib_send_wr wr;
1140 struct ib_mr *mr;
1141 u32 key;
1142 int access;
1143 };
1144
1145 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1146 {
1147 return container_of(wr, struct ib_reg_wr, wr);
1148 }
1149
1150 struct ib_bind_mw_wr {
1151 struct ib_send_wr wr;
1152 struct ib_mw *mw;
1153 /* The new rkey for the memory window. */
1154 u32 rkey;
1155 struct ib_mw_bind_info bind_info;
1156 };
1157
1158 static inline struct ib_bind_mw_wr *bind_mw_wr(struct ib_send_wr *wr)
1159 {
1160 return container_of(wr, struct ib_bind_mw_wr, wr);
1161 }
1162
1163 struct ib_sig_handover_wr {
1164 struct ib_send_wr wr;
1165 struct ib_sig_attrs *sig_attrs;
1166 struct ib_mr *sig_mr;
1167 int access_flags;
1168 struct ib_sge *prot;
1169 };
1170
1171 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1172 {
1173 return container_of(wr, struct ib_sig_handover_wr, wr);
1174 }
1175
1176 struct ib_recv_wr {
1177 struct ib_recv_wr *next;
1178 u64 wr_id;
1179 struct ib_sge *sg_list;
1180 int num_sge;
1181 };
1182
1183 enum ib_access_flags {
1184 IB_ACCESS_LOCAL_WRITE = 1,
1185 IB_ACCESS_REMOTE_WRITE = (1<<1),
1186 IB_ACCESS_REMOTE_READ = (1<<2),
1187 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1188 IB_ACCESS_MW_BIND = (1<<4),
1189 IB_ZERO_BASED = (1<<5),
1190 IB_ACCESS_ON_DEMAND = (1<<6),
1191 };
1192
1193 struct ib_phys_buf {
1194 u64 addr;
1195 u64 size;
1196 };
1197
1198 struct ib_mr_attr {
1199 struct ib_pd *pd;
1200 u64 device_virt_addr;
1201 u64 size;
1202 int mr_access_flags;
1203 u32 lkey;
1204 u32 rkey;
1205 };
1206
1207 enum ib_mr_rereg_flags {
1208 IB_MR_REREG_TRANS = 1,
1209 IB_MR_REREG_PD = (1<<1),
1210 IB_MR_REREG_ACCESS = (1<<2),
1211 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1212 };
1213
1214 /**
1215 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
1216 * @wr_id: Work request id.
1217 * @send_flags: Flags from ib_send_flags enum.
1218 * @bind_info: More parameters of the bind operation.
1219 */
1220 struct ib_mw_bind {
1221 u64 wr_id;
1222 int send_flags;
1223 struct ib_mw_bind_info bind_info;
1224 };
1225
1226 struct ib_fmr_attr {
1227 int max_pages;
1228 int max_maps;
1229 u8 page_shift;
1230 };
1231
1232 struct ib_umem;
1233
1234 struct ib_ucontext {
1235 struct ib_device *device;
1236 struct list_head pd_list;
1237 struct list_head mr_list;
1238 struct list_head mw_list;
1239 struct list_head cq_list;
1240 struct list_head qp_list;
1241 struct list_head srq_list;
1242 struct list_head ah_list;
1243 struct list_head xrcd_list;
1244 struct list_head rule_list;
1245 int closing;
1246
1247 struct pid *tgid;
1248 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1249 struct rb_root umem_tree;
1250 /*
1251 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1252 * mmu notifiers registration.
1253 */
1254 struct rw_semaphore umem_rwsem;
1255 void (*invalidate_range)(struct ib_umem *umem,
1256 unsigned long start, unsigned long end);
1257
1258 struct mmu_notifier mn;
1259 atomic_t notifier_count;
1260 /* A list of umems that don't have private mmu notifier counters yet. */
1261 struct list_head no_private_counters;
1262 int odp_mrs_count;
1263 #endif
1264 };
1265
1266 struct ib_uobject {
1267 u64 user_handle; /* handle given to us by userspace */
1268 struct ib_ucontext *context; /* associated user context */
1269 void *object; /* containing object */
1270 struct list_head list; /* link to context's list */
1271 int id; /* index into kernel idr */
1272 struct kref ref;
1273 struct rw_semaphore mutex; /* protects .live */
1274 int live;
1275 };
1276
1277 struct ib_udata {
1278 const void __user *inbuf;
1279 void __user *outbuf;
1280 size_t inlen;
1281 size_t outlen;
1282 };
1283
1284 struct ib_pd {
1285 u32 local_dma_lkey;
1286 struct ib_device *device;
1287 struct ib_uobject *uobject;
1288 atomic_t usecnt; /* count all resources */
1289 struct ib_mr *local_mr;
1290 };
1291
1292 struct ib_xrcd {
1293 struct ib_device *device;
1294 atomic_t usecnt; /* count all exposed resources */
1295 struct inode *inode;
1296
1297 struct mutex tgt_qp_mutex;
1298 struct list_head tgt_qp_list;
1299 };
1300
1301 struct ib_ah {
1302 struct ib_device *device;
1303 struct ib_pd *pd;
1304 struct ib_uobject *uobject;
1305 };
1306
1307 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1308
1309 struct ib_cq {
1310 struct ib_device *device;
1311 struct ib_uobject *uobject;
1312 ib_comp_handler comp_handler;
1313 void (*event_handler)(struct ib_event *, void *);
1314 void *cq_context;
1315 int cqe;
1316 atomic_t usecnt; /* count number of work queues */
1317 };
1318
1319 struct ib_srq {
1320 struct ib_device *device;
1321 struct ib_pd *pd;
1322 struct ib_uobject *uobject;
1323 void (*event_handler)(struct ib_event *, void *);
1324 void *srq_context;
1325 enum ib_srq_type srq_type;
1326 atomic_t usecnt;
1327
1328 union {
1329 struct {
1330 struct ib_xrcd *xrcd;
1331 struct ib_cq *cq;
1332 u32 srq_num;
1333 } xrc;
1334 } ext;
1335 };
1336
1337 struct ib_qp {
1338 struct ib_device *device;
1339 struct ib_pd *pd;
1340 struct ib_cq *send_cq;
1341 struct ib_cq *recv_cq;
1342 struct ib_srq *srq;
1343 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1344 struct list_head xrcd_list;
1345 /* count times opened, mcast attaches, flow attaches */
1346 atomic_t usecnt;
1347 struct list_head open_list;
1348 struct ib_qp *real_qp;
1349 struct ib_uobject *uobject;
1350 void (*event_handler)(struct ib_event *, void *);
1351 void *qp_context;
1352 u32 qp_num;
1353 enum ib_qp_type qp_type;
1354 };
1355
1356 struct ib_mr {
1357 struct ib_device *device;
1358 struct ib_pd *pd;
1359 struct ib_uobject *uobject;
1360 u32 lkey;
1361 u32 rkey;
1362 u64 iova;
1363 u32 length;
1364 unsigned int page_size;
1365 atomic_t usecnt; /* count number of MWs */
1366 };
1367
1368 struct ib_mw {
1369 struct ib_device *device;
1370 struct ib_pd *pd;
1371 struct ib_uobject *uobject;
1372 u32 rkey;
1373 enum ib_mw_type type;
1374 };
1375
1376 struct ib_fmr {
1377 struct ib_device *device;
1378 struct ib_pd *pd;
1379 struct list_head list;
1380 u32 lkey;
1381 u32 rkey;
1382 };
1383
1384 /* Supported steering options */
1385 enum ib_flow_attr_type {
1386 /* steering according to rule specifications */
1387 IB_FLOW_ATTR_NORMAL = 0x0,
1388 /* default unicast and multicast rule -
1389 * receive all Eth traffic which isn't steered to any QP
1390 */
1391 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1392 /* default multicast rule -
1393 * receive all Eth multicast traffic which isn't steered to any QP
1394 */
1395 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1396 /* sniffer rule - receive all port traffic */
1397 IB_FLOW_ATTR_SNIFFER = 0x3
1398 };
1399
1400 /* Supported steering header types */
1401 enum ib_flow_spec_type {
1402 /* L2 headers*/
1403 IB_FLOW_SPEC_ETH = 0x20,
1404 IB_FLOW_SPEC_IB = 0x22,
1405 /* L3 header*/
1406 IB_FLOW_SPEC_IPV4 = 0x30,
1407 /* L4 headers*/
1408 IB_FLOW_SPEC_TCP = 0x40,
1409 IB_FLOW_SPEC_UDP = 0x41
1410 };
1411 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1412 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1413
1414 /* Flow steering rule priority is set according to it's domain.
