]> git.ipfire.org Git - people/ms/linux.git/blob - include/rdma/ib_verbs.h
Merge tag 'soc-fixes-6.0-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[people/ms/linux.git] / include / rdma / ib_verbs.h
1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
2 /*
3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
5 * Copyright (c) 2004, 2020 Intel Corporation. All rights reserved.
6 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
10 */
11
12 #ifndef IB_VERBS_H
13 #define IB_VERBS_H
14
15 #include <linux/ethtool.h>
16 #include <linux/types.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/kref.h>
20 #include <linux/list.h>
21 #include <linux/rwsem.h>
22 #include <linux/workqueue.h>
23 #include <linux/irq_poll.h>
24 #include <uapi/linux/if_ether.h>
25 #include <net/ipv6.h>
26 #include <net/ip.h>
27 #include <linux/string.h>
28 #include <linux/slab.h>
29 #include <linux/netdevice.h>
30 #include <linux/refcount.h>
31 #include <linux/if_link.h>
32 #include <linux/atomic.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/uaccess.h>
35 #include <linux/cgroup_rdma.h>
36 #include <linux/irqflags.h>
37 #include <linux/preempt.h>
38 #include <linux/dim.h>
39 #include <uapi/rdma/ib_user_verbs.h>
40 #include <rdma/rdma_counter.h>
41 #include <rdma/restrack.h>
42 #include <rdma/signature.h>
43 #include <uapi/rdma/rdma_user_ioctl.h>
44 #include <uapi/rdma/ib_user_ioctl_verbs.h>
45
46 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
47
48 struct ib_umem_odp;
49 struct ib_uqp_object;
50 struct ib_usrq_object;
51 struct ib_uwq_object;
52 struct rdma_cm_id;
53 struct ib_port;
54 struct hw_stats_device_data;
55
56 extern struct workqueue_struct *ib_wq;
57 extern struct workqueue_struct *ib_comp_wq;
58 extern struct workqueue_struct *ib_comp_unbound_wq;
59
60 struct ib_ucq_object;
61
62 __printf(3, 4) __cold
63 void ibdev_printk(const char *level, const struct ib_device *ibdev,
64 const char *format, ...);
65 __printf(2, 3) __cold
66 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
67 __printf(2, 3) __cold
68 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
69 __printf(2, 3) __cold
70 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
71 __printf(2, 3) __cold
72 void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
73 __printf(2, 3) __cold
74 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
75 __printf(2, 3) __cold
76 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
77 __printf(2, 3) __cold
78 void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
79
80 #if defined(CONFIG_DYNAMIC_DEBUG) || \
81 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
82 #define ibdev_dbg(__dev, format, args...) \
83 dynamic_ibdev_dbg(__dev, format, ##args)
84 #else
85 __printf(2, 3) __cold
86 static inline
87 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
88 #endif
89
90 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \
91 do { \
92 static DEFINE_RATELIMIT_STATE(_rs, \
93 DEFAULT_RATELIMIT_INTERVAL, \
94 DEFAULT_RATELIMIT_BURST); \
95 if (__ratelimit(&_rs)) \
96 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \
97 } while (0)
98
99 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
100 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
101 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \
102 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
103 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \
104 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
105 #define ibdev_err_ratelimited(ibdev, fmt, ...) \
106 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
107 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \
108 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
109 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \
110 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
111 #define ibdev_info_ratelimited(ibdev, fmt, ...) \
112 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
113
114 #if defined(CONFIG_DYNAMIC_DEBUG) || \
115 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
116 /* descriptor check is first to prevent flooding with "callbacks suppressed" */
117 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \
118 do { \
119 static DEFINE_RATELIMIT_STATE(_rs, \
120 DEFAULT_RATELIMIT_INTERVAL, \
121 DEFAULT_RATELIMIT_BURST); \
122 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
123 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \
124 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \
125 ##__VA_ARGS__); \
126 } while (0)
127 #else
128 __printf(2, 3) __cold
129 static inline
130 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
131 #endif
132
133 union ib_gid {
134 u8 raw[16];
135 struct {
136 __be64 subnet_prefix;
137 __be64 interface_id;
138 } global;
139 };
140
141 extern union ib_gid zgid;
142
143 enum ib_gid_type {
144 IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
145 IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
146 IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
147 IB_GID_TYPE_SIZE
148 };
149
150 #define ROCE_V2_UDP_DPORT 4791
151 struct ib_gid_attr {
152 struct net_device __rcu *ndev;
153 struct ib_device *device;
154 union ib_gid gid;
155 enum ib_gid_type gid_type;
156 u16 index;
157 u32 port_num;
158 };
159
160 enum {
161 /* set the local administered indication */
162 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
163 };
164
165 enum rdma_transport_type {
166 RDMA_TRANSPORT_IB,
167 RDMA_TRANSPORT_IWARP,
168 RDMA_TRANSPORT_USNIC,
169 RDMA_TRANSPORT_USNIC_UDP,
170 RDMA_TRANSPORT_UNSPECIFIED,
171 };
172
173 enum rdma_protocol_type {
174 RDMA_PROTOCOL_IB,
175 RDMA_PROTOCOL_IBOE,
176 RDMA_PROTOCOL_IWARP,
177 RDMA_PROTOCOL_USNIC_UDP
178 };
179
180 __attribute_const__ enum rdma_transport_type
181 rdma_node_get_transport(unsigned int node_type);
182
183 enum rdma_network_type {
184 RDMA_NETWORK_IB,
185 RDMA_NETWORK_ROCE_V1,
186 RDMA_NETWORK_IPV4,
187 RDMA_NETWORK_IPV6
188 };
189
190 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
191 {
192 if (network_type == RDMA_NETWORK_IPV4 ||
193 network_type == RDMA_NETWORK_IPV6)
194 return IB_GID_TYPE_ROCE_UDP_ENCAP;
195 else if (network_type == RDMA_NETWORK_ROCE_V1)
196 return IB_GID_TYPE_ROCE;
197 else
198 return IB_GID_TYPE_IB;
199 }
200
201 static inline enum rdma_network_type
202 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
203 {
204 if (attr->gid_type == IB_GID_TYPE_IB)
205 return RDMA_NETWORK_IB;
206
207 if (attr->gid_type == IB_GID_TYPE_ROCE)
208 return RDMA_NETWORK_ROCE_V1;
209
210 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
211 return RDMA_NETWORK_IPV4;
212 else
213 return RDMA_NETWORK_IPV6;
214 }
215
216 enum rdma_link_layer {
217 IB_LINK_LAYER_UNSPECIFIED,
218 IB_LINK_LAYER_INFINIBAND,
219 IB_LINK_LAYER_ETHERNET,
220 };
221
222 enum ib_device_cap_flags {
223 IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR,
224 IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR,
225 IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR,
226 IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI,
227 IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG,
228 IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT,
229 IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE,
230 IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD,
231 IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT,
232 /* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */
233 IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT,
234 IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID,
235 IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN,
236 IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE,
237 IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ,
238
239 /* Reserved, old SEND_W_INV = 1 << 16,*/
240 IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW,
241 /*
242 * Devices should set IB_DEVICE_UD_IP_SUM if they support
243 * insertion of UDP and TCP checksum on outgoing UD IPoIB
244 * messages and can verify the validity of checksum for
245 * incoming messages. Setting this flag implies that the
246 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
247 */
248 IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM,
249 IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC,
250
251 /*
252 * This device supports the IB "base memory management extension",
253 * which includes support for fast registrations (IB_WR_REG_MR,
254 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
255 * also be set by any iWarp device which must support FRs to comply
256 * to the iWarp verbs spec. iWarp devices also support the
257 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
258 * stag.
259 */
260 IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS,
261 IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A,
262 IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B,
263 IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM,
264 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
265 IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM,
266 IB_DEVICE_MANAGED_FLOW_STEERING =
267 IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING,
268 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
269 IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS,
270 /* The device supports padding incoming writes to cacheline. */
271 IB_DEVICE_PCI_WRITE_END_PADDING =
272 IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING,
273 };
274
275 enum ib_kernel_cap_flags {
276 /*
277 * This device supports a per-device lkey or stag that can be
278 * used without performing a memory registration for the local
279 * memory. Note that ULPs should never check this flag, but
280 * instead of use the local_dma_lkey flag in the ib_pd structure,
281 * which will always contain a usable lkey.
282 */
283 IBK_LOCAL_DMA_LKEY = 1 << 0,
284 /* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */
285 IBK_INTEGRITY_HANDOVER = 1 << 1,
286 /* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */
287 IBK_ON_DEMAND_PAGING = 1 << 2,
288 /* IB_MR_TYPE_SG_GAPS is supported */
289 IBK_SG_GAPS_REG = 1 << 3,
290 /* Driver supports RDMA_NLDEV_CMD_DELLINK */
291 IBK_ALLOW_USER_UNREG = 1 << 4,
292
293 /* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */
294 IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5,
295 /* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */
296 IBK_UD_TSO = 1 << 6,
297 /* iopib will use the device ops:
298 * get_vf_config
299 * get_vf_guid
300 * get_vf_stats
301 * set_vf_guid
302 * set_vf_link_state
303 */
304 IBK_VIRTUAL_FUNCTION = 1 << 7,
305 /* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */
306 IBK_RDMA_NETDEV_OPA = 1 << 8,
307 };
308
309 enum ib_atomic_cap {
310 IB_ATOMIC_NONE,
311 IB_ATOMIC_HCA,
312 IB_ATOMIC_GLOB
313 };
314
315 enum ib_odp_general_cap_bits {
316 IB_ODP_SUPPORT = 1 << 0,
317 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
318 };
319
320 enum ib_odp_transport_cap_bits {
321 IB_ODP_SUPPORT_SEND = 1 << 0,
322 IB_ODP_SUPPORT_RECV = 1 << 1,
323 IB_ODP_SUPPORT_WRITE = 1 << 2,
324 IB_ODP_SUPPORT_READ = 1 << 3,
325 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
326 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5,
327 };
328
329 struct ib_odp_caps {
330 uint64_t general_caps;
331 struct {
332 uint32_t rc_odp_caps;
333 uint32_t uc_odp_caps;
334 uint32_t ud_odp_caps;
335 uint32_t xrc_odp_caps;
336 } per_transport_caps;
337 };
338
339 struct ib_rss_caps {
340 /* Corresponding bit will be set if qp type from
341 * 'enum ib_qp_type' is supported, e.g.
342 * supported_qpts |= 1 << IB_QPT_UD
343 */
344 u32 supported_qpts;
345 u32 max_rwq_indirection_tables;
346 u32 max_rwq_indirection_table_size;
347 };
348
349 enum ib_tm_cap_flags {
350 /* Support tag matching with rendezvous offload for RC transport */
351 IB_TM_CAP_RNDV_RC = 1 << 0,
352 };
353
354 struct ib_tm_caps {
355 /* Max size of RNDV header */
356 u32 max_rndv_hdr_size;
357 /* Max number of entries in tag matching list */
358 u32 max_num_tags;
359 /* From enum ib_tm_cap_flags */
360 u32 flags;
361 /* Max number of outstanding list operations */
362 u32 max_ops;
363 /* Max number of SGE in tag matching entry */
364 u32 max_sge;
365 };
366
367 struct ib_cq_init_attr {
368 unsigned int cqe;
369 u32 comp_vector;
370 u32 flags;
371 };
372
373 enum ib_cq_attr_mask {
374 IB_CQ_MODERATE = 1 << 0,
375 };
376
377 struct ib_cq_caps {
378 u16 max_cq_moderation_count;
379 u16 max_cq_moderation_period;
380 };
381
382 struct ib_dm_mr_attr {
383 u64 length;
384 u64 offset;
385 u32 access_flags;
386 };
387
388 struct ib_dm_alloc_attr {
389 u64 length;
390 u32 alignment;
391 u32 flags;
392 };
393
394 struct ib_device_attr {
395 u64 fw_ver;
396 __be64 sys_image_guid;
397 u64 max_mr_size;
398 u64 page_size_cap;
399 u32 vendor_id;
400 u32 vendor_part_id;
401 u32 hw_ver;
402 int max_qp;
403 int max_qp_wr;
404 u64 device_cap_flags;
405 u64 kernel_cap_flags;
406 int max_send_sge;
407 int max_recv_sge;
408 int max_sge_rd;
409 int max_cq;
410 int max_cqe;
411 int max_mr;
412 int max_pd;
413 int max_qp_rd_atom;
414 int max_ee_rd_atom;
415 int max_res_rd_atom;
416 int max_qp_init_rd_atom;
417 int max_ee_init_rd_atom;
418 enum ib_atomic_cap atomic_cap;
419 enum ib_atomic_cap masked_atomic_cap;
420 int max_ee;
421 int max_rdd;
422 int max_mw;
423 int max_raw_ipv6_qp;
424 int max_raw_ethy_qp;
425 int max_mcast_grp;
426 int max_mcast_qp_attach;
427 int max_total_mcast_qp_attach;
428 int max_ah;
429 int max_srq;
430 int max_srq_wr;
431 int max_srq_sge;
432 unsigned int max_fast_reg_page_list_len;
433 unsigned int max_pi_fast_reg_page_list_len;
434 u16 max_pkeys;
435 u8 local_ca_ack_delay;
436 int sig_prot_cap;
437 int sig_guard_cap;
438 struct ib_odp_caps odp_caps;
439 uint64_t timestamp_mask;
440 uint64_t hca_core_clock; /* in KHZ */
441 struct ib_rss_caps rss_caps;
442 u32 max_wq_type_rq;
443 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
444 struct ib_tm_caps tm_caps;
445 struct ib_cq_caps cq_caps;
446 u64 max_dm_size;
447 /* Max entries for sgl for optimized performance per READ */
448 u32 max_sgl_rd;
449 };
450
451 enum ib_mtu {
452 IB_MTU_256 = 1,
453 IB_MTU_512 = 2,
454 IB_MTU_1024 = 3,
455 IB_MTU_2048 = 4,
456 IB_MTU_4096 = 5
457 };
458
459 enum opa_mtu {
460 OPA_MTU_8192 = 6,
461 OPA_MTU_10240 = 7
462 };
463
464 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
465 {
466 switch (mtu) {
467 case IB_MTU_256: return 256;
468 case IB_MTU_512: return 512;
469 case IB_MTU_1024: return 1024;
470 case IB_MTU_2048: return 2048;
471 case IB_MTU_4096: return 4096;
472 default: return -1;
473 }
474 }
475
476 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
477 {
478 if (mtu >= 4096)
479 return IB_MTU_4096;
480 else if (mtu >= 2048)
481 return IB_MTU_2048;
482 else if (mtu >= 1024)
483 return IB_MTU_1024;
484 else if (mtu >= 512)
485 return IB_MTU_512;
486 else
487 return IB_MTU_256;
488 }
489
490 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
491 {
492 switch (mtu) {
493 case OPA_MTU_8192:
494 return 8192;
495 case OPA_MTU_10240:
496 return 10240;
497 default:
498 return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
499 }
500 }
501
502 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
503 {
504 if (mtu >= 10240)
505 return OPA_MTU_10240;
506 else if (mtu >= 8192)
507 return OPA_MTU_8192;
508 else
509 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
510 }
511
512 enum ib_port_state {
513 IB_PORT_NOP = 0,
514 IB_PORT_DOWN = 1,
515 IB_PORT_INIT = 2,
516 IB_PORT_ARMED = 3,
517 IB_PORT_ACTIVE = 4,
518 IB_PORT_ACTIVE_DEFER = 5
519 };
520
521 enum ib_port_phys_state {
522 IB_PORT_PHYS_STATE_SLEEP = 1,
523 IB_PORT_PHYS_STATE_POLLING = 2,
524 IB_PORT_PHYS_STATE_DISABLED = 3,
525 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
526 IB_PORT_PHYS_STATE_LINK_UP = 5,
527 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
528 IB_PORT_PHYS_STATE_PHY_TEST = 7,
529 };
530
531 enum ib_port_width {
532 IB_WIDTH_1X = 1,
533 IB_WIDTH_2X = 16,
534 IB_WIDTH_4X = 2,
535 IB_WIDTH_8X = 4,
536 IB_WIDTH_12X = 8
537 };
538
539 static inline int ib_width_enum_to_int(enum ib_port_width width)
540 {
541 switch (width) {
542 case IB_WIDTH_1X: return 1;
543 case IB_WIDTH_2X: return 2;
544 case IB_WIDTH_4X: return 4;
545 case IB_WIDTH_8X: return 8;
546 case IB_WIDTH_12X: return 12;
547 default: return -1;
548 }
549 }
550
551 enum ib_port_speed {
552 IB_SPEED_SDR = 1,
553 IB_SPEED_DDR = 2,
554 IB_SPEED_QDR = 4,
555 IB_SPEED_FDR10 = 8,
556 IB_SPEED_FDR = 16,
557 IB_SPEED_EDR = 32,
558 IB_SPEED_HDR = 64,
559 IB_SPEED_NDR = 128,
560 };
561
562 enum ib_stat_flag {
563 IB_STAT_FLAG_OPTIONAL = 1 << 0,
564 };
565
566 /**
567 * struct rdma_stat_desc
568 * @name - The name of the counter
569 * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL
570 * @priv - Driver private information; Core code should not use
571 */
572 struct rdma_stat_desc {
573 const char *name;
574 unsigned int flags;
575 const void *priv;
576 };
577
578 /**
579 * struct rdma_hw_stats
580 * @lock - Mutex to protect parallel write access to lifespan and values
581 * of counters, which are 64bits and not guaranteed to be written
582 * atomicaly on 32bits systems.
583 * @timestamp - Used by the core code to track when the last update was
584 * @lifespan - Used by the core code to determine how old the counters
585 * should be before being updated again. Stored in jiffies, defaults
586 * to 10 milliseconds, drivers can override the default be specifying
587 * their own value during their allocation routine.
588 * @descs - Array of pointers to static descriptors used for the counters
589 * in directory.
590 * @is_disabled - A bitmap to indicate each counter is currently disabled
591 * or not.
592 * @num_counters - How many hardware counters there are. If name is
593 * shorter than this number, a kernel oops will result. Driver authors
594 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
595 * in their code to prevent this.
596 * @value - Array of u64 counters that are accessed by the sysfs code and
597 * filled in by the drivers get_stats routine
598 */
599 struct rdma_hw_stats {
600 struct mutex lock; /* Protect lifespan and values[] */
601 unsigned long timestamp;
602 unsigned long lifespan;
603 const struct rdma_stat_desc *descs;
604 unsigned long *is_disabled;
605 int num_counters;
606 u64 value[];
607 };
608
609 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
610
611 struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
612 const struct rdma_stat_desc *descs, int num_counters,
613 unsigned long lifespan);
614
615 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats);
616
617 /* Define bits for the various functionality this port needs to be supported by
618 * the core.
