]> git.ipfire.org Git - people/ms/linux.git/blob - mm/slub.c
IB/srp: Fix possible send queue overflow
[people/ms/linux.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37
38 #include <trace/events/kmem.h>
39
40 #include "internal.h"
41
42 /*
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
47 *
48 * slab_mutex
49 *
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
116 */
117
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 return 0;
124 #endif
125 }
126
127 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128 {
129 #ifdef CONFIG_SLUB_CPU_PARTIAL
130 return !kmem_cache_debug(s);
131 #else
132 return false;
133 #endif
134 }
135
136 /*
137 * Issues still to be resolved:
138 *
139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 *
141 * - Variable sizing of the per node arrays
142 */
143
144 /* Enable to test recovery from slab corruption on boot */
145 #undef SLUB_RESILIENCY_TEST
146
147 /* Enable to log cmpxchg failures */
148 #undef SLUB_DEBUG_CMPXCHG
149
150 /*
151 * Mininum number of partial slabs. These will be left on the partial
152 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 */
154 #define MIN_PARTIAL 5
155
156 /*
157 * Maximum number of desirable partial slabs.
158 * The existence of more partial slabs makes kmem_cache_shrink
159 * sort the partial list by the number of objects in use.
160 */
161 #define MAX_PARTIAL 10
162
163 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 SLAB_POISON | SLAB_STORE_USER)
165
166 /*
167 * Debugging flags that require metadata to be stored in the slab. These get
168 * disabled when slub_debug=O is used and a cache's min order increases with
169 * metadata.
170 */
171 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
172
173 #define OO_SHIFT 16
174 #define OO_MASK ((1 << OO_SHIFT) - 1)
175 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
176
177 /* Internal SLUB flags */
178 #define __OBJECT_POISON 0x80000000UL /* Poison object */
179 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
180
181 #ifdef CONFIG_SMP
182 static struct notifier_block slab_notifier;
183 #endif
184
185 /*
186 * Tracking user of a slab.
187 */
188 #define TRACK_ADDRS_COUNT 16
189 struct track {
190 unsigned long addr; /* Called from address */
191 #ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
193 #endif
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197 };
198
199 enum track_item { TRACK_ALLOC, TRACK_FREE };
200
201 #ifdef CONFIG_SYSFS
202 static int sysfs_slab_add(struct kmem_cache *);
203 static int sysfs_slab_alias(struct kmem_cache *, const char *);
204 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
205 #else
206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
209 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
210 #endif
211
212 static inline void stat(const struct kmem_cache *s, enum stat_item si)
213 {
214 #ifdef CONFIG_SLUB_STATS
215 /*
216 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 * avoid this_cpu_add()'s irq-disable overhead.
218 */
219 raw_cpu_inc(s->cpu_slab->stat[si]);
220 #endif
221 }
222
223 /********************************************************************
224 * Core slab cache functions
225 *******************************************************************/
226
227 /* Verify that a pointer has an address that is valid within a slab page */
228 static inline int check_valid_pointer(struct kmem_cache *s,
229 struct page *page, const void *object)
230 {
231 void *base;
232
233 if (!object)
234 return 1;
235
236 base = page_address(page);
237 if (object < base || object >= base + page->objects * s->size ||
238 (object - base) % s->size) {
239 return 0;
240 }
241
242 return 1;
243 }
244
245 static inline void *get_freepointer(struct kmem_cache *s, void *object)
246 {
247 return *(void **)(object + s->offset);
248 }
249
250 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251 {
252 prefetch(object + s->offset);
253 }
254
255 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256 {
257 void *p;
258
259 #ifdef CONFIG_DEBUG_PAGEALLOC
260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261 #else
262 p = get_freepointer(s, object);
263 #endif
264 return p;
265 }
266
267 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268 {
269 *(void **)(object + s->offset) = fp;
270 }
271
272 /* Loop over all objects in a slab */
273 #define for_each_object(__p, __s, __addr, __objects) \
274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