1415 * Lower domain value means higher priority.
1416 */
1417 enum ib_flow_domain {
1418 IB_FLOW_DOMAIN_USER,
1419 IB_FLOW_DOMAIN_ETHTOOL,
1420 IB_FLOW_DOMAIN_RFS,
1421 IB_FLOW_DOMAIN_NIC,
1422 IB_FLOW_DOMAIN_NUM /* Must be last */
1423 };
1424
1425 struct ib_flow_eth_filter {
1426 u8 dst_mac[6];
1427 u8 src_mac[6];
1428 __be16 ether_type;
1429 __be16 vlan_tag;
1430 };
1431
1432 struct ib_flow_spec_eth {
1433 enum ib_flow_spec_type type;
1434 u16 size;
1435 struct ib_flow_eth_filter val;
1436 struct ib_flow_eth_filter mask;
1437 };
1438
1439 struct ib_flow_ib_filter {
1440 __be16 dlid;
1441 __u8 sl;
1442 };
1443
1444 struct ib_flow_spec_ib {
1445 enum ib_flow_spec_type type;
1446 u16 size;
1447 struct ib_flow_ib_filter val;
1448 struct ib_flow_ib_filter mask;
1449 };
1450
1451 struct ib_flow_ipv4_filter {
1452 __be32 src_ip;
1453 __be32 dst_ip;
1454 };
1455
1456 struct ib_flow_spec_ipv4 {
1457 enum ib_flow_spec_type type;
1458 u16 size;
1459 struct ib_flow_ipv4_filter val;
1460 struct ib_flow_ipv4_filter mask;
1461 };
1462
1463 struct ib_flow_tcp_udp_filter {
1464 __be16 dst_port;
1465 __be16 src_port;
1466 };
1467
1468 struct ib_flow_spec_tcp_udp {
1469 enum ib_flow_spec_type type;
1470 u16 size;
1471 struct ib_flow_tcp_udp_filter val;
1472 struct ib_flow_tcp_udp_filter mask;
1473 };
1474
1475 union ib_flow_spec {
1476 struct {
1477 enum ib_flow_spec_type type;
1478 u16 size;
1479 };
1480 struct ib_flow_spec_eth eth;
1481 struct ib_flow_spec_ib ib;
1482 struct ib_flow_spec_ipv4 ipv4;
1483 struct ib_flow_spec_tcp_udp tcp_udp;
1484 };
1485
1486 struct ib_flow_attr {
1487 enum ib_flow_attr_type type;
1488 u16 size;
1489 u16 priority;
1490 u32 flags;
1491 u8 num_of_specs;
1492 u8 port;
1493 /* Following are the optional layers according to user request
1494 * struct ib_flow_spec_xxx
1495 * struct ib_flow_spec_yyy
1496 */
1497 };
1498
1499 struct ib_flow {
1500 struct ib_qp *qp;
1501 struct ib_uobject *uobject;
1502 };
1503
1504 struct ib_mad_hdr;
1505 struct ib_grh;
1506
1507 enum ib_process_mad_flags {
1508 IB_MAD_IGNORE_MKEY = 1,
1509 IB_MAD_IGNORE_BKEY = 2,
1510 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1511 };
1512
1513 enum ib_mad_result {
1514 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1515 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1516 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1517 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1518 };
1519
1520 #define IB_DEVICE_NAME_MAX 64
1521
1522 struct ib_cache {
1523 rwlock_t lock;
1524 struct ib_event_handler event_handler;
1525 struct ib_pkey_cache **pkey_cache;
1526 struct ib_gid_table **gid_cache;
1527 u8 *lmc_cache;
1528 };
1529
1530 struct ib_dma_mapping_ops {
1531 int (*mapping_error)(struct ib_device *dev,
1532 u64 dma_addr);
1533 u64 (*map_single)(struct ib_device *dev,
1534 void *ptr, size_t size,
1535 enum dma_data_direction direction);
1536 void (*unmap_single)(struct ib_device *dev,
1537 u64 addr, size_t size,
1538 enum dma_data_direction direction);
1539 u64 (*map_page)(struct ib_device *dev,
1540 struct page *page, unsigned long offset,
1541 size_t size,
1542 enum dma_data_direction direction);
1543 void (*unmap_page)(struct ib_device *dev,
1544 u64 addr, size_t size,
1545 enum dma_data_direction direction);
1546 int (*map_sg)(struct ib_device *dev,
1547 struct scatterlist *sg, int nents,
1548 enum dma_data_direction direction);
1549 void (*unmap_sg)(struct ib_device *dev,
1550 struct scatterlist *sg, int nents,
1551 enum dma_data_direction direction);
1552 void (*sync_single_for_cpu)(struct ib_device *dev,
1553 u64 dma_handle,
1554 size_t size,
1555 enum dma_data_direction dir);
1556 void (*sync_single_for_device)(struct ib_device *dev,
1557 u64 dma_handle,
1558 size_t size,
1559 enum dma_data_direction dir);
1560 void *(*alloc_coherent)(struct ib_device *dev,
1561 size_t size,
1562 u64 *dma_handle,
1563 gfp_t flag);
1564 void (*free_coherent)(struct ib_device *dev,
1565 size_t size, void *cpu_addr,
1566 u64 dma_handle);
1567 };
1568
1569 struct iw_cm_verbs;
1570
1571 struct ib_port_immutable {
1572 int pkey_tbl_len;
1573 int gid_tbl_len;
1574 u32 core_cap_flags;
1575 u32 max_mad_size;
1576 };
1577
1578 struct ib_device {
1579 struct device *dma_device;
1580
1581 char name[IB_DEVICE_NAME_MAX];
1582
1583 struct list_head event_handler_list;
1584 spinlock_t event_handler_lock;
1585
1586 spinlock_t client_data_lock;
1587 struct list_head core_list;
1588 /* Access to the client_data_list is protected by the client_data_lock
1589 * spinlock and the lists_rwsem read-write semaphore */
1590 struct list_head client_data_list;
1591
1592 struct ib_cache cache;
1593 /**
1594 * port_immutable is indexed by port number
1595 */
1596 struct ib_port_immutable *port_immutable;
1597
1598 int num_comp_vectors;
1599
1600 struct iw_cm_verbs *iwcm;
1601
1602 int (*get_protocol_stats)(struct ib_device *device,
1603 union rdma_protocol_stats *stats);
1604 int (*query_device)(struct ib_device *device,
1605 struct ib_device_attr *device_attr,
1606 struct ib_udata *udata);
1607 int (*query_port)(struct ib_device *device,
1608 u8 port_num,
1609 struct ib_port_attr *port_attr);
1610 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1611 u8 port_num);
1612 /* When calling get_netdev, the HW vendor's driver should return the
1613 * net device of device @device at port @port_num or NULL if such
1614 * a net device doesn't exist. The vendor driver should call dev_hold
1615 * on this net device. The HW vendor's device driver must guarantee
1616 * that this function returns NULL before the net device reaches
1617 * NETDEV_UNREGISTER_FINAL state.