619 */
620 /* Management 0x00000FFF */
621 #define RDMA_CORE_CAP_IB_MAD 0x00000001
622 #define RDMA_CORE_CAP_IB_SMI 0x00000002
623 #define RDMA_CORE_CAP_IB_CM 0x00000004
624 #define RDMA_CORE_CAP_IW_CM 0x00000008
625 #define RDMA_CORE_CAP_IB_SA 0x00000010
626 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
627
628 /* Address format 0x000FF000 */
629 #define RDMA_CORE_CAP_AF_IB 0x00001000
630 #define RDMA_CORE_CAP_ETH_AH 0x00002000
631 #define RDMA_CORE_CAP_OPA_AH 0x00004000
632 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
633
634 /* Protocol 0xFFF00000 */
635 #define RDMA_CORE_CAP_PROT_IB 0x00100000
636 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
637 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
638 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
639 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
640 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000
641
642 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
643 | RDMA_CORE_CAP_PROT_ROCE \
644 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
645
646 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
647 | RDMA_CORE_CAP_IB_MAD \
648 | RDMA_CORE_CAP_IB_SMI \
649 | RDMA_CORE_CAP_IB_CM \
650 | RDMA_CORE_CAP_IB_SA \
651 | RDMA_CORE_CAP_AF_IB)
652 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
653 | RDMA_CORE_CAP_IB_MAD \
654 | RDMA_CORE_CAP_IB_CM \
655 | RDMA_CORE_CAP_AF_IB \
656 | RDMA_CORE_CAP_ETH_AH)
657 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
658 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
659 | RDMA_CORE_CAP_IB_MAD \
660 | RDMA_CORE_CAP_IB_CM \
661 | RDMA_CORE_CAP_AF_IB \
662 | RDMA_CORE_CAP_ETH_AH)
663 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
664 | RDMA_CORE_CAP_IW_CM)
665 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
666 | RDMA_CORE_CAP_OPA_MAD)
667
668 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
669
670 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
671
672 struct ib_port_attr {
673 u64 subnet_prefix;
674 enum ib_port_state state;
675 enum ib_mtu max_mtu;
676 enum ib_mtu active_mtu;
677 u32 phys_mtu;
678 int gid_tbl_len;
679 unsigned int ip_gids:1;
680 /* This is the value from PortInfo CapabilityMask, defined by IBA */
681 u32 port_cap_flags;
682 u32 max_msg_sz;
683 u32 bad_pkey_cntr;
684 u32 qkey_viol_cntr;
685 u16 pkey_tbl_len;
686 u32 sm_lid;
687 u32 lid;
688 u8 lmc;
689 u8 max_vl_num;
690 u8 sm_sl;
691 u8 subnet_timeout;
692 u8 init_type_reply;
693 u8 active_width;
694 u16 active_speed;
695 u8 phys_state;
696 u16 port_cap_flags2;
697 };
698
699 enum ib_device_modify_flags {
700 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
701 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
702 };
703
704 #define IB_DEVICE_NODE_DESC_MAX 64
705
706 struct ib_device_modify {
707 u64 sys_image_guid;
708 char node_desc[IB_DEVICE_NODE_DESC_MAX];
709 };
710
711 enum ib_port_modify_flags {
712 IB_PORT_SHUTDOWN = 1,
713 IB_PORT_INIT_TYPE = (1<<2),
714 IB_PORT_RESET_QKEY_CNTR = (1<<3),
715 IB_PORT_OPA_MASK_CHG = (1<<4)
716 };
717
718 struct ib_port_modify {
719 u32 set_port_cap_mask;
720 u32 clr_port_cap_mask;
721 u8 init_type;
722 };
723
724 enum ib_event_type {
725 IB_EVENT_CQ_ERR,
726 IB_EVENT_QP_FATAL,
727 IB_EVENT_QP_REQ_ERR,
728 IB_EVENT_QP_ACCESS_ERR,
729 IB_EVENT_COMM_EST,
730 IB_EVENT_SQ_DRAINED,
731 IB_EVENT_PATH_MIG,
732 IB_EVENT_PATH_MIG_ERR,
733 IB_EVENT_DEVICE_FATAL,
734 IB_EVENT_PORT_ACTIVE,
735 IB_EVENT_PORT_ERR,
736 IB_EVENT_LID_CHANGE,
737 IB_EVENT_PKEY_CHANGE,
738 IB_EVENT_SM_CHANGE,
739 IB_EVENT_SRQ_ERR,
740 IB_EVENT_SRQ_LIMIT_REACHED,
741 IB_EVENT_QP_LAST_WQE_REACHED,
742 IB_EVENT_CLIENT_REREGISTER,
743 IB_EVENT_GID_CHANGE,
744 IB_EVENT_WQ_FATAL,
745 };
746
747 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
748
749 struct ib_event {
750 struct ib_device *device;
751 union {
752 struct ib_cq *cq;
753 struct ib_qp *qp;
754 struct ib_srq *srq;
755 struct ib_wq *wq;
756 u32 port_num;
757 } element;
758 enum ib_event_type event;
759 };
760
761 struct ib_event_handler {
762 struct ib_device *device;
763 void (*handler)(struct ib_event_handler *, struct ib_event *);
764 struct list_head list;
765 };
766
767 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
768 do { \
769 (_ptr)->device = _device; \
770 (_ptr)->handler = _handler; \
771 INIT_LIST_HEAD(&(_ptr)->list); \
772 } while (0)
773
774 struct ib_global_route {
775 const struct ib_gid_attr *sgid_attr;
776 union ib_gid dgid;
777 u32 flow_label;
778 u8 sgid_index;
779 u8 hop_limit;
780 u8 traffic_class;
781 };
782
783 struct ib_grh {
784 __be32 version_tclass_flow;
785 __be16 paylen;
786 u8 next_hdr;
787 u8 hop_limit;
788 union ib_gid sgid;
789 union ib_gid dgid;
790 };
791
792 union rdma_network_hdr {
793 struct ib_grh ibgrh;
794 struct {
795 /* The IB spec states that if it's IPv4, the header
796 * is located in the last 20 bytes of the header.
797 */
798 u8 reserved[20];
799 struct iphdr roce4grh;
800 };
801 };
802
803 #define IB_QPN_MASK 0xFFFFFF
804
805 enum {
806 IB_MULTICAST_QPN = 0xffffff
807 };
808
809 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
810 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
811
812 enum ib_ah_flags {
813 IB_AH_GRH = 1
814 };
815
816 enum ib_rate {
817 IB_RATE_PORT_CURRENT = 0,
818 IB_RATE_2_5_GBPS = 2,
819 IB_RATE_5_GBPS = 5,
820 IB_RATE_10_GBPS = 3,
821 IB_RATE_20_GBPS = 6,
822 IB_RATE_30_GBPS = 4,
823 IB_RATE_40_GBPS = 7,
824 IB_RATE_60_GBPS = 8,
825 IB_RATE_80_GBPS = 9,
826 IB_RATE_120_GBPS = 10,
827 IB_RATE_14_GBPS = 11,
828 IB_RATE_56_GBPS = 12,
829 IB_RATE_112_GBPS = 13,
830 IB_RATE_168_GBPS = 14,
831 IB_RATE_25_GBPS = 15,
832 IB_RATE_100_GBPS = 16,
833 IB_RATE_200_GBPS = 17,
834 IB_RATE_300_GBPS = 18,
835 IB_RATE_28_GBPS = 19,
836 IB_RATE_50_GBPS = 20,
837 IB_RATE_400_GBPS = 21,
838 IB_RATE_600_GBPS = 22,
839 };
840
841 /**
842 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
843 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
844 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
845 * @rate: rate to convert.
846 */
847 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
848
849 /**
850 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
851 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
852 * @rate: rate to convert.
853 */
854 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
855
856
857 /**
858 * enum ib_mr_type - memory region type
859 * @IB_MR_TYPE_MEM_REG: memory region that is used for
860 * normal registration
861 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
862 * register any arbitrary sg lists (without
863 * the normal mr constraints - see
864 * ib_map_mr_sg)
865 * @IB_MR_TYPE_DM: memory region that is used for device
866 * memory registration
867 * @IB_MR_TYPE_USER: memory region that is used for the user-space
868 * application
869 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations
870 * without address translations (VA=PA)
871 * @IB_MR_TYPE_INTEGRITY: memory region that is used for
872 * data integrity operations
873 */
874 enum ib_mr_type {
875 IB_MR_TYPE_MEM_REG,
876 IB_MR_TYPE_SG_GAPS,
877 IB_MR_TYPE_DM,
878 IB_MR_TYPE_USER,
879 IB_MR_TYPE_DMA,
880 IB_MR_TYPE_INTEGRITY,
881 };
882
883 enum ib_mr_status_check {
884 IB_MR_CHECK_SIG_STATUS = 1,
885 };
886
887 /**
888 * struct ib_mr_status - Memory region status container
889 *
890 * @fail_status: Bitmask of MR checks status. For each
891 * failed check a corresponding status bit is set.
892 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
893 * failure.
894 */
895 struct ib_mr_status {
896 u32 fail_status;
897 struct ib_sig_err sig_err;
898 };
899
900 /**
901 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
902 * enum.
903 * @mult: multiple to convert.
904 */
905 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
906
907 struct rdma_ah_init_attr {
908 struct rdma_ah_attr *ah_attr;
909 u32 flags;
910 struct net_device *xmit_slave;
911 };
912
913 enum rdma_ah_attr_type {
914 RDMA_AH_ATTR_TYPE_UNDEFINED,
915 RDMA_AH_ATTR_TYPE_IB,
916 RDMA_AH_ATTR_TYPE_ROCE,
917 RDMA_AH_ATTR_TYPE_OPA,
918 };
919
920 struct ib_ah_attr {
921 u16 dlid;
922 u8 src_path_bits;
923 };
924
925 struct roce_ah_attr {
926 u8 dmac[ETH_ALEN];
927 };
928
929 struct opa_ah_attr {
930 u32 dlid;
931 u8 src_path_bits;
932 bool make_grd;
933 };
934
935 struct rdma_ah_attr {
936 struct ib_global_route grh;
937 u8 sl;
938 u8 static_rate;
939 u32 port_num;
940 u8 ah_flags;
941 enum rdma_ah_attr_type type;
942 union {
943 struct ib_ah_attr ib;
944 struct roce_ah_attr roce;
945 struct opa_ah_attr opa;
946 };
947 };
948
949 enum ib_wc_status {
950 IB_WC_SUCCESS,
951 IB_WC_LOC_LEN_ERR,
952 IB_WC_LOC_QP_OP_ERR,
953 IB_WC_LOC_EEC_OP_ERR,
954 IB_WC_LOC_PROT_ERR,
955 IB_WC_WR_FLUSH_ERR,
956 IB_WC_MW_BIND_ERR,
957 IB_WC_BAD_RESP_ERR,
958 IB_WC_LOC_ACCESS_ERR,
959 IB_WC_REM_INV_REQ_ERR,
960 IB_WC_REM_ACCESS_ERR,
961 IB_WC_REM_OP_ERR,
962 IB_WC_RETRY_EXC_ERR,
963 IB_WC_RNR_RETRY_EXC_ERR,
964 IB_WC_LOC_RDD_VIOL_ERR,
965 IB_WC_REM_INV_RD_REQ_ERR,
966 IB_WC_REM_ABORT_ERR,
967 IB_WC_INV_EECN_ERR,
968 IB_WC_INV_EEC_STATE_ERR,
969 IB_WC_FATAL_ERR,
970 IB_WC_RESP_TIMEOUT_ERR,
971 IB_WC_GENERAL_ERR
972 };
973
974 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
975
976 enum ib_wc_opcode {
977 IB_WC_SEND = IB_UVERBS_WC_SEND,
978 IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
979 IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
980 IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
981 IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
982 IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
983 IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
984 IB_WC_LSO = IB_UVERBS_WC_TSO,
985 IB_WC_REG_MR,
986 IB_WC_MASKED_COMP_SWAP,
987 IB_WC_MASKED_FETCH_ADD,
988 /*
989 * Set value of IB_WC_RECV so consumers can test if a completion is a
990 * receive by testing (opcode & IB_WC_RECV).
991 */
992 IB_WC_RECV = 1 << 7,
993 IB_WC_RECV_RDMA_WITH_IMM
994 };
995
996 enum ib_wc_flags {
997 IB_WC_GRH = 1,
998 IB_WC_WITH_IMM = (1<<1),
999 IB_WC_WITH_INVALIDATE = (1<<2),
1000 IB_WC_IP_CSUM_OK = (1<<3),
1001 IB_WC_WITH_SMAC = (1<<4),
1002 IB_WC_WITH_VLAN = (1<<5),
1003 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1004 };
1005
1006 struct ib_wc {
1007 union {
1008 u64 wr_id;
1009 struct ib_cqe *wr_cqe;
1010 };
1011 enum ib_wc_status status;
1012 enum ib_wc_opcode opcode;
1013 u32 vendor_err;
1014 u32 byte_len;
1015 struct ib_qp *qp;
1016 union {
1017 __be32 imm_data;
1018 u32 invalidate_rkey;
1019 } ex;
1020 u32 src_qp;
1021 u32 slid;
1022 int wc_flags;
1023 u16 pkey_index;
1024 u8 sl;
1025 u8 dlid_path_bits;
1026 u32 port_num; /* valid only for DR SMPs on switches */
1027 u8 smac[ETH_ALEN];
1028 u16 vlan_id;
1029 u8 network_hdr_type;
1030 };
1031
1032 enum ib_cq_notify_flags {
1033 IB_CQ_SOLICITED = 1 << 0,
1034 IB_CQ_NEXT_COMP = 1 << 1,
1035 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1036 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1037 };
1038
1039 enum ib_srq_type {
1040 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1041 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1042 IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1043 };
1044
1045 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1046 {
1047 return srq_type == IB_SRQT_XRC ||
1048 srq_type == IB_SRQT_TM;
1049 }
1050
1051 enum ib_srq_attr_mask {
1052 IB_SRQ_MAX_WR = 1 << 0,
1053 IB_SRQ_LIMIT = 1 << 1,
1054 };
1055
1056 struct ib_srq_attr {
1057 u32 max_wr;
1058 u32 max_sge;
1059 u32 srq_limit;
1060 };
1061
1062 struct ib_srq_init_attr {
1063 void (*event_handler)(struct ib_event *, void *);
1064 void *srq_context;
1065 struct ib_srq_attr attr;
1066 enum ib_srq_type srq_type;
1067
1068 struct {
1069 struct ib_cq *cq;
1070 union {
1071 struct {
1072 struct ib_xrcd *xrcd;
1073 } xrc;
1074
1075 struct {
1076 u32 max_num_tags;
1077 } tag_matching;
1078 };
1079 } ext;
1080 };
1081
1082 struct ib_qp_cap {
1083 u32 max_send_wr;
1084 u32 max_recv_wr;
1085 u32 max_send_sge;
1086 u32 max_recv_sge;
1087 u32 max_inline_data;
1088
1089 /*
1090 * Maximum number of rdma_rw_ctx structures in flight at a time.
1091 * ib_create_qp() will calculate the right amount of neededed WRs
1092 * and MRs based on this.
1093 */
1094 u32 max_rdma_ctxs;
1095 };
1096
1097 enum ib_sig_type {
1098 IB_SIGNAL_ALL_WR,
1099 IB_SIGNAL_REQ_WR
1100 };
1101
1102 enum ib_qp_type {
1103 /*
1104 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1105 * here (and in that order) since the MAD layer uses them as
1106 * indices into a 2-entry table.
1107 */
1108 IB_QPT_SMI,
1109 IB_QPT_GSI,
1110
1111 IB_QPT_RC = IB_UVERBS_QPT_RC,
1112 IB_QPT_UC = IB_UVERBS_QPT_UC,
1113 IB_QPT_UD = IB_UVERBS_QPT_UD,
1114 IB_QPT_RAW_IPV6,
1115 IB_QPT_RAW_ETHERTYPE,
1116 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1117 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1118 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1119 IB_QPT_MAX,
1120 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1121 /* Reserve a range for qp types internal to the low level driver.
1122 * These qp types will not be visible at the IB core layer, so the
1123 * IB_QPT_MAX usages should not be affected in the core layer
1124 */
1125 IB_QPT_RESERVED1 = 0x1000,
1126 IB_QPT_RESERVED2,
1127 IB_QPT_RESERVED3,
1128 IB_QPT_RESERVED4,
1129 IB_QPT_RESERVED5,
1130 IB_QPT_RESERVED6,
1131 IB_QPT_RESERVED7,
1132 IB_QPT_RESERVED8,
1133 IB_QPT_RESERVED9,
1134 IB_QPT_RESERVED10,
1135 };
1136
1137 enum ib_qp_create_flags {
1138 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1139 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK =
1140 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1141 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1142 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1143 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1144 IB_QP_CREATE_NETIF_QP = 1 << 5,
1145 IB_QP_CREATE_INTEGRITY_EN = 1 << 6,
1146 IB_QP_CREATE_NETDEV_USE = 1 << 7,
1147 IB_QP_CREATE_SCATTER_FCS =
1148 IB_UVERBS_QP_CREATE_SCATTER_FCS,
1149 IB_QP_CREATE_CVLAN_STRIPPING =
1150 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1151 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
1152 IB_QP_CREATE_PCI_WRITE_END_PADDING =
1153 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1154 /* reserve bits 26-31 for low level drivers' internal use */
1155 IB_QP_CREATE_RESERVED_START = 1 << 26,
1156 IB_QP_CREATE_RESERVED_END = 1 << 31,
1157 };
1158
1159 /*
1160 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1161 * callback to destroy the passed in QP.
1162 */
1163
1164 struct ib_qp_init_attr {
1165 /* Consumer's event_handler callback must not block */
1166 void (*event_handler)(struct ib_event *, void *);
1167
1168 void *qp_context;
1169 struct ib_cq *send_cq;
1170 struct ib_cq *recv_cq;
1171 struct ib_srq *srq;
1172 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1173 struct ib_qp_cap cap;
1174 enum ib_sig_type sq_sig_type;
1175 enum ib_qp_type qp_type;
1176 u32 create_flags;
1177
1178 /*
1179 * Only needed for special QP types, or when using the RW API.
