]> git.ipfire.org Git - people/ms/linux.git/blob - mm/compaction.c
Merge branch 'arm/fixes' into arm/late
[people/ms/linux.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 /*
30 * Fragmentation score check interval for proactive compaction purposes.
31 */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500)
33
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36 count_vm_event(item);
37 }
38
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41 count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
55 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
56 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
57
58 /*
59 * Page order with-respect-to which proactive compaction
60 * calculates external fragmentation, which is used as
61 * the "fragmentation score" of a node/zone.
62 */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
69 #endif
70
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73 struct page *page, *next;
74 unsigned long high_pfn = 0;
75
76 list_for_each_entry_safe(page, next, freelist, lru) {
77 unsigned long pfn = page_to_pfn(page);
78 list_del(&page->lru);
79 __free_page(page);
80 if (pfn > high_pfn)
81 high_pfn = pfn;
82 }
83
84 return high_pfn;
85 }
86
87 static void split_map_pages(struct list_head *list)
88 {
89 unsigned int i, order, nr_pages;
90 struct page *page, *next;
91 LIST_HEAD(tmp_list);
92
93 list_for_each_entry_safe(page, next, list, lru) {
94 list_del(&page->lru);
95
96 order = page_private(page);
97 nr_pages = 1 << order;
98
99 post_alloc_hook(page, order, __GFP_MOVABLE);
100 if (order)
101 split_page(page, order);
102
103 for (i = 0; i < nr_pages; i++) {
104 list_add(&page->lru, &tmp_list);
105 page++;
106 }
107 }
108
109 list_splice(&tmp_list, list);
110 }
111
112 #ifdef CONFIG_COMPACTION
113
114 int PageMovable(struct page *page)
115 {
116 struct address_space *mapping;
117
118 VM_BUG_ON_PAGE(!PageLocked(page), page);
119 if (!__PageMovable(page))
120 return 0;
121
122 mapping = page_mapping(page);
123 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124 return 1;
125
126 return 0;
127 }
128 EXPORT_SYMBOL(PageMovable);
129
130 void __SetPageMovable(struct page *page, struct address_space *mapping)
131 {
132 VM_BUG_ON_PAGE(!PageLocked(page), page);
133 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135 }
136 EXPORT_SYMBOL(__SetPageMovable);
137
138 void __ClearPageMovable(struct page *page)
139 {
140 VM_BUG_ON_PAGE(!PageMovable(page), page);
141 /*
142 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
143 * flag so that VM can catch up released page by driver after isolation.
144 * With it, VM migration doesn't try to put it back.
145 */
146 page->mapping = (void *)((unsigned long)page->mapping &
147 PAGE_MAPPING_MOVABLE);
148 }
149 EXPORT_SYMBOL(__ClearPageMovable);
150
151 /* Do not skip compaction more than 64 times */
152 #define COMPACT_MAX_DEFER_SHIFT 6
153
154 /*
155 * Compaction is deferred when compaction fails to result in a page
156 * allocation success. 1 << compact_defer_shift, compactions are skipped up
157 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
158 */
159 static void defer_compaction(struct zone *zone, int order)
160 {
161 zone->compact_considered = 0;
162 zone->compact_defer_shift++;
163
164 if (order < zone->compact_order_failed)
165 zone->compact_order_failed = order;
166
167 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
168 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
169
170 trace_mm_compaction_defer_compaction(zone, order);
171 }
172
173 /* Returns true if compaction should be skipped this time */
174 static bool compaction_deferred(struct zone *zone, int order)
175 {
176 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
177
178 if (order < zone->compact_order_failed)
179 return false;
180
181 /* Avoid possible overflow */
182 if (++zone->compact_considered >= defer_limit) {
183 zone->compact_considered = defer_limit;
184 return false;
185 }
186
187 trace_mm_compaction_deferred(zone, order);
188
189 return true;
190 }
191
192 /*
193 * Update defer tracking counters after successful compaction of given order,
194 * which means an allocation either succeeded (alloc_success == true) or is
195 * expected to succeed.
196 */
197 void compaction_defer_reset(struct zone *zone, int order,
198 bool alloc_success)
199 {
200 if (alloc_success) {
201 zone->compact_considered = 0;
202 zone->compact_defer_shift = 0;
203 }
204 if (order >= zone->compact_order_failed)
205 zone->compact_order_failed = order + 1;
206
207 trace_mm_compaction_defer_reset(zone, order);
208 }
209
210 /* Returns true if restarting compaction after many failures */
211 static bool compaction_restarting(struct zone *zone, int order)
212 {
213 if (order < zone->compact_order_failed)
214 return false;
215
216 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
217 zone->compact_considered >= 1UL << zone->compact_defer_shift;
218 }
219
220 /* Returns true if the pageblock should be scanned for pages to isolate. */
221 static inline bool isolation_suitable(struct compact_control *cc,
222 struct page *page)
223 {
224 if (cc->ignore_skip_hint)
225 return true;
226
227 return !get_pageblock_skip(page);
228 }
229
230 static void reset_cached_positions(struct zone *zone)
231 {
232 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
233 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
234 zone->compact_cached_free_pfn =
235 pageblock_start_pfn(zone_end_pfn(zone) - 1);
236 }
237
238 /*
239 * Compound pages of >= pageblock_order should consistently be skipped until
240 * released. It is always pointless to compact pages of such order (if they are
241 * migratable), and the pageblocks they occupy cannot contain any free pages.
242 */
243 static bool pageblock_skip_persistent(struct page *page)
244 {
245 if (!PageCompound(page))
246 return false;
247
248 page = compound_head(page);
249
250 if (compound_order(page) >= pageblock_order)
251 return true;
252
253 return false;
254 }
255
256 static bool
257 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
258 bool check_target)
259 {
260 struct page *page = pfn_to_online_page(pfn);
261 struct page *block_page;
262 struct page *end_page;
263 unsigned long block_pfn;
264
265 if (!page)
266 return false;
267 if (zone != page_zone(page))
268 return false;
269 if (pageblock_skip_persistent(page))
270 return false;
271
272 /*
273 * If skip is already cleared do no further checking once the
274 * restart points have been set.
275 */
276 if (check_source && check_target && !get_pageblock_skip(page))
277 return true;
278
279 /*
280 * If clearing skip for the target scanner, do not select a
281 * non-movable pageblock as the starting point.
282 */
283 if (!check_source && check_target &&
284 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
285 return false;
286
287 /* Ensure the start of the pageblock or zone is online and valid */
288 block_pfn = pageblock_start_pfn(pfn);
289 block_pfn = max(block_pfn, zone->zone_start_pfn);
290 block_page = pfn_to_online_page(block_pfn);
291 if (block_page) {
292 page = block_page;
293 pfn = block_pfn;
294 }
295
296 /* Ensure the end of the pageblock or zone is online and valid */
297 block_pfn = pageblock_end_pfn(pfn) - 1;
298 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
299 end_page = pfn_to_online_page(block_pfn);
300 if (!end_page)
301 return false;
302
303 /*
304 * Only clear the hint if a sample indicates there is either a
305 * free page or an LRU page in the block. One or other condition
306 * is necessary for the block to be a migration source/target.
307 */
308 do {
309 if (check_source && PageLRU(page)) {
310 clear_pageblock_skip(page);
311 return true;
312 }
313
314 if (check_target && PageBuddy(page)) {
315 clear_pageblock_skip(page);
316 return true;
317 }
318
319 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
320 } while (page <= end_page);
321
322 return false;
323 }
324
325 /*
326 * This function is called to clear all cached information on pageblocks that
327 * should be skipped for page isolation when the migrate and free page scanner
328 * meet.
329 */
330 static void __reset_isolation_suitable(struct zone *zone)
331 {
332 unsigned long migrate_pfn = zone->zone_start_pfn;
333 unsigned long free_pfn = zone_end_pfn(zone) - 1;
334 unsigned long reset_migrate = free_pfn;
335 unsigned long reset_free = migrate_pfn;
336 bool source_set = false;
337 bool free_set = false;
338
339 if (!zone->compact_blockskip_flush)
340 return;
341
342 zone->compact_blockskip_flush = false;
343
344 /*
345 * Walk the zone and update pageblock skip information. Source looks
346 * for PageLRU while target looks for PageBuddy. When the scanner
347 * is found, both PageBuddy and PageLRU are checked as the pageblock
348 * is suitable as both source and target.
349 */
350 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
351 free_pfn -= pageblock_nr_pages) {
352 cond_resched();
353
354 /* Update the migrate PFN */
355 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
356 migrate_pfn < reset_migrate) {
357 source_set = true;
358 reset_migrate = migrate_pfn;
359 zone->compact_init_migrate_pfn = reset_migrate;
360 zone->compact_cached_migrate_pfn[0] = reset_migrate;
361 zone->compact_cached_migrate_pfn[1] = reset_migrate;
362 }
363
364 /* Update the free PFN */
365 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
366 free_pfn > reset_free) {
367 free_set = true;
368 reset_free = free_pfn;
369 zone->compact_init_free_pfn = reset_free;
370 zone->compact_cached_free_pfn = reset_free;
371 }
372 }
373
374 /* Leave no distance if no suitable block was reset */
375 if (reset_migrate >= reset_free) {
376 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
377 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
378 zone->compact_cached_free_pfn = free_pfn;
379 }
380 }
381
382 void reset_isolation_suitable(pg_data_t *pgdat)
383 {
384 int zoneid;
385
386 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
387 struct zone *zone = &pgdat->node_zones[zoneid];
388 if (!populated_zone(zone))
389 continue;
390
391 /* Only flush if a full compaction finished recently */
392 if (zone->compact_blockskip_flush)
393 __reset_isolation_suitable(zone);
394 }
395 }
396
397 /*
398 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
399 * locks are not required for read/writers. Returns true if it was already set.
400 */
401 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
402 unsigned long pfn)
403 {
404 bool skip;
405
406 /* Do no update if skip hint is being ignored */
407 if (cc->ignore_skip_hint)
408 return false;
409
410 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
411 return false;
412
413 skip = get_pageblock_skip(page);
414 if (!skip && !cc->no_set_skip_hint)
415 set_pageblock_skip(page);
416
417 return skip;
418 }
419
420 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
421 {
422 struct zone *zone = cc->zone;
423
424 pfn = pageblock_end_pfn(pfn);
425
426 /* Set for isolation rather than compaction */
427 if (cc->no_set_skip_hint)
428 return;
429
430 if (pfn > zone->compact_cached_migrate_pfn[0])
431 zone->compact_cached_migrate_pfn[0] = pfn;
432 if (cc->mode != MIGRATE_ASYNC &&
433 pfn > zone->compact_cached_migrate_pfn[1])
434 zone->compact_cached_migrate_pfn[1] = pfn;
435 }
436
437 /*
438 * If no pages were isolated then mark this pageblock to be skipped in the
439 * future. The information is later cleared by __reset_isolation_suitable().