1618 */
1619 struct net_device *(*get_netdev)(struct ib_device *device,
1620 u8 port_num);
1621 int (*query_gid)(struct ib_device *device,
1622 u8 port_num, int index,
1623 union ib_gid *gid);
1624 /* When calling add_gid, the HW vendor's driver should
1625 * add the gid of device @device at gid index @index of
1626 * port @port_num to be @gid. Meta-info of that gid (for example,
1627 * the network device related to this gid is available
1628 * at @attr. @context allows the HW vendor driver to store extra
1629 * information together with a GID entry. The HW vendor may allocate
1630 * memory to contain this information and store it in @context when a
1631 * new GID entry is written to. Params are consistent until the next
1632 * call of add_gid or delete_gid. The function should return 0 on
1633 * success or error otherwise. The function could be called
1634 * concurrently for different ports. This function is only called
1635 * when roce_gid_table is used.
1636 */
1637 int (*add_gid)(struct ib_device *device,
1638 u8 port_num,
1639 unsigned int index,
1640 const union ib_gid *gid,
1641 const struct ib_gid_attr *attr,
1642 void **context);
1643 /* When calling del_gid, the HW vendor's driver should delete the
1644 * gid of device @device at gid index @index of port @port_num.
1645 * Upon the deletion of a GID entry, the HW vendor must free any
1646 * allocated memory. The caller will clear @context afterwards.
1647 * This function is only called when roce_gid_table is used.
1648 */
1649 int (*del_gid)(struct ib_device *device,
1650 u8 port_num,
1651 unsigned int index,
1652 void **context);
1653 int (*query_pkey)(struct ib_device *device,
1654 u8 port_num, u16 index, u16 *pkey);
1655 int (*modify_device)(struct ib_device *device,
1656 int device_modify_mask,
1657 struct ib_device_modify *device_modify);
1658 int (*modify_port)(struct ib_device *device,
1659 u8 port_num, int port_modify_mask,
1660 struct ib_port_modify *port_modify);
1661 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1662 struct ib_udata *udata);
1663 int (*dealloc_ucontext)(struct ib_ucontext *context);
1664 int (*mmap)(struct ib_ucontext *context,
1665 struct vm_area_struct *vma);
1666 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1667 struct ib_ucontext *context,
1668 struct ib_udata *udata);
1669 int (*dealloc_pd)(struct ib_pd *pd);
1670 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1671 struct ib_ah_attr *ah_attr);
1672 int (*modify_ah)(struct ib_ah *ah,
1673 struct ib_ah_attr *ah_attr);
1674 int (*query_ah)(struct ib_ah *ah,
1675 struct ib_ah_attr *ah_attr);
1676 int (*destroy_ah)(struct ib_ah *ah);
1677 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1678 struct ib_srq_init_attr *srq_init_attr,
1679 struct ib_udata *udata);
1680 int (*modify_srq)(struct ib_srq *srq,
1681 struct ib_srq_attr *srq_attr,
1682 enum ib_srq_attr_mask srq_attr_mask,
1683 struct ib_udata *udata);
1684 int (*query_srq)(struct ib_srq *srq,
1685 struct ib_srq_attr *srq_attr);
1686 int (*destroy_srq)(struct ib_srq *srq);
1687 int (*post_srq_recv)(struct ib_srq *srq,
1688 struct ib_recv_wr *recv_wr,
1689 struct ib_recv_wr **bad_recv_wr);
1690 struct ib_qp * (*create_qp)(struct ib_pd *pd,
1691 struct ib_qp_init_attr *qp_init_attr,
1692 struct ib_udata *udata);
1693 int (*modify_qp)(struct ib_qp *qp,
1694 struct ib_qp_attr *qp_attr,
1695 int qp_attr_mask,
1696 struct ib_udata *udata);
1697 int (*query_qp)(struct ib_qp *qp,
1698 struct ib_qp_attr *qp_attr,
1699 int qp_attr_mask,
1700 struct ib_qp_init_attr *qp_init_attr);
1701 int (*destroy_qp)(struct ib_qp *qp);
1702 int (*post_send)(struct ib_qp *qp,
1703 struct ib_send_wr *send_wr,
1704 struct ib_send_wr **bad_send_wr);
1705 int (*post_recv)(struct ib_qp *qp,
1706 struct ib_recv_wr *recv_wr,
1707 struct ib_recv_wr **bad_recv_wr);
1708 struct ib_cq * (*create_cq)(struct ib_device *device,
1709 const struct ib_cq_init_attr *attr,
1710 struct ib_ucontext *context,
1711 struct ib_udata *udata);
1712 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1713 u16 cq_period);
1714 int (*destroy_cq)(struct ib_cq *cq);
1715 int (*resize_cq)(struct ib_cq *cq, int cqe,
1716 struct ib_udata *udata);
1717 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1718 struct ib_wc *wc);
1719 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1720 int (*req_notify_cq)(struct ib_cq *cq,
1721 enum ib_cq_notify_flags flags);
1722 int (*req_ncomp_notif)(struct ib_cq *cq,
1723 int wc_cnt);
1724 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1725 int mr_access_flags);
1726 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1727 struct ib_phys_buf *phys_buf_array,
1728 int num_phys_buf,
1729 int mr_access_flags,
1730 u64 *iova_start);
1731 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
1732 u64 start, u64 length,
1733 u64 virt_addr,
1734 int mr_access_flags,
1735 struct ib_udata *udata);
1736 int (*rereg_user_mr)(struct ib_mr *mr,
1737 int flags,
1738 u64 start, u64 length,
1739 u64 virt_addr,
1740 int mr_access_flags,
1741 struct ib_pd *pd,
1742 struct ib_udata *udata);
1743 int (*query_mr)(struct ib_mr *mr,
1744 struct ib_mr_attr *mr_attr);
1745 int (*dereg_mr)(struct ib_mr *mr);
1746 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
1747 enum ib_mr_type mr_type,
1748 u32 max_num_sg);
1749 int (*map_mr_sg)(struct ib_mr *mr,
1750 struct scatterlist *sg,
1751 int sg_nents);
1752 int (*rereg_phys_mr)(struct ib_mr *mr,
1753 int mr_rereg_mask,
1754 struct ib_pd *pd,
1755 struct ib_phys_buf *phys_buf_array,
1756 int num_phys_buf,
1757 int mr_access_flags,
1758 u64 *iova_start);
1759 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1760 enum ib_mw_type type);
1761 int (*bind_mw)(struct ib_qp *qp,
1762 struct ib_mw *mw,
1763 struct ib_mw_bind *mw_bind);
1764 int (*dealloc_mw)(struct ib_mw *mw);
1765 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1766 int mr_access_flags,
1767 struct ib_fmr_attr *fmr_attr);
1768 int (*map_phys_fmr)(struct ib_fmr *fmr,
1769 u64 *page_list, int list_len,
1770 u64 iova);
1771 int (*unmap_fmr)(struct list_head *fmr_list);
1772 int (*dealloc_fmr)(struct ib_fmr *fmr);
1773 int (*attach_mcast)(struct ib_qp *qp,
1774 union ib_gid *gid,
1775 u16 lid);
1776 int (*detach_mcast)(struct ib_qp *qp,
1777 union ib_gid *gid,
1778 u16 lid);
1779 int (*process_mad)(struct ib_device *device,
1780 int process_mad_flags,
1781 u8 port_num,
1782 const struct ib_wc *in_wc,
1783 const struct ib_grh *in_grh,
1784 const struct ib_mad_hdr *in_mad,
1785 size_t in_mad_size,
1786 struct ib_mad_hdr *out_mad,
1787 size_t *out_mad_size,
1788 u16 *out_mad_pkey_index);
1789 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1790 struct ib_ucontext *ucontext,
1791 struct ib_udata *udata);
1792 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1793 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1794 struct ib_flow_attr
1795 *flow_attr,
1796 int domain);
1797 int (*destroy_flow)(struct ib_flow *flow_id);
1798 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1799 struct ib_mr_status *mr_status);
1800 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
1801
1802 struct ib_dma_mapping_ops *dma_ops;
1803
1804 struct module *owner;
1805 struct device dev;
1806 struct kobject *ports_parent;
1807 struct list_head port_list;
1808
1809 enum {
1810 IB_DEV_UNINITIALIZED,
1811 IB_DEV_REGISTERED,
1812 IB_DEV_UNREGISTERED
1813 } reg_state;
1814
1815 int uverbs_abi_ver;
1816 u64 uverbs_cmd_mask;
1817 u64 uverbs_ex_cmd_mask;
1818
1819 char node_desc[64];
1820 __be64 node_guid;
1821 u32 local_dma_lkey;
1822 u16 is_switch:1;
1823 u8 node_type;
1824 u8 phys_port_cnt;
1825
1826 /**
1827 * The following mandatory functions are used only at device
1828 * registration. Keep functions such as these at the end of this
1829 * structure to avoid cache line misses when accessing struct ib_device
1830 * in fast paths.