1180 */
1181 u32 port_num;
1182 struct ib_rwq_ind_table *rwq_ind_tbl;
1183 u32 source_qpn;
1184 };
1185
1186 struct ib_qp_open_attr {
1187 void (*event_handler)(struct ib_event *, void *);
1188 void *qp_context;
1189 u32 qp_num;
1190 enum ib_qp_type qp_type;
1191 };
1192
1193 enum ib_rnr_timeout {
1194 IB_RNR_TIMER_655_36 = 0,
1195 IB_RNR_TIMER_000_01 = 1,
1196 IB_RNR_TIMER_000_02 = 2,
1197 IB_RNR_TIMER_000_03 = 3,
1198 IB_RNR_TIMER_000_04 = 4,
1199 IB_RNR_TIMER_000_06 = 5,
1200 IB_RNR_TIMER_000_08 = 6,
1201 IB_RNR_TIMER_000_12 = 7,
1202 IB_RNR_TIMER_000_16 = 8,
1203 IB_RNR_TIMER_000_24 = 9,
1204 IB_RNR_TIMER_000_32 = 10,
1205 IB_RNR_TIMER_000_48 = 11,
1206 IB_RNR_TIMER_000_64 = 12,
1207 IB_RNR_TIMER_000_96 = 13,
1208 IB_RNR_TIMER_001_28 = 14,
1209 IB_RNR_TIMER_001_92 = 15,
1210 IB_RNR_TIMER_002_56 = 16,
1211 IB_RNR_TIMER_003_84 = 17,
1212 IB_RNR_TIMER_005_12 = 18,
1213 IB_RNR_TIMER_007_68 = 19,
1214 IB_RNR_TIMER_010_24 = 20,
1215 IB_RNR_TIMER_015_36 = 21,
1216 IB_RNR_TIMER_020_48 = 22,
1217 IB_RNR_TIMER_030_72 = 23,
1218 IB_RNR_TIMER_040_96 = 24,
1219 IB_RNR_TIMER_061_44 = 25,
1220 IB_RNR_TIMER_081_92 = 26,
1221 IB_RNR_TIMER_122_88 = 27,
1222 IB_RNR_TIMER_163_84 = 28,
1223 IB_RNR_TIMER_245_76 = 29,
1224 IB_RNR_TIMER_327_68 = 30,
1225 IB_RNR_TIMER_491_52 = 31
1226 };
1227
1228 enum ib_qp_attr_mask {
1229 IB_QP_STATE = 1,
1230 IB_QP_CUR_STATE = (1<<1),
1231 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1232 IB_QP_ACCESS_FLAGS = (1<<3),
1233 IB_QP_PKEY_INDEX = (1<<4),
1234 IB_QP_PORT = (1<<5),
1235 IB_QP_QKEY = (1<<6),
1236 IB_QP_AV = (1<<7),
1237 IB_QP_PATH_MTU = (1<<8),
1238 IB_QP_TIMEOUT = (1<<9),
1239 IB_QP_RETRY_CNT = (1<<10),
1240 IB_QP_RNR_RETRY = (1<<11),
1241 IB_QP_RQ_PSN = (1<<12),
1242 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1243 IB_QP_ALT_PATH = (1<<14),
1244 IB_QP_MIN_RNR_TIMER = (1<<15),
1245 IB_QP_SQ_PSN = (1<<16),
1246 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1247 IB_QP_PATH_MIG_STATE = (1<<18),
1248 IB_QP_CAP = (1<<19),
1249 IB_QP_DEST_QPN = (1<<20),
1250 IB_QP_RESERVED1 = (1<<21),
1251 IB_QP_RESERVED2 = (1<<22),
1252 IB_QP_RESERVED3 = (1<<23),
1253 IB_QP_RESERVED4 = (1<<24),
1254 IB_QP_RATE_LIMIT = (1<<25),
1255
1256 IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1257 };
1258
1259 enum ib_qp_state {
1260 IB_QPS_RESET,
1261 IB_QPS_INIT,
1262 IB_QPS_RTR,
1263 IB_QPS_RTS,
1264 IB_QPS_SQD,
1265 IB_QPS_SQE,
1266 IB_QPS_ERR
1267 };
1268
1269 enum ib_mig_state {
1270 IB_MIG_MIGRATED,
1271 IB_MIG_REARM,
1272 IB_MIG_ARMED
1273 };
1274
1275 enum ib_mw_type {
1276 IB_MW_TYPE_1 = 1,
1277 IB_MW_TYPE_2 = 2
1278 };
1279
1280 struct ib_qp_attr {
1281 enum ib_qp_state qp_state;
1282 enum ib_qp_state cur_qp_state;
1283 enum ib_mtu path_mtu;
1284 enum ib_mig_state path_mig_state;
1285 u32 qkey;
1286 u32 rq_psn;
1287 u32 sq_psn;
1288 u32 dest_qp_num;
1289 int qp_access_flags;
1290 struct ib_qp_cap cap;
1291 struct rdma_ah_attr ah_attr;
1292 struct rdma_ah_attr alt_ah_attr;
1293 u16 pkey_index;
1294 u16 alt_pkey_index;
1295 u8 en_sqd_async_notify;
1296 u8 sq_draining;
1297 u8 max_rd_atomic;
1298 u8 max_dest_rd_atomic;
1299 u8 min_rnr_timer;
1300 u32 port_num;
1301 u8 timeout;
1302 u8 retry_cnt;
1303 u8 rnr_retry;
1304 u32 alt_port_num;
1305 u8 alt_timeout;
1306 u32 rate_limit;
1307 struct net_device *xmit_slave;
1308 };
1309
1310 enum ib_wr_opcode {
1311 /* These are shared with userspace */
1312 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1313 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1314 IB_WR_SEND = IB_UVERBS_WR_SEND,
1315 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1316 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1317 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1318 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1319 IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1320 IB_WR_LSO = IB_UVERBS_WR_TSO,
1321 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1322 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1323 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1324 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1325 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1326 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1327 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1328
1329 /* These are kernel only and can not be issued by userspace */
1330 IB_WR_REG_MR = 0x20,
1331 IB_WR_REG_MR_INTEGRITY,
1332
1333 /* reserve values for low level drivers' internal use.
1334 * These values will not be used at all in the ib core layer.
1335 */
1336 IB_WR_RESERVED1 = 0xf0,
1337 IB_WR_RESERVED2,
1338 IB_WR_RESERVED3,
1339 IB_WR_RESERVED4,
1340 IB_WR_RESERVED5,
1341 IB_WR_RESERVED6,
1342 IB_WR_RESERVED7,
1343 IB_WR_RESERVED8,
1344 IB_WR_RESERVED9,
1345 IB_WR_RESERVED10,
1346 };
1347
1348 enum ib_send_flags {
1349 IB_SEND_FENCE = 1,
1350 IB_SEND_SIGNALED = (1<<1),
1351 IB_SEND_SOLICITED = (1<<2),
1352 IB_SEND_INLINE = (1<<3),
1353 IB_SEND_IP_CSUM = (1<<4),
1354
1355 /* reserve bits 26-31 for low level drivers' internal use */
1356 IB_SEND_RESERVED_START = (1 << 26),
1357 IB_SEND_RESERVED_END = (1 << 31),
1358 };
1359
1360 struct ib_sge {
1361 u64 addr;
1362 u32 length;
1363 u32 lkey;
1364 };
1365
1366 struct ib_cqe {
1367 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1368 };
1369
1370 struct ib_send_wr {
1371 struct ib_send_wr *next;
1372 union {
1373 u64 wr_id;
1374 struct ib_cqe *wr_cqe;
1375 };
1376 struct ib_sge *sg_list;
1377 int num_sge;
1378 enum ib_wr_opcode opcode;
1379 int send_flags;
1380 union {
1381 __be32 imm_data;
1382 u32 invalidate_rkey;
1383 } ex;
1384 };
1385
1386 struct ib_rdma_wr {
1387 struct ib_send_wr wr;
1388 u64 remote_addr;
1389 u32 rkey;
1390 };
1391
1392 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1393 {
1394 return container_of(wr, struct ib_rdma_wr, wr);
1395 }
1396
1397 struct ib_atomic_wr {
1398 struct ib_send_wr wr;
1399 u64 remote_addr;
1400 u64 compare_add;
1401 u64 swap;
1402 u64 compare_add_mask;
1403 u64 swap_mask;
1404 u32 rkey;
1405 };
1406
1407 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1408 {
1409 return container_of(wr, struct ib_atomic_wr, wr);
1410 }
1411
1412 struct ib_ud_wr {
1413 struct ib_send_wr wr;
1414 struct ib_ah *ah;
1415 void *header;
1416 int hlen;
1417 int mss;
1418 u32 remote_qpn;
1419 u32 remote_qkey;
1420 u16 pkey_index; /* valid for GSI only */
1421 u32 port_num; /* valid for DR SMPs on switch only */
1422 };
1423
1424 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1425 {
1426 return container_of(wr, struct ib_ud_wr, wr);
1427 }
1428
1429 struct ib_reg_wr {
1430 struct ib_send_wr wr;
1431 struct ib_mr *mr;
1432 u32 key;
1433 int access;
1434 };
1435
1436 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1437 {
1438 return container_of(wr, struct ib_reg_wr, wr);
1439 }
1440
1441 struct ib_recv_wr {
1442 struct ib_recv_wr *next;
1443 union {
1444 u64 wr_id;
1445 struct ib_cqe *wr_cqe;
1446 };
1447 struct ib_sge *sg_list;
1448 int num_sge;
1449 };
1450
1451 enum ib_access_flags {
1452 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1453 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1454 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1455 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1456 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1457 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1458 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1459 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1460 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1461
1462 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1463 IB_ACCESS_SUPPORTED =
1464 ((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL,
1465 };
1466
1467 /*
1468 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1469 * are hidden here instead of a uapi header!
1470 */
1471 enum ib_mr_rereg_flags {
1472 IB_MR_REREG_TRANS = 1,
1473 IB_MR_REREG_PD = (1<<1),
1474 IB_MR_REREG_ACCESS = (1<<2),
1475 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1476 };
1477
1478 struct ib_umem;
1479
1480 enum rdma_remove_reason {
1481 /*
1482 * Userspace requested uobject deletion or initial try
1483 * to remove uobject via cleanup. Call could fail
1484 */
1485 RDMA_REMOVE_DESTROY,
1486 /* Context deletion. This call should delete the actual object itself */
1487 RDMA_REMOVE_CLOSE,
1488 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1489 RDMA_REMOVE_DRIVER_REMOVE,
1490 /* uobj is being cleaned-up before being committed */
1491 RDMA_REMOVE_ABORT,
1492 /* The driver failed to destroy the uobject and is being disconnected */
1493 RDMA_REMOVE_DRIVER_FAILURE,
1494 };
1495
1496 struct ib_rdmacg_object {
1497 #ifdef CONFIG_CGROUP_RDMA
1498 struct rdma_cgroup *cg; /* owner rdma cgroup */
1499 #endif
1500 };
1501
1502 struct ib_ucontext {
1503 struct ib_device *device;
1504 struct ib_uverbs_file *ufile;
1505
1506 struct ib_rdmacg_object cg_obj;
1507 /*
1508 * Implementation details of the RDMA core, don't use in drivers:
1509 */
1510 struct rdma_restrack_entry res;
1511 struct xarray mmap_xa;
1512 };
1513
1514 struct ib_uobject {
1515 u64 user_handle; /* handle given to us by userspace */
1516 /* ufile & ucontext owning this object */
1517 struct ib_uverbs_file *ufile;
1518 /* FIXME, save memory: ufile->context == context */
1519 struct ib_ucontext *context; /* associated user context */
1520 void *object; /* containing object */
1521 struct list_head list; /* link to context's list */
1522 struct ib_rdmacg_object cg_obj; /* rdmacg object */
1523 int id; /* index into kernel idr */
1524 struct kref ref;
1525 atomic_t usecnt; /* protects exclusive access */
1526 struct rcu_head rcu; /* kfree_rcu() overhead */
1527
1528 const struct uverbs_api_object *uapi_object;
1529 };
1530
1531 struct ib_udata {
1532 const void __user *inbuf;
1533 void __user *outbuf;
1534 size_t inlen;
1535 size_t outlen;
1536 };
1537
1538 struct ib_pd {
1539 u32 local_dma_lkey;
1540 u32 flags;
1541 struct ib_device *device;
1542 struct ib_uobject *uobject;
1543 atomic_t usecnt; /* count all resources */
1544
1545 u32 unsafe_global_rkey;
1546
1547 /*
1548 * Implementation details of the RDMA core, don't use in drivers:
1549 */
1550 struct ib_mr *__internal_mr;
1551 struct rdma_restrack_entry res;
1552 };
1553
1554 struct ib_xrcd {
1555 struct ib_device *device;
1556 atomic_t usecnt; /* count all exposed resources */
1557 struct inode *inode;
1558 struct rw_semaphore tgt_qps_rwsem;
1559 struct xarray tgt_qps;
1560 };
1561
1562 struct ib_ah {
1563 struct ib_device *device;
1564 struct ib_pd *pd;
1565 struct ib_uobject *uobject;
1566 const struct ib_gid_attr *sgid_attr;
1567 enum rdma_ah_attr_type type;
1568 };
1569
1570 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1571
1572 enum ib_poll_context {
1573 IB_POLL_SOFTIRQ, /* poll from softirq context */
1574 IB_POLL_WORKQUEUE, /* poll from workqueue */
1575 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1576 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1577
1578 IB_POLL_DIRECT, /* caller context, no hw completions */
1579 };
1580
1581 struct ib_cq {
1582 struct ib_device *device;
1583 struct ib_ucq_object *uobject;
1584 ib_comp_handler comp_handler;
1585 void (*event_handler)(struct ib_event *, void *);
1586 void *cq_context;
1587 int cqe;
1588 unsigned int cqe_used;
1589 atomic_t usecnt; /* count number of work queues */
1590 enum ib_poll_context poll_ctx;
1591 struct ib_wc *wc;
1592 struct list_head pool_entry;
1593 union {
1594 struct irq_poll iop;
1595 struct work_struct work;
1596 };
1597 struct workqueue_struct *comp_wq;
1598 struct dim *dim;
1599
1600 /* updated only by trace points */
1601 ktime_t timestamp;
1602 u8 interrupt:1;
1603 u8 shared:1;
1604 unsigned int comp_vector;
1605
1606 /*
1607 * Implementation details of the RDMA core, don't use in drivers:
1608 */
1609 struct rdma_restrack_entry res;
1610 };
1611
1612 struct ib_srq {
1613 struct ib_device *device;
1614 struct ib_pd *pd;
1615 struct ib_usrq_object *uobject;
1616 void (*event_handler)(struct ib_event *, void *);
1617 void *srq_context;
1618 enum ib_srq_type srq_type;
1619 atomic_t usecnt;
1620
1621 struct {
1622 struct ib_cq *cq;
1623 union {
1624 struct {
1625 struct ib_xrcd *xrcd;
1626 u32 srq_num;
1627 } xrc;
1628 };
1629 } ext;
1630
1631 /*
1632 * Implementation details of the RDMA core, don't use in drivers:
1633 */
1634 struct rdma_restrack_entry res;
1635 };
1636
1637 enum ib_raw_packet_caps {
1638 /*
1639 * Strip cvlan from incoming packet and report it in the matching work
1640 * completion is supported.
1641 */
1642 IB_RAW_PACKET_CAP_CVLAN_STRIPPING =
1643 IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING,
1644 /*
1645 * Scatter FCS field of an incoming packet to host memory is supported.
1646 */
1647 IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS,
1648 /* Checksum offloads are supported (for both send and receive). */
1649 IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM,
1650 /*
1651 * When a packet is received for an RQ with no receive WQEs, the
1652 * packet processing is delayed.
1653 */
1654 IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP,
1655 };
1656
1657 enum ib_wq_type {
1658 IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1659 };
1660
1661 enum ib_wq_state {
1662 IB_WQS_RESET,
1663 IB_WQS_RDY,
1664 IB_WQS_ERR
1665 };
1666
1667 struct ib_wq {
1668 struct ib_device *device;
1669 struct ib_uwq_object *uobject;
1670 void *wq_context;
1671 void (*event_handler)(struct ib_event *, void *);
1672 struct ib_pd *pd;
1673 struct ib_cq *cq;
1674 u32 wq_num;
1675 enum ib_wq_state state;
1676 enum ib_wq_type wq_type;
1677 atomic_t usecnt;
1678 };
1679
1680 enum ib_wq_flags {
1681 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1682 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1683 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1684 IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1685 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1686 };
1687
1688 struct ib_wq_init_attr {
1689 void *wq_context;
1690 enum ib_wq_type wq_type;
1691 u32 max_wr;
1692 u32 max_sge;
1693 struct ib_cq *cq;
1694 void (*event_handler)(struct ib_event *, void *);
1695 u32 create_flags; /* Use enum ib_wq_flags */
1696 };
1697
1698 enum ib_wq_attr_mask {
1699 IB_WQ_STATE = 1 << 0,
1700 IB_WQ_CUR_STATE = 1 << 1,
1701 IB_WQ_FLAGS = 1 << 2,
1702 };
1703
1704 struct ib_wq_attr {
1705 enum ib_wq_state wq_state;
1706 enum ib_wq_state curr_wq_state;
1707 u32 flags; /* Use enum ib_wq_flags */
1708 u32 flags_mask; /* Use enum ib_wq_flags */
1709 };
1710
1711 struct ib_rwq_ind_table {
1712 struct ib_device *device;
1713 struct ib_uobject *uobject;
1714 atomic_t usecnt;
1715 u32 ind_tbl_num;
1716 u32 log_ind_tbl_size;
1717 struct ib_wq **ind_tbl;
1718 };
1719
1720 struct ib_rwq_ind_table_init_attr {
1721 u32 log_ind_tbl_size;
1722 /* Each entry is a pointer to Receive Work Queue */
1723 struct ib_wq **ind_tbl;
1724 };
1725
1726 enum port_pkey_state {
1727 IB_PORT_PKEY_NOT_VALID = 0,
1728 IB_PORT_PKEY_VALID = 1,
1729 IB_PORT_PKEY_LISTED = 2,
1730 };
1731
1732 struct ib_qp_security;
1733
1734 struct ib_port_pkey {
1735 enum port_pkey_state state;
1736 u16 pkey_index;
1737 u32 port_num;
1738 struct list_head qp_list;
1739 struct list_head to_error_list;
1740 struct ib_qp_security *sec;
1741 };
1742
1743 struct ib_ports_pkeys {
1744 struct ib_port_pkey main;
1745 struct ib_port_pkey alt;
1746 };
1747
1748 struct ib_qp_security {
1749 struct ib_qp *qp;
1750 struct ib_device *dev;
1751 /* Hold this mutex when changing port and pkey settings. */
1752 struct mutex mutex;
1753 struct ib_ports_pkeys *ports_pkeys;
1754 /* A list of all open shared QP handles. Required to enforce security
1755 * properly for all users of a shared QP.