275 __p += (__s)->size)
276
277 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 __p += (__s)->size, __idx++)
280
281 /* Determine object index from a given position */
282 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283 {
284 return (p - addr) / s->size;
285 }
286
287 static inline size_t slab_ksize(const struct kmem_cache *s)
288 {
289 #ifdef CONFIG_SLUB_DEBUG
290 /*
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
293 */
294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
295 return s->object_size;
296
297 #endif
298 /*
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
302 */
303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 return s->inuse;
305 /*
306 * Else we can use all the padding etc for the allocation
307 */
308 return s->size;
309 }
310
311 static inline int order_objects(int order, unsigned long size, int reserved)
312 {
313 return ((PAGE_SIZE << order) - reserved) / size;
314 }
315
316 static inline struct kmem_cache_order_objects oo_make(int order,
317 unsigned long size, int reserved)
318 {
319 struct kmem_cache_order_objects x = {
320 (order << OO_SHIFT) + order_objects(order, size, reserved)
321 };
322
323 return x;
324 }
325
326 static inline int oo_order(struct kmem_cache_order_objects x)
327 {
328 return x.x >> OO_SHIFT;
329 }
330
331 static inline int oo_objects(struct kmem_cache_order_objects x)
332 {
333 return x.x & OO_MASK;
334 }
335
336 /*
337 * Per slab locking using the pagelock
338 */
339 static __always_inline void slab_lock(struct page *page)
340 {
341 bit_spin_lock(PG_locked, &page->flags);
342 }
343
344 static __always_inline void slab_unlock(struct page *page)
345 {
346 __bit_spin_unlock(PG_locked, &page->flags);
347 }
348
349 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
350 {
351 struct page tmp;
352 tmp.counters = counters_new;
353 /*
354 * page->counters can cover frozen/inuse/objects as well
355 * as page->_count. If we assign to ->counters directly
356 * we run the risk of losing updates to page->_count, so
357 * be careful and only assign to the fields we need.
358 */
359 page->frozen = tmp.frozen;
360 page->inuse = tmp.inuse;
361 page->objects = tmp.objects;
362 }
363
364 /* Interrupts must be disabled (for the fallback code to work right) */
365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 void *freelist_old, unsigned long counters_old,
367 void *freelist_new, unsigned long counters_new,
368 const char *n)
369 {
370 VM_BUG_ON(!irqs_disabled());
371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373 if (s->flags & __CMPXCHG_DOUBLE) {
374 if (cmpxchg_double(&page->freelist, &page->counters,
375 freelist_old, counters_old,
376 freelist_new, counters_new))
377 return true;
378 } else
379 #endif
380 {
381 slab_lock(page);
382 if (page->freelist == freelist_old &&
383 page->counters == counters_old) {
384 page->freelist = freelist_new;
385 set_page_slub_counters(page, counters_new);
386 slab_unlock(page);
387 return true;
388 }
389 slab_unlock(page);
390 }
391
392 cpu_relax();
393 stat(s, CMPXCHG_DOUBLE_FAIL);
394
395 #ifdef SLUB_DEBUG_CMPXCHG
396 pr_info("%s %s: cmpxchg double redo ", n, s->name);
397 #endif
398
399 return false;
400 }
401
402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 void *freelist_old, unsigned long counters_old,
404 void *freelist_new, unsigned long counters_new,
405 const char *n)
406 {
407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409 if (s->flags & __CMPXCHG_DOUBLE) {
410 if (cmpxchg_double(&page->freelist, &page->counters,
411 freelist_old, counters_old,
412 freelist_new, counters_new))
413 return true;
414 } else
415 #endif
416 {
417 unsigned long flags;
418
419 local_irq_save(flags);
420 slab_lock(page);
421 if (page->freelist == freelist_old &&
422 page->counters == counters_old) {
423 page->freelist = freelist_new;
424 set_page_slub_counters(page, counters_new);
425 slab_unlock(page);
426 local_irq_restore(flags);
427 return true;
428 }
429 slab_unlock(page);
430 local_irq_restore(flags);
431 }
432
433 cpu_relax();
434 stat(s, CMPXCHG_DOUBLE_FAIL);
435
436 #ifdef SLUB_DEBUG_CMPXCHG
437 pr_info("%s %s: cmpxchg double redo ", n, s->name);
438 #endif
439
440 return false;
441 }
442
443 #ifdef CONFIG_SLUB_DEBUG
444 /*
445 * Determine a map of object in use on a page.
446 *
447 * Node listlock must be held to guarantee that the page does
448 * not vanish from under us.