440 */
441 static void update_pageblock_skip(struct compact_control *cc,
442 struct page *page, unsigned long pfn)
443 {
444 struct zone *zone = cc->zone;
445
446 if (cc->no_set_skip_hint)
447 return;
448
449 if (!page)
450 return;
451
452 set_pageblock_skip(page);
453
454 /* Update where async and sync compaction should restart */
455 if (pfn < zone->compact_cached_free_pfn)
456 zone->compact_cached_free_pfn = pfn;
457 }
458 #else
459 static inline bool isolation_suitable(struct compact_control *cc,
460 struct page *page)
461 {
462 return true;
463 }
464
465 static inline bool pageblock_skip_persistent(struct page *page)
466 {
467 return false;
468 }
469
470 static inline void update_pageblock_skip(struct compact_control *cc,
471 struct page *page, unsigned long pfn)
472 {
473 }
474
475 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
476 {
477 }
478
479 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
480 unsigned long pfn)
481 {
482 return false;
483 }
484 #endif /* CONFIG_COMPACTION */
485
486 /*
487 * Compaction requires the taking of some coarse locks that are potentially
488 * very heavily contended. For async compaction, trylock and record if the
489 * lock is contended. The lock will still be acquired but compaction will
490 * abort when the current block is finished regardless of success rate.
491 * Sync compaction acquires the lock.
492 *
493 * Always returns true which makes it easier to track lock state in callers.
494 */
495 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
496 struct compact_control *cc)
497 __acquires(lock)
498 {
499 /* Track if the lock is contended in async mode */
500 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
501 if (spin_trylock_irqsave(lock, *flags))
502 return true;
503
504 cc->contended = true;
505 }
506
507 spin_lock_irqsave(lock, *flags);
508 return true;
509 }
510
511 /*
512 * Compaction requires the taking of some coarse locks that are potentially
513 * very heavily contended. The lock should be periodically unlocked to avoid
514 * having disabled IRQs for a long time, even when there is nobody waiting on
515 * the lock. It might also be that allowing the IRQs will result in
516 * need_resched() becoming true. If scheduling is needed, compaction schedules.
517 * Either compaction type will also abort if a fatal signal is pending.
518 * In either case if the lock was locked, it is dropped and not regained.
519 *
520 * Returns true if compaction should abort due to fatal signal pending.
521 * Returns false when compaction can continue.
522 */
523 static bool compact_unlock_should_abort(spinlock_t *lock,
524 unsigned long flags, bool *locked, struct compact_control *cc)
525 {
526 if (*locked) {
527 spin_unlock_irqrestore(lock, flags);
528 *locked = false;
529 }
530
531 if (fatal_signal_pending(current)) {
532 cc->contended = true;
533 return true;
534 }
535
536 cond_resched();
537
538 return false;
539 }
540
541 /*
542 * Isolate free pages onto a private freelist. If @strict is true, will abort
543 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
544 * (even though it may still end up isolating some pages).
545 */
546 static unsigned long isolate_freepages_block(struct compact_control *cc,
547 unsigned long *start_pfn,
548 unsigned long end_pfn,
549 struct list_head *freelist,
550 unsigned int stride,
551 bool strict)
552 {
553 int nr_scanned = 0, total_isolated = 0;
554 struct page *cursor;
555 unsigned long flags = 0;
556 bool locked = false;
557 unsigned long blockpfn = *start_pfn;
558 unsigned int order;
559
560 /* Strict mode is for isolation, speed is secondary */
561 if (strict)
562 stride = 1;
563
564 cursor = pfn_to_page(blockpfn);
565
566 /* Isolate free pages. */
567 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
568 int isolated;
569 struct page *page = cursor;
570
571 /*
572 * Periodically drop the lock (if held) regardless of its
573 * contention, to give chance to IRQs. Abort if fatal signal
574 * pending.
575 */
576 if (!(blockpfn % COMPACT_CLUSTER_MAX)
577 && compact_unlock_should_abort(&cc->zone->lock, flags,
578 &locked, cc))
579 break;
580
581 nr_scanned++;
582
583 /*
584 * For compound pages such as THP and hugetlbfs, we can save
585 * potentially a lot of iterations if we skip them at once.
586 * The check is racy, but we can consider only valid values
587 * and the only danger is skipping too much.
588 */
589 if (PageCompound(page)) {
590 const unsigned int order = compound_order(page);
591
592 if (likely(order < MAX_ORDER)) {
593 blockpfn += (1UL << order) - 1;
594 cursor += (1UL << order) - 1;
595 }
596 goto isolate_fail;
597 }
598
599 if (!PageBuddy(page))
600 goto isolate_fail;
601
602 /* If we already hold the lock, we can skip some rechecking. */
603 if (!locked) {
604 locked = compact_lock_irqsave(&cc->zone->lock,
605 &flags, cc);
606
607 /* Recheck this is a buddy page under lock */
608 if (!PageBuddy(page))
609 goto isolate_fail;
610 }
611
612 /* Found a free page, will break it into order-0 pages */
613 order = buddy_order(page);
614 isolated = __isolate_free_page(page, order);
615 if (!isolated)
616 break;
617 set_page_private(page, order);
618
619 total_isolated += isolated;
620 cc->nr_freepages += isolated;
621 list_add_tail(&page->lru, freelist);
622
623 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
624 blockpfn += isolated;
625 break;
626 }
627 /* Advance to the end of split page */
628 blockpfn += isolated - 1;
629 cursor += isolated - 1;
630 continue;
631
632 isolate_fail:
633 if (strict)
634 break;
635 else
636 continue;
637
638 }
639
640 if (locked)
641 spin_unlock_irqrestore(&cc->zone->lock, flags);
642
643 /*
644 * There is a tiny chance that we have read bogus compound_order(),
645 * so be careful to not go outside of the pageblock.
646 */
647 if (unlikely(blockpfn > end_pfn))
648 blockpfn = end_pfn;
649
650 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
651 nr_scanned, total_isolated);
652
653 /* Record how far we have got within the block */
654 *start_pfn = blockpfn;
655
656 /*
657 * If strict isolation is requested by CMA then check that all the
658 * pages requested were isolated. If there were any failures, 0 is
659 * returned and CMA will fail.
660 */
661 if (strict && blockpfn < end_pfn)
662 total_isolated = 0;
663
664 cc->total_free_scanned += nr_scanned;
665 if (total_isolated)
666 count_compact_events(COMPACTISOLATED, total_isolated);
667 return total_isolated;
668 }
669
670 /**
671 * isolate_freepages_range() - isolate free pages.
672 * @cc: Compaction control structure.
673 * @start_pfn: The first PFN to start isolating.
674 * @end_pfn: The one-past-last PFN.
675 *
676 * Non-free pages, invalid PFNs, or zone boundaries within the
677 * [start_pfn, end_pfn) range are considered errors, cause function to
678 * undo its actions and return zero.
679 *
680 * Otherwise, function returns one-past-the-last PFN of isolated page
681 * (which may be greater then end_pfn if end fell in a middle of
682 * a free page).
683 */
684 unsigned long
685 isolate_freepages_range(struct compact_control *cc,
686 unsigned long start_pfn, unsigned long end_pfn)
687 {
688 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
689 LIST_HEAD(freelist);
690
691 pfn = start_pfn;
692 block_start_pfn = pageblock_start_pfn(pfn);
693 if (block_start_pfn < cc->zone->zone_start_pfn)
694 block_start_pfn = cc->zone->zone_start_pfn;
695 block_end_pfn = pageblock_end_pfn(pfn);
696
697 for (; pfn < end_pfn; pfn += isolated,
698 block_start_pfn = block_end_pfn,
699 block_end_pfn += pageblock_nr_pages) {
700 /* Protect pfn from changing by isolate_freepages_block */
701 unsigned long isolate_start_pfn = pfn;
702
703 block_end_pfn = min(block_end_pfn, end_pfn);
704
705 /*
706 * pfn could pass the block_end_pfn if isolated freepage
707 * is more than pageblock order. In this case, we adjust
708 * scanning range to right one.
709 */
710 if (pfn >= block_end_pfn) {
711 block_start_pfn = pageblock_start_pfn(pfn);
712 block_end_pfn = pageblock_end_pfn(pfn);
713 block_end_pfn = min(block_end_pfn, end_pfn);
714 }
715
716 if (!pageblock_pfn_to_page(block_start_pfn,
717 block_end_pfn, cc->zone))
718 break;
719
720 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
721 block_end_pfn, &freelist, 0, true);
722
723 /*
724 * In strict mode, isolate_freepages_block() returns 0 if
725 * there are any holes in the block (ie. invalid PFNs or
726 * non-free pages).
727 */
728 if (!isolated)
729 break;
730
731 /*
732 * If we managed to isolate pages, it is always (1 << n) *
733 * pageblock_nr_pages for some non-negative n. (Max order
734 * page may span two pageblocks).
735 */
736 }
737
738 /* __isolate_free_page() does not map the pages */
739 split_map_pages(&freelist);
740
741 if (pfn < end_pfn) {
742 /* Loop terminated early, cleanup. */
743 release_freepages(&freelist);
744 return 0;
745 }
746
747 /* We don't use freelists for anything. */
748 return pfn;
749 }
750
751 /* Similar to reclaim, but different enough that they don't share logic */
752 static bool too_many_isolated(pg_data_t *pgdat)
753 {
754 bool too_many;
755
756 unsigned long active, inactive, isolated;
757
758 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
759 node_page_state(pgdat, NR_INACTIVE_ANON);
760 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
761 node_page_state(pgdat, NR_ACTIVE_ANON);
762 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
763 node_page_state(pgdat, NR_ISOLATED_ANON);
764
765 too_many = isolated > (inactive + active) / 2;
766 if (!too_many)
767 wake_throttle_isolated(pgdat);
768
769 return too_many;
770 }
771
772 /**
773 * isolate_migratepages_block() - isolate all migrate-able pages within
774 * a single pageblock
775 * @cc: Compaction control structure.
776 * @low_pfn: The first PFN to isolate
777 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
778 * @mode: Isolation mode to be used.
779 *
780 * Isolate all pages that can be migrated from the range specified by
781 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
782 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
783 * -ENOMEM in case we could not allocate a page, or 0.
784 * cc->migrate_pfn will contain the next pfn to scan.
785 *
786 * The pages are isolated on cc->migratepages list (not required to be empty),
787 * and cc->nr_migratepages is updated accordingly.
788 */
789 static int
790 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
791 unsigned long end_pfn, isolate_mode_t mode)
792 {
793 pg_data_t *pgdat = cc->zone->zone_pgdat;
794 unsigned long nr_scanned = 0, nr_isolated = 0;
795 struct lruvec *lruvec;
796 unsigned long flags = 0;
797 struct lruvec *locked = NULL;
798 struct page *page = NULL, *valid_page = NULL;
799 struct address_space *mapping;
800 unsigned long start_pfn = low_pfn;
801 bool skip_on_failure = false;
802 unsigned long next_skip_pfn = 0;
803 bool skip_updated = false;
804 int ret = 0;
805
806 cc->migrate_pfn = low_pfn;
807
808 /*
809 * Ensure that there are not too many pages isolated from the LRU
810 * list by either parallel reclaimers or compaction. If there are,
811 * delay for some time until fewer pages are isolated
812 */
813 while (unlikely(too_many_isolated(pgdat))) {
814 /* stop isolation if there are still pages not migrated */
815 if (cc->nr_migratepages)
816 return -EAGAIN;
817
818 /* async migration should just abort */
819 if (cc->mode == MIGRATE_ASYNC)
820 return -EAGAIN;
821
822 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
823
824 if (fatal_signal_pending(current))
825 return -EINTR;
826 }
827
828 cond_resched();
829
830 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
831 skip_on_failure = true;
832 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
833 }
834
835 /* Time to isolate some pages for migration */
836 for (; low_pfn < end_pfn; low_pfn++) {
837
838 if (skip_on_failure && low_pfn >= next_skip_pfn) {
839 /*
840 * We have isolated all migration candidates in the
841 * previous order-aligned block, and did not skip it due
842 * to failure. We should migrate the pages now and
843 * hopefully succeed compaction.