1756 */
1757 struct list_head shared_qp_list;
1758 void *security;
1759 bool destroying;
1760 atomic_t error_list_count;
1761 struct completion error_complete;
1762 int error_comps_pending;
1763 };
1764
1765 /*
1766 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1767 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1768 */
1769 struct ib_qp {
1770 struct ib_device *device;
1771 struct ib_pd *pd;
1772 struct ib_cq *send_cq;
1773 struct ib_cq *recv_cq;
1774 spinlock_t mr_lock;
1775 int mrs_used;
1776 struct list_head rdma_mrs;
1777 struct list_head sig_mrs;
1778 struct ib_srq *srq;
1779 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1780 struct list_head xrcd_list;
1781
1782 /* count times opened, mcast attaches, flow attaches */
1783 atomic_t usecnt;
1784 struct list_head open_list;
1785 struct ib_qp *real_qp;
1786 struct ib_uqp_object *uobject;
1787 void (*event_handler)(struct ib_event *, void *);
1788 void *qp_context;
1789 /* sgid_attrs associated with the AV's */
1790 const struct ib_gid_attr *av_sgid_attr;
1791 const struct ib_gid_attr *alt_path_sgid_attr;
1792 u32 qp_num;
1793 u32 max_write_sge;
1794 u32 max_read_sge;
1795 enum ib_qp_type qp_type;
1796 struct ib_rwq_ind_table *rwq_ind_tbl;
1797 struct ib_qp_security *qp_sec;
1798 u32 port;
1799
1800 bool integrity_en;
1801 /*
1802 * Implementation details of the RDMA core, don't use in drivers:
1803 */
1804 struct rdma_restrack_entry res;
1805
1806 /* The counter the qp is bind to */
1807 struct rdma_counter *counter;
1808 };
1809
1810 struct ib_dm {
1811 struct ib_device *device;
1812 u32 length;
1813 u32 flags;
1814 struct ib_uobject *uobject;
1815 atomic_t usecnt;
1816 };
1817
1818 struct ib_mr {
1819 struct ib_device *device;
1820 struct ib_pd *pd;
1821 u32 lkey;
1822 u32 rkey;
1823 u64 iova;
1824 u64 length;
1825 unsigned int page_size;
1826 enum ib_mr_type type;
1827 bool need_inval;
1828 union {
1829 struct ib_uobject *uobject; /* user */
1830 struct list_head qp_entry; /* FR */
1831 };
1832
1833 struct ib_dm *dm;
1834 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1835 /*
1836 * Implementation details of the RDMA core, don't use in drivers:
1837 */
1838 struct rdma_restrack_entry res;
1839 };
1840
1841 struct ib_mw {
1842 struct ib_device *device;
1843 struct ib_pd *pd;
1844 struct ib_uobject *uobject;
1845 u32 rkey;
1846 enum ib_mw_type type;
1847 };
1848
1849 /* Supported steering options */
1850 enum ib_flow_attr_type {
1851 /* steering according to rule specifications */
1852 IB_FLOW_ATTR_NORMAL = 0x0,
1853 /* default unicast and multicast rule -
1854 * receive all Eth traffic which isn't steered to any QP
1855 */
1856 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1857 /* default multicast rule -
1858 * receive all Eth multicast traffic which isn't steered to any QP
1859 */
1860 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1861 /* sniffer rule - receive all port traffic */
1862 IB_FLOW_ATTR_SNIFFER = 0x3
1863 };
1864
1865 /* Supported steering header types */
1866 enum ib_flow_spec_type {
1867 /* L2 headers*/
1868 IB_FLOW_SPEC_ETH = 0x20,
1869 IB_FLOW_SPEC_IB = 0x22,
1870 /* L3 header*/
1871 IB_FLOW_SPEC_IPV4 = 0x30,
1872 IB_FLOW_SPEC_IPV6 = 0x31,
1873 IB_FLOW_SPEC_ESP = 0x34,
1874 /* L4 headers*/
1875 IB_FLOW_SPEC_TCP = 0x40,
1876 IB_FLOW_SPEC_UDP = 0x41,
1877 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1878 IB_FLOW_SPEC_GRE = 0x51,
1879 IB_FLOW_SPEC_MPLS = 0x60,
1880 IB_FLOW_SPEC_INNER = 0x100,
1881 /* Actions */
1882 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1883 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1884 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
1885 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
1886 };
1887 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1888 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1889
1890 enum ib_flow_flags {
1891 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1892 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1893 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
1894 };
1895
1896 struct ib_flow_eth_filter {
1897 u8 dst_mac[6];
1898 u8 src_mac[6];
1899 __be16 ether_type;
1900 __be16 vlan_tag;
1901 /* Must be last */
1902 u8 real_sz[];
1903 };
1904
1905 struct ib_flow_spec_eth {
1906 u32 type;
1907 u16 size;
1908 struct ib_flow_eth_filter val;
1909 struct ib_flow_eth_filter mask;
1910 };
1911
1912 struct ib_flow_ib_filter {
1913 __be16 dlid;
1914 __u8 sl;
1915 /* Must be last */
1916 u8 real_sz[];
1917 };
1918
1919 struct ib_flow_spec_ib {
1920 u32 type;
1921 u16 size;
1922 struct ib_flow_ib_filter val;
1923 struct ib_flow_ib_filter mask;
1924 };
1925
1926 /* IPv4 header flags */
1927 enum ib_ipv4_flags {
1928 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1929 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1930 last have this flag set */
1931 };
1932
1933 struct ib_flow_ipv4_filter {
1934 __be32 src_ip;
1935 __be32 dst_ip;
1936 u8 proto;
1937 u8 tos;
1938 u8 ttl;
1939 u8 flags;
1940 /* Must be last */
1941 u8 real_sz[];
1942 };
1943
1944 struct ib_flow_spec_ipv4 {
1945 u32 type;
1946 u16 size;
1947 struct ib_flow_ipv4_filter val;
1948 struct ib_flow_ipv4_filter mask;
1949 };
1950
1951 struct ib_flow_ipv6_filter {
1952 u8 src_ip[16];
1953 u8 dst_ip[16];
1954 __be32 flow_label;
1955 u8 next_hdr;
1956 u8 traffic_class;
1957 u8 hop_limit;
1958 /* Must be last */
1959 u8 real_sz[];
1960 };
1961
1962 struct ib_flow_spec_ipv6 {
1963 u32 type;
1964 u16 size;
1965 struct ib_flow_ipv6_filter val;
1966 struct ib_flow_ipv6_filter mask;
1967 };
1968
1969 struct ib_flow_tcp_udp_filter {
1970 __be16 dst_port;
1971 __be16 src_port;
1972 /* Must be last */
1973 u8 real_sz[];
1974 };
1975
1976 struct ib_flow_spec_tcp_udp {
1977 u32 type;
1978 u16 size;
1979 struct ib_flow_tcp_udp_filter val;
1980 struct ib_flow_tcp_udp_filter mask;
1981 };
1982
1983 struct ib_flow_tunnel_filter {
1984 __be32 tunnel_id;
1985 u8 real_sz[];
1986 };
1987
1988 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1989 * the tunnel_id from val has the vni value
1990 */
1991 struct ib_flow_spec_tunnel {
1992 u32 type;
1993 u16 size;
1994 struct ib_flow_tunnel_filter val;
1995 struct ib_flow_tunnel_filter mask;
1996 };
1997
1998 struct ib_flow_esp_filter {
1999 __be32 spi;
2000 __be32 seq;
2001 /* Must be last */
2002 u8 real_sz[];
2003 };
2004
2005 struct ib_flow_spec_esp {
2006 u32 type;
2007 u16 size;
2008 struct ib_flow_esp_filter val;
2009 struct ib_flow_esp_filter mask;
2010 };
2011
2012 struct ib_flow_gre_filter {
2013 __be16 c_ks_res0_ver;
2014 __be16 protocol;
2015 __be32 key;
2016 /* Must be last */
2017 u8 real_sz[];
2018 };
2019
2020 struct ib_flow_spec_gre {
2021 u32 type;
2022 u16 size;
2023 struct ib_flow_gre_filter val;
2024 struct ib_flow_gre_filter mask;
2025 };
2026
2027 struct ib_flow_mpls_filter {
2028 __be32 tag;
2029 /* Must be last */
2030 u8 real_sz[];
2031 };
2032
2033 struct ib_flow_spec_mpls {
2034 u32 type;
2035 u16 size;
2036 struct ib_flow_mpls_filter val;
2037 struct ib_flow_mpls_filter mask;
2038 };
2039
2040 struct ib_flow_spec_action_tag {
2041 enum ib_flow_spec_type type;
2042 u16 size;
2043 u32 tag_id;
2044 };
2045
2046 struct ib_flow_spec_action_drop {
2047 enum ib_flow_spec_type type;
2048 u16 size;
2049 };
2050
2051 struct ib_flow_spec_action_handle {
2052 enum ib_flow_spec_type type;
2053 u16 size;
2054 struct ib_flow_action *act;
2055 };
2056
2057 enum ib_counters_description {
2058 IB_COUNTER_PACKETS,
2059 IB_COUNTER_BYTES,
2060 };
2061
2062 struct ib_flow_spec_action_count {
2063 enum ib_flow_spec_type type;
2064 u16 size;
2065 struct ib_counters *counters;
2066 };
2067
2068 union ib_flow_spec {
2069 struct {
2070 u32 type;
2071 u16 size;
2072 };
2073 struct ib_flow_spec_eth eth;
2074 struct ib_flow_spec_ib ib;
2075 struct ib_flow_spec_ipv4 ipv4;
2076 struct ib_flow_spec_tcp_udp tcp_udp;
2077 struct ib_flow_spec_ipv6 ipv6;
2078 struct ib_flow_spec_tunnel tunnel;
2079 struct ib_flow_spec_esp esp;
2080 struct ib_flow_spec_gre gre;
2081 struct ib_flow_spec_mpls mpls;
2082 struct ib_flow_spec_action_tag flow_tag;
2083 struct ib_flow_spec_action_drop drop;
2084 struct ib_flow_spec_action_handle action;
2085 struct ib_flow_spec_action_count flow_count;
2086 };
2087
2088 struct ib_flow_attr {
2089 enum ib_flow_attr_type type;
2090 u16 size;
2091 u16 priority;
2092 u32 flags;
2093 u8 num_of_specs;
2094 u32 port;
2095 union ib_flow_spec flows[];
2096 };
2097
2098 struct ib_flow {
2099 struct ib_qp *qp;
2100 struct ib_device *device;
2101 struct ib_uobject *uobject;
2102 };
2103
2104 enum ib_flow_action_type {
2105 IB_FLOW_ACTION_UNSPECIFIED,
2106 IB_FLOW_ACTION_ESP = 1,
2107 };
2108
2109 struct ib_flow_action_attrs_esp_keymats {
2110 enum ib_uverbs_flow_action_esp_keymat protocol;
2111 union {
2112 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2113 } keymat;
2114 };
2115
2116 struct ib_flow_action_attrs_esp_replays {
2117 enum ib_uverbs_flow_action_esp_replay protocol;
2118 union {
2119 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2120 } replay;
2121 };
2122
2123 enum ib_flow_action_attrs_esp_flags {
2124 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2125 * This is done in order to share the same flags between user-space and
2126 * kernel and spare an unnecessary translation.
2127 */
2128
2129 /* Kernel flags */
2130 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
2131 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2132 };
2133
2134 struct ib_flow_spec_list {
2135 struct ib_flow_spec_list *next;
2136 union ib_flow_spec spec;
2137 };
2138
2139 struct ib_flow_action_attrs_esp {
2140 struct ib_flow_action_attrs_esp_keymats *keymat;
2141 struct ib_flow_action_attrs_esp_replays *replay;
2142 struct ib_flow_spec_list *encap;
2143 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2144 * Value of 0 is a valid value.
2145 */
2146 u32 esn;
2147 u32 spi;
2148 u32 seq;
2149 u32 tfc_pad;
2150 /* Use enum ib_flow_action_attrs_esp_flags */
2151 u64 flags;
2152 u64 hard_limit_pkts;
2153 };
2154
2155 struct ib_flow_action {
2156 struct ib_device *device;
2157 struct ib_uobject *uobject;
2158 enum ib_flow_action_type type;
2159 atomic_t usecnt;
2160 };
2161
2162 struct ib_mad;
2163
2164 enum ib_process_mad_flags {
2165 IB_MAD_IGNORE_MKEY = 1,
2166 IB_MAD_IGNORE_BKEY = 2,
2167 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2168 };
2169
2170 enum ib_mad_result {
2171 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2172 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2173 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2174 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2175 };
2176
2177 struct ib_port_cache {
2178 u64 subnet_prefix;
2179 struct ib_pkey_cache *pkey;
2180 struct ib_gid_table *gid;
2181 u8 lmc;
2182 enum ib_port_state port_state;
2183 };
2184
2185 struct ib_port_immutable {
2186 int pkey_tbl_len;
2187 int gid_tbl_len;
2188 u32 core_cap_flags;
2189 u32 max_mad_size;
2190 };
2191
2192 struct ib_port_data {
2193 struct ib_device *ib_dev;
2194
2195 struct ib_port_immutable immutable;
2196
2197 spinlock_t pkey_list_lock;
2198
2199 spinlock_t netdev_lock;
2200
2201 struct list_head pkey_list;
2202
2203 struct ib_port_cache cache;
2204
2205 struct net_device __rcu *netdev;
2206 struct hlist_node ndev_hash_link;
2207 struct rdma_port_counter port_counter;
2208 struct ib_port *sysfs;
2209 };
2210
2211 /* rdma netdev type - specifies protocol type */
2212 enum rdma_netdev_t {
2213 RDMA_NETDEV_OPA_VNIC,
2214 RDMA_NETDEV_IPOIB,
2215 };
2216
2217 /**
2218 * struct rdma_netdev - rdma netdev
2219 * For cases where netstack interfacing is required.
2220 */
2221 struct rdma_netdev {
2222 void *clnt_priv;
2223 struct ib_device *hca;
2224 u32 port_num;
2225 int mtu;
2226
2227 /*
2228 * cleanup function must be specified.
2229 * FIXME: This is only used for OPA_VNIC and that usage should be
2230 * removed too.
2231 */
2232 void (*free_rdma_netdev)(struct net_device *netdev);
2233
2234 /* control functions */
2235 void (*set_id)(struct net_device *netdev, int id);
2236 /* send packet */
2237 int (*send)(struct net_device *dev, struct sk_buff *skb,
2238 struct ib_ah *address, u32 dqpn);
2239 /* multicast */
2240 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2241 union ib_gid *gid, u16 mlid,
2242 int set_qkey, u32 qkey);
2243 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2244 union ib_gid *gid, u16 mlid);
2245 /* timeout */
2246 void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2247 };
2248
2249 struct rdma_netdev_alloc_params {
2250 size_t sizeof_priv;
2251 unsigned int txqs;
2252 unsigned int rxqs;
2253 void *param;
2254
2255 int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2256 struct net_device *netdev, void *param);
2257 };
2258
2259 struct ib_odp_counters {
2260 atomic64_t faults;
2261 atomic64_t invalidations;
2262 atomic64_t prefetch;
2263 };
2264
2265 struct ib_counters {
2266 struct ib_device *device;
2267 struct ib_uobject *uobject;
2268 /* num of objects attached */
2269 atomic_t usecnt;
2270 };
2271
2272 struct ib_counters_read_attr {
2273 u64 *counters_buff;
2274 u32 ncounters;
2275 u32 flags; /* use enum ib_read_counters_flags */
2276 };
2277
2278 struct uverbs_attr_bundle;
2279 struct iw_cm_id;
2280 struct iw_cm_conn_param;
2281
2282 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
2283 .size_##ib_struct = \
2284 (sizeof(struct drv_struct) + \
2285 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
2286 BUILD_BUG_ON_ZERO( \
2287 !__same_type(((struct drv_struct *)NULL)->member, \
2288 struct ib_struct)))
2289
2290 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \
2291 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2292 gfp, false))
2293
2294 #define rdma_zalloc_drv_obj_numa(ib_dev, ib_type) \
2295 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2296 GFP_KERNEL, true))
2297
2298 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \
2299 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2300
2301 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2302
2303 struct rdma_user_mmap_entry {
2304 struct kref ref;
2305 struct ib_ucontext *ucontext;
2306 unsigned long start_pgoff;
2307 size_t npages;
2308 bool driver_removed;
2309 };
2310
2311 /* Return the offset (in bytes) the user should pass to libc's mmap() */
2312 static inline u64
2313 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2314 {
2315 return (u64)entry->start_pgoff << PAGE_SHIFT;
2316 }
2317
2318 /**
2319 * struct ib_device_ops - InfiniBand device operations
2320 * This structure defines all the InfiniBand device operations, providers will
2321 * need to define the supported operations, otherwise they will be set to null.
2322 */
2323 struct ib_device_ops {
2324 struct module *owner;
2325 enum rdma_driver_id driver_id;
2326 u32 uverbs_abi_ver;
2327 unsigned int uverbs_no_driver_id_binding:1;
2328
2329 /*
2330 * NOTE: New drivers should not make use of device_group; instead new
2331 * device parameter should be exposed via netlink command. This
2332 * mechanism exists only for existing drivers.
2333 */
2334 const struct attribute_group *device_group;
2335 const struct attribute_group **port_groups;
2336
2337 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2338 const struct ib_send_wr **bad_send_wr);
2339 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2340 const struct ib_recv_wr **bad_recv_wr);
2341 void (*drain_rq)(struct ib_qp *qp);
2342 void (*drain_sq)(struct ib_qp *qp);
2343 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2344 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2345 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2346 int (*post_srq_recv)(struct ib_srq *srq,
2347 const struct ib_recv_wr *recv_wr,
2348 const struct ib_recv_wr **bad_recv_wr);
2349 int (*process_mad)(struct ib_device *device, int process_mad_flags,
2350 u32 port_num, const struct ib_wc *in_wc,
2351 const struct ib_grh *in_grh,
2352 const struct ib_mad *in_mad, struct ib_mad *out_mad,
2353 size_t *out_mad_size, u16 *out_mad_pkey_index);
2354 int (*query_device)(struct ib_device *device,
2355 struct ib_device_attr *device_attr,
2356 struct ib_udata *udata);
2357 int (*modify_device)(struct ib_device *device, int device_modify_mask,
2358 struct ib_device_modify *device_modify);
2359 void (*get_dev_fw_str)(struct ib_device *device, char *str);
2360 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2361 int comp_vector);
2362 int (*query_port)(struct ib_device *device, u32 port_num,
2363 struct ib_port_attr *port_attr);
2364 int (*modify_port)(struct ib_device *device, u32 port_num,
2365 int port_modify_mask,
2366 struct ib_port_modify *port_modify);
2367 /**
2368 * The following mandatory functions are used only at device
2369 * registration. Keep functions such as these at the end of this
2370 * structure to avoid cache line misses when accessing struct ib_device
2371 * in fast paths.