1831 */
1832 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
1833 };
1834
1835 struct ib_client {
1836 char *name;
1837 void (*add) (struct ib_device *);
1838 void (*remove)(struct ib_device *, void *client_data);
1839
1840 /* Returns the net_dev belonging to this ib_client and matching the
1841 * given parameters.
1842 * @dev: An RDMA device that the net_dev use for communication.
1843 * @port: A physical port number on the RDMA device.
1844 * @pkey: P_Key that the net_dev uses if applicable.
1845 * @gid: A GID that the net_dev uses to communicate.
1846 * @addr: An IP address the net_dev is configured with.
1847 * @client_data: The device's client data set by ib_set_client_data().
1848 *
1849 * An ib_client that implements a net_dev on top of RDMA devices
1850 * (such as IP over IB) should implement this callback, allowing the
1851 * rdma_cm module to find the right net_dev for a given request.
1852 *
1853 * The caller is responsible for calling dev_put on the returned
1854 * netdev. */
1855 struct net_device *(*get_net_dev_by_params)(
1856 struct ib_device *dev,
1857 u8 port,
1858 u16 pkey,
1859 const union ib_gid *gid,
1860 const struct sockaddr *addr,
1861 void *client_data);
1862 struct list_head list;
1863 };
1864
1865 struct ib_device *ib_alloc_device(size_t size);
1866 void ib_dealloc_device(struct ib_device *device);
1867
1868 int ib_register_device(struct ib_device *device,
1869 int (*port_callback)(struct ib_device *,
1870 u8, struct kobject *));
1871 void ib_unregister_device(struct ib_device *device);
1872
1873 int ib_register_client (struct ib_client *client);
1874 void ib_unregister_client(struct ib_client *client);
1875
1876 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1877 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1878 void *data);
1879
1880 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1881 {
1882 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1883 }
1884
1885 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1886 {
1887 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1888 }
1889
1890 /**
1891 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1892 * contains all required attributes and no attributes not allowed for
1893 * the given QP state transition.
1894 * @cur_state: Current QP state
1895 * @next_state: Next QP state
1896 * @type: QP type
1897 * @mask: Mask of supplied QP attributes
1898 * @ll : link layer of port
1899 *
1900 * This function is a helper function that a low-level driver's
1901 * modify_qp method can use to validate the consumer's input. It
1902 * checks that cur_state and next_state are valid QP states, that a
1903 * transition from cur_state to next_state is allowed by the IB spec,
1904 * and that the attribute mask supplied is allowed for the transition.
1905 */
1906 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1907 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1908 enum rdma_link_layer ll);
1909
1910 int ib_register_event_handler (struct ib_event_handler *event_handler);
1911 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1912 void ib_dispatch_event(struct ib_event *event);
1913
1914 int ib_query_device(struct ib_device *device,
1915 struct ib_device_attr *device_attr);
1916
1917 int ib_query_port(struct ib_device *device,
1918 u8 port_num, struct ib_port_attr *port_attr);
1919
1920 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1921 u8 port_num);
1922
1923 /**
1924 * rdma_cap_ib_switch - Check if the device is IB switch
1925 * @device: Device to check
1926 *
1927 * Device driver is responsible for setting is_switch bit on
1928 * in ib_device structure at init time.
1929 *
1930 * Return: true if the device is IB switch.
1931 */
1932 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
1933 {
1934 return device->is_switch;
1935 }
1936
1937 /**
1938 * rdma_start_port - Return the first valid port number for the device
1939 * specified
1940 *
1941 * @device: Device to be checked
1942 *
1943 * Return start port number
1944 */
1945 static inline u8 rdma_start_port(const struct ib_device *device)
1946 {
1947 return rdma_cap_ib_switch(device) ? 0 : 1;
1948 }
1949
1950 /**
1951 * rdma_end_port - Return the last valid port number for the device
1952 * specified
1953 *
1954 * @device: Device to be checked
1955 *
1956 * Return last port number
1957 */
1958 static inline u8 rdma_end_port(const struct ib_device *device)
1959 {
1960 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
1961 }
1962
1963 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
1964 {
1965 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
1966 }
1967
1968 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
1969 {
1970 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
1971 }
1972
1973 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
1974 {
1975 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
1976 }
1977
1978 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
1979 {
1980 return device->port_immutable[port_num].core_cap_flags &
1981 (RDMA_CORE_CAP_PROT_IB | RDMA_CORE_CAP_PROT_ROCE);
1982 }
1983
1984 /**
1985 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
1986 * Management Datagrams.
1987 * @device: Device to check
1988 * @port_num: Port number to check
1989 *
1990 * Management Datagrams (MAD) are a required part of the InfiniBand
1991 * specification and are supported on all InfiniBand devices. A slightly
1992 * extended version are also supported on OPA interfaces.
1993 *
1994 * Return: true if the port supports sending/receiving of MAD packets.
1995 */
1996 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
1997 {
1998 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
1999 }
2000
2001 /**
2002 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2003 * Management Datagrams.
2004 * @device: Device to check
2005 * @port_num: Port number to check
2006 *
2007 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2008 * datagrams with their own versions. These OPA MADs share many but not all of
2009 * the characteristics of InfiniBand MADs.
2010 *
2011 * OPA MADs differ in the following ways:
2012 *
2013 * 1) MADs are variable size up to 2K
2014 * IBTA defined MADs remain fixed at 256 bytes
2015 * 2) OPA SMPs must carry valid PKeys
2016 * 3) OPA SMP packets are a different format
2017 *
2018 * Return: true if the port supports OPA MAD packet formats.
2019 */
2020 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2021 {
2022 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2023 == RDMA_CORE_CAP_OPA_MAD;
2024 }
2025
2026 /**
2027 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2028 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2029 * @device: Device to check
2030 * @port_num: Port number to check
2031 *
2032 * Each InfiniBand node is required to provide a Subnet Management Agent
2033 * that the subnet manager can access. Prior to the fabric being fully
2034 * configured by the subnet manager, the SMA is accessed via a well known
2035 * interface called the Subnet Management Interface (SMI). This interface
2036 * uses directed route packets to communicate with the SM to get around the
2037 * chicken and egg problem of the SM needing to know what's on the fabric
2038 * in order to configure the fabric, and needing to configure the fabric in
2039 * order to send packets to the devices on the fabric. These directed
2040 * route packets do not need the fabric fully configured in order to reach
2041 * their destination. The SMI is the only method allowed to send
2042 * directed route packets on an InfiniBand fabric.
2043 *
2044 * Return: true if the port provides an SMI.
2045 */
2046 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2047 {
2048 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2049 }
2050
2051 /**
2052 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2053 * Communication Manager.
2054 * @device: Device to check
2055 * @port_num: Port number to check
2056 *
2057 * The InfiniBand Communication Manager is one of many pre-defined General
2058 * Service Agents (GSA) that are accessed via the General Service
2059 * Interface (GSI). It's role is to facilitate establishment of connections
2060 * between nodes as well as other management related tasks for established
2061 * connections.
2062 *
2063 * Return: true if the port supports an IB CM (this does not guarantee that
2064 * a CM is actually running however).
2065 */
2066 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2067 {
2068 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2069 }
2070
2071 /**
2072 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2073 * Communication Manager.
2074 * @device: Device to check
2075 * @port_num: Port number to check
2076 *
2077 * Similar to above, but specific to iWARP connections which have a different
2078 * managment protocol than InfiniBand.