844 */
845 if (nr_isolated)
846 break;
847
848 /*
849 * We failed to isolate in the previous order-aligned
850 * block. Set the new boundary to the end of the
851 * current block. Note we can't simply increase
852 * next_skip_pfn by 1 << order, as low_pfn might have
853 * been incremented by a higher number due to skipping
854 * a compound or a high-order buddy page in the
855 * previous loop iteration.
856 */
857 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
858 }
859
860 /*
861 * Periodically drop the lock (if held) regardless of its
862 * contention, to give chance to IRQs. Abort completely if
863 * a fatal signal is pending.
864 */
865 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
866 if (locked) {
867 unlock_page_lruvec_irqrestore(locked, flags);
868 locked = NULL;
869 }
870
871 if (fatal_signal_pending(current)) {
872 cc->contended = true;
873 ret = -EINTR;
874
875 goto fatal_pending;
876 }
877
878 cond_resched();
879 }
880
881 nr_scanned++;
882
883 page = pfn_to_page(low_pfn);
884
885 /*
886 * Check if the pageblock has already been marked skipped.
887 * Only the aligned PFN is checked as the caller isolates
888 * COMPACT_CLUSTER_MAX at a time so the second call must
889 * not falsely conclude that the block should be skipped.
890 */
891 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
892 if (!isolation_suitable(cc, page)) {
893 low_pfn = end_pfn;
894 page = NULL;
895 goto isolate_abort;
896 }
897 valid_page = page;
898 }
899
900 if (PageHuge(page) && cc->alloc_contig) {
901 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
902
903 /*
904 * Fail isolation in case isolate_or_dissolve_huge_page()
905 * reports an error. In case of -ENOMEM, abort right away.
906 */
907 if (ret < 0) {
908 /* Do not report -EBUSY down the chain */
909 if (ret == -EBUSY)
910 ret = 0;
911 low_pfn += compound_nr(page) - 1;
912 goto isolate_fail;
913 }
914
915 if (PageHuge(page)) {
916 /*
917 * Hugepage was successfully isolated and placed
918 * on the cc->migratepages list.
919 */
920 low_pfn += compound_nr(page) - 1;
921 goto isolate_success_no_list;
922 }
923
924 /*
925 * Ok, the hugepage was dissolved. Now these pages are
926 * Buddy and cannot be re-allocated because they are
927 * isolated. Fall-through as the check below handles
928 * Buddy pages.
929 */
930 }
931
932 /*
933 * Skip if free. We read page order here without zone lock
934 * which is generally unsafe, but the race window is small and
935 * the worst thing that can happen is that we skip some
936 * potential isolation targets.
937 */
938 if (PageBuddy(page)) {
939 unsigned long freepage_order = buddy_order_unsafe(page);
940
941 /*
942 * Without lock, we cannot be sure that what we got is
943 * a valid page order. Consider only values in the
944 * valid order range to prevent low_pfn overflow.
945 */
946 if (freepage_order > 0 && freepage_order < MAX_ORDER)
947 low_pfn += (1UL << freepage_order) - 1;
948 continue;
949 }
950
951 /*
952 * Regardless of being on LRU, compound pages such as THP and
953 * hugetlbfs are not to be compacted unless we are attempting
954 * an allocation much larger than the huge page size (eg CMA).
955 * We can potentially save a lot of iterations if we skip them
956 * at once. The check is racy, but we can consider only valid
957 * values and the only danger is skipping too much.
958 */
959 if (PageCompound(page) && !cc->alloc_contig) {
960 const unsigned int order = compound_order(page);
961
962 if (likely(order < MAX_ORDER))
963 low_pfn += (1UL << order) - 1;
964 goto isolate_fail;
965 }
966
967 /*
968 * Check may be lockless but that's ok as we recheck later.
969 * It's possible to migrate LRU and non-lru movable pages.
970 * Skip any other type of page
971 */
972 if (!PageLRU(page)) {
973 /*
974 * __PageMovable can return false positive so we need
975 * to verify it under page_lock.
976 */
977 if (unlikely(__PageMovable(page)) &&
978 !PageIsolated(page)) {
979 if (locked) {
980 unlock_page_lruvec_irqrestore(locked, flags);
981 locked = NULL;
982 }
983
984 if (!isolate_movable_page(page, mode))
985 goto isolate_success;
986 }
987
988 goto isolate_fail;
989 }
990
991 /*
992 * Migration will fail if an anonymous page is pinned in memory,
993 * so avoid taking lru_lock and isolating it unnecessarily in an
994 * admittedly racy check.
995 */
996 mapping = page_mapping(page);
997 if (!mapping && page_count(page) > page_mapcount(page))
998 goto isolate_fail;
999
1000 /*
1001 * Only allow to migrate anonymous pages in GFP_NOFS context
1002 * because those do not depend on fs locks.
1003 */
1004 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1005 goto isolate_fail;
1006
1007 /*
1008 * Be careful not to clear PageLRU until after we're
1009 * sure the page is not being freed elsewhere -- the
1010 * page release code relies on it.
1011 */
1012 if (unlikely(!get_page_unless_zero(page)))
1013 goto isolate_fail;
1014
1015 /* Only take pages on LRU: a check now makes later tests safe */
1016 if (!PageLRU(page))
1017 goto isolate_fail_put;
1018
1019 /* Compaction might skip unevictable pages but CMA takes them */
1020 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1021 goto isolate_fail_put;
1022
1023 /*
1024 * To minimise LRU disruption, the caller can indicate with
1025 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1026 * it will be able to migrate without blocking - clean pages
1027 * for the most part. PageWriteback would require blocking.
1028 */
1029 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1030 goto isolate_fail_put;
1031
1032 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1033 bool migrate_dirty;
1034
1035 /*
1036 * Only pages without mappings or that have a
1037 * ->migratepage callback are possible to migrate
1038 * without blocking. However, we can be racing with
1039 * truncation so it's necessary to lock the page
1040 * to stabilise the mapping as truncation holds
1041 * the page lock until after the page is removed
1042 * from the page cache.
1043 */
1044 if (!trylock_page(page))
1045 goto isolate_fail_put;
1046
1047 mapping = page_mapping(page);
1048 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1049 unlock_page(page);
1050 if (!migrate_dirty)
1051 goto isolate_fail_put;
1052 }
1053
1054 /* Try isolate the page */
1055 if (!TestClearPageLRU(page))
1056 goto isolate_fail_put;
1057
1058 lruvec = folio_lruvec(page_folio(page));
1059
1060 /* If we already hold the lock, we can skip some rechecking */
1061 if (lruvec != locked) {
1062 if (locked)
1063 unlock_page_lruvec_irqrestore(locked, flags);
1064
1065 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1066 locked = lruvec;
1067
1068 lruvec_memcg_debug(lruvec, page_folio(page));
1069
1070 /* Try get exclusive access under lock */
1071 if (!skip_updated) {
1072 skip_updated = true;
1073 if (test_and_set_skip(cc, page, low_pfn))
1074 goto isolate_abort;
1075 }
1076
1077 /*
1078 * Page become compound since the non-locked check,
1079 * and it's on LRU. It can only be a THP so the order
1080 * is safe to read and it's 0 for tail pages.
1081 */
1082 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1083 low_pfn += compound_nr(page) - 1;
1084 SetPageLRU(page);
1085 goto isolate_fail_put;
1086 }
1087 }
1088
1089 /* The whole page is taken off the LRU; skip the tail pages. */
1090 if (PageCompound(page))
1091 low_pfn += compound_nr(page) - 1;
1092
1093 /* Successfully isolated */
1094 del_page_from_lru_list(page, lruvec);
1095 mod_node_page_state(page_pgdat(page),
1096 NR_ISOLATED_ANON + page_is_file_lru(page),
1097 thp_nr_pages(page));
1098
1099 isolate_success:
1100 list_add(&page->lru, &cc->migratepages);
1101 isolate_success_no_list:
1102 cc->nr_migratepages += compound_nr(page);
1103 nr_isolated += compound_nr(page);
1104
1105 /*
1106 * Avoid isolating too much unless this block is being
1107 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1108 * or a lock is contended. For contention, isolate quickly to
1109 * potentially remove one source of contention.
1110 */
1111 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1112 !cc->rescan && !cc->contended) {
1113 ++low_pfn;
1114 break;
1115 }
1116
1117 continue;
1118
1119 isolate_fail_put:
1120 /* Avoid potential deadlock in freeing page under lru_lock */
1121 if (locked) {
1122 unlock_page_lruvec_irqrestore(locked, flags);
1123 locked = NULL;
1124 }
1125 put_page(page);
1126
1127 isolate_fail:
1128 if (!skip_on_failure && ret != -ENOMEM)
1129 continue;
1130
1131 /*
1132 * We have isolated some pages, but then failed. Release them
1133 * instead of migrating, as we cannot form the cc->order buddy
1134 * page anyway.
1135 */
1136 if (nr_isolated) {
1137 if (locked) {
1138 unlock_page_lruvec_irqrestore(locked, flags);
1139 locked = NULL;
1140 }
1141 putback_movable_pages(&cc->migratepages);
1142 cc->nr_migratepages = 0;
1143 nr_isolated = 0;
1144 }
1145
1146 if (low_pfn < next_skip_pfn) {
1147 low_pfn = next_skip_pfn - 1;
1148 /*
1149 * The check near the loop beginning would have updated
1150 * next_skip_pfn too, but this is a bit simpler.
1151 */
1152 next_skip_pfn += 1UL << cc->order;
1153 }
1154
1155 if (ret == -ENOMEM)
1156 break;
1157 }
1158
1159 /*
1160 * The PageBuddy() check could have potentially brought us outside
1161 * the range to be scanned.
1162 */
1163 if (unlikely(low_pfn > end_pfn))
1164 low_pfn = end_pfn;
1165
1166 page = NULL;
1167
1168 isolate_abort:
1169 if (locked)
1170 unlock_page_lruvec_irqrestore(locked, flags);
1171 if (page) {
1172 SetPageLRU(page);
1173 put_page(page);
1174 }
1175
1176 /*
1177 * Updated the cached scanner pfn once the pageblock has been scanned
1178 * Pages will either be migrated in which case there is no point
1179 * scanning in the near future or migration failed in which case the
1180 * failure reason may persist. The block is marked for skipping if
1181 * there were no pages isolated in the block or if the block is
1182 * rescanned twice in a row.
1183 */
1184 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1185 if (valid_page && !skip_updated)
1186 set_pageblock_skip(valid_page);
1187 update_cached_migrate(cc, low_pfn);
1188 }
1189
1190 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1191 nr_scanned, nr_isolated);
1192
1193 fatal_pending:
1194 cc->total_migrate_scanned += nr_scanned;
1195 if (nr_isolated)
1196 count_compact_events(COMPACTISOLATED, nr_isolated);
1197
1198 cc->migrate_pfn = low_pfn;
1199
1200 return ret;
1201 }
1202
1203 /**
1204 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1205 * @cc: Compaction control structure.
1206 * @start_pfn: The first PFN to start isolating.
1207 * @end_pfn: The one-past-last PFN.
1208 *
1209 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1210 * in case we could not allocate a page, or 0.