2372 */
2373 int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2374 struct ib_port_immutable *immutable);
2375 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2376 u32 port_num);
2377 /**
2378 * When calling get_netdev, the HW vendor's driver should return the
2379 * net device of device @device at port @port_num or NULL if such
2380 * a net device doesn't exist. The vendor driver should call dev_hold
2381 * on this net device. The HW vendor's device driver must guarantee
2382 * that this function returns NULL before the net device has finished
2383 * NETDEV_UNREGISTER state.
2384 */
2385 struct net_device *(*get_netdev)(struct ib_device *device,
2386 u32 port_num);
2387 /**
2388 * rdma netdev operation
2389 *
2390 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2391 * must return -EOPNOTSUPP if it doesn't support the specified type.
2392 */
2393 struct net_device *(*alloc_rdma_netdev)(
2394 struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2395 const char *name, unsigned char name_assign_type,
2396 void (*setup)(struct net_device *));
2397
2398 int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2399 enum rdma_netdev_t type,
2400 struct rdma_netdev_alloc_params *params);
2401 /**
2402 * query_gid should be return GID value for @device, when @port_num
2403 * link layer is either IB or iWarp. It is no-op if @port_num port
2404 * is RoCE link layer.
2405 */
2406 int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2407 union ib_gid *gid);
2408 /**
2409 * When calling add_gid, the HW vendor's driver should add the gid
2410 * of device of port at gid index available at @attr. Meta-info of
2411 * that gid (for example, the network device related to this gid) is
2412 * available at @attr. @context allows the HW vendor driver to store
2413 * extra information together with a GID entry. The HW vendor driver may
2414 * allocate memory to contain this information and store it in @context
2415 * when a new GID entry is written to. Params are consistent until the
2416 * next call of add_gid or delete_gid. The function should return 0 on
2417 * success or error otherwise. The function could be called
2418 * concurrently for different ports. This function is only called when
2419 * roce_gid_table is used.
2420 */
2421 int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2422 /**
2423 * When calling del_gid, the HW vendor's driver should delete the
2424 * gid of device @device at gid index gid_index of port port_num
2425 * available in @attr.
2426 * Upon the deletion of a GID entry, the HW vendor must free any
2427 * allocated memory. The caller will clear @context afterwards.
2428 * This function is only called when roce_gid_table is used.
2429 */
2430 int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2431 int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2432 u16 *pkey);
2433 int (*alloc_ucontext)(struct ib_ucontext *context,
2434 struct ib_udata *udata);
2435 void (*dealloc_ucontext)(struct ib_ucontext *context);
2436 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2437 /**
2438 * This will be called once refcount of an entry in mmap_xa reaches
2439 * zero. The type of the memory that was mapped may differ between
2440 * entries and is opaque to the rdma_user_mmap interface.
2441 * Therefore needs to be implemented by the driver in mmap_free.
2442 */
2443 void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2444 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2445 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2446 int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2447 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2448 struct ib_udata *udata);
2449 int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2450 struct ib_udata *udata);
2451 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2452 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2453 int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2454 int (*create_srq)(struct ib_srq *srq,
2455 struct ib_srq_init_attr *srq_init_attr,
2456 struct ib_udata *udata);
2457 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2458 enum ib_srq_attr_mask srq_attr_mask,
2459 struct ib_udata *udata);
2460 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2461 int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2462 int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
2463 struct ib_udata *udata);
2464 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2465 int qp_attr_mask, struct ib_udata *udata);
2466 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2467 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2468 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2469 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2470 struct ib_udata *udata);
2471 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2472 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2473 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2474 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2475 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2476 u64 virt_addr, int mr_access_flags,
2477 struct ib_udata *udata);
2478 struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2479 u64 length, u64 virt_addr, int fd,
2480 int mr_access_flags,
2481 struct ib_udata *udata);
2482 struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2483 u64 length, u64 virt_addr,
2484 int mr_access_flags, struct ib_pd *pd,
2485 struct ib_udata *udata);
2486 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2487 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2488 u32 max_num_sg);
2489 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2490 u32 max_num_data_sg,
2491 u32 max_num_meta_sg);
2492 int (*advise_mr)(struct ib_pd *pd,
2493 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2494 struct ib_sge *sg_list, u32 num_sge,
2495 struct uverbs_attr_bundle *attrs);
2496
2497 /*
2498 * Kernel users should universally support relaxed ordering (RO), as
2499 * they are designed to read data only after observing the CQE and use
2500 * the DMA API correctly.
2501 *
2502 * Some drivers implicitly enable RO if platform supports it.
2503 */
2504 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2505 unsigned int *sg_offset);
2506 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2507 struct ib_mr_status *mr_status);
2508 int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2509 int (*dealloc_mw)(struct ib_mw *mw);
2510 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2511 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2512 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2513 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2514 struct ib_flow *(*create_flow)(struct ib_qp *qp,
2515 struct ib_flow_attr *flow_attr,
2516 struct ib_udata *udata);
2517 int (*destroy_flow)(struct ib_flow *flow_id);
2518 int (*destroy_flow_action)(struct ib_flow_action *action);
2519 int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2520 int state);
2521 int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2522 struct ifla_vf_info *ivf);
2523 int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2524 struct ifla_vf_stats *stats);
2525 int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2526 struct ifla_vf_guid *node_guid,
2527 struct ifla_vf_guid *port_guid);
2528 int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2529 int type);
2530 struct ib_wq *(*create_wq)(struct ib_pd *pd,
2531 struct ib_wq_init_attr *init_attr,
2532 struct ib_udata *udata);
2533 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2534 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2535 u32 wq_attr_mask, struct ib_udata *udata);
2536 int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2537 struct ib_rwq_ind_table_init_attr *init_attr,
2538 struct ib_udata *udata);
2539 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2540 struct ib_dm *(*alloc_dm)(struct ib_device *device,
2541 struct ib_ucontext *context,
2542 struct ib_dm_alloc_attr *attr,
2543 struct uverbs_attr_bundle *attrs);
2544 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2545 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2546 struct ib_dm_mr_attr *attr,
2547 struct uverbs_attr_bundle *attrs);
2548 int (*create_counters)(struct ib_counters *counters,
2549 struct uverbs_attr_bundle *attrs);
2550 int (*destroy_counters)(struct ib_counters *counters);
2551 int (*read_counters)(struct ib_counters *counters,
2552 struct ib_counters_read_attr *counters_read_attr,
2553 struct uverbs_attr_bundle *attrs);
2554 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2555 int data_sg_nents, unsigned int *data_sg_offset,
2556 struct scatterlist *meta_sg, int meta_sg_nents,
2557 unsigned int *meta_sg_offset);
2558
2559 /**
2560 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2561 * fill in the driver initialized data. The struct is kfree()'ed by
2562 * the sysfs core when the device is removed. A lifespan of -1 in the
2563 * return struct tells the core to set a default lifespan.
2564 */
2565 struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2566 struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2567 u32 port_num);
2568 /**
2569 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2570 * @index - The index in the value array we wish to have updated, or
2571 * num_counters if we want all stats updated
2572 * Return codes -
2573 * < 0 - Error, no counters updated
2574 * index - Updated the single counter pointed to by index
2575 * num_counters - Updated all counters (will reset the timestamp
2576 * and prevent further calls for lifespan milliseconds)
2577 * Drivers are allowed to update all counters in leiu of just the
2578 * one given in index at their option
2579 */
2580 int (*get_hw_stats)(struct ib_device *device,
2581 struct rdma_hw_stats *stats, u32 port, int index);
2582
2583 /**
2584 * modify_hw_stat - Modify the counter configuration
2585 * @enable: true/false when enable/disable a counter
2586 * Return codes - 0 on success or error code otherwise.
2587 */
2588 int (*modify_hw_stat)(struct ib_device *device, u32 port,
2589 unsigned int counter_index, bool enable);
2590 /**
2591 * Allows rdma drivers to add their own restrack attributes.
2592 */
2593 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2594 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2595 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2596 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2597 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2598 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2599 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2600
2601 /* Device lifecycle callbacks */
2602 /*
2603 * Called after the device becomes registered, before clients are
2604 * attached
2605 */
2606 int (*enable_driver)(struct ib_device *dev);
2607 /*
2608 * This is called as part of ib_dealloc_device().
2609 */
2610 void (*dealloc_driver)(struct ib_device *dev);
2611
2612 /* iWarp CM callbacks */
2613 void (*iw_add_ref)(struct ib_qp *qp);
2614 void (*iw_rem_ref)(struct ib_qp *qp);
2615 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2616 int (*iw_connect)(struct iw_cm_id *cm_id,
2617 struct iw_cm_conn_param *conn_param);
2618 int (*iw_accept)(struct iw_cm_id *cm_id,
2619 struct iw_cm_conn_param *conn_param);
2620 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2621 u8 pdata_len);
2622 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2623 int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2624 /**
2625 * counter_bind_qp - Bind a QP to a counter.
2626 * @counter - The counter to be bound. If counter->id is zero then
2627 * the driver needs to allocate a new counter and set counter->id
2628 */
2629 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2630 /**
2631 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2632 * counter and bind it onto the default one
2633 */
2634 int (*counter_unbind_qp)(struct ib_qp *qp);
2635 /**
2636 * counter_dealloc -De-allocate the hw counter
2637 */
2638 int (*counter_dealloc)(struct rdma_counter *counter);
2639 /**
2640 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2641 * the driver initialized data.
2642 */
2643 struct rdma_hw_stats *(*counter_alloc_stats)(
2644 struct rdma_counter *counter);
2645 /**
2646 * counter_update_stats - Query the stats value of this counter
2647 */
2648 int (*counter_update_stats)(struct rdma_counter *counter);
2649
2650 /**
2651 * Allows rdma drivers to add their own restrack attributes
2652 * dumped via 'rdma stat' iproute2 command.
2653 */
2654 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2655
2656 /* query driver for its ucontext properties */
2657 int (*query_ucontext)(struct ib_ucontext *context,
2658 struct uverbs_attr_bundle *attrs);
2659
2660 /*
2661 * Provide NUMA node. This API exists for rdmavt/hfi1 only.
2662 * Everyone else relies on Linux memory management model.
2663 */
2664 int (*get_numa_node)(struct ib_device *dev);
2665
2666 DECLARE_RDMA_OBJ_SIZE(ib_ah);
2667 DECLARE_RDMA_OBJ_SIZE(ib_counters);
2668 DECLARE_RDMA_OBJ_SIZE(ib_cq);
2669 DECLARE_RDMA_OBJ_SIZE(ib_mw);
2670 DECLARE_RDMA_OBJ_SIZE(ib_pd);
2671 DECLARE_RDMA_OBJ_SIZE(ib_qp);
2672 DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2673 DECLARE_RDMA_OBJ_SIZE(ib_srq);
2674 DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2675 DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2676 };
2677
2678 struct ib_core_device {
2679 /* device must be the first element in structure until,
2680 * union of ib_core_device and device exists in ib_device.
2681 */
2682 struct device dev;
2683 possible_net_t rdma_net;
2684 struct kobject *ports_kobj;
2685 struct list_head port_list;
2686 struct ib_device *owner; /* reach back to owner ib_device */
2687 };
2688
2689 struct rdma_restrack_root;
2690 struct ib_device {
2691 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2692 struct device *dma_device;
2693 struct ib_device_ops ops;
2694 char name[IB_DEVICE_NAME_MAX];
2695 struct rcu_head rcu_head;
2696
2697 struct list_head event_handler_list;
2698 /* Protects event_handler_list */
2699 struct rw_semaphore event_handler_rwsem;
2700
2701 /* Protects QP's event_handler calls and open_qp list */
2702 spinlock_t qp_open_list_lock;
2703
2704 struct rw_semaphore client_data_rwsem;
2705 struct xarray client_data;
2706 struct mutex unregistration_lock;
2707
2708 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2709 rwlock_t cache_lock;
2710 /**
2711 * port_data is indexed by port number
2712 */
2713 struct ib_port_data *port_data;
2714
2715 int num_comp_vectors;
2716
2717 union {
2718 struct device dev;
2719 struct ib_core_device coredev;
2720 };
2721
2722 /* First group is for device attributes,
2723 * Second group is for driver provided attributes (optional).
2724 * Third group is for the hw_stats
2725 * It is a NULL terminated array.
2726 */
2727 const struct attribute_group *groups[4];
2728
2729 u64 uverbs_cmd_mask;
2730
2731 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2732 __be64 node_guid;
2733 u32 local_dma_lkey;
2734 u16 is_switch:1;
2735 /* Indicates kernel verbs support, should not be used in drivers */
2736 u16 kverbs_provider:1;
2737 /* CQ adaptive moderation (RDMA DIM) */
2738 u16 use_cq_dim:1;
2739 u8 node_type;
2740 u32 phys_port_cnt;
2741 struct ib_device_attr attrs;
2742 struct hw_stats_device_data *hw_stats_data;
2743
2744 #ifdef CONFIG_CGROUP_RDMA
2745 struct rdmacg_device cg_device;
2746 #endif
2747
2748 u32 index;
2749
2750 spinlock_t cq_pools_lock;
2751 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2752
2753 struct rdma_restrack_root *res;
2754
2755 const struct uapi_definition *driver_def;
2756
2757 /*
2758 * Positive refcount indicates that the device is currently
2759 * registered and cannot be unregistered.
2760 */
2761 refcount_t refcount;
2762 struct completion unreg_completion;
2763 struct work_struct unregistration_work;
2764
2765 const struct rdma_link_ops *link_ops;
2766
2767 /* Protects compat_devs xarray modifications */
2768 struct mutex compat_devs_mutex;
2769 /* Maintains compat devices for each net namespace */
2770 struct xarray compat_devs;
2771
2772 /* Used by iWarp CM */
2773 char iw_ifname[IFNAMSIZ];
2774 u32 iw_driver_flags;
2775 u32 lag_flags;
2776 };
2777
2778 static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
2779 gfp_t gfp, bool is_numa_aware)
2780 {
2781 if (is_numa_aware && dev->ops.get_numa_node)
2782 return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev));
2783
2784 return kzalloc(size, gfp);
2785 }
2786
2787 struct ib_client_nl_info;
2788 struct ib_client {
2789 const char *name;
2790 int (*add)(struct ib_device *ibdev);
2791 void (*remove)(struct ib_device *, void *client_data);
2792 void (*rename)(struct ib_device *dev, void *client_data);
2793 int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2794 struct ib_client_nl_info *res);
2795 int (*get_global_nl_info)(struct ib_client_nl_info *res);
2796
2797 /* Returns the net_dev belonging to this ib_client and matching the
2798 * given parameters.
2799 * @dev: An RDMA device that the net_dev use for communication.
2800 * @port: A physical port number on the RDMA device.
2801 * @pkey: P_Key that the net_dev uses if applicable.
2802 * @gid: A GID that the net_dev uses to communicate.
2803 * @addr: An IP address the net_dev is configured with.
2804 * @client_data: The device's client data set by ib_set_client_data().
2805 *
2806 * An ib_client that implements a net_dev on top of RDMA devices
2807 * (such as IP over IB) should implement this callback, allowing the
2808 * rdma_cm module to find the right net_dev for a given request.
2809 *
2810 * The caller is responsible for calling dev_put on the returned
2811 * netdev. */
2812 struct net_device *(*get_net_dev_by_params)(
2813 struct ib_device *dev,
2814 u32 port,
2815 u16 pkey,
2816 const union ib_gid *gid,
2817 const struct sockaddr *addr,
2818 void *client_data);
2819
2820 refcount_t uses;
2821 struct completion uses_zero;
2822 u32 client_id;
2823
2824 /* kverbs are not required by the client */
2825 u8 no_kverbs_req:1;
2826 };
2827
2828 /*
2829 * IB block DMA iterator
2830 *
2831 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2832 * to a HW supported page size.
2833 */
2834 struct ib_block_iter {
2835 /* internal states */
2836 struct scatterlist *__sg; /* sg holding the current aligned block */
2837 dma_addr_t __dma_addr; /* unaligned DMA address of this block */
2838 unsigned int __sg_nents; /* number of SG entries */
2839 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */
2840 unsigned int __pg_bit; /* alignment of current block */
2841 };
2842
2843 struct ib_device *_ib_alloc_device(size_t size);
2844 #define ib_alloc_device(drv_struct, member) \
2845 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2846 BUILD_BUG_ON_ZERO(offsetof( \
2847 struct drv_struct, member))), \
2848 struct drv_struct, member)
2849
2850 void ib_dealloc_device(struct ib_device *device);
2851
2852 void ib_get_device_fw_str(struct ib_device *device, char *str);
2853
2854 int ib_register_device(struct ib_device *device, const char *name,
2855 struct device *dma_device);
2856 void ib_unregister_device(struct ib_device *device);
2857 void ib_unregister_driver(enum rdma_driver_id driver_id);
2858 void ib_unregister_device_and_put(struct ib_device *device);
2859 void ib_unregister_device_queued(struct ib_device *ib_dev);
2860
2861 int ib_register_client (struct ib_client *client);
2862 void ib_unregister_client(struct ib_client *client);
2863
2864 void __rdma_block_iter_start(struct ib_block_iter *biter,
2865 struct scatterlist *sglist,
2866 unsigned int nents,
2867 unsigned long pgsz);
2868 bool __rdma_block_iter_next(struct ib_block_iter *biter);
2869
2870 /**
2871 * rdma_block_iter_dma_address - get the aligned dma address of the current
2872 * block held by the block iterator.
2873 * @biter: block iterator holding the memory block
2874 */
2875 static inline dma_addr_t
2876 rdma_block_iter_dma_address(struct ib_block_iter *biter)
2877 {
2878 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2879 }
2880
2881 /**
2882 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2883 * @sglist: sglist to iterate over
2884 * @biter: block iterator holding the memory block
2885 * @nents: maximum number of sg entries to iterate over
2886 * @pgsz: best HW supported page size to use
2887 *
2888 * Callers may use rdma_block_iter_dma_address() to get each
2889 * blocks aligned DMA address.
2890 */
2891 #define rdma_for_each_block(sglist, biter, nents, pgsz) \
2892 for (__rdma_block_iter_start(biter, sglist, nents, \
2893 pgsz); \
2894 __rdma_block_iter_next(biter);)
2895
2896 /**
2897 * ib_get_client_data - Get IB client context
2898 * @device:Device to get context for
2899 * @client:Client to get context for
2900 *
2901 * ib_get_client_data() returns the client context data set with
2902 * ib_set_client_data(). This can only be called while the client is
2903 * registered to the device, once the ib_client remove() callback returns this
2904 * cannot be called.