2079 *
2080 * Return: true if the port supports an iWARP CM (this does not guarantee that
2081 * a CM is actually running however).
2082 */
2083 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2084 {
2085 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2086 }
2087
2088 /**
2089 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2090 * Subnet Administration.
2091 * @device: Device to check
2092 * @port_num: Port number to check
2093 *
2094 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2095 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2096 * fabrics, devices should resolve routes to other hosts by contacting the
2097 * SA to query the proper route.
2098 *
2099 * Return: true if the port should act as a client to the fabric Subnet
2100 * Administration interface. This does not imply that the SA service is
2101 * running locally.
2102 */
2103 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2104 {
2105 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2106 }
2107
2108 /**
2109 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2110 * Multicast.
2111 * @device: Device to check
2112 * @port_num: Port number to check
2113 *
2114 * InfiniBand multicast registration is more complex than normal IPv4 or
2115 * IPv6 multicast registration. Each Host Channel Adapter must register
2116 * with the Subnet Manager when it wishes to join a multicast group. It
2117 * should do so only once regardless of how many queue pairs it subscribes
2118 * to this group. And it should leave the group only after all queue pairs
2119 * attached to the group have been detached.
2120 *
2121 * Return: true if the port must undertake the additional adminstrative
2122 * overhead of registering/unregistering with the SM and tracking of the
2123 * total number of queue pairs attached to the multicast group.
2124 */
2125 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2126 {
2127 return rdma_cap_ib_sa(device, port_num);
2128 }
2129
2130 /**
2131 * rdma_cap_af_ib - Check if the port of device has the capability
2132 * Native Infiniband Address.
2133 * @device: Device to check
2134 * @port_num: Port number to check
2135 *
2136 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2137 * GID. RoCE uses a different mechanism, but still generates a GID via
2138 * a prescribed mechanism and port specific data.
2139 *
2140 * Return: true if the port uses a GID address to identify devices on the
2141 * network.
2142 */
2143 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2144 {
2145 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2146 }
2147
2148 /**
2149 * rdma_cap_eth_ah - Check if the port of device has the capability
2150 * Ethernet Address Handle.
2151 * @device: Device to check
2152 * @port_num: Port number to check
2153 *
2154 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2155 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2156 * port. Normally, packet headers are generated by the sending host
2157 * adapter, but when sending connectionless datagrams, we must manually
2158 * inject the proper headers for the fabric we are communicating over.
2159 *
2160 * Return: true if we are running as a RoCE port and must force the
2161 * addition of a Global Route Header built from our Ethernet Address
2162 * Handle into our header list for connectionless packets.
2163 */
2164 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2165 {
2166 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2167 }
2168
2169 /**
2170 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2171 *
2172 * @device: Device
2173 * @port_num: Port number
2174 *
2175 * This MAD size includes the MAD headers and MAD payload. No other headers
2176 * are included.
2177 *
2178 * Return the max MAD size required by the Port. Will return 0 if the port
2179 * does not support MADs
2180 */
2181 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2182 {
2183 return device->port_immutable[port_num].max_mad_size;
2184 }
2185
2186 /**
2187 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2188 * @device: Device to check
2189 * @port_num: Port number to check
2190 *
2191 * RoCE GID table mechanism manages the various GIDs for a device.
2192 *
2193 * NOTE: if allocating the port's GID table has failed, this call will still
2194 * return true, but any RoCE GID table API will fail.
2195 *
2196 * Return: true if the port uses RoCE GID table mechanism in order to manage
2197 * its GIDs.
2198 */
2199 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2200 u8 port_num)
2201 {
2202 return rdma_protocol_roce(device, port_num) &&
2203 device->add_gid && device->del_gid;
2204 }
2205
2206 int ib_query_gid(struct ib_device *device,
2207 u8 port_num, int index, union ib_gid *gid,
2208 struct ib_gid_attr *attr);
2209
2210 int ib_query_pkey(struct ib_device *device,
2211 u8 port_num, u16 index, u16 *pkey);
2212
2213 int ib_modify_device(struct ib_device *device,
2214 int device_modify_mask,
2215 struct ib_device_modify *device_modify);
2216
2217 int ib_modify_port(struct ib_device *device,
2218 u8 port_num, int port_modify_mask,
2219 struct ib_port_modify *port_modify);
2220
2221 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2222 struct net_device *ndev, u8 *port_num, u16 *index);
2223
2224 int ib_find_pkey(struct ib_device *device,
2225 u8 port_num, u16 pkey, u16 *index);
2226
2227 struct ib_pd *ib_alloc_pd(struct ib_device *device);
2228
2229 void ib_dealloc_pd(struct ib_pd *pd);
2230
2231 /**
2232 * ib_create_ah - Creates an address handle for the given address vector.
2233 * @pd: The protection domain associated with the address handle.
2234 * @ah_attr: The attributes of the address vector.
2235 *
2236 * The address handle is used to reference a local or global destination
2237 * in all UD QP post sends.
2238 */
2239 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2240
2241 /**
2242 * ib_init_ah_from_wc - Initializes address handle attributes from a
2243 * work completion.
2244 * @device: Device on which the received message arrived.
2245 * @port_num: Port on which the received message arrived.
2246 * @wc: Work completion associated with the received message.
2247 * @grh: References the received global route header. This parameter is
2248 * ignored unless the work completion indicates that the GRH is valid.
2249 * @ah_attr: Returned attributes that can be used when creating an address
2250 * handle for replying to the message.
2251 */
2252 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2253 const struct ib_wc *wc, const struct ib_grh *grh,
2254 struct ib_ah_attr *ah_attr);
2255
2256 /**
2257 * ib_create_ah_from_wc - Creates an address handle associated with the
2258 * sender of the specified work completion.
2259 * @pd: The protection domain associated with the address handle.
2260 * @wc: Work completion information associated with a received message.
2261 * @grh: References the received global route header. This parameter is
2262 * ignored unless the work completion indicates that the GRH is valid.
2263 * @port_num: The outbound port number to associate with the address.
2264 *
2265 * The address handle is used to reference a local or global destination
2266 * in all UD QP post sends.
2267 */
2268 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2269 const struct ib_grh *grh, u8 port_num);
2270
2271 /**
2272 * ib_modify_ah - Modifies the address vector associated with an address
2273 * handle.
2274 * @ah: The address handle to modify.
2275 * @ah_attr: The new address vector attributes to associate with the
2276 * address handle.
2277 */
2278 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2279
2280 /**
2281 * ib_query_ah - Queries the address vector associated with an address
2282 * handle.
2283 * @ah: The address handle to query.
2284 * @ah_attr: The address vector attributes associated with the address
2285 * handle.
2286 */
2287 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2288
2289 /**
2290 * ib_destroy_ah - Destroys an address handle.
2291 * @ah: The address handle to destroy.
2292 */
2293 int ib_destroy_ah(struct ib_ah *ah);
2294
2295 /**
2296 * ib_create_srq - Creates a SRQ associated with the specified protection
2297 * domain.
2298 * @pd: The protection domain associated with the SRQ.
2299 * @srq_init_attr: A list of initial attributes required to create the
2300 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2301 * the actual capabilities of the created SRQ.
2302 *
2303 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2304 * requested size of the SRQ, and set to the actual values allocated
2305 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2306 * will always be at least as large as the requested values.
2307 */
2308 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2309 struct ib_srq_init_attr *srq_init_attr);
2310
2311 /**
2312 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2313 * @srq: The SRQ to modify.
2314 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2315 * the current values of selected SRQ attributes are returned.
2316 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2317 * are being modified.
2318 *
2319 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2320 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2321 * the number of receives queued drops below the limit.
2322 */
2323 int ib_modify_srq(struct ib_srq *srq,
2324 struct ib_srq_attr *srq_attr,
2325 enum ib_srq_attr_mask srq_attr_mask);
2326
2327 /**
2328 * ib_query_srq - Returns the attribute list and current values for the
2329 * specified SRQ.