1211 */
1212 int
1213 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1214 unsigned long end_pfn)
1215 {
1216 unsigned long pfn, block_start_pfn, block_end_pfn;
1217 int ret = 0;
1218
1219 /* Scan block by block. First and last block may be incomplete */
1220 pfn = start_pfn;
1221 block_start_pfn = pageblock_start_pfn(pfn);
1222 if (block_start_pfn < cc->zone->zone_start_pfn)
1223 block_start_pfn = cc->zone->zone_start_pfn;
1224 block_end_pfn = pageblock_end_pfn(pfn);
1225
1226 for (; pfn < end_pfn; pfn = block_end_pfn,
1227 block_start_pfn = block_end_pfn,
1228 block_end_pfn += pageblock_nr_pages) {
1229
1230 block_end_pfn = min(block_end_pfn, end_pfn);
1231
1232 if (!pageblock_pfn_to_page(block_start_pfn,
1233 block_end_pfn, cc->zone))
1234 continue;
1235
1236 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1237 ISOLATE_UNEVICTABLE);
1238
1239 if (ret)
1240 break;
1241
1242 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1243 break;
1244 }
1245
1246 return ret;
1247 }
1248
1249 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1250 #ifdef CONFIG_COMPACTION
1251
1252 static bool suitable_migration_source(struct compact_control *cc,
1253 struct page *page)
1254 {
1255 int block_mt;
1256
1257 if (pageblock_skip_persistent(page))
1258 return false;
1259
1260 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1261 return true;
1262
1263 block_mt = get_pageblock_migratetype(page);
1264
1265 if (cc->migratetype == MIGRATE_MOVABLE)
1266 return is_migrate_movable(block_mt);
1267 else
1268 return block_mt == cc->migratetype;
1269 }
1270
1271 /* Returns true if the page is within a block suitable for migration to */
1272 static bool suitable_migration_target(struct compact_control *cc,
1273 struct page *page)
1274 {
1275 /* If the page is a large free page, then disallow migration */
1276 if (PageBuddy(page)) {
1277 /*
1278 * We are checking page_order without zone->lock taken. But
1279 * the only small danger is that we skip a potentially suitable
1280 * pageblock, so it's not worth to check order for valid range.
1281 */
1282 if (buddy_order_unsafe(page) >= pageblock_order)
1283 return false;
1284 }
1285
1286 if (cc->ignore_block_suitable)
1287 return true;
1288
1289 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1290 if (is_migrate_movable(get_pageblock_migratetype(page)))
1291 return true;
1292
1293 /* Otherwise skip the block */
1294 return false;
1295 }
1296
1297 static inline unsigned int
1298 freelist_scan_limit(struct compact_control *cc)
1299 {
1300 unsigned short shift = BITS_PER_LONG - 1;
1301
1302 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1303 }
1304
1305 /*
1306 * Test whether the free scanner has reached the same or lower pageblock than
1307 * the migration scanner, and compaction should thus terminate.
1308 */
1309 static inline bool compact_scanners_met(struct compact_control *cc)
1310 {
1311 return (cc->free_pfn >> pageblock_order)
1312 <= (cc->migrate_pfn >> pageblock_order);
1313 }
1314
1315 /*
1316 * Used when scanning for a suitable migration target which scans freelists
1317 * in reverse. Reorders the list such as the unscanned pages are scanned
1318 * first on the next iteration of the free scanner
1319 */
1320 static void
1321 move_freelist_head(struct list_head *freelist, struct page *freepage)
1322 {
1323 LIST_HEAD(sublist);
1324
1325 if (!list_is_last(freelist, &freepage->lru)) {
1326 list_cut_before(&sublist, freelist, &freepage->lru);
1327 list_splice_tail(&sublist, freelist);
1328 }
1329 }
1330
1331 /*
1332 * Similar to move_freelist_head except used by the migration scanner
1333 * when scanning forward. It's possible for these list operations to
1334 * move against each other if they search the free list exactly in
1335 * lockstep.
1336 */
1337 static void
1338 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1339 {
1340 LIST_HEAD(sublist);
1341
1342 if (!list_is_first(freelist, &freepage->lru)) {
1343 list_cut_position(&sublist, freelist, &freepage->lru);
1344 list_splice_tail(&sublist, freelist);
1345 }
1346 }
1347
1348 static void
1349 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1350 {
1351 unsigned long start_pfn, end_pfn;
1352 struct page *page;
1353
1354 /* Do not search around if there are enough pages already */
1355 if (cc->nr_freepages >= cc->nr_migratepages)
1356 return;
1357
1358 /* Minimise scanning during async compaction */
1359 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1360 return;
1361
1362 /* Pageblock boundaries */
1363 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1364 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1365
1366 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1367 if (!page)
1368 return;
1369
1370 /* Scan before */
1371 if (start_pfn != pfn) {
1372 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1373 if (cc->nr_freepages >= cc->nr_migratepages)
1374 return;
1375 }
1376
1377 /* Scan after */
1378 start_pfn = pfn + nr_isolated;
1379 if (start_pfn < end_pfn)
1380 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1381
1382 /* Skip this pageblock in the future as it's full or nearly full */
1383 if (cc->nr_freepages < cc->nr_migratepages)
1384 set_pageblock_skip(page);
1385 }
1386
1387 /* Search orders in round-robin fashion */
1388 static int next_search_order(struct compact_control *cc, int order)
1389 {
1390 order--;
1391 if (order < 0)
1392 order = cc->order - 1;
1393
1394 /* Search wrapped around? */
1395 if (order == cc->search_order) {
1396 cc->search_order--;
1397 if (cc->search_order < 0)
1398 cc->search_order = cc->order - 1;
1399 return -1;
1400 }
1401
1402 return order;
1403 }
1404
1405 static unsigned long
1406 fast_isolate_freepages(struct compact_control *cc)
1407 {
1408 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1409 unsigned int nr_scanned = 0;
1410 unsigned long low_pfn, min_pfn, highest = 0;
1411 unsigned long nr_isolated = 0;
1412 unsigned long distance;
1413 struct page *page = NULL;
1414 bool scan_start = false;
1415 int order;
1416
1417 /* Full compaction passes in a negative order */
1418 if (cc->order <= 0)
1419 return cc->free_pfn;
1420
1421 /*
1422 * If starting the scan, use a deeper search and use the highest
1423 * PFN found if a suitable one is not found.
1424 */
1425 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1426 limit = pageblock_nr_pages >> 1;
1427 scan_start = true;
1428 }
1429
1430 /*
1431 * Preferred point is in the top quarter of the scan space but take
1432 * a pfn from the top half if the search is problematic.
1433 */
1434 distance = (cc->free_pfn - cc->migrate_pfn);
1435 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1436 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1437
1438 if (WARN_ON_ONCE(min_pfn > low_pfn))
1439 low_pfn = min_pfn;
1440
1441 /*
1442 * Search starts from the last successful isolation order or the next
1443 * order to search after a previous failure
1444 */
1445 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1446
1447 for (order = cc->search_order;
1448 !page && order >= 0;
1449 order = next_search_order(cc, order)) {
1450 struct free_area *area = &cc->zone->free_area[order];
1451 struct list_head *freelist;
1452 struct page *freepage;
1453 unsigned long flags;
1454 unsigned int order_scanned = 0;
1455 unsigned long high_pfn = 0;
1456
1457 if (!area->nr_free)
1458 continue;
1459
1460 spin_lock_irqsave(&cc->zone->lock, flags);
1461 freelist = &area->free_list[MIGRATE_MOVABLE];
1462 list_for_each_entry_reverse(freepage, freelist, lru) {
1463 unsigned long pfn;
1464
1465 order_scanned++;
1466 nr_scanned++;
1467 pfn = page_to_pfn(freepage);
1468
1469 if (pfn >= highest)
1470 highest = max(pageblock_start_pfn(pfn),
1471 cc->zone->zone_start_pfn);
1472
1473 if (pfn >= low_pfn) {
1474 cc->fast_search_fail = 0;
1475 cc->search_order = order;
1476 page = freepage;
1477 break;
1478 }
1479
1480 if (pfn >= min_pfn && pfn > high_pfn) {
1481 high_pfn = pfn;
1482
1483 /* Shorten the scan if a candidate is found */
1484 limit >>= 1;
1485 }
1486
1487 if (order_scanned >= limit)
1488 break;
1489 }
1490
1491 /* Use a minimum pfn if a preferred one was not found */
1492 if (!page && high_pfn) {
1493 page = pfn_to_page(high_pfn);
1494
1495 /* Update freepage for the list reorder below */
1496 freepage = page;
1497 }
1498
1499 /* Reorder to so a future search skips recent pages */
1500 move_freelist_head(freelist, freepage);
1501
1502 /* Isolate the page if available */
1503 if (page) {
1504 if (__isolate_free_page(page, order)) {
1505 set_page_private(page, order);
1506 nr_isolated = 1 << order;
1507 cc->nr_freepages += nr_isolated;
1508 list_add_tail(&page->lru, &cc->freepages);
1509 count_compact_events(COMPACTISOLATED, nr_isolated);
1510 } else {
1511 /* If isolation fails, abort the search */
1512 order = cc->search_order + 1;
1513 page = NULL;
1514 }
1515 }
1516
1517 spin_unlock_irqrestore(&cc->zone->lock, flags);
1518
1519 /*
1520 * Smaller scan on next order so the total scan is related
1521 * to freelist_scan_limit.
1522 */
1523 if (order_scanned >= limit)
1524 limit = max(1U, limit >> 1);
1525 }
1526
1527 if (!page) {
1528 cc->fast_search_fail++;
1529 if (scan_start) {
1530 /*
1531 * Use the highest PFN found above min. If one was
1532 * not found, be pessimistic for direct compaction
1533 * and use the min mark.
1534 */
1535 if (highest >= min_pfn) {
1536 page = pfn_to_page(highest);
1537 cc->free_pfn = highest;
1538 } else {
1539 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1540 page = pageblock_pfn_to_page(min_pfn,
1541 min(pageblock_end_pfn(min_pfn),
1542 zone_end_pfn(cc->zone)),
1543 cc->zone);
1544 cc->free_pfn = min_pfn;
1545 }
1546 }
1547 }
1548 }
1549
1550 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1551 highest -= pageblock_nr_pages;
1552 cc->zone->compact_cached_free_pfn = highest;
1553 }
1554
1555 cc->total_free_scanned += nr_scanned;
1556 if (!page)
1557 return cc->free_pfn;
1558
1559 low_pfn = page_to_pfn(page);
1560 fast_isolate_around(cc, low_pfn, nr_isolated);
1561 return low_pfn;
1562 }
1563
1564 /*
1565 * Based on information in the current compact_control, find blocks
1566 * suitable for isolating free pages from and then isolate them.
1567 */
1568 static void isolate_freepages(struct compact_control *cc)
1569 {
1570 struct zone *zone = cc->zone;
1571 struct page *page;
1572 unsigned long block_start_pfn; /* start of current pageblock */
1573 unsigned long isolate_start_pfn; /* exact pfn we start at */
1574 unsigned long block_end_pfn; /* end of current pageblock */
1575 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1576 struct list_head *freelist = &cc->freepages;
1577 unsigned int stride;
1578
1579 /* Try a small search of the free lists for a candidate */
1580 fast_isolate_freepages(cc);
1581 if (cc->nr_freepages)
1582 goto splitmap;
1583
1584 /*
1585 * Initialise the free scanner. The starting point is where we last
1586 * successfully isolated from, zone-cached value, or the end of the
1587 * zone when isolating for the first time. For looping we also need
1588 * this pfn aligned down to the pageblock boundary, because we do
1589 * block_start_pfn -= pageblock_nr_pages in the for loop.
1590 * For ending point, take care when isolating in last pageblock of a
1591 * zone which ends in the middle of a pageblock.