2905 */
2906 static inline void *ib_get_client_data(struct ib_device *device,
2907 struct ib_client *client)
2908 {
2909 return xa_load(&device->client_data, client->client_id);
2910 }
2911 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2912 void *data);
2913 void ib_set_device_ops(struct ib_device *device,
2914 const struct ib_device_ops *ops);
2915
2916 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2917 unsigned long pfn, unsigned long size, pgprot_t prot,
2918 struct rdma_user_mmap_entry *entry);
2919 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2920 struct rdma_user_mmap_entry *entry,
2921 size_t length);
2922 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2923 struct rdma_user_mmap_entry *entry,
2924 size_t length, u32 min_pgoff,
2925 u32 max_pgoff);
2926
2927 static inline int
2928 rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext,
2929 struct rdma_user_mmap_entry *entry,
2930 size_t length, u32 pgoff)
2931 {
2932 return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff,
2933 pgoff);
2934 }
2935
2936 struct rdma_user_mmap_entry *
2937 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2938 unsigned long pgoff);
2939 struct rdma_user_mmap_entry *
2940 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2941 struct vm_area_struct *vma);
2942 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2943
2944 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2945
2946 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2947 {
2948 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2949 }
2950
2951 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2952 {
2953 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2954 }
2955
2956 static inline bool ib_is_buffer_cleared(const void __user *p,
2957 size_t len)
2958 {
2959 bool ret;
2960 u8 *buf;
2961
2962 if (len > USHRT_MAX)
2963 return false;
2964
2965 buf = memdup_user(p, len);
2966 if (IS_ERR(buf))
2967 return false;
2968
2969 ret = !memchr_inv(buf, 0, len);
2970 kfree(buf);
2971 return ret;
2972 }
2973
2974 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2975 size_t offset,
2976 size_t len)
2977 {
2978 return ib_is_buffer_cleared(udata->inbuf + offset, len);
2979 }
2980
2981 /**
2982 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2983 * contains all required attributes and no attributes not allowed for
2984 * the given QP state transition.
2985 * @cur_state: Current QP state
2986 * @next_state: Next QP state
2987 * @type: QP type
2988 * @mask: Mask of supplied QP attributes
2989 *
2990 * This function is a helper function that a low-level driver's
2991 * modify_qp method can use to validate the consumer's input. It
2992 * checks that cur_state and next_state are valid QP states, that a
2993 * transition from cur_state to next_state is allowed by the IB spec,
2994 * and that the attribute mask supplied is allowed for the transition.
2995 */
2996 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2997 enum ib_qp_type type, enum ib_qp_attr_mask mask);
2998
2999 void ib_register_event_handler(struct ib_event_handler *event_handler);
3000 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
3001 void ib_dispatch_event(const struct ib_event *event);
3002
3003 int ib_query_port(struct ib_device *device,
3004 u32 port_num, struct ib_port_attr *port_attr);
3005
3006 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
3007 u32 port_num);
3008
3009 /**
3010 * rdma_cap_ib_switch - Check if the device is IB switch
3011 * @device: Device to check
3012 *
3013 * Device driver is responsible for setting is_switch bit on
3014 * in ib_device structure at init time.
3015 *
3016 * Return: true if the device is IB switch.
3017 */
3018 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
3019 {
3020 return device->is_switch;
3021 }
3022
3023 /**
3024 * rdma_start_port - Return the first valid port number for the device
3025 * specified
3026 *
3027 * @device: Device to be checked
3028 *
3029 * Return start port number
3030 */
3031 static inline u32 rdma_start_port(const struct ib_device *device)
3032 {
3033 return rdma_cap_ib_switch(device) ? 0 : 1;
3034 }
3035
3036 /**
3037 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3038 * @device - The struct ib_device * to iterate over
3039 * @iter - The unsigned int to store the port number
3040 */
3041 #define rdma_for_each_port(device, iter) \
3042 for (iter = rdma_start_port(device + \
3043 BUILD_BUG_ON_ZERO(!__same_type(u32, \
3044 iter))); \
3045 iter <= rdma_end_port(device); iter++)
3046
3047 /**
3048 * rdma_end_port - Return the last valid port number for the device
3049 * specified
3050 *
3051 * @device: Device to be checked
3052 *
3053 * Return last port number
3054 */
3055 static inline u32 rdma_end_port(const struct ib_device *device)
3056 {
3057 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3058 }
3059
3060 static inline int rdma_is_port_valid(const struct ib_device *device,
3061 unsigned int port)
3062 {
3063 return (port >= rdma_start_port(device) &&
3064 port <= rdma_end_port(device));
3065 }
3066
3067 static inline bool rdma_is_grh_required(const struct ib_device *device,
3068 u32 port_num)
3069 {
3070 return device->port_data[port_num].immutable.core_cap_flags &
3071 RDMA_CORE_PORT_IB_GRH_REQUIRED;
3072 }
3073
3074 static inline bool rdma_protocol_ib(const struct ib_device *device,
3075 u32 port_num)
3076 {
3077 return device->port_data[port_num].immutable.core_cap_flags &
3078 RDMA_CORE_CAP_PROT_IB;
3079 }
3080
3081 static inline bool rdma_protocol_roce(const struct ib_device *device,
3082 u32 port_num)
3083 {
3084 return device->port_data[port_num].immutable.core_cap_flags &
3085 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3086 }
3087
3088 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3089 u32 port_num)
3090 {
3091 return device->port_data[port_num].immutable.core_cap_flags &
3092 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3093 }
3094
3095 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3096 u32 port_num)
3097 {
3098 return device->port_data[port_num].immutable.core_cap_flags &
3099 RDMA_CORE_CAP_PROT_ROCE;
3100 }
3101
3102 static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3103 u32 port_num)
3104 {
3105 return device->port_data[port_num].immutable.core_cap_flags &
3106 RDMA_CORE_CAP_PROT_IWARP;
3107 }
3108
3109 static inline bool rdma_ib_or_roce(const struct ib_device *device,
3110 u32 port_num)
3111 {
3112 return rdma_protocol_ib(device, port_num) ||
3113 rdma_protocol_roce(device, port_num);
3114 }
3115
3116 static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3117 u32 port_num)
3118 {
3119 return device->port_data[port_num].immutable.core_cap_flags &
3120 RDMA_CORE_CAP_PROT_RAW_PACKET;
3121 }
3122
3123 static inline bool rdma_protocol_usnic(const struct ib_device *device,
3124 u32 port_num)
3125 {
3126 return device->port_data[port_num].immutable.core_cap_flags &
3127 RDMA_CORE_CAP_PROT_USNIC;
3128 }
3129
3130 /**
3131 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3132 * Management Datagrams.
3133 * @device: Device to check
3134 * @port_num: Port number to check
3135 *
3136 * Management Datagrams (MAD) are a required part of the InfiniBand
3137 * specification and are supported on all InfiniBand devices. A slightly
3138 * extended version are also supported on OPA interfaces.
3139 *
3140 * Return: true if the port supports sending/receiving of MAD packets.
3141 */
3142 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3143 {
3144 return device->port_data[port_num].immutable.core_cap_flags &
3145 RDMA_CORE_CAP_IB_MAD;
3146 }
3147
3148 /**
3149 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3150 * Management Datagrams.
3151 * @device: Device to check
3152 * @port_num: Port number to check
3153 *
3154 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3155 * datagrams with their own versions. These OPA MADs share many but not all of
3156 * the characteristics of InfiniBand MADs.
3157 *
3158 * OPA MADs differ in the following ways:
3159 *
3160 * 1) MADs are variable size up to 2K
3161 * IBTA defined MADs remain fixed at 256 bytes
3162 * 2) OPA SMPs must carry valid PKeys
3163 * 3) OPA SMP packets are a different format
3164 *
3165 * Return: true if the port supports OPA MAD packet formats.
3166 */
3167 static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3168 {
3169 return device->port_data[port_num].immutable.core_cap_flags &
3170 RDMA_CORE_CAP_OPA_MAD;
3171 }
3172
3173 /**
3174 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3175 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3176 * @device: Device to check
3177 * @port_num: Port number to check
3178 *
3179 * Each InfiniBand node is required to provide a Subnet Management Agent
3180 * that the subnet manager can access. Prior to the fabric being fully
3181 * configured by the subnet manager, the SMA is accessed via a well known
3182 * interface called the Subnet Management Interface (SMI). This interface
3183 * uses directed route packets to communicate with the SM to get around the
3184 * chicken and egg problem of the SM needing to know what's on the fabric
3185 * in order to configure the fabric, and needing to configure the fabric in
3186 * order to send packets to the devices on the fabric. These directed
3187 * route packets do not need the fabric fully configured in order to reach
3188 * their destination. The SMI is the only method allowed to send
3189 * directed route packets on an InfiniBand fabric.
3190 *
3191 * Return: true if the port provides an SMI.
3192 */
3193 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3194 {
3195 return device->port_data[port_num].immutable.core_cap_flags &
3196 RDMA_CORE_CAP_IB_SMI;
3197 }
3198
3199 /**
3200 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3201 * Communication Manager.
3202 * @device: Device to check
3203 * @port_num: Port number to check
3204 *
3205 * The InfiniBand Communication Manager is one of many pre-defined General
3206 * Service Agents (GSA) that are accessed via the General Service
3207 * Interface (GSI). It's role is to facilitate establishment of connections
3208 * between nodes as well as other management related tasks for established
3209 * connections.
3210 *
3211 * Return: true if the port supports an IB CM (this does not guarantee that
3212 * a CM is actually running however).
3213 */
3214 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3215 {
3216 return device->port_data[port_num].immutable.core_cap_flags &
3217 RDMA_CORE_CAP_IB_CM;
3218 }
3219
3220 /**
3221 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3222 * Communication Manager.
3223 * @device: Device to check
3224 * @port_num: Port number to check
3225 *
3226 * Similar to above, but specific to iWARP connections which have a different
3227 * managment protocol than InfiniBand.
3228 *
3229 * Return: true if the port supports an iWARP CM (this does not guarantee that
3230 * a CM is actually running however).
3231 */
3232 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3233 {
3234 return device->port_data[port_num].immutable.core_cap_flags &
3235 RDMA_CORE_CAP_IW_CM;
3236 }
3237
3238 /**
3239 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3240 * Subnet Administration.
3241 * @device: Device to check
3242 * @port_num: Port number to check
3243 *
3244 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3245 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
3246 * fabrics, devices should resolve routes to other hosts by contacting the
3247 * SA to query the proper route.
3248 *
3249 * Return: true if the port should act as a client to the fabric Subnet
3250 * Administration interface. This does not imply that the SA service is
3251 * running locally.
3252 */
3253 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3254 {
3255 return device->port_data[port_num].immutable.core_cap_flags &
3256 RDMA_CORE_CAP_IB_SA;
3257 }
3258
3259 /**
3260 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3261 * Multicast.
3262 * @device: Device to check
3263 * @port_num: Port number to check
3264 *
3265 * InfiniBand multicast registration is more complex than normal IPv4 or
3266 * IPv6 multicast registration. Each Host Channel Adapter must register
3267 * with the Subnet Manager when it wishes to join a multicast group. It
3268 * should do so only once regardless of how many queue pairs it subscribes
3269 * to this group. And it should leave the group only after all queue pairs
3270 * attached to the group have been detached.
3271 *
3272 * Return: true if the port must undertake the additional adminstrative
3273 * overhead of registering/unregistering with the SM and tracking of the
3274 * total number of queue pairs attached to the multicast group.
3275 */
3276 static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3277 u32 port_num)
3278 {
3279 return rdma_cap_ib_sa(device, port_num);
3280 }
3281
3282 /**
3283 * rdma_cap_af_ib - Check if the port of device has the capability
3284 * Native Infiniband Address.
3285 * @device: Device to check
3286 * @port_num: Port number to check
3287 *
3288 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3289 * GID. RoCE uses a different mechanism, but still generates a GID via
3290 * a prescribed mechanism and port specific data.
3291 *
3292 * Return: true if the port uses a GID address to identify devices on the
3293 * network.
3294 */
3295 static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3296 {
3297 return device->port_data[port_num].immutable.core_cap_flags &
3298 RDMA_CORE_CAP_AF_IB;
3299 }
3300
3301 /**
3302 * rdma_cap_eth_ah - Check if the port of device has the capability
3303 * Ethernet Address Handle.
3304 * @device: Device to check
3305 * @port_num: Port number to check
3306 *
3307 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3308 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3309 * port. Normally, packet headers are generated by the sending host
3310 * adapter, but when sending connectionless datagrams, we must manually
3311 * inject the proper headers for the fabric we are communicating over.
3312 *
3313 * Return: true if we are running as a RoCE port and must force the
3314 * addition of a Global Route Header built from our Ethernet Address
3315 * Handle into our header list for connectionless packets.
3316 */
3317 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3318 {
3319 return device->port_data[port_num].immutable.core_cap_flags &
3320 RDMA_CORE_CAP_ETH_AH;
3321 }
3322
3323 /**
3324 * rdma_cap_opa_ah - Check if the port of device supports
3325 * OPA Address handles
3326 * @device: Device to check
3327 * @port_num: Port number to check
3328 *
3329 * Return: true if we are running on an OPA device which supports
3330 * the extended OPA addressing.
3331 */
3332 static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3333 {
3334 return (device->port_data[port_num].immutable.core_cap_flags &
3335 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3336 }
3337
3338 /**
3339 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3340 *
3341 * @device: Device
3342 * @port_num: Port number
3343 *
3344 * This MAD size includes the MAD headers and MAD payload. No other headers
3345 * are included.
3346 *
3347 * Return the max MAD size required by the Port. Will return 0 if the port
3348 * does not support MADs
3349 */
3350 static inline size_t rdma_max_mad_size(const struct ib_device *device,
3351 u32 port_num)
3352 {
3353 return device->port_data[port_num].immutable.max_mad_size;
3354 }
3355
3356 /**
3357 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3358 * @device: Device to check
3359 * @port_num: Port number to check
3360 *
3361 * RoCE GID table mechanism manages the various GIDs for a device.
3362 *
3363 * NOTE: if allocating the port's GID table has failed, this call will still
3364 * return true, but any RoCE GID table API will fail.
3365 *
3366 * Return: true if the port uses RoCE GID table mechanism in order to manage
3367 * its GIDs.
3368 */
3369 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3370 u32 port_num)
3371 {
3372 return rdma_protocol_roce(device, port_num) &&
3373 device->ops.add_gid && device->ops.del_gid;
3374 }
3375
3376 /*
3377 * Check if the device supports READ W/ INVALIDATE.
3378 */
3379 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3380 {
3381 /*
3382 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3383 * has support for it yet.
3384 */
3385 return rdma_protocol_iwarp(dev, port_num);
3386 }
3387
3388 /**
3389 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3390 * @device: Device
3391 * @port_num: 1 based Port number
3392 *
3393 * Return true if port is an Intel OPA port , false if not
3394 */
3395 static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3396 u32 port_num)
3397 {
3398 return (device->port_data[port_num].immutable.core_cap_flags &
3399 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3400 }
3401
3402 /**
3403 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3404 * @device: Device
3405 * @port_num: Port number
3406 * @mtu: enum value of MTU
3407 *
3408 * Return the MTU size supported by the port as an integer value. Will return
3409 * -1 if enum value of mtu is not supported.
3410 */
3411 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3412 int mtu)
3413 {
3414 if (rdma_core_cap_opa_port(device, port))
3415 return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3416 else
3417 return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3418 }
3419
3420 /**
3421 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3422 * @device: Device
3423 * @port_num: Port number
3424 * @attr: port attribute
3425 *
3426 * Return the MTU size supported by the port as an integer value.
3427 */
3428 static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3429 struct ib_port_attr *attr)
3430 {
3431 if (rdma_core_cap_opa_port(device, port))
3432 return attr->phys_mtu;
3433 else
3434 return ib_mtu_enum_to_int(attr->max_mtu);
3435 }
3436
3437 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3438 int state);
3439 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3440 struct ifla_vf_info *info);
3441 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3442 struct ifla_vf_stats *stats);
3443 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3444 struct ifla_vf_guid *node_guid,
3445 struct ifla_vf_guid *port_guid);
3446 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3447 int type);
3448
3449 int ib_query_pkey(struct ib_device *device,
3450 u32 port_num, u16 index, u16 *pkey);
3451
3452 int ib_modify_device(struct ib_device *device,
3453 int device_modify_mask,
3454 struct ib_device_modify *device_modify);
3455
3456 int ib_modify_port(struct ib_device *device,
3457 u32 port_num, int port_modify_mask,
3458 struct ib_port_modify *port_modify);
3459
3460 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3461 u32 *port_num, u16 *index);
3462
3463 int ib_find_pkey(struct ib_device *device,
3464 u32 port_num, u16 pkey, u16 *index);
3465
3466 enum ib_pd_flags {
3467 /*
3468 * Create a memory registration for all memory in the system and place
3469 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3470 * ULPs to avoid the overhead of dynamic MRs.
3471 *
3472 * This flag is generally considered unsafe and must only be used in
3473 * extremly trusted environments. Every use of it will log a warning
3474 * in the kernel log.
3475 */
3476 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3477 };
3478
3479 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3480 const char *caller);
3481
3482 /**
3483 * ib_alloc_pd - Allocates an unused protection domain.
3484 * @device: The device on which to allocate the protection domain.
3485 * @flags: protection domain flags
3486 *
3487 * A protection domain object provides an association between QPs, shared
3488 * receive queues, address handles, memory regions, and memory windows.
3489 *
3490 * Every PD has a local_dma_lkey which can be used as the lkey value for local
3491 * memory operations.
3492 */
3493 #define ib_alloc_pd(device, flags) \
3494 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3495
3496 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3497
3498 /**
3499 * ib_dealloc_pd - Deallocate kernel PD
3500 * @pd: The protection domain
3501 *
3502 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3503 */
3504 static inline void ib_dealloc_pd(struct ib_pd *pd)
3505 {
3506 int ret = ib_dealloc_pd_user(pd, NULL);
3507
3508 WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3509 }
3510
3511 enum rdma_create_ah_flags {
3512 /* In a sleepable context */
3513 RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3514 };
3515
3516 /**
3517 * rdma_create_ah - Creates an address handle for the given address vector.
3518 * @pd: The protection domain associated with the address handle.
3519 * @ah_attr: The attributes of the address vector.
3520 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3521 *
3522 * The address handle is used to reference a local or global destination
3523 * in all UD QP post sends.