2330 * @srq: The SRQ to query.
2331 * @srq_attr: The attributes of the specified SRQ.
2332 */
2333 int ib_query_srq(struct ib_srq *srq,
2334 struct ib_srq_attr *srq_attr);
2335
2336 /**
2337 * ib_destroy_srq - Destroys the specified SRQ.
2338 * @srq: The SRQ to destroy.
2339 */
2340 int ib_destroy_srq(struct ib_srq *srq);
2341
2342 /**
2343 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2344 * @srq: The SRQ to post the work request on.
2345 * @recv_wr: A list of work requests to post on the receive queue.
2346 * @bad_recv_wr: On an immediate failure, this parameter will reference
2347 * the work request that failed to be posted on the QP.
2348 */
2349 static inline int ib_post_srq_recv(struct ib_srq *srq,
2350 struct ib_recv_wr *recv_wr,
2351 struct ib_recv_wr **bad_recv_wr)
2352 {
2353 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2354 }
2355
2356 /**
2357 * ib_create_qp - Creates a QP associated with the specified protection
2358 * domain.
2359 * @pd: The protection domain associated with the QP.
2360 * @qp_init_attr: A list of initial attributes required to create the
2361 * QP. If QP creation succeeds, then the attributes are updated to
2362 * the actual capabilities of the created QP.
2363 */
2364 struct ib_qp *ib_create_qp(struct ib_pd *pd,
2365 struct ib_qp_init_attr *qp_init_attr);
2366
2367 /**
2368 * ib_modify_qp - Modifies the attributes for the specified QP and then
2369 * transitions the QP to the given state.
2370 * @qp: The QP to modify.
2371 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2372 * the current values of selected QP attributes are returned.
2373 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2374 * are being modified.
2375 */
2376 int ib_modify_qp(struct ib_qp *qp,
2377 struct ib_qp_attr *qp_attr,
2378 int qp_attr_mask);
2379
2380 /**
2381 * ib_query_qp - Returns the attribute list and current values for the
2382 * specified QP.
2383 * @qp: The QP to query.
2384 * @qp_attr: The attributes of the specified QP.
2385 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2386 * @qp_init_attr: Additional attributes of the selected QP.
2387 *
2388 * The qp_attr_mask may be used to limit the query to gathering only the
2389 * selected attributes.
2390 */
2391 int ib_query_qp(struct ib_qp *qp,
2392 struct ib_qp_attr *qp_attr,
2393 int qp_attr_mask,
2394 struct ib_qp_init_attr *qp_init_attr);
2395
2396 /**
2397 * ib_destroy_qp - Destroys the specified QP.
2398 * @qp: The QP to destroy.
2399 */
2400 int ib_destroy_qp(struct ib_qp *qp);
2401
2402 /**
2403 * ib_open_qp - Obtain a reference to an existing sharable QP.
2404 * @xrcd - XRC domain
2405 * @qp_open_attr: Attributes identifying the QP to open.
2406 *
2407 * Returns a reference to a sharable QP.
2408 */
2409 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2410 struct ib_qp_open_attr *qp_open_attr);
2411
2412 /**
2413 * ib_close_qp - Release an external reference to a QP.
2414 * @qp: The QP handle to release
2415 *
2416 * The opened QP handle is released by the caller. The underlying
2417 * shared QP is not destroyed until all internal references are released.
2418 */
2419 int ib_close_qp(struct ib_qp *qp);
2420
2421 /**
2422 * ib_post_send - Posts a list of work requests to the send queue of
2423 * the specified QP.
2424 * @qp: The QP to post the work request on.
2425 * @send_wr: A list of work requests to post on the send queue.
2426 * @bad_send_wr: On an immediate failure, this parameter will reference
2427 * the work request that failed to be posted on the QP.
2428 *
2429 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2430 * error is returned, the QP state shall not be affected,
2431 * ib_post_send() will return an immediate error after queueing any
2432 * earlier work requests in the list.
2433 */
2434 static inline int ib_post_send(struct ib_qp *qp,
2435 struct ib_send_wr *send_wr,
2436 struct ib_send_wr **bad_send_wr)
2437 {
2438 return qp->device->post_send(qp, send_wr, bad_send_wr);
2439 }
2440
2441 /**
2442 * ib_post_recv - Posts a list of work requests to the receive queue of
2443 * the specified QP.
2444 * @qp: The QP to post the work request on.
2445 * @recv_wr: A list of work requests to post on the receive queue.
2446 * @bad_recv_wr: On an immediate failure, this parameter will reference
2447 * the work request that failed to be posted on the QP.
2448 */
2449 static inline int ib_post_recv(struct ib_qp *qp,
2450 struct ib_recv_wr *recv_wr,
2451 struct ib_recv_wr **bad_recv_wr)
2452 {
2453 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2454 }
2455
2456 /**
2457 * ib_create_cq - Creates a CQ on the specified device.
2458 * @device: The device on which to create the CQ.
2459 * @comp_handler: A user-specified callback that is invoked when a
2460 * completion event occurs on the CQ.
2461 * @event_handler: A user-specified callback that is invoked when an
2462 * asynchronous event not associated with a completion occurs on the CQ.
2463 * @cq_context: Context associated with the CQ returned to the user via
2464 * the associated completion and event handlers.
2465 * @cq_attr: The attributes the CQ should be created upon.
2466 *
2467 * Users can examine the cq structure to determine the actual CQ size.
2468 */
2469 struct ib_cq *ib_create_cq(struct ib_device *device,
2470 ib_comp_handler comp_handler,
2471 void (*event_handler)(struct ib_event *, void *),
2472 void *cq_context,
2473 const struct ib_cq_init_attr *cq_attr);
2474
2475 /**
2476 * ib_resize_cq - Modifies the capacity of the CQ.
2477 * @cq: The CQ to resize.
2478 * @cqe: The minimum size of the CQ.
2479 *
2480 * Users can examine the cq structure to determine the actual CQ size.
2481 */
2482 int ib_resize_cq(struct ib_cq *cq, int cqe);
2483
2484 /**
2485 * ib_modify_cq - Modifies moderation params of the CQ
2486 * @cq: The CQ to modify.
2487 * @cq_count: number of CQEs that will trigger an event
2488 * @cq_period: max period of time in usec before triggering an event
2489 *
2490 */
2491 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2492
2493 /**
2494 * ib_destroy_cq - Destroys the specified CQ.
2495 * @cq: The CQ to destroy.
2496 */
2497 int ib_destroy_cq(struct ib_cq *cq);
2498
2499 /**
2500 * ib_poll_cq - poll a CQ for completion(s)
2501 * @cq:the CQ being polled
2502 * @num_entries:maximum number of completions to return
2503 * @wc:array of at least @num_entries &struct ib_wc where completions
2504 * will be returned
2505 *
2506 * Poll a CQ for (possibly multiple) completions. If the return value
2507 * is < 0, an error occurred. If the return value is >= 0, it is the
2508 * number of completions returned. If the return value is
2509 * non-negative and < num_entries, then the CQ was emptied.
2510 */
2511 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2512 struct ib_wc *wc)
2513 {
2514 return cq->device->poll_cq(cq, num_entries, wc);
2515 }
2516
2517 /**
2518 * ib_peek_cq - Returns the number of unreaped completions currently
2519 * on the specified CQ.
2520 * @cq: The CQ to peek.
2521 * @wc_cnt: A minimum number of unreaped completions to check for.
2522 *
2523 * If the number of unreaped completions is greater than or equal to wc_cnt,
2524 * this function returns wc_cnt, otherwise, it returns the actual number of
2525 * unreaped completions.
2526 */
2527 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2528
2529 /**
2530 * ib_req_notify_cq - Request completion notification on a CQ.
2531 * @cq: The CQ to generate an event for.
2532 * @flags:
2533 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2534 * to request an event on the next solicited event or next work
2535 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2536 * may also be |ed in to request a hint about missed events, as
2537 * described below.