1592 * The low boundary is the end of the pageblock the migration scanner
1593 * is using.
1594 */
1595 isolate_start_pfn = cc->free_pfn;
1596 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1597 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1598 zone_end_pfn(zone));
1599 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1600 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1601
1602 /*
1603 * Isolate free pages until enough are available to migrate the
1604 * pages on cc->migratepages. We stop searching if the migrate
1605 * and free page scanners meet or enough free pages are isolated.
1606 */
1607 for (; block_start_pfn >= low_pfn;
1608 block_end_pfn = block_start_pfn,
1609 block_start_pfn -= pageblock_nr_pages,
1610 isolate_start_pfn = block_start_pfn) {
1611 unsigned long nr_isolated;
1612
1613 /*
1614 * This can iterate a massively long zone without finding any
1615 * suitable migration targets, so periodically check resched.
1616 */
1617 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1618 cond_resched();
1619
1620 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1621 zone);
1622 if (!page)
1623 continue;
1624
1625 /* Check the block is suitable for migration */
1626 if (!suitable_migration_target(cc, page))
1627 continue;
1628
1629 /* If isolation recently failed, do not retry */
1630 if (!isolation_suitable(cc, page))
1631 continue;
1632
1633 /* Found a block suitable for isolating free pages from. */
1634 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1635 block_end_pfn, freelist, stride, false);
1636
1637 /* Update the skip hint if the full pageblock was scanned */
1638 if (isolate_start_pfn == block_end_pfn)
1639 update_pageblock_skip(cc, page, block_start_pfn);
1640
1641 /* Are enough freepages isolated? */
1642 if (cc->nr_freepages >= cc->nr_migratepages) {
1643 if (isolate_start_pfn >= block_end_pfn) {
1644 /*
1645 * Restart at previous pageblock if more
1646 * freepages can be isolated next time.
1647 */
1648 isolate_start_pfn =
1649 block_start_pfn - pageblock_nr_pages;
1650 }
1651 break;
1652 } else if (isolate_start_pfn < block_end_pfn) {
1653 /*
1654 * If isolation failed early, do not continue
1655 * needlessly.
1656 */
1657 break;
1658 }
1659
1660 /* Adjust stride depending on isolation */
1661 if (nr_isolated) {
1662 stride = 1;
1663 continue;
1664 }
1665 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1666 }
1667
1668 /*
1669 * Record where the free scanner will restart next time. Either we
1670 * broke from the loop and set isolate_start_pfn based on the last
1671 * call to isolate_freepages_block(), or we met the migration scanner
1672 * and the loop terminated due to isolate_start_pfn < low_pfn
1673 */
1674 cc->free_pfn = isolate_start_pfn;
1675
1676 splitmap:
1677 /* __isolate_free_page() does not map the pages */
1678 split_map_pages(freelist);
1679 }
1680
1681 /*
1682 * This is a migrate-callback that "allocates" freepages by taking pages
1683 * from the isolated freelists in the block we are migrating to.
1684 */
1685 static struct page *compaction_alloc(struct page *migratepage,
1686 unsigned long data)
1687 {
1688 struct compact_control *cc = (struct compact_control *)data;
1689 struct page *freepage;
1690
1691 if (list_empty(&cc->freepages)) {
1692 isolate_freepages(cc);
1693
1694 if (list_empty(&cc->freepages))
1695 return NULL;
1696 }
1697
1698 freepage = list_entry(cc->freepages.next, struct page, lru);
1699 list_del(&freepage->lru);
1700 cc->nr_freepages--;
1701
1702 return freepage;
1703 }
1704
1705 /*
1706 * This is a migrate-callback that "frees" freepages back to the isolated
1707 * freelist. All pages on the freelist are from the same zone, so there is no
1708 * special handling needed for NUMA.
1709 */
1710 static void compaction_free(struct page *page, unsigned long data)
1711 {
1712 struct compact_control *cc = (struct compact_control *)data;
1713
1714 list_add(&page->lru, &cc->freepages);
1715 cc->nr_freepages++;
1716 }
1717
1718 /* possible outcome of isolate_migratepages */
1719 typedef enum {
1720 ISOLATE_ABORT, /* Abort compaction now */
1721 ISOLATE_NONE, /* No pages isolated, continue scanning */
1722 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1723 } isolate_migrate_t;
1724
1725 /*
1726 * Allow userspace to control policy on scanning the unevictable LRU for
1727 * compactable pages.
1728 */
1729 #ifdef CONFIG_PREEMPT_RT
1730 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1731 #else
1732 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1733 #endif
1734
1735 static inline void
1736 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1737 {
1738 if (cc->fast_start_pfn == ULONG_MAX)
1739 return;
1740
1741 if (!cc->fast_start_pfn)
1742 cc->fast_start_pfn = pfn;
1743
1744 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1745 }
1746
1747 static inline unsigned long
1748 reinit_migrate_pfn(struct compact_control *cc)
1749 {
1750 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1751 return cc->migrate_pfn;
1752
1753 cc->migrate_pfn = cc->fast_start_pfn;
1754 cc->fast_start_pfn = ULONG_MAX;
1755
1756 return cc->migrate_pfn;
1757 }
1758
1759 /*
1760 * Briefly search the free lists for a migration source that already has
1761 * some free pages to reduce the number of pages that need migration
1762 * before a pageblock is free.
1763 */
1764 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1765 {
1766 unsigned int limit = freelist_scan_limit(cc);
1767 unsigned int nr_scanned = 0;
1768 unsigned long distance;
1769 unsigned long pfn = cc->migrate_pfn;
1770 unsigned long high_pfn;
1771 int order;
1772 bool found_block = false;
1773
1774 /* Skip hints are relied on to avoid repeats on the fast search */
1775 if (cc->ignore_skip_hint)
1776 return pfn;
1777
1778 /*
1779 * If the migrate_pfn is not at the start of a zone or the start
1780 * of a pageblock then assume this is a continuation of a previous
1781 * scan restarted due to COMPACT_CLUSTER_MAX.
1782 */
1783 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1784 return pfn;
1785
1786 /*
1787 * For smaller orders, just linearly scan as the number of pages
1788 * to migrate should be relatively small and does not necessarily
1789 * justify freeing up a large block for a small allocation.
1790 */
1791 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1792 return pfn;
1793
1794 /*
1795 * Only allow kcompactd and direct requests for movable pages to
1796 * quickly clear out a MOVABLE pageblock for allocation. This
1797 * reduces the risk that a large movable pageblock is freed for
1798 * an unmovable/reclaimable small allocation.
1799 */
1800 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1801 return pfn;
1802
1803 /*
1804 * When starting the migration scanner, pick any pageblock within the
1805 * first half of the search space. Otherwise try and pick a pageblock
1806 * within the first eighth to reduce the chances that a migration
1807 * target later becomes a source.
1808 */
1809 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1810 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1811 distance >>= 2;
1812 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1813
1814 for (order = cc->order - 1;
1815 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1816 order--) {
1817 struct free_area *area = &cc->zone->free_area[order];
1818 struct list_head *freelist;
1819 unsigned long flags;
1820 struct page *freepage;
1821
1822 if (!area->nr_free)
1823 continue;
1824
1825 spin_lock_irqsave(&cc->zone->lock, flags);
1826 freelist = &area->free_list[MIGRATE_MOVABLE];
1827 list_for_each_entry(freepage, freelist, lru) {
1828 unsigned long free_pfn;
1829
1830 if (nr_scanned++ >= limit) {
1831 move_freelist_tail(freelist, freepage);
1832 break;
1833 }
1834
1835 free_pfn = page_to_pfn(freepage);
1836 if (free_pfn < high_pfn) {
1837 /*
1838 * Avoid if skipped recently. Ideally it would
1839 * move to the tail but even safe iteration of
1840 * the list assumes an entry is deleted, not
1841 * reordered.
1842 */
1843 if (get_pageblock_skip(freepage))
1844 continue;
1845
1846 /* Reorder to so a future search skips recent pages */
1847 move_freelist_tail(freelist, freepage);
1848
1849 update_fast_start_pfn(cc, free_pfn);
1850 pfn = pageblock_start_pfn(free_pfn);
1851 if (pfn < cc->zone->zone_start_pfn)
1852 pfn = cc->zone->zone_start_pfn;
1853 cc->fast_search_fail = 0;
1854 found_block = true;
1855 set_pageblock_skip(freepage);
1856 break;
1857 }
1858 }
1859 spin_unlock_irqrestore(&cc->zone->lock, flags);
1860 }
1861
1862 cc->total_migrate_scanned += nr_scanned;
1863
1864 /*
1865 * If fast scanning failed then use a cached entry for a page block
1866 * that had free pages as the basis for starting a linear scan.
1867 */
1868 if (!found_block) {
1869 cc->fast_search_fail++;
1870 pfn = reinit_migrate_pfn(cc);
1871 }
1872 return pfn;
1873 }
1874
1875 /*
1876 * Isolate all pages that can be migrated from the first suitable block,
1877 * starting at the block pointed to by the migrate scanner pfn within
1878 * compact_control.
1879 */
1880 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1881 {
1882 unsigned long block_start_pfn;
1883 unsigned long block_end_pfn;
1884 unsigned long low_pfn;
1885 struct page *page;
1886 const isolate_mode_t isolate_mode =
1887 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1888 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1889 bool fast_find_block;
1890
1891 /*
1892 * Start at where we last stopped, or beginning of the zone as
1893 * initialized by compact_zone(). The first failure will use
1894 * the lowest PFN as the starting point for linear scanning.
1895 */
1896 low_pfn = fast_find_migrateblock(cc);
1897 block_start_pfn = pageblock_start_pfn(low_pfn);
1898 if (block_start_pfn < cc->zone->zone_start_pfn)
1899 block_start_pfn = cc->zone->zone_start_pfn;
1900
1901 /*
1902 * fast_find_migrateblock marks a pageblock skipped so to avoid
1903 * the isolation_suitable check below, check whether the fast
1904 * search was successful.
1905 */
1906 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1907
1908 /* Only scan within a pageblock boundary */
1909 block_end_pfn = pageblock_end_pfn(low_pfn);
1910
1911 /*
1912 * Iterate over whole pageblocks until we find the first suitable.
1913 * Do not cross the free scanner.
1914 */
1915 for (; block_end_pfn <= cc->free_pfn;
1916 fast_find_block = false,
1917 cc->migrate_pfn = low_pfn = block_end_pfn,
1918 block_start_pfn = block_end_pfn,
1919 block_end_pfn += pageblock_nr_pages) {
1920
1921 /*
1922 * This can potentially iterate a massively long zone with
1923 * many pageblocks unsuitable, so periodically check if we
1924 * need to schedule.
1925 */
1926 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1927 cond_resched();
1928
1929 page = pageblock_pfn_to_page(block_start_pfn,
1930 block_end_pfn, cc->zone);
1931 if (!page)
1932 continue;
1933
1934 /*
1935 * If isolation recently failed, do not retry. Only check the
1936 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1937 * to be visited multiple times. Assume skip was checked
1938 * before making it "skip" so other compaction instances do
1939 * not scan the same block.
1940 */
1941 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1942 !fast_find_block && !isolation_suitable(cc, page))
1943 continue;
1944
1945 /*
1946 * For async direct compaction, only scan the pageblocks of the
1947 * same migratetype without huge pages. Async direct compaction
1948 * is optimistic to see if the minimum amount of work satisfies
1949 * the allocation. The cached PFN is updated as it's possible
1950 * that all remaining blocks between source and target are
1951 * unsuitable and the compaction scanners fail to meet.