3524 */
3525 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3526 u32 flags);
3527
3528 /**
3529 * rdma_create_user_ah - Creates an address handle for the given address vector.
3530 * It resolves destination mac address for ah attribute of RoCE type.
3531 * @pd: The protection domain associated with the address handle.
3532 * @ah_attr: The attributes of the address vector.
3533 * @udata: pointer to user's input output buffer information need by
3534 * provider driver.
3535 *
3536 * It returns 0 on success and returns appropriate error code on error.
3537 * The address handle is used to reference a local or global destination
3538 * in all UD QP post sends.
3539 */
3540 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3541 struct rdma_ah_attr *ah_attr,
3542 struct ib_udata *udata);
3543 /**
3544 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3545 * work completion.
3546 * @hdr: the L3 header to parse
3547 * @net_type: type of header to parse
3548 * @sgid: place to store source gid
3549 * @dgid: place to store destination gid
3550 */
3551 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3552 enum rdma_network_type net_type,
3553 union ib_gid *sgid, union ib_gid *dgid);
3554
3555 /**
3556 * ib_get_rdma_header_version - Get the header version
3557 * @hdr: the L3 header to parse
3558 */
3559 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3560
3561 /**
3562 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3563 * work completion.
3564 * @device: Device on which the received message arrived.
3565 * @port_num: Port on which the received message arrived.
3566 * @wc: Work completion associated with the received message.
3567 * @grh: References the received global route header. This parameter is
3568 * ignored unless the work completion indicates that the GRH is valid.
3569 * @ah_attr: Returned attributes that can be used when creating an address
3570 * handle for replying to the message.
3571 * When ib_init_ah_attr_from_wc() returns success,
3572 * (a) for IB link layer it optionally contains a reference to SGID attribute
3573 * when GRH is present for IB link layer.
3574 * (b) for RoCE link layer it contains a reference to SGID attribute.
3575 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3576 * attributes which are initialized using ib_init_ah_attr_from_wc().
3577 *
3578 */
3579 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3580 const struct ib_wc *wc, const struct ib_grh *grh,
3581 struct rdma_ah_attr *ah_attr);
3582
3583 /**
3584 * ib_create_ah_from_wc - Creates an address handle associated with the
3585 * sender of the specified work completion.
3586 * @pd: The protection domain associated with the address handle.
3587 * @wc: Work completion information associated with a received message.
3588 * @grh: References the received global route header. This parameter is
3589 * ignored unless the work completion indicates that the GRH is valid.
3590 * @port_num: The outbound port number to associate with the address.
3591 *
3592 * The address handle is used to reference a local or global destination
3593 * in all UD QP post sends.
3594 */
3595 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3596 const struct ib_grh *grh, u32 port_num);
3597
3598 /**
3599 * rdma_modify_ah - Modifies the address vector associated with an address
3600 * handle.
3601 * @ah: The address handle to modify.
3602 * @ah_attr: The new address vector attributes to associate with the
3603 * address handle.
3604 */
3605 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3606
3607 /**
3608 * rdma_query_ah - Queries the address vector associated with an address
3609 * handle.
3610 * @ah: The address handle to query.
3611 * @ah_attr: The address vector attributes associated with the address
3612 * handle.
3613 */
3614 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3615
3616 enum rdma_destroy_ah_flags {
3617 /* In a sleepable context */
3618 RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3619 };
3620
3621 /**
3622 * rdma_destroy_ah_user - Destroys an address handle.
3623 * @ah: The address handle to destroy.
3624 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3625 * @udata: Valid user data or NULL for kernel objects
3626 */
3627 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3628
3629 /**
3630 * rdma_destroy_ah - Destroys an kernel address handle.
3631 * @ah: The address handle to destroy.
3632 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3633 *
3634 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3635 */
3636 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3637 {
3638 int ret = rdma_destroy_ah_user(ah, flags, NULL);
3639
3640 WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3641 }
3642
3643 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3644 struct ib_srq_init_attr *srq_init_attr,
3645 struct ib_usrq_object *uobject,
3646 struct ib_udata *udata);
3647 static inline struct ib_srq *
3648 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3649 {
3650 if (!pd->device->ops.create_srq)
3651 return ERR_PTR(-EOPNOTSUPP);
3652
3653 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3654 }
3655
3656 /**
3657 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3658 * @srq: The SRQ to modify.
3659 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3660 * the current values of selected SRQ attributes are returned.
3661 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3662 * are being modified.
3663 *
3664 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3665 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3666 * the number of receives queued drops below the limit.
3667 */
3668 int ib_modify_srq(struct ib_srq *srq,
3669 struct ib_srq_attr *srq_attr,
3670 enum ib_srq_attr_mask srq_attr_mask);
3671
3672 /**
3673 * ib_query_srq - Returns the attribute list and current values for the
3674 * specified SRQ.
3675 * @srq: The SRQ to query.
3676 * @srq_attr: The attributes of the specified SRQ.
3677 */
3678 int ib_query_srq(struct ib_srq *srq,
3679 struct ib_srq_attr *srq_attr);
3680
3681 /**
3682 * ib_destroy_srq_user - Destroys the specified SRQ.
3683 * @srq: The SRQ to destroy.
3684 * @udata: Valid user data or NULL for kernel objects
3685 */
3686 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3687
3688 /**
3689 * ib_destroy_srq - Destroys the specified kernel SRQ.
3690 * @srq: The SRQ to destroy.
3691 *
3692 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3693 */
3694 static inline void ib_destroy_srq(struct ib_srq *srq)
3695 {
3696 int ret = ib_destroy_srq_user(srq, NULL);
3697
3698 WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3699 }
3700
3701 /**
3702 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3703 * @srq: The SRQ to post the work request on.
3704 * @recv_wr: A list of work requests to post on the receive queue.
3705 * @bad_recv_wr: On an immediate failure, this parameter will reference
3706 * the work request that failed to be posted on the QP.
3707 */
3708 static inline int ib_post_srq_recv(struct ib_srq *srq,
3709 const struct ib_recv_wr *recv_wr,
3710 const struct ib_recv_wr **bad_recv_wr)
3711 {
3712 const struct ib_recv_wr *dummy;
3713
3714 return srq->device->ops.post_srq_recv(srq, recv_wr,
3715 bad_recv_wr ? : &dummy);
3716 }
3717
3718 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
3719 struct ib_qp_init_attr *qp_init_attr,
3720 const char *caller);
3721 /**
3722 * ib_create_qp - Creates a kernel QP associated with the specific protection
3723 * domain.
3724 * @pd: The protection domain associated with the QP.
3725 * @init_attr: A list of initial attributes required to create the
3726 * QP. If QP creation succeeds, then the attributes are updated to
3727 * the actual capabilities of the created QP.
3728 */
3729 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3730 struct ib_qp_init_attr *init_attr)
3731 {
3732 return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME);
3733 }
3734
3735 /**
3736 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3737 * @qp: The QP to modify.
3738 * @attr: On input, specifies the QP attributes to modify. On output,
3739 * the current values of selected QP attributes are returned.
3740 * @attr_mask: A bit-mask used to specify which attributes of the QP
3741 * are being modified.
3742 * @udata: pointer to user's input output buffer information
3743 * are being modified.
3744 * It returns 0 on success and returns appropriate error code on error.
3745 */
3746 int ib_modify_qp_with_udata(struct ib_qp *qp,
3747 struct ib_qp_attr *attr,
3748 int attr_mask,
3749 struct ib_udata *udata);
3750
3751 /**
3752 * ib_modify_qp - Modifies the attributes for the specified QP and then
3753 * transitions the QP to the given state.
3754 * @qp: The QP to modify.
3755 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3756 * the current values of selected QP attributes are returned.
3757 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3758 * are being modified.
3759 */
3760 int ib_modify_qp(struct ib_qp *qp,
3761 struct ib_qp_attr *qp_attr,
3762 int qp_attr_mask);
3763
3764 /**
3765 * ib_query_qp - Returns the attribute list and current values for the
3766 * specified QP.
3767 * @qp: The QP to query.
3768 * @qp_attr: The attributes of the specified QP.
3769 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3770 * @qp_init_attr: Additional attributes of the selected QP.
3771 *
3772 * The qp_attr_mask may be used to limit the query to gathering only the
3773 * selected attributes.
3774 */
3775 int ib_query_qp(struct ib_qp *qp,
3776 struct ib_qp_attr *qp_attr,
3777 int qp_attr_mask,
3778 struct ib_qp_init_attr *qp_init_attr);
3779
3780 /**
3781 * ib_destroy_qp - Destroys the specified QP.
3782 * @qp: The QP to destroy.
3783 * @udata: Valid udata or NULL for kernel objects
3784 */
3785 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3786
3787 /**
3788 * ib_destroy_qp - Destroys the specified kernel QP.
3789 * @qp: The QP to destroy.
3790 *
3791 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3792 */
3793 static inline int ib_destroy_qp(struct ib_qp *qp)
3794 {
3795 return ib_destroy_qp_user(qp, NULL);
3796 }
3797
3798 /**
3799 * ib_open_qp - Obtain a reference to an existing sharable QP.
3800 * @xrcd - XRC domain
3801 * @qp_open_attr: Attributes identifying the QP to open.
3802 *
3803 * Returns a reference to a sharable QP.
3804 */
3805 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3806 struct ib_qp_open_attr *qp_open_attr);
3807
3808 /**
3809 * ib_close_qp - Release an external reference to a QP.
3810 * @qp: The QP handle to release
3811 *
3812 * The opened QP handle is released by the caller. The underlying
3813 * shared QP is not destroyed until all internal references are released.
3814 */
3815 int ib_close_qp(struct ib_qp *qp);
3816
3817 /**
3818 * ib_post_send - Posts a list of work requests to the send queue of
3819 * the specified QP.
3820 * @qp: The QP to post the work request on.
3821 * @send_wr: A list of work requests to post on the send queue.
3822 * @bad_send_wr: On an immediate failure, this parameter will reference
3823 * the work request that failed to be posted on the QP.
3824 *
3825 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3826 * error is returned, the QP state shall not be affected,
3827 * ib_post_send() will return an immediate error after queueing any
3828 * earlier work requests in the list.
3829 */
3830 static inline int ib_post_send(struct ib_qp *qp,
3831 const struct ib_send_wr *send_wr,
3832 const struct ib_send_wr **bad_send_wr)
3833 {
3834 const struct ib_send_wr *dummy;
3835
3836 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3837 }
3838
3839 /**
3840 * ib_post_recv - Posts a list of work requests to the receive queue of
3841 * the specified QP.
3842 * @qp: The QP to post the work request on.
3843 * @recv_wr: A list of work requests to post on the receive queue.
3844 * @bad_recv_wr: On an immediate failure, this parameter will reference
3845 * the work request that failed to be posted on the QP.
3846 */
3847 static inline int ib_post_recv(struct ib_qp *qp,
3848 const struct ib_recv_wr *recv_wr,
3849 const struct ib_recv_wr **bad_recv_wr)
3850 {
3851 const struct ib_recv_wr *dummy;
3852
3853 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3854 }
3855
3856 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3857 int comp_vector, enum ib_poll_context poll_ctx,
3858 const char *caller);
3859 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3860 int nr_cqe, int comp_vector,
3861 enum ib_poll_context poll_ctx)
3862 {
3863 return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3864 KBUILD_MODNAME);
3865 }
3866
3867 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3868 int nr_cqe, enum ib_poll_context poll_ctx,
3869 const char *caller);
3870
3871 /**
3872 * ib_alloc_cq_any: Allocate kernel CQ
3873 * @dev: The IB device
3874 * @private: Private data attached to the CQE
3875 * @nr_cqe: Number of CQEs in the CQ
3876 * @poll_ctx: Context used for polling the CQ
3877 */
3878 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3879 void *private, int nr_cqe,
3880 enum ib_poll_context poll_ctx)
3881 {
3882 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3883 KBUILD_MODNAME);
3884 }
3885
3886 void ib_free_cq(struct ib_cq *cq);
3887 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3888
3889 /**
3890 * ib_create_cq - Creates a CQ on the specified device.
3891 * @device: The device on which to create the CQ.
3892 * @comp_handler: A user-specified callback that is invoked when a
3893 * completion event occurs on the CQ.
3894 * @event_handler: A user-specified callback that is invoked when an
3895 * asynchronous event not associated with a completion occurs on the CQ.
3896 * @cq_context: Context associated with the CQ returned to the user via
3897 * the associated completion and event handlers.
3898 * @cq_attr: The attributes the CQ should be created upon.
3899 *
3900 * Users can examine the cq structure to determine the actual CQ size.
3901 */
3902 struct ib_cq *__ib_create_cq(struct ib_device *device,
3903 ib_comp_handler comp_handler,
3904 void (*event_handler)(struct ib_event *, void *),
3905 void *cq_context,
3906 const struct ib_cq_init_attr *cq_attr,
3907 const char *caller);
3908 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3909 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3910
3911 /**
3912 * ib_resize_cq - Modifies the capacity of the CQ.
3913 * @cq: The CQ to resize.
3914 * @cqe: The minimum size of the CQ.
3915 *
3916 * Users can examine the cq structure to determine the actual CQ size.
3917 */
3918 int ib_resize_cq(struct ib_cq *cq, int cqe);
3919
3920 /**
3921 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3922 * @cq: The CQ to modify.
3923 * @cq_count: number of CQEs that will trigger an event
3924 * @cq_period: max period of time in usec before triggering an event
3925 *
3926 */
3927 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3928
3929 /**
3930 * ib_destroy_cq_user - Destroys the specified CQ.
3931 * @cq: The CQ to destroy.
3932 * @udata: Valid user data or NULL for kernel objects
3933 */
3934 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3935
3936 /**
3937 * ib_destroy_cq - Destroys the specified kernel CQ.
3938 * @cq: The CQ to destroy.
3939 *
3940 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3941 */
3942 static inline void ib_destroy_cq(struct ib_cq *cq)
3943 {
3944 int ret = ib_destroy_cq_user(cq, NULL);
3945
3946 WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
3947 }
3948
3949 /**
3950 * ib_poll_cq - poll a CQ for completion(s)
3951 * @cq:the CQ being polled
3952 * @num_entries:maximum number of completions to return
3953 * @wc:array of at least @num_entries &struct ib_wc where completions
3954 * will be returned
3955 *
3956 * Poll a CQ for (possibly multiple) completions. If the return value
3957 * is < 0, an error occurred. If the return value is >= 0, it is the
3958 * number of completions returned. If the return value is
3959 * non-negative and < num_entries, then the CQ was emptied.
3960 */
3961 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3962 struct ib_wc *wc)
3963 {
3964 return cq->device->ops.poll_cq(cq, num_entries, wc);
3965 }
3966
3967 /**
3968 * ib_req_notify_cq - Request completion notification on a CQ.
3969 * @cq: The CQ to generate an event for.
3970 * @flags:
3971 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3972 * to request an event on the next solicited event or next work
3973 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3974 * may also be |ed in to request a hint about missed events, as
3975 * described below.
3976 *
3977 * Return Value:
3978 * < 0 means an error occurred while requesting notification
3979 * == 0 means notification was requested successfully, and if
3980 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3981 * were missed and it is safe to wait for another event. In
3982 * this case is it guaranteed that any work completions added
3983 * to the CQ since the last CQ poll will trigger a completion
3984 * notification event.
3985 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3986 * in. It means that the consumer must poll the CQ again to
3987 * make sure it is empty to avoid missing an event because of a
3988 * race between requesting notification and an entry being
3989 * added to the CQ. This return value means it is possible
3990 * (but not guaranteed) that a work completion has been added
3991 * to the CQ since the last poll without triggering a
3992 * completion notification event.
3993 */
3994 static inline int ib_req_notify_cq(struct ib_cq *cq,
3995 enum ib_cq_notify_flags flags)
3996 {
3997 return cq->device->ops.req_notify_cq(cq, flags);
3998 }
3999
4000 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4001 int comp_vector_hint,
4002 enum ib_poll_context poll_ctx);
4003
4004 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4005
4006 /*
4007 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
4008 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
4009 * address into the dma address.
4010 */
4011 static inline bool ib_uses_virt_dma(struct ib_device *dev)
4012 {
4013 return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
4014 }
4015
4016 /*
4017 * Check if a IB device's underlying DMA mapping supports P2PDMA transfers.