2538 *
2539 * Return Value:
2540 * < 0 means an error occurred while requesting notification
2541 * == 0 means notification was requested successfully, and if
2542 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2543 * were missed and it is safe to wait for another event. In
2544 * this case is it guaranteed that any work completions added
2545 * to the CQ since the last CQ poll will trigger a completion
2546 * notification event.
2547 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2548 * in. It means that the consumer must poll the CQ again to
2549 * make sure it is empty to avoid missing an event because of a
2550 * race between requesting notification and an entry being
2551 * added to the CQ. This return value means it is possible
2552 * (but not guaranteed) that a work completion has been added
2553 * to the CQ since the last poll without triggering a
2554 * completion notification event.
2555 */
2556 static inline int ib_req_notify_cq(struct ib_cq *cq,
2557 enum ib_cq_notify_flags flags)
2558 {
2559 return cq->device->req_notify_cq(cq, flags);
2560 }
2561
2562 /**
2563 * ib_req_ncomp_notif - Request completion notification when there are
2564 * at least the specified number of unreaped completions on the CQ.
2565 * @cq: The CQ to generate an event for.
2566 * @wc_cnt: The number of unreaped completions that should be on the
2567 * CQ before an event is generated.
2568 */
2569 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2570 {
2571 return cq->device->req_ncomp_notif ?
2572 cq->device->req_ncomp_notif(cq, wc_cnt) :
2573 -ENOSYS;
2574 }
2575
2576 /**
2577 * ib_get_dma_mr - Returns a memory region for system memory that is
2578 * usable for DMA.
2579 * @pd: The protection domain associated with the memory region.
2580 * @mr_access_flags: Specifies the memory access rights.
2581 *
2582 * Note that the ib_dma_*() functions defined below must be used
2583 * to create/destroy addresses used with the Lkey or Rkey returned
2584 * by ib_get_dma_mr().
2585 */
2586 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2587
2588 /**
2589 * ib_dma_mapping_error - check a DMA addr for error
2590 * @dev: The device for which the dma_addr was created
2591 * @dma_addr: The DMA address to check
2592 */
2593 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2594 {
2595 if (dev->dma_ops)
2596 return dev->dma_ops->mapping_error(dev, dma_addr);
2597 return dma_mapping_error(dev->dma_device, dma_addr);
2598 }
2599
2600 /**
2601 * ib_dma_map_single - Map a kernel virtual address to DMA address
2602 * @dev: The device for which the dma_addr is to be created
2603 * @cpu_addr: The kernel virtual address
2604 * @size: The size of the region in bytes
2605 * @direction: The direction of the DMA
2606 */
2607 static inline u64 ib_dma_map_single(struct ib_device *dev,
2608 void *cpu_addr, size_t size,
2609 enum dma_data_direction direction)
2610 {
2611 if (dev->dma_ops)
2612 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2613 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
2614 }
2615
2616 /**
2617 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2618 * @dev: The device for which the DMA address was created
2619 * @addr: The DMA address
2620 * @size: The size of the region in bytes
2621 * @direction: The direction of the DMA
2622 */
2623 static inline void ib_dma_unmap_single(struct ib_device *dev,
2624 u64 addr, size_t size,
2625 enum dma_data_direction direction)
2626 {
2627 if (dev->dma_ops)
2628 dev->dma_ops->unmap_single(dev, addr, size, direction);
2629 else
2630 dma_unmap_single(dev->dma_device, addr, size, direction);
2631 }
2632
2633 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2634 void *cpu_addr, size_t size,
2635 enum dma_data_direction direction,
2636 struct dma_attrs *attrs)
2637 {
2638 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2639 direction, attrs);
2640 }
2641
2642 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2643 u64 addr, size_t size,
2644 enum dma_data_direction direction,
2645 struct dma_attrs *attrs)
2646 {
2647 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2648 direction, attrs);
2649 }
2650
2651 /**
2652 * ib_dma_map_page - Map a physical page to DMA address
2653 * @dev: The device for which the dma_addr is to be created
2654 * @page: The page to be mapped
2655 * @offset: The offset within the page
2656 * @size: The size of the region in bytes
2657 * @direction: The direction of the DMA
2658 */
2659 static inline u64 ib_dma_map_page(struct ib_device *dev,
2660 struct page *page,
2661 unsigned long offset,
2662 size_t size,
2663 enum dma_data_direction direction)
2664 {
2665 if (dev->dma_ops)
2666 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2667 return dma_map_page(dev->dma_device, page, offset, size, direction);
2668 }
2669
2670 /**
2671 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2672 * @dev: The device for which the DMA address was created
2673 * @addr: The DMA address
2674 * @size: The size of the region in bytes
2675 * @direction: The direction of the DMA
2676 */
2677 static inline void ib_dma_unmap_page(struct ib_device *dev,
2678 u64 addr, size_t size,
2679 enum dma_data_direction direction)
2680 {
2681 if (dev->dma_ops)
2682 dev->dma_ops->unmap_page(dev, addr, size, direction);
2683 else
2684 dma_unmap_page(dev->dma_device, addr, size, direction);
2685 }
2686
2687 /**
2688 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2689 * @dev: The device for which the DMA addresses are to be created
2690 * @sg: The array of scatter/gather entries
2691 * @nents: The number of scatter/gather entries
2692 * @direction: The direction of the DMA
2693 */
2694 static inline int ib_dma_map_sg(struct ib_device *dev,
2695 struct scatterlist *sg, int nents,
2696 enum dma_data_direction direction)
2697 {
2698 if (dev->dma_ops)
2699 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2700 return dma_map_sg(dev->dma_device, sg, nents, direction);
2701 }
2702
2703 /**
2704 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2705 * @dev: The device for which the DMA addresses were created
2706 * @sg: The array of scatter/gather entries
2707 * @nents: The number of scatter/gather entries
2708 * @direction: The direction of the DMA
2709 */
2710 static inline void ib_dma_unmap_sg(struct ib_device *dev,
2711 struct scatterlist *sg, int nents,
2712 enum dma_data_direction direction)
2713 {
2714 if (dev->dma_ops)
2715 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2716 else
2717 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2718 }
2719
2720 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2721 struct scatterlist *sg, int nents,
2722 enum dma_data_direction direction,
2723 struct dma_attrs *attrs)
2724 {
2725 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2726 }
2727
2728 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2729 struct scatterlist *sg, int nents,
2730 enum dma_data_direction direction,
2731 struct dma_attrs *attrs)
2732 {
2733 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2734 }
2735 /**
2736 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2737 * @dev: The device for which the DMA addresses were created
2738 * @sg: The scatter/gather entry
2739 *
2740 * Note: this function is obsolete. To do: change all occurrences of
2741 * ib_sg_dma_address() into sg_dma_address().
2742 */
2743 static inline u64 ib_sg_dma_address(struct ib_device *dev,
2744 struct scatterlist *sg)
2745 {
2746 return sg_dma_address(sg);
2747 }
2748
2749 /**
2750 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2751 * @dev: The device for which the DMA addresses were created
2752 * @sg: The scatter/gather entry
2753 *
2754 * Note: this function is obsolete. To do: change all occurrences of
2755 * ib_sg_dma_len() into sg_dma_len().