1952 */
1953 if (!suitable_migration_source(cc, page)) {
1954 update_cached_migrate(cc, block_end_pfn);
1955 continue;
1956 }
1957
1958 /* Perform the isolation */
1959 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1960 isolate_mode))
1961 return ISOLATE_ABORT;
1962
1963 /*
1964 * Either we isolated something and proceed with migration. Or
1965 * we failed and compact_zone should decide if we should
1966 * continue or not.
1967 */
1968 break;
1969 }
1970
1971 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1972 }
1973
1974 /*
1975 * order == -1 is expected when compacting via
1976 * /proc/sys/vm/compact_memory
1977 */
1978 static inline bool is_via_compact_memory(int order)
1979 {
1980 return order == -1;
1981 }
1982
1983 static bool kswapd_is_running(pg_data_t *pgdat)
1984 {
1985 return pgdat->kswapd && task_is_running(pgdat->kswapd);
1986 }
1987
1988 /*
1989 * A zone's fragmentation score is the external fragmentation wrt to the
1990 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1991 */
1992 static unsigned int fragmentation_score_zone(struct zone *zone)
1993 {
1994 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1995 }
1996
1997 /*
1998 * A weighted zone's fragmentation score is the external fragmentation
1999 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2000 * returns a value in the range [0, 100].
2001 *
2002 * The scaling factor ensures that proactive compaction focuses on larger
2003 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2004 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2005 * and thus never exceeds the high threshold for proactive compaction.
2006 */
2007 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2008 {
2009 unsigned long score;
2010
2011 score = zone->present_pages * fragmentation_score_zone(zone);
2012 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2013 }
2014
2015 /*
2016 * The per-node proactive (background) compaction process is started by its
2017 * corresponding kcompactd thread when the node's fragmentation score
2018 * exceeds the high threshold. The compaction process remains active till
2019 * the node's score falls below the low threshold, or one of the back-off
2020 * conditions is met.
2021 */
2022 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2023 {
2024 unsigned int score = 0;
2025 int zoneid;
2026
2027 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2028 struct zone *zone;
2029
2030 zone = &pgdat->node_zones[zoneid];
2031 score += fragmentation_score_zone_weighted(zone);
2032 }
2033
2034 return score;
2035 }
2036
2037 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2038 {
2039 unsigned int wmark_low;
2040
2041 /*
2042 * Cap the low watermark to avoid excessive compaction
2043 * activity in case a user sets the proactiveness tunable
2044 * close to 100 (maximum).
2045 */
2046 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2047 return low ? wmark_low : min(wmark_low + 10, 100U);
2048 }
2049
2050 static bool should_proactive_compact_node(pg_data_t *pgdat)
2051 {
2052 int wmark_high;
2053
2054 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2055 return false;
2056
2057 wmark_high = fragmentation_score_wmark(pgdat, false);
2058 return fragmentation_score_node(pgdat) > wmark_high;
2059 }
2060
2061 static enum compact_result __compact_finished(struct compact_control *cc)
2062 {
2063 unsigned int order;
2064 const int migratetype = cc->migratetype;
2065 int ret;
2066
2067 /* Compaction run completes if the migrate and free scanner meet */
2068 if (compact_scanners_met(cc)) {
2069 /* Let the next compaction start anew. */
2070 reset_cached_positions(cc->zone);
2071
2072 /*
2073 * Mark that the PG_migrate_skip information should be cleared
2074 * by kswapd when it goes to sleep. kcompactd does not set the
2075 * flag itself as the decision to be clear should be directly
2076 * based on an allocation request.
2077 */
2078 if (cc->direct_compaction)
2079 cc->zone->compact_blockskip_flush = true;
2080
2081 if (cc->whole_zone)
2082 return COMPACT_COMPLETE;
2083 else
2084 return COMPACT_PARTIAL_SKIPPED;
2085 }
2086
2087 if (cc->proactive_compaction) {
2088 int score, wmark_low;
2089 pg_data_t *pgdat;
2090
2091 pgdat = cc->zone->zone_pgdat;
2092 if (kswapd_is_running(pgdat))
2093 return COMPACT_PARTIAL_SKIPPED;
2094
2095 score = fragmentation_score_zone(cc->zone);
2096 wmark_low = fragmentation_score_wmark(pgdat, true);
2097
2098 if (score > wmark_low)
2099 ret = COMPACT_CONTINUE;
2100 else
2101 ret = COMPACT_SUCCESS;
2102
2103 goto out;
2104 }
2105
2106 if (is_via_compact_memory(cc->order))
2107 return COMPACT_CONTINUE;
2108
2109 /*
2110 * Always finish scanning a pageblock to reduce the possibility of
2111 * fallbacks in the future. This is particularly important when
2112 * migration source is unmovable/reclaimable but it's not worth
2113 * special casing.
2114 */
2115 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2116 return COMPACT_CONTINUE;
2117
2118 /* Direct compactor: Is a suitable page free? */
2119 ret = COMPACT_NO_SUITABLE_PAGE;
2120 for (order = cc->order; order < MAX_ORDER; order++) {
2121 struct free_area *area = &cc->zone->free_area[order];
2122 bool can_steal;
2123
2124 /* Job done if page is free of the right migratetype */
2125 if (!free_area_empty(area, migratetype))
2126 return COMPACT_SUCCESS;
2127
2128 #ifdef CONFIG_CMA
2129 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2130 if (migratetype == MIGRATE_MOVABLE &&
2131 !free_area_empty(area, MIGRATE_CMA))
2132 return COMPACT_SUCCESS;
2133 #endif
2134 /*
2135 * Job done if allocation would steal freepages from
2136 * other migratetype buddy lists.
2137 */
2138 if (find_suitable_fallback(area, order, migratetype,
2139 true, &can_steal) != -1)
2140 /*
2141 * Movable pages are OK in any pageblock. If we are
2142 * stealing for a non-movable allocation, make sure
2143 * we finish compacting the current pageblock first
2144 * (which is assured by the above migrate_pfn align
2145 * check) so it is as free as possible and we won't
2146 * have to steal another one soon.
2147 */
2148 return COMPACT_SUCCESS;
2149 }
2150
2151 out:
2152 if (cc->contended || fatal_signal_pending(current))
2153 ret = COMPACT_CONTENDED;
2154
2155 return ret;
2156 }
2157
2158 static enum compact_result compact_finished(struct compact_control *cc)
2159 {
2160 int ret;
2161
2162 ret = __compact_finished(cc);
2163 trace_mm_compaction_finished(cc->zone, cc->order, ret);
2164 if (ret == COMPACT_NO_SUITABLE_PAGE)
2165 ret = COMPACT_CONTINUE;
2166
2167 return ret;
2168 }
2169
2170 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2171 unsigned int alloc_flags,
2172 int highest_zoneidx,
2173 unsigned long wmark_target)
2174 {
2175 unsigned long watermark;
2176
2177 if (is_via_compact_memory(order))
2178 return COMPACT_CONTINUE;
2179
2180 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2181 /*
2182 * If watermarks for high-order allocation are already met, there
2183 * should be no need for compaction at all.
2184 */
2185 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2186 alloc_flags))
2187 return COMPACT_SUCCESS;
2188
2189 /*
2190 * Watermarks for order-0 must be met for compaction to be able to
2191 * isolate free pages for migration targets. This means that the
2192 * watermark and alloc_flags have to match, or be more pessimistic than
2193 * the check in __isolate_free_page(). We don't use the direct
2194 * compactor's alloc_flags, as they are not relevant for freepage
2195 * isolation. We however do use the direct compactor's highest_zoneidx
2196 * to skip over zones where lowmem reserves would prevent allocation
2197 * even if compaction succeeds.
2198 * For costly orders, we require low watermark instead of min for
2199 * compaction to proceed to increase its chances.
2200 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2201 * suitable migration targets
2202 */
2203 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2204 low_wmark_pages(zone) : min_wmark_pages(zone);
2205 watermark += compact_gap(order);
2206 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2207 ALLOC_CMA, wmark_target))
2208 return COMPACT_SKIPPED;
2209
2210 return COMPACT_CONTINUE;
2211 }
2212
2213 /*
2214 * compaction_suitable: Is this suitable to run compaction on this zone now?
2215 * Returns
2216 * COMPACT_SKIPPED - If there are too few free pages for compaction
2217 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2218 * COMPACT_CONTINUE - If compaction should run now
2219 */
2220 enum compact_result compaction_suitable(struct zone *zone, int order,
2221 unsigned int alloc_flags,
2222 int highest_zoneidx)
2223 {
2224 enum compact_result ret;
2225 int fragindex;
2226
2227 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2228 zone_page_state(zone, NR_FREE_PAGES));
2229 /*
2230 * fragmentation index determines if allocation failures are due to
2231 * low memory or external fragmentation
2232 *
2233 * index of -1000 would imply allocations might succeed depending on
2234 * watermarks, but we already failed the high-order watermark check
2235 * index towards 0 implies failure is due to lack of memory
2236 * index towards 1000 implies failure is due to fragmentation
2237 *
2238 * Only compact if a failure would be due to fragmentation. Also
2239 * ignore fragindex for non-costly orders where the alternative to
2240 * a successful reclaim/compaction is OOM. Fragindex and the
2241 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2242 * excessive compaction for costly orders, but it should not be at the
2243 * expense of system stability.
2244 */
2245 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2246 fragindex = fragmentation_index(zone, order);
2247 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2248 ret = COMPACT_NOT_SUITABLE_ZONE;
2249 }
2250
2251 trace_mm_compaction_suitable(zone, order, ret);
2252 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2253 ret = COMPACT_SKIPPED;
2254
2255 return ret;
2256 }
2257
2258 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2259 int alloc_flags)
2260 {
2261 struct zone *zone;
2262 struct zoneref *z;
2263
2264 /*
2265 * Make sure at least one zone would pass __compaction_suitable if we continue
2266 * retrying the reclaim.
2267 */
2268 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2269 ac->highest_zoneidx, ac->nodemask) {
2270 unsigned long available;
2271 enum compact_result compact_result;
2272
2273 /*
2274 * Do not consider all the reclaimable memory because we do not
2275 * want to trash just for a single high order allocation which
2276 * is even not guaranteed to appear even if __compaction_suitable
2277 * is happy about the watermark check.
2278 */
2279 available = zone_reclaimable_pages(zone) / order;
2280 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2281 compact_result = __compaction_suitable(zone, order, alloc_flags,
2282 ac->highest_zoneidx, available);
2283 if (compact_result == COMPACT_CONTINUE)
2284 return true;
2285 }
2286
2287 return false;
2288 }
2289
2290 static enum compact_result
2291 compact_zone(struct compact_control *cc, struct capture_control *capc)
2292 {
2293 enum compact_result ret;
2294 unsigned long start_pfn = cc->zone->zone_start_pfn;
2295 unsigned long end_pfn = zone_end_pfn(cc->zone);
2296 unsigned long last_migrated_pfn;
2297 const bool sync = cc->mode != MIGRATE_ASYNC;
2298 bool update_cached;
2299 unsigned int nr_succeeded = 0;
2300
2301 /*
2302 * These counters track activities during zone compaction. Initialize
2303 * them before compacting a new zone.