449 */
450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451 {
452 void *p;
453 void *addr = page_address(page);
454
455 for (p = page->freelist; p; p = get_freepointer(s, p))
456 set_bit(slab_index(p, s, addr), map);
457 }
458
459 /*
460 * Debug settings:
461 */
462 #if defined(CONFIG_SLUB_DEBUG_ON)
463 static int slub_debug = DEBUG_DEFAULT_FLAGS;
464 #elif defined(CONFIG_KASAN)
465 static int slub_debug = SLAB_STORE_USER;
466 #else
467 static int slub_debug;
468 #endif
469
470 static char *slub_debug_slabs;
471 static int disable_higher_order_debug;
472
473 /*
474 * slub is about to manipulate internal object metadata. This memory lies
475 * outside the range of the allocated object, so accessing it would normally
476 * be reported by kasan as a bounds error. metadata_access_enable() is used
477 * to tell kasan that these accesses are OK.
478 */
479 static inline void metadata_access_enable(void)
480 {
481 kasan_disable_current();
482 }
483
484 static inline void metadata_access_disable(void)
485 {
486 kasan_enable_current();
487 }
488
489 /*
490 * Object debugging
491 */
492 static void print_section(char *text, u8 *addr, unsigned int length)
493 {
494 metadata_access_enable();
495 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
496 length, 1);
497 metadata_access_disable();
498 }
499
500 static struct track *get_track(struct kmem_cache *s, void *object,
501 enum track_item alloc)
502 {
503 struct track *p;
504
505 if (s->offset)
506 p = object + s->offset + sizeof(void *);
507 else
508 p = object + s->inuse;
509
510 return p + alloc;
511 }
512
513 static void set_track(struct kmem_cache *s, void *object,
514 enum track_item alloc, unsigned long addr)
515 {
516 struct track *p = get_track(s, object, alloc);
517
518 if (addr) {
519 #ifdef CONFIG_STACKTRACE
520 struct stack_trace trace;
521 int i;
522
523 trace.nr_entries = 0;
524 trace.max_entries = TRACK_ADDRS_COUNT;
525 trace.entries = p->addrs;
526 trace.skip = 3;
527 metadata_access_enable();
528 save_stack_trace(&trace);
529 metadata_access_disable();
530
531 /* See rant in lockdep.c */
532 if (trace.nr_entries != 0 &&
533 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
534 trace.nr_entries--;
535
536 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
537 p->addrs[i] = 0;
538 #endif
539 p->addr = addr;
540 p->cpu = smp_processor_id();
541 p->pid = current->pid;
542 p->when = jiffies;
543 } else
544 memset(p, 0, sizeof(struct track));
545 }
546
547 static void init_tracking(struct kmem_cache *s, void *object)
548 {
549 if (!(s->flags & SLAB_STORE_USER))
550 return;
551
552 set_track(s, object, TRACK_FREE, 0UL);
553 set_track(s, object, TRACK_ALLOC, 0UL);
554 }
555
556 static void print_track(const char *s, struct track *t)
557 {
558 if (!t->addr)
559 return;
560
561 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
562 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
563 #ifdef CONFIG_STACKTRACE
564 {
565 int i;
566 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
567 if (t->addrs[i])
568 pr_err("\t%pS\n", (void *)t->addrs[i]);
569 else
570 break;
571 }
572 #endif
573 }
574
575 static void print_tracking(struct kmem_cache *s, void *object)
576 {
577 if (!(s->flags & SLAB_STORE_USER))
578 return;
579
580 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
581 print_track("Freed", get_track(s, object, TRACK_FREE));
582 }
583
584 static void print_page_info(struct page *page)
585 {
586 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
587 page, page->objects, page->inuse, page->freelist, page->flags);
588
589 }
590
591 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
592 {
593 struct va_format vaf;
594 va_list args;
595
596 va_start(args, fmt);
597 vaf.fmt = fmt;
598 vaf.va = &args;
599 pr_err("=============================================================================\n");
600 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
601 pr_err("-----------------------------------------------------------------------------\n\n");
602
603 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
604 va_end(args);
605 }
606
607 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
608 {
609 struct va_format vaf;
610 va_list args;
611
612 va_start(args, fmt);
613 vaf.fmt = fmt;
614 vaf.va = &args;
615 pr_err("FIX %s: %pV\n", s->name, &vaf);
616 va_end(args);
617 }
618
619 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
620 {
621 unsigned int off; /* Offset of last byte */
622 u8 *addr = page_address(page);
623
624 print_tracking(s, p);
625
626 print_page_info(page);
627
628 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
629 p, p - addr, get_freepointer(s, p));
630
631 if (p > addr + 16)
632 print_section("Bytes b4 ", p - 16, 16);
633
634 print_section("Object ", p, min_t(unsigned long, s->object_size,
635 PAGE_SIZE));
636 if (s->flags & SLAB_RED_ZONE)
637 print_section("Redzone ", p + s->object_size,
638 s->inuse - s->object_size);
639
640 if (s->offset)
641 off = s->offset + sizeof(void *);
642 else
643 off = s->inuse;
644
645 if (s->flags & SLAB_STORE_USER)
646 off += 2 * sizeof(struct track);
647
648 if (off != s->size)
649 /* Beginning of the filler is the free pointer */
650 print_section("Padding ", p + off, s->size - off);
651
652 dump_stack();
653 }
654
655 void object_err(struct kmem_cache *s, struct page *page,
656 u8 *object, char *reason)
657 {
658 slab_bug(s, "%s", reason);
659 print_trailer(s, page, object);
660 }
661
662 static void slab_err(struct kmem_cache *s, struct page *page,
663 const char *fmt, ...)