4018 */
4019 static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev)
4020 {
4021 if (ib_uses_virt_dma(dev))
4022 return false;
4023
4024 return dma_pci_p2pdma_supported(dev->dma_device);
4025 }
4026
4027 /**
4028 * ib_dma_mapping_error - check a DMA addr for error
4029 * @dev: The device for which the dma_addr was created
4030 * @dma_addr: The DMA address to check
4031 */
4032 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4033 {
4034 if (ib_uses_virt_dma(dev))
4035 return 0;
4036 return dma_mapping_error(dev->dma_device, dma_addr);
4037 }
4038
4039 /**
4040 * ib_dma_map_single - Map a kernel virtual address to DMA address
4041 * @dev: The device for which the dma_addr is to be created
4042 * @cpu_addr: The kernel virtual address
4043 * @size: The size of the region in bytes
4044 * @direction: The direction of the DMA
4045 */
4046 static inline u64 ib_dma_map_single(struct ib_device *dev,
4047 void *cpu_addr, size_t size,
4048 enum dma_data_direction direction)
4049 {
4050 if (ib_uses_virt_dma(dev))
4051 return (uintptr_t)cpu_addr;
4052 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4053 }
4054
4055 /**
4056 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4057 * @dev: The device for which the DMA address was created
4058 * @addr: The DMA address
4059 * @size: The size of the region in bytes
4060 * @direction: The direction of the DMA
4061 */
4062 static inline void ib_dma_unmap_single(struct ib_device *dev,
4063 u64 addr, size_t size,
4064 enum dma_data_direction direction)
4065 {
4066 if (!ib_uses_virt_dma(dev))
4067 dma_unmap_single(dev->dma_device, addr, size, direction);
4068 }
4069
4070 /**
4071 * ib_dma_map_page - Map a physical page to DMA address
4072 * @dev: The device for which the dma_addr is to be created
4073 * @page: The page to be mapped
4074 * @offset: The offset within the page
4075 * @size: The size of the region in bytes
4076 * @direction: The direction of the DMA
4077 */
4078 static inline u64 ib_dma_map_page(struct ib_device *dev,
4079 struct page *page,
4080 unsigned long offset,
4081 size_t size,
4082 enum dma_data_direction direction)
4083 {
4084 if (ib_uses_virt_dma(dev))
4085 return (uintptr_t)(page_address(page) + offset);
4086 return dma_map_page(dev->dma_device, page, offset, size, direction);
4087 }
4088
4089 /**
4090 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4091 * @dev: The device for which the DMA address was created
4092 * @addr: The DMA address
4093 * @size: The size of the region in bytes
4094 * @direction: The direction of the DMA
4095 */
4096 static inline void ib_dma_unmap_page(struct ib_device *dev,
4097 u64 addr, size_t size,
4098 enum dma_data_direction direction)
4099 {
4100 if (!ib_uses_virt_dma(dev))
4101 dma_unmap_page(dev->dma_device, addr, size, direction);
4102 }
4103
4104 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
4105 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4106 struct scatterlist *sg, int nents,
4107 enum dma_data_direction direction,
4108 unsigned long dma_attrs)
4109 {
4110 if (ib_uses_virt_dma(dev))
4111 return ib_dma_virt_map_sg(dev, sg, nents);
4112 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4113 dma_attrs);
4114 }
4115
4116 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4117 struct scatterlist *sg, int nents,
4118 enum dma_data_direction direction,
4119 unsigned long dma_attrs)
4120 {
4121 if (!ib_uses_virt_dma(dev))
4122 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4123 dma_attrs);
4124 }
4125
4126 /**
4127 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
4128 * @dev: The device for which the DMA addresses are to be created
4129 * @sg: The sg_table object describing the buffer
4130 * @direction: The direction of the DMA
4131 * @attrs: Optional DMA attributes for the map operation
4132 */
4133 static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
4134 struct sg_table *sgt,
4135 enum dma_data_direction direction,
4136 unsigned long dma_attrs)
4137 {
4138 int nents;
4139
4140 if (ib_uses_virt_dma(dev)) {
4141 nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents);
4142 if (!nents)
4143 return -EIO;
4144 sgt->nents = nents;
4145 return 0;
4146 }
4147 return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4148 }
4149
4150 static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
4151 struct sg_table *sgt,
4152 enum dma_data_direction direction,
4153 unsigned long dma_attrs)
4154 {
4155 if (!ib_uses_virt_dma(dev))
4156 dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4157 }
4158
4159 /**
4160 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4161 * @dev: The device for which the DMA addresses are to be created
4162 * @sg: The array of scatter/gather entries
4163 * @nents: The number of scatter/gather entries
4164 * @direction: The direction of the DMA
4165 */
4166 static inline int ib_dma_map_sg(struct ib_device *dev,
4167 struct scatterlist *sg, int nents,
4168 enum dma_data_direction direction)
4169 {
4170 return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
4171 }
4172
4173 /**
4174 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4175 * @dev: The device for which the DMA addresses were created
4176 * @sg: The array of scatter/gather entries
4177 * @nents: The number of scatter/gather entries
4178 * @direction: The direction of the DMA
4179 */
4180 static inline void ib_dma_unmap_sg(struct ib_device *dev,
4181 struct scatterlist *sg, int nents,
4182 enum dma_data_direction direction)
4183 {
4184 ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
4185 }
4186
4187 /**
4188 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4189 * @dev: The device to query
4190 *
4191 * The returned value represents a size in bytes.
4192 */
4193 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4194 {
4195 if (ib_uses_virt_dma(dev))
4196 return UINT_MAX;
4197 return dma_get_max_seg_size(dev->dma_device);
4198 }
4199
4200 /**
4201 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4202 * @dev: The device for which the DMA address was created
4203 * @addr: The DMA address
4204 * @size: The size of the region in bytes
4205 * @dir: The direction of the DMA
4206 */
4207 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4208 u64 addr,
4209 size_t size,
4210 enum dma_data_direction dir)
4211 {
4212 if (!ib_uses_virt_dma(dev))
4213 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4214 }
4215
4216 /**
4217 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4218 * @dev: The device for which the DMA address was created
4219 * @addr: The DMA address
4220 * @size: The size of the region in bytes
4221 * @dir: The direction of the DMA
4222 */
4223 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4224 u64 addr,
4225 size_t size,
4226 enum dma_data_direction dir)
4227 {
4228 if (!ib_uses_virt_dma(dev))
4229 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4230 }
4231
4232 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4233 * space. This function should be called when 'current' is the owning MM.
4234 */
4235 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4236 u64 virt_addr, int mr_access_flags);
4237
4238 /* ib_advise_mr - give an advice about an address range in a memory region */
4239 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4240 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4241 /**
4242 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4243 * HCA translation table.
4244 * @mr: The memory region to deregister.
4245 * @udata: Valid user data or NULL for kernel object
4246 *
4247 * This function can fail, if the memory region has memory windows bound to it.
4248 */
4249 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4250
4251 /**
4252 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4253 * HCA translation table.
4254 * @mr: The memory region to deregister.
4255 *
4256 * This function can fail, if the memory region has memory windows bound to it.
4257 *
4258 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4259 */
4260 static inline int ib_dereg_mr(struct ib_mr *mr)
4261 {
4262 return ib_dereg_mr_user(mr, NULL);
4263 }
4264
4265 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4266 u32 max_num_sg);
4267
4268 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4269 u32 max_num_data_sg,
4270 u32 max_num_meta_sg);
4271
4272 /**
4273 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4274 * R_Key and L_Key.
4275 * @mr - struct ib_mr pointer to be updated.
4276 * @newkey - new key to be used.
4277 */
4278 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4279 {
4280 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4281 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4282 }
4283
4284 /**
4285 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4286 * for calculating a new rkey for type 2 memory windows.
4287 * @rkey - the rkey to increment.
4288 */
4289 static inline u32 ib_inc_rkey(u32 rkey)
4290 {
4291 const u32 mask = 0x000000ff;
4292 return ((rkey + 1) & mask) | (rkey & ~mask);
4293 }
4294
4295 /**
4296 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4297 * @qp: QP to attach to the multicast group. The QP must be type
4298 * IB_QPT_UD.
4299 * @gid: Multicast group GID.
4300 * @lid: Multicast group LID in host byte order.
4301 *
4302 * In order to send and receive multicast packets, subnet
4303 * administration must have created the multicast group and configured
4304 * the fabric appropriately. The port associated with the specified
4305 * QP must also be a member of the multicast group.
4306 */
4307 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4308
4309 /**
4310 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4311 * @qp: QP to detach from the multicast group.
4312 * @gid: Multicast group GID.
4313 * @lid: Multicast group LID in host byte order.
4314 */
4315 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4316
4317 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4318 struct inode *inode, struct ib_udata *udata);
4319 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4320
4321 static inline int ib_check_mr_access(struct ib_device *ib_dev,
4322 unsigned int flags)
4323 {
4324 /*
4325 * Local write permission is required if remote write or
4326 * remote atomic permission is also requested.
4327 */
4328 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4329 !(flags & IB_ACCESS_LOCAL_WRITE))
4330 return -EINVAL;
4331
4332 if (flags & ~IB_ACCESS_SUPPORTED)
4333 return -EINVAL;
4334
4335 if (flags & IB_ACCESS_ON_DEMAND &&
4336 !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING))
4337 return -EINVAL;
4338 return 0;
4339 }
4340
4341 static inline bool ib_access_writable(int access_flags)
4342 {
4343 /*
4344 * We have writable memory backing the MR if any of the following
4345 * access flags are set. "Local write" and "remote write" obviously
4346 * require write access. "Remote atomic" can do things like fetch and
4347 * add, which will modify memory, and "MW bind" can change permissions
4348 * by binding a window.
4349 */
4350 return access_flags &
4351 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
4352 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4353 }
4354
4355 /**
4356 * ib_check_mr_status: lightweight check of MR status.
4357 * This routine may provide status checks on a selected
4358 * ib_mr. first use is for signature status check.
4359 *
4360 * @mr: A memory region.
4361 * @check_mask: Bitmask of which checks to perform from
4362 * ib_mr_status_check enumeration.
4363 * @mr_status: The container of relevant status checks.
4364 * failed checks will be indicated in the status bitmask
4365 * and the relevant info shall be in the error item.
4366 */
4367 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4368 struct ib_mr_status *mr_status);
4369
4370 /**
4371 * ib_device_try_get: Hold a registration lock
4372 * device: The device to lock
4373 *
4374 * A device under an active registration lock cannot become unregistered. It
4375 * is only possible to obtain a registration lock on a device that is fully
4376 * registered, otherwise this function returns false.
4377 *
4378 * The registration lock is only necessary for actions which require the
4379 * device to still be registered. Uses that only require the device pointer to
4380 * be valid should use get_device(&ibdev->dev) to hold the memory.
4381 *
4382 */
4383 static inline bool ib_device_try_get(struct ib_device *dev)
4384 {
4385 return refcount_inc_not_zero(&dev->refcount);
4386 }
4387
4388 void ib_device_put(struct ib_device *device);
4389 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4390 enum rdma_driver_id driver_id);
4391 struct ib_device *ib_device_get_by_name(const char *name,
4392 enum rdma_driver_id driver_id);
4393 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4394 u16 pkey, const union ib_gid *gid,
4395 const struct sockaddr *addr);
4396 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4397 unsigned int port);
4398 struct net_device *ib_device_netdev(struct ib_device *dev, u32 port);
4399
4400 struct ib_wq *ib_create_wq(struct ib_pd *pd,
4401 struct ib_wq_init_attr *init_attr);
4402 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4403
4404 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4405 unsigned int *sg_offset, unsigned int page_size);
4406 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4407 int data_sg_nents, unsigned int *data_sg_offset,
4408 struct scatterlist *meta_sg, int meta_sg_nents,
4409 unsigned int *meta_sg_offset, unsigned int page_size);
4410
4411 static inline int
4412 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4413 unsigned int *sg_offset, unsigned int page_size)
4414 {
4415 int n;
4416
4417 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4418 mr->iova = 0;
4419
4420 return n;
4421 }
4422
4423 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4424 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4425
4426 void ib_drain_rq(struct ib_qp *qp);
4427 void ib_drain_sq(struct ib_qp *qp);
4428 void ib_drain_qp(struct ib_qp *qp);
4429
4430 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4431 u8 *width);
4432
4433 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4434 {
4435 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4436 return attr->roce.dmac;
4437 return NULL;
4438 }
4439
4440 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4441 {
4442 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4443 attr->ib.dlid = (u16)dlid;
4444 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4445 attr->opa.dlid = dlid;
4446 }
4447
4448 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4449 {
4450 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4451 return attr->ib.dlid;
4452 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4453 return attr->opa.dlid;
4454 return 0;
4455 }
4456
4457 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4458 {
4459 attr->sl = sl;
4460 }
4461
4462 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4463 {
4464 return attr->sl;
4465 }
4466
4467 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4468 u8 src_path_bits)
4469 {
4470 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4471 attr->ib.src_path_bits = src_path_bits;
4472 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4473 attr->opa.src_path_bits = src_path_bits;
4474 }
4475
4476 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4477 {
4478 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4479 return attr->ib.src_path_bits;
4480 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4481 return attr->opa.src_path_bits;
4482 return 0;
4483 }
4484
4485 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4486 bool make_grd)
4487 {
4488 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4489 attr->opa.make_grd = make_grd;
4490 }
4491
4492 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4493 {
4494 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4495 return attr->opa.make_grd;
4496 return false;
4497 }
4498
4499 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4500 {
4501 attr->port_num = port_num;
4502 }
4503
4504 static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4505 {
4506 return attr->port_num;
4507 }
4508
4509 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4510 u8 static_rate)
4511 {
4512 attr->static_rate = static_rate;
4513 }
4514
4515 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4516 {
4517 return attr->static_rate;
4518 }
4519
4520 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4521 enum ib_ah_flags flag)
4522 {
4523 attr->ah_flags = flag;
4524 }
4525
4526 static inline enum ib_ah_flags
4527 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4528 {
4529 return attr->ah_flags;
4530 }
4531
4532 static inline const struct ib_global_route
4533 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4534 {
4535 return &attr->grh;
4536 }
4537
4538 /*To retrieve and modify the grh */
4539 static inline struct ib_global_route
4540 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4541 {
4542 return &attr->grh;
4543 }
4544
4545 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4546 {
4547 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4548
4549 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4550 }
4551
4552 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4553 __be64 prefix)
4554 {
4555 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4556
4557 grh->dgid.global.subnet_prefix = prefix;
4558 }
4559
4560 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4561 __be64 if_id)
4562 {
4563 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4564
4565 grh->dgid.global.interface_id = if_id;
4566 }
4567
4568 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4569 union ib_gid *dgid, u32 flow_label,
4570 u8 sgid_index, u8 hop_limit,
4571 u8 traffic_class)
4572 {
4573 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4574
4575 attr->ah_flags = IB_AH_GRH;
4576 if (dgid)
4577 grh->dgid = *dgid;
4578 grh->flow_label = flow_label;
4579 grh->sgid_index = sgid_index;
4580 grh->hop_limit = hop_limit;
4581 grh->traffic_class = traffic_class;
4582 grh->sgid_attr = NULL;
4583 }
4584
4585 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4586 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4587 u32 flow_label, u8 hop_limit, u8 traffic_class,
4588 const struct ib_gid_attr *sgid_attr);
4589 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4590 const struct rdma_ah_attr *src);
4591 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4592 const struct rdma_ah_attr *new);
4593 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4594
4595 /**
4596 * rdma_ah_find_type - Return address handle type.
4597 *
4598 * @dev: Device to be checked
4599 * @port_num: Port number
4600 */
4601 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4602 u32 port_num)
4603 {
4604 if (rdma_protocol_roce(dev, port_num))
4605 return RDMA_AH_ATTR_TYPE_ROCE;
4606 if (rdma_protocol_ib(dev, port_num)) {
4607 if (rdma_cap_opa_ah(dev, port_num))
4608 return RDMA_AH_ATTR_TYPE_OPA;
4609 return RDMA_AH_ATTR_TYPE_IB;
4610 }
4611
4612 return RDMA_AH_ATTR_TYPE_UNDEFINED;
4613 }
4614
4615 /**
4616 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4617 * In the current implementation the only way to
4618 * get the 32bit lid is from other sources for OPA.
4619 * For IB, lids will always be 16bits so cast the
4620 * value accordingly.
4621 *
4622 * @lid: A 32bit LID
4623 */
4624 static inline u16 ib_lid_cpu16(u32 lid)
4625 {
4626 WARN_ON_ONCE(lid & 0xFFFF0000);
4627 return (u16)lid;
4628 }
4629
4630 /**
4631 * ib_lid_be16 - Return lid in 16bit BE encoding.
4632 *
4633 * @lid: A 32bit LID
4634 */
4635 static inline __be16 ib_lid_be16(u32 lid)
4636 {
4637 WARN_ON_ONCE(lid & 0xFFFF0000);
4638 return cpu_to_be16((u16)lid);
4639 }
4640
4641 /**
4642 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4643 * vector
4644 * @device: the rdma device
4645 * @comp_vector: index of completion vector
4646 *
4647 * Returns NULL on failure, otherwise a corresponding cpu map of the
4648 * completion vector (returns all-cpus map if the device driver doesn't
4649 * implement get_vector_affinity).
4650 */
4651 static inline const struct cpumask *
4652 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4653 {
4654 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4655 !device->ops.get_vector_affinity)
4656 return NULL;
4657
4658 return device->ops.get_vector_affinity(device, comp_vector);
4659
4660 }
4661
4662 /**
4663 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4664 * and add their gids, as needed, to the relevant RoCE devices.
4665 *
4666 * @device: the rdma device
4667 */
4668 void rdma_roce_rescan_device(struct ib_device *ibdev);
4669
4670 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4671
4672 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4673
4674 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4675 enum rdma_netdev_t type, const char *name,
4676 unsigned char name_assign_type,
4677 void (*setup)(struct net_device *));
4678
4679 int rdma_init_netdev(struct ib_device *device, u32 port_num,
4680 enum rdma_netdev_t type, const char *name,
4681 unsigned char name_assign_type,
4682 void (*setup)(struct net_device *),
4683 struct net_device *netdev);
4684
4685 /**
4686 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4687 *
4688 * @device: device pointer for which ib_device pointer to retrieve
4689 *
4690 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4691 *
4692 */
4693 static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4694 {
4695 struct ib_core_device *coredev =
4696 container_of(device, struct ib_core_device, dev);
4697
4698 return coredev->owner;
4699 }
4700
4701 /**
4702 * ibdev_to_node - return the NUMA node for a given ib_device
4703 * @dev: device to get the NUMA node for.
4704 */
4705 static inline int ibdev_to_node(struct ib_device *ibdev)
4706 {
4707 struct device *parent = ibdev->dev.parent;
4708
4709 if (!parent)
4710 return NUMA_NO_NODE;
4711 return dev_to_node(parent);
4712 }
4713
4714 /**
4715 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4716 * ib_device holder structure from device pointer.
4717 *
4718 * NOTE: New drivers should not make use of this API; This API is only for
4719 * existing drivers who have exposed sysfs entries using
4720 * ops->device_group.
4721 */
4722 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \
4723 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4724
4725 bool rdma_dev_access_netns(const struct ib_device *device,
4726 const struct net *net);
4727
4728 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4729 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4730 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4731
4732 /**
4733 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4734 * on the flow_label
4735 *
4736 * This function will convert the 20 bit flow_label input to a valid RoCE v2
4737 * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4738 * convention.
4739 */
4740 static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4741 {
4742 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4743
4744 fl_low ^= fl_high >> 14;
4745 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4746 }
4747
4748 /**
4749 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4750 * local and remote qpn values
4751 *
4752 * This function folded the multiplication results of two qpns, 24 bit each,
4753 * fields, and converts it to a 20 bit results.
4754 *
4755 * This function will create symmetric flow_label value based on the local
4756 * and remote qpn values. this will allow both the requester and responder
4757 * to calculate the same flow_label for a given connection.
4758 *
4759 * This helper function should be used by driver in case the upper layer
4760 * provide a zero flow_label value. This is to improve entropy of RDMA
4761 * traffic in the network.
4762 */
4763 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4764 {
4765 u64 v = (u64)lqpn * rqpn;
4766
4767 v ^= v >> 20;
4768 v ^= v >> 40;
4769
4770 return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4771 }
4772
4773 /**
4774 * rdma_get_udp_sport - Calculate and set UDP source port based on the flow
4775 * label. If flow label is not defined in GRH then
4776 * calculate it based on lqpn/rqpn.
4777 *
4778 * @fl: flow label from GRH
4779 * @lqpn: local qp number
4780 * @rqpn: remote qp number
4781 */
4782 static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn)
4783 {
4784 if (!fl)
4785 fl = rdma_calc_flow_label(lqpn, rqpn);
4786
4787 return rdma_flow_label_to_udp_sport(fl);
4788 }
4789
4790 const struct ib_port_immutable*
4791 ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4792 #endif /* IB_VERBS_H */