2756 */
2757 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2758 struct scatterlist *sg)
2759 {
2760 return sg_dma_len(sg);
2761 }
2762
2763 /**
2764 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2765 * @dev: The device for which the DMA address was created
2766 * @addr: The DMA address
2767 * @size: The size of the region in bytes
2768 * @dir: The direction of the DMA
2769 */
2770 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2771 u64 addr,
2772 size_t size,
2773 enum dma_data_direction dir)
2774 {
2775 if (dev->dma_ops)
2776 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2777 else
2778 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2779 }
2780
2781 /**
2782 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2783 * @dev: The device for which the DMA address was created
2784 * @addr: The DMA address
2785 * @size: The size of the region in bytes
2786 * @dir: The direction of the DMA
2787 */
2788 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2789 u64 addr,
2790 size_t size,
2791 enum dma_data_direction dir)
2792 {
2793 if (dev->dma_ops)
2794 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2795 else
2796 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2797 }
2798
2799 /**
2800 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2801 * @dev: The device for which the DMA address is requested
2802 * @size: The size of the region to allocate in bytes
2803 * @dma_handle: A pointer for returning the DMA address of the region
2804 * @flag: memory allocator flags
2805 */
2806 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2807 size_t size,
2808 u64 *dma_handle,
2809 gfp_t flag)
2810 {
2811 if (dev->dma_ops)
2812 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
2813 else {
2814 dma_addr_t handle;
2815 void *ret;
2816
2817 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2818 *dma_handle = handle;
2819 return ret;
2820 }
2821 }
2822
2823 /**
2824 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2825 * @dev: The device for which the DMA addresses were allocated
2826 * @size: The size of the region
2827 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2828 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2829 */
2830 static inline void ib_dma_free_coherent(struct ib_device *dev,
2831 size_t size, void *cpu_addr,
2832 u64 dma_handle)
2833 {
2834 if (dev->dma_ops)
2835 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2836 else
2837 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2838 }
2839
2840 /**
2841 * ib_query_mr - Retrieves information about a specific memory region.
2842 * @mr: The memory region to retrieve information about.
2843 * @mr_attr: The attributes of the specified memory region.
2844 */
2845 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2846
2847 /**
2848 * ib_dereg_mr - Deregisters a memory region and removes it from the
2849 * HCA translation table.
2850 * @mr: The memory region to deregister.
2851 *
2852 * This function can fail, if the memory region has memory windows bound to it.
2853 */
2854 int ib_dereg_mr(struct ib_mr *mr);
2855
2856 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
2857 enum ib_mr_type mr_type,
2858 u32 max_num_sg);
2859
2860 /**
2861 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2862 * R_Key and L_Key.
2863 * @mr - struct ib_mr pointer to be updated.
2864 * @newkey - new key to be used.
2865 */
2866 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2867 {
2868 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2869 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2870 }
2871
2872 /**
2873 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2874 * for calculating a new rkey for type 2 memory windows.
2875 * @rkey - the rkey to increment.
2876 */
2877 static inline u32 ib_inc_rkey(u32 rkey)
2878 {
2879 const u32 mask = 0x000000ff;
2880 return ((rkey + 1) & mask) | (rkey & ~mask);
2881 }
2882
2883 /**
2884 * ib_alloc_mw - Allocates a memory window.
2885 * @pd: The protection domain associated with the memory window.
2886 * @type: The type of the memory window (1 or 2).
2887 */
2888 struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
2889
2890 /**
2891 * ib_bind_mw - Posts a work request to the send queue of the specified
2892 * QP, which binds the memory window to the given address range and
2893 * remote access attributes.
2894 * @qp: QP to post the bind work request on.
2895 * @mw: The memory window to bind.
2896 * @mw_bind: Specifies information about the memory window, including
2897 * its address range, remote access rights, and associated memory region.
2898 *
2899 * If there is no immediate error, the function will update the rkey member
2900 * of the mw parameter to its new value. The bind operation can still fail
2901 * asynchronously.
2902 */
2903 static inline int ib_bind_mw(struct ib_qp *qp,
2904 struct ib_mw *mw,
2905 struct ib_mw_bind *mw_bind)
2906 {
2907 /* XXX reference counting in corresponding MR? */
2908 return mw->device->bind_mw ?
2909 mw->device->bind_mw(qp, mw, mw_bind) :
2910 -ENOSYS;
2911 }
2912
2913 /**
2914 * ib_dealloc_mw - Deallocates a memory window.
2915 * @mw: The memory window to deallocate.
2916 */
2917 int ib_dealloc_mw(struct ib_mw *mw);
2918
2919 /**
2920 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2921 * @pd: The protection domain associated with the unmapped region.
2922 * @mr_access_flags: Specifies the memory access rights.
2923 * @fmr_attr: Attributes of the unmapped region.
2924 *
2925 * A fast memory region must be mapped before it can be used as part of
2926 * a work request.
2927 */
2928 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2929 int mr_access_flags,
2930 struct ib_fmr_attr *fmr_attr);
2931
2932 /**
2933 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2934 * @fmr: The fast memory region to associate with the pages.
2935 * @page_list: An array of physical pages to map to the fast memory region.
2936 * @list_len: The number of pages in page_list.
2937 * @iova: The I/O virtual address to use with the mapped region.
2938 */
2939 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2940 u64 *page_list, int list_len,
2941 u64 iova)
2942 {
2943 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2944 }
2945
2946 /**
2947 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2948 * @fmr_list: A linked list of fast memory regions to unmap.
2949 */
2950 int ib_unmap_fmr(struct list_head *fmr_list);
2951
2952 /**
2953 * ib_dealloc_fmr - Deallocates a fast memory region.
2954 * @fmr: The fast memory region to deallocate.
2955 */
2956 int ib_dealloc_fmr(struct ib_fmr *fmr);
2957
2958 /**
2959 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2960 * @qp: QP to attach to the multicast group. The QP must be type
2961 * IB_QPT_UD.
2962 * @gid: Multicast group GID.
2963 * @lid: Multicast group LID in host byte order.
2964 *
2965 * In order to send and receive multicast packets, subnet
2966 * administration must have created the multicast group and configured
2967 * the fabric appropriately. The port associated with the specified
2968 * QP must also be a member of the multicast group.
2969 */
2970 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2971
2972 /**
2973 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2974 * @qp: QP to detach from the multicast group.
2975 * @gid: Multicast group GID.
2976 * @lid: Multicast group LID in host byte order.
2977 */
2978 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2979
2980 /**
2981 * ib_alloc_xrcd - Allocates an XRC domain.
2982 * @device: The device on which to allocate the XRC domain.
2983 */
2984 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2985
2986 /**
2987 * ib_dealloc_xrcd - Deallocates an XRC domain.
2988 * @xrcd: The XRC domain to deallocate.
2989 */
2990 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
2991
2992 struct ib_flow *ib_create_flow(struct ib_qp *qp,
2993 struct ib_flow_attr *flow_attr, int domain);
2994 int ib_destroy_flow(struct ib_flow *flow_id);
2995
2996 static inline int ib_check_mr_access(int flags)
2997 {
2998 /*
2999 * Local write permission is required if remote write or
3000 * remote atomic permission is also requested.
3001 */
3002 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3003 !(flags & IB_ACCESS_LOCAL_WRITE))
3004 return -EINVAL;
3005
3006 return 0;
3007 }
3008
3009 /**
3010 * ib_check_mr_status: lightweight check of MR status.
3011 * This routine may provide status checks on a selected
3012 * ib_mr. first use is for signature status check.
3013 *
3014 * @mr: A memory region.
3015 * @check_mask: Bitmask of which checks to perform from
3016 * ib_mr_status_check enumeration.
3017 * @mr_status: The container of relevant status checks.
3018 * failed checks will be indicated in the status bitmask
3019 * and the relevant info shall be in the error item.
3020 */
3021 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3022 struct ib_mr_status *mr_status);
3023
3024 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3025 u16 pkey, const union ib_gid *gid,
3026 const struct sockaddr *addr);
3027
3028 int ib_map_mr_sg(struct ib_mr *mr,
3029 struct scatterlist *sg,
3030 int sg_nents,
3031 unsigned int page_size);
3032
3033 static inline int
3034 ib_map_mr_sg_zbva(struct ib_mr *mr,
3035 struct scatterlist *sg,
3036 int sg_nents,
3037 unsigned int page_size)
3038 {
3039 int n;
3040
3041 n = ib_map_mr_sg(mr, sg, sg_nents, page_size);
3042 mr->iova = 0;
3043
3044 return n;
3045 }
3046
3047 int ib_sg_to_pages(struct ib_mr *mr,
3048 struct scatterlist *sgl,
3049 int sg_nents,
3050 int (*set_page)(struct ib_mr *, u64));
3051
3052 #endif /* IB_VERBS_H */