2304 */
2305 cc->total_migrate_scanned = 0;
2306 cc->total_free_scanned = 0;
2307 cc->nr_migratepages = 0;
2308 cc->nr_freepages = 0;
2309 INIT_LIST_HEAD(&cc->freepages);
2310 INIT_LIST_HEAD(&cc->migratepages);
2311
2312 cc->migratetype = gfp_migratetype(cc->gfp_mask);
2313 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2314 cc->highest_zoneidx);
2315 /* Compaction is likely to fail */
2316 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2317 return ret;
2318
2319 /* huh, compaction_suitable is returning something unexpected */
2320 VM_BUG_ON(ret != COMPACT_CONTINUE);
2321
2322 /*
2323 * Clear pageblock skip if there were failures recently and compaction
2324 * is about to be retried after being deferred.
2325 */
2326 if (compaction_restarting(cc->zone, cc->order))
2327 __reset_isolation_suitable(cc->zone);
2328
2329 /*
2330 * Setup to move all movable pages to the end of the zone. Used cached
2331 * information on where the scanners should start (unless we explicitly
2332 * want to compact the whole zone), but check that it is initialised
2333 * by ensuring the values are within zone boundaries.
2334 */
2335 cc->fast_start_pfn = 0;
2336 if (cc->whole_zone) {
2337 cc->migrate_pfn = start_pfn;
2338 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2339 } else {
2340 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2341 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2342 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2343 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2344 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2345 }
2346 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2347 cc->migrate_pfn = start_pfn;
2348 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2349 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2350 }
2351
2352 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2353 cc->whole_zone = true;
2354 }
2355
2356 last_migrated_pfn = 0;
2357
2358 /*
2359 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2360 * the basis that some migrations will fail in ASYNC mode. However,
2361 * if the cached PFNs match and pageblocks are skipped due to having
2362 * no isolation candidates, then the sync state does not matter.
2363 * Until a pageblock with isolation candidates is found, keep the
2364 * cached PFNs in sync to avoid revisiting the same blocks.
2365 */
2366 update_cached = !sync &&
2367 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2368
2369 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2370
2371 /* lru_add_drain_all could be expensive with involving other CPUs */
2372 lru_add_drain();
2373
2374 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2375 int err;
2376 unsigned long iteration_start_pfn = cc->migrate_pfn;
2377
2378 /*
2379 * Avoid multiple rescans which can happen if a page cannot be
2380 * isolated (dirty/writeback in async mode) or if the migrated
2381 * pages are being allocated before the pageblock is cleared.
2382 * The first rescan will capture the entire pageblock for
2383 * migration. If it fails, it'll be marked skip and scanning
2384 * will proceed as normal.
2385 */
2386 cc->rescan = false;
2387 if (pageblock_start_pfn(last_migrated_pfn) ==
2388 pageblock_start_pfn(iteration_start_pfn)) {
2389 cc->rescan = true;
2390 }
2391
2392 switch (isolate_migratepages(cc)) {
2393 case ISOLATE_ABORT:
2394 ret = COMPACT_CONTENDED;
2395 putback_movable_pages(&cc->migratepages);
2396 cc->nr_migratepages = 0;
2397 goto out;
2398 case ISOLATE_NONE:
2399 if (update_cached) {
2400 cc->zone->compact_cached_migrate_pfn[1] =
2401 cc->zone->compact_cached_migrate_pfn[0];
2402 }
2403
2404 /*
2405 * We haven't isolated and migrated anything, but
2406 * there might still be unflushed migrations from
2407 * previous cc->order aligned block.
2408 */
2409 goto check_drain;
2410 case ISOLATE_SUCCESS:
2411 update_cached = false;
2412 last_migrated_pfn = iteration_start_pfn;
2413 }
2414
2415 err = migrate_pages(&cc->migratepages, compaction_alloc,
2416 compaction_free, (unsigned long)cc, cc->mode,
2417 MR_COMPACTION, &nr_succeeded);
2418
2419 trace_mm_compaction_migratepages(cc, nr_succeeded);
2420
2421 /* All pages were either migrated or will be released */
2422 cc->nr_migratepages = 0;
2423 if (err) {
2424 putback_movable_pages(&cc->migratepages);
2425 /*
2426 * migrate_pages() may return -ENOMEM when scanners meet
2427 * and we want compact_finished() to detect it
2428 */
2429 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2430 ret = COMPACT_CONTENDED;
2431 goto out;
2432 }
2433 /*
2434 * We failed to migrate at least one page in the current
2435 * order-aligned block, so skip the rest of it.
2436 */
2437 if (cc->direct_compaction &&
2438 (cc->mode == MIGRATE_ASYNC)) {
2439 cc->migrate_pfn = block_end_pfn(
2440 cc->migrate_pfn - 1, cc->order);
2441 /* Draining pcplists is useless in this case */
2442 last_migrated_pfn = 0;
2443 }
2444 }
2445
2446 check_drain:
2447 /*
2448 * Has the migration scanner moved away from the previous
2449 * cc->order aligned block where we migrated from? If yes,
2450 * flush the pages that were freed, so that they can merge and
2451 * compact_finished() can detect immediately if allocation
2452 * would succeed.
2453 */
2454 if (cc->order > 0 && last_migrated_pfn) {
2455 unsigned long current_block_start =
2456 block_start_pfn(cc->migrate_pfn, cc->order);
2457
2458 if (last_migrated_pfn < current_block_start) {
2459 lru_add_drain_cpu_zone(cc->zone);
2460 /* No more flushing until we migrate again */
2461 last_migrated_pfn = 0;
2462 }
2463 }
2464
2465 /* Stop if a page has been captured */
2466 if (capc && capc->page) {
2467 ret = COMPACT_SUCCESS;
2468 break;
2469 }
2470 }
2471
2472 out:
2473 /*
2474 * Release free pages and update where the free scanner should restart,
2475 * so we don't leave any returned pages behind in the next attempt.
2476 */
2477 if (cc->nr_freepages > 0) {
2478 unsigned long free_pfn = release_freepages(&cc->freepages);
2479
2480 cc->nr_freepages = 0;
2481 VM_BUG_ON(free_pfn == 0);
2482 /* The cached pfn is always the first in a pageblock */
2483 free_pfn = pageblock_start_pfn(free_pfn);
2484 /*
2485 * Only go back, not forward. The cached pfn might have been
2486 * already reset to zone end in compact_finished()
2487 */
2488 if (free_pfn > cc->zone->compact_cached_free_pfn)
2489 cc->zone->compact_cached_free_pfn = free_pfn;
2490 }
2491
2492 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2493 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2494
2495 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2496
2497 return ret;
2498 }
2499
2500 static enum compact_result compact_zone_order(struct zone *zone, int order,
2501 gfp_t gfp_mask, enum compact_priority prio,
2502 unsigned int alloc_flags, int highest_zoneidx,
2503 struct page **capture)
2504 {
2505 enum compact_result ret;
2506 struct compact_control cc = {
2507 .order = order,
2508 .search_order = order,
2509 .gfp_mask = gfp_mask,
2510 .zone = zone,
2511 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2512 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2513 .alloc_flags = alloc_flags,
2514 .highest_zoneidx = highest_zoneidx,
2515 .direct_compaction = true,
2516 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2517 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2518 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2519 };
2520 struct capture_control capc = {
2521 .cc = &cc,
2522 .page = NULL,
2523 };
2524
2525 /*
2526 * Make sure the structs are really initialized before we expose the
2527 * capture control, in case we are interrupted and the interrupt handler
2528 * frees a page.
2529 */
2530 barrier();
2531 WRITE_ONCE(current->capture_control, &capc);
2532
2533 ret = compact_zone(&cc, &capc);
2534
2535 VM_BUG_ON(!list_empty(&cc.freepages));
2536 VM_BUG_ON(!list_empty(&cc.migratepages));
2537
2538 /*
2539 * Make sure we hide capture control first before we read the captured
2540 * page pointer, otherwise an interrupt could free and capture a page
2541 * and we would leak it.
2542 */
2543 WRITE_ONCE(current->capture_control, NULL);
2544 *capture = READ_ONCE(capc.page);
2545 /*
2546 * Technically, it is also possible that compaction is skipped but
2547 * the page is still captured out of luck(IRQ came and freed the page).
2548 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2549 * the COMPACT[STALL|FAIL] when compaction is skipped.
2550 */
2551 if (*capture)
2552 ret = COMPACT_SUCCESS;
2553
2554 return ret;
2555 }
2556
2557 int sysctl_extfrag_threshold = 500;
2558
2559 /**
2560 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2561 * @gfp_mask: The GFP mask of the current allocation
2562 * @order: The order of the current allocation
2563 * @alloc_flags: The allocation flags of the current allocation
2564 * @ac: The context of current allocation
2565 * @prio: Determines how hard direct compaction should try to succeed
2566 * @capture: Pointer to free page created by compaction will be stored here
2567 *
2568 * This is the main entry point for direct page compaction.
2569 */
2570 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2571 unsigned int alloc_flags, const struct alloc_context *ac,
2572 enum compact_priority prio, struct page **capture)
2573 {
2574 int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2575 struct zoneref *z;
2576 struct zone *zone;
2577 enum compact_result rc = COMPACT_SKIPPED;
2578
2579 /*
2580 * Check if the GFP flags allow compaction - GFP_NOIO is really
2581 * tricky context because the migration might require IO
2582 */
2583 if (!may_perform_io)
2584 return COMPACT_SKIPPED;
2585
2586 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2587
2588 /* Compact each zone in the list */
2589 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2590 ac->highest_zoneidx, ac->nodemask) {
2591 enum compact_result status;
2592
2593 if (prio > MIN_COMPACT_PRIORITY
2594 && compaction_deferred(zone, order)) {
2595 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2596 continue;
2597 }
2598
2599 status = compact_zone_order(zone, order, gfp_mask, prio,
2600 alloc_flags, ac->highest_zoneidx, capture);
2601 rc = max(status, rc);
2602
2603 /* The allocation should succeed, stop compacting */
2604 if (status == COMPACT_SUCCESS) {
2605 /*
2606 * We think the allocation will succeed in this zone,
2607 * but it is not certain, hence the false. The caller
2608 * will repeat this with true if allocation indeed
2609 * succeeds in this zone.
2610 */
2611 compaction_defer_reset(zone, order, false);
2612
2613 break;
2614 }
2615
2616 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2617 status == COMPACT_PARTIAL_SKIPPED))
2618 /*
2619 * We think that allocation won't succeed in this zone
2620 * so we defer compaction there. If it ends up
2621 * succeeding after all, it will be reset.
2622 */
2623 defer_compaction(zone, order);
2624
2625 /*
2626 * We might have stopped compacting due to need_resched() in
2627 * async compaction, or due to a fatal signal detected. In that
2628 * case do not try further zones
2629 */
2630 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2631 || fatal_signal_pending(current))
2632 break;
2633 }
2634
2635 return rc;
2636 }
2637
2638 /*
2639 * Compact all zones within a node till each zone's fragmentation score
2640 * reaches within proactive compaction thresholds (as determined by the
2641 * proactiveness tunable).
2642 *
2643 * It is possible that the function returns before reaching score targets
2644 * due to various back-off conditions, such as, contention on per-node or
2645 * per-zone locks.
2646 */
2647 static void proactive_compact_node(pg_data_t *pgdat)
2648 {
2649 int zoneid;
2650 struct zone *zone;
2651 struct compact_control cc = {
2652 .order = -1,
2653 .mode = MIGRATE_SYNC_LIGHT,
2654 .ignore_skip_hint = true,
2655 .whole_zone = true,
2656 .gfp_mask = GFP_KERNEL,
2657 .proactive_compaction = true,
2658 };
2659
2660 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2661 zone = &pgdat->node_zones[zoneid];
2662 if (!populated_zone(zone))
2663 continue;
2664
2665 cc.zone = zone;
2666
2667 compact_zone(&cc, NULL);
2668
2669 VM_BUG_ON(!list_empty(&cc.freepages));
2670 VM_BUG_ON(!list_empty(&cc.migratepages));
2671 }
2672 }
2673
2674 /* Compact all zones within a node */
2675 static void compact_node(int nid)
2676 {
2677 pg_data_t *pgdat = NODE_DATA(nid);
2678 int zoneid;
2679 struct zone *zone;
2680 struct compact_control cc = {
2681 .order = -1,
2682 .mode = MIGRATE_SYNC,
2683 .ignore_skip_hint = true,
2684 .whole_zone = true,
2685 .gfp_mask = GFP_KERNEL,
2686 };
2687
2688
2689 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2690
2691 zone = &pgdat->node_zones[zoneid];
2692 if (!populated_zone(zone))
2693 continue;
2694
2695 cc.zone = zone;
2696
2697 compact_zone(&cc, NULL);
2698
2699 VM_BUG_ON(!list_empty(&cc.freepages));
2700 VM_BUG_ON(!list_empty(&cc.migratepages));
2701 }
2702 }
2703
2704 /* Compact all nodes in the system */
2705 static void compact_nodes(void)
2706 {
2707 int nid;
2708
2709 /* Flush pending updates to the LRU lists */
2710 lru_add_drain_all();
2711
2712 for_each_online_node(nid)
2713 compact_node(nid);
2714 }
2715
2716 /*
2717 * Tunable for proactive compaction. It determines how
2718 * aggressively the kernel should compact memory in the
2719 * background. It takes values in the range [0, 100].
2720 */
2721 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2722
2723 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2724 void *buffer, size_t *length, loff_t *ppos)
2725 {
2726 int rc, nid;
2727
2728 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2729 if (rc)
2730 return rc;
2731
2732 if (write && sysctl_compaction_proactiveness) {
2733 for_each_online_node(nid) {
2734 pg_data_t *pgdat = NODE_DATA(nid);
2735
2736 if (pgdat->proactive_compact_trigger)
2737 continue;
2738
2739 pgdat->proactive_compact_trigger = true;
2740 wake_up_interruptible(&pgdat->kcompactd_wait);
2741 }
2742 }
2743
2744 return 0;
2745 }
2746
2747 /*
2748 * This is the entry point for compacting all nodes via
2749 * /proc/sys/vm/compact_memory
2750 */
2751 int sysctl_compaction_handler(struct ctl_table *table, int write,
2752 void *buffer, size_t *length, loff_t *ppos)
2753 {
2754 if (write)
2755 compact_nodes();
2756
2757 return 0;
2758 }
2759
2760 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2761 static ssize_t compact_store(struct device *dev,
2762 struct device_attribute *attr,
2763 const char *buf, size_t count)
2764 {
2765 int nid = dev->id;
2766
2767 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2768 /* Flush pending updates to the LRU lists */
2769 lru_add_drain_all();
2770
2771 compact_node(nid);
2772 }
2773
2774 return count;
2775 }
2776 static DEVICE_ATTR_WO(compact);
2777
2778 int compaction_register_node(struct node *node)
2779 {
2780 return device_create_file(&node->dev, &dev_attr_compact);
2781 }
2782
2783 void compaction_unregister_node(struct node *node)
2784 {
2785 return device_remove_file(&node->dev, &dev_attr_compact);
2786 }
2787 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2788
2789 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2790 {
2791 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2792 pgdat->proactive_compact_trigger;
2793 }
2794
2795 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2796 {
2797 int zoneid;
2798 struct zone *zone;
2799 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2800
2801 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2802 zone = &pgdat->node_zones[zoneid];
2803
2804 if (!populated_zone(zone))
2805 continue;
2806
2807 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2808 highest_zoneidx) == COMPACT_CONTINUE)
2809 return true;
2810 }
2811
2812 return false;
2813 }
2814
2815 static void kcompactd_do_work(pg_data_t *pgdat)
2816 {
2817 /*
2818 * With no special task, compact all zones so that a page of requested
2819 * order is allocatable.
2820 */
2821 int zoneid;
2822 struct zone *zone;
2823 struct compact_control cc = {
2824 .order = pgdat->kcompactd_max_order,
2825 .search_order = pgdat->kcompactd_max_order,
2826 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2827 .mode = MIGRATE_SYNC_LIGHT,
2828 .ignore_skip_hint = false,
2829 .gfp_mask = GFP_KERNEL,
2830 };
2831 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2832 cc.highest_zoneidx);
2833 count_compact_event(KCOMPACTD_WAKE);
2834
2835 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2836 int status;
2837
2838 zone = &pgdat->node_zones[zoneid];
2839 if (!populated_zone(zone))
2840 continue;
2841
2842 if (compaction_deferred(zone, cc.order))
2843 continue;
2844
2845 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2846 COMPACT_CONTINUE)
2847 continue;
2848
2849 if (kthread_should_stop())
2850 return;
2851
2852 cc.zone = zone;
2853 status = compact_zone(&cc, NULL);
2854
2855 if (status == COMPACT_SUCCESS) {
2856 compaction_defer_reset(zone, cc.order, false);
2857 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2858 /*
2859 * Buddy pages may become stranded on pcps that could
2860 * otherwise coalesce on the zone's free area for
2861 * order >= cc.order. This is ratelimited by the
2862 * upcoming deferral.
2863 */
2864 drain_all_pages(zone);
2865
2866 /*
2867 * We use sync migration mode here, so we defer like
2868 * sync direct compaction does.
2869 */
2870 defer_compaction(zone, cc.order);
2871 }
2872
2873 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2874 cc.total_migrate_scanned);
2875 count_compact_events(KCOMPACTD_FREE_SCANNED,
2876 cc.total_free_scanned);
2877
2878 VM_BUG_ON(!list_empty(&cc.freepages));
2879 VM_BUG_ON(!list_empty(&cc.migratepages));
2880 }
2881
2882 /*
2883 * Regardless of success, we are done until woken up next. But remember
2884 * the requested order/highest_zoneidx in case it was higher/tighter
2885 * than our current ones
2886 */
2887 if (pgdat->kcompactd_max_order <= cc.order)
2888 pgdat->kcompactd_max_order = 0;
2889 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2890 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2891 }
2892
2893 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2894 {
2895 if (!order)
2896 return;
2897
2898 if (pgdat->kcompactd_max_order < order)
2899 pgdat->kcompactd_max_order = order;
2900
2901 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2902 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2903
2904 /*
2905 * Pairs with implicit barrier in wait_event_freezable()
2906 * such that wakeups are not missed.
2907 */
2908 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2909 return;
2910
2911 if (!kcompactd_node_suitable(pgdat))
2912 return;
2913
2914 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2915 highest_zoneidx);
2916 wake_up_interruptible(&pgdat->kcompactd_wait);
2917 }
2918
2919 /*
2920 * The background compaction daemon, started as a kernel thread
2921 * from the init process.
2922 */
2923 static int kcompactd(void *p)
2924 {
2925 pg_data_t *pgdat = (pg_data_t *)p;
2926 struct task_struct *tsk = current;
2927 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2928 long timeout = default_timeout;
2929
2930 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2931
2932 if (!cpumask_empty(cpumask))
2933 set_cpus_allowed_ptr(tsk, cpumask);
2934
2935 set_freezable();
2936
2937 pgdat->kcompactd_max_order = 0;
2938 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2939
2940 while (!kthread_should_stop()) {
2941 unsigned long pflags;
2942
2943 /*
2944 * Avoid the unnecessary wakeup for proactive compaction
2945 * when it is disabled.
2946 */
2947 if (!sysctl_compaction_proactiveness)
2948 timeout = MAX_SCHEDULE_TIMEOUT;
2949 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2950 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2951 kcompactd_work_requested(pgdat), timeout) &&
2952 !pgdat->proactive_compact_trigger) {
2953
2954 psi_memstall_enter(&pflags);
2955 kcompactd_do_work(pgdat);
2956 psi_memstall_leave(&pflags);
2957 /*
2958 * Reset the timeout value. The defer timeout from
2959 * proactive compaction is lost here but that is fine
2960 * as the condition of the zone changing substantionally
2961 * then carrying on with the previous defer interval is
2962 * not useful.
2963 */
2964 timeout = default_timeout;
2965 continue;
2966 }
2967
2968 /*
2969 * Start the proactive work with default timeout. Based
2970 * on the fragmentation score, this timeout is updated.
2971 */
2972 timeout = default_timeout;
2973 if (should_proactive_compact_node(pgdat)) {
2974 unsigned int prev_score, score;
2975
2976 prev_score = fragmentation_score_node(pgdat);
2977 proactive_compact_node(pgdat);
2978 score = fragmentation_score_node(pgdat);
2979 /*
2980 * Defer proactive compaction if the fragmentation
2981 * score did not go down i.e. no progress made.
2982 */
2983 if (unlikely(score >= prev_score))
2984 timeout =
2985 default_timeout << COMPACT_MAX_DEFER_SHIFT;
2986 }
2987 if (unlikely(pgdat->proactive_compact_trigger))
2988 pgdat->proactive_compact_trigger = false;
2989 }
2990
2991 return 0;
2992 }
2993
2994 /*
2995 * This kcompactd start function will be called by init and node-hot-add.
2996 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2997 */
2998 void kcompactd_run(int nid)
2999 {
3000 pg_data_t *pgdat = NODE_DATA(nid);
3001
3002 if (pgdat->kcompactd)
3003 return;
3004
3005 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3006 if (IS_ERR(pgdat->kcompactd)) {
3007 pr_err("Failed to start kcompactd on node %d\n", nid);
3008 pgdat->kcompactd = NULL;
3009 }
3010 }
3011
3012 /*
3013 * Called by memory hotplug when all memory in a node is offlined. Caller must
3014 * hold mem_hotplug_begin/end().
3015 */
3016 void kcompactd_stop(int nid)
3017 {
3018 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3019
3020 if (kcompactd) {
3021 kthread_stop(kcompactd);
3022 NODE_DATA(nid)->kcompactd = NULL;
3023 }
3024 }
3025
3026 /*
3027 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3028 * not required for correctness. So if the last cpu in a node goes
3029 * away, we get changed to run anywhere: as the first one comes back,
3030 * restore their cpu bindings.
3031 */
3032 static int kcompactd_cpu_online(unsigned int cpu)
3033 {
3034 int nid;
3035
3036 for_each_node_state(nid, N_MEMORY) {
3037 pg_data_t *pgdat = NODE_DATA(nid);
3038 const struct cpumask *mask;
3039
3040 mask = cpumask_of_node(pgdat->node_id);
3041
3042 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3043 /* One of our CPUs online: restore mask */
3044 if (pgdat->kcompactd)
3045 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3046 }
3047 return 0;
3048 }
3049
3050 static int __init kcompactd_init(void)
3051 {
3052 int nid;
3053 int ret;
3054
3055 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3056 "mm/compaction:online",
3057 kcompactd_cpu_online, NULL);
3058 if (ret < 0) {
3059 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3060 return ret;
3061 }
3062
3063 for_each_node_state(nid, N_MEMORY)
3064 kcompactd_run(nid);
3065 return 0;
3066 }
3067 subsys_initcall(kcompactd_init)
3068
3069 #endif /* CONFIG_COMPACTION */