664 {
665 va_list args;
666 char buf[100];
667
668 va_start(args, fmt);
669 vsnprintf(buf, sizeof(buf), fmt, args);
670 va_end(args);
671 slab_bug(s, "%s", buf);
672 print_page_info(page);
673 dump_stack();
674 }
675
676 static void init_object(struct kmem_cache *s, void *object, u8 val)
677 {
678 u8 *p = object;
679
680 if (s->flags & __OBJECT_POISON) {
681 memset(p, POISON_FREE, s->object_size - 1);
682 p[s->object_size - 1] = POISON_END;
683 }
684
685 if (s->flags & SLAB_RED_ZONE)
686 memset(p + s->object_size, val, s->inuse - s->object_size);
687 }
688
689 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
690 void *from, void *to)
691 {
692 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
693 memset(from, data, to - from);
694 }
695
696 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
697 u8 *object, char *what,
698 u8 *start, unsigned int value, unsigned int bytes)
699 {
700 u8 *fault;
701 u8 *end;
702
703 metadata_access_enable();
704 fault = memchr_inv(start, value, bytes);
705 metadata_access_disable();
706 if (!fault)
707 return 1;
708
709 end = start + bytes;
710 while (end > fault && end[-1] == value)
711 end--;
712
713 slab_bug(s, "%s overwritten", what);
714 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
715 fault, end - 1, fault[0], value);
716 print_trailer(s, page, object);
717
718 restore_bytes(s, what, value, fault, end);
719 return 0;
720 }
721
722 /*
723 * Object layout:
724 *
725 * object address
726 * Bytes of the object to be managed.
727 * If the freepointer may overlay the object then the free
728 * pointer is the first word of the object.
729 *
730 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
731 * 0xa5 (POISON_END)
732 *
733 * object + s->object_size
734 * Padding to reach word boundary. This is also used for Redzoning.
735 * Padding is extended by another word if Redzoning is enabled and
736 * object_size == inuse.
737 *
738 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
739 * 0xcc (RED_ACTIVE) for objects in use.
740 *
741 * object + s->inuse
742 * Meta data starts here.
743 *
744 * A. Free pointer (if we cannot overwrite object on free)
745 * B. Tracking data for SLAB_STORE_USER
746 * C. Padding to reach required alignment boundary or at mininum
747 * one word if debugging is on to be able to detect writes
748 * before the word boundary.
749 *
750 * Padding is done using 0x5a (POISON_INUSE)
751 *
752 * object + s->size
753 * Nothing is used beyond s->size.
754 *
755 * If slabcaches are merged then the object_size and inuse boundaries are mostly
756 * ignored. And therefore no slab options that rely on these boundaries
757 * may be used with merged slabcaches.
758 */
759
760 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
761 {
762 unsigned long off = s->inuse; /* The end of info */
763
764 if (s->offset)
765 /* Freepointer is placed after the object. */
766 off += sizeof(void *);
767
768 if (s->flags & SLAB_STORE_USER)
769 /* We also have user information there */
770 off += 2 * sizeof(struct track);
771
772 if (s->size == off)
773 return 1;
774
775 return check_bytes_and_report(s, page, p, "Object padding",
776 p + off, POISON_INUSE, s->size - off);
777 }
778
779 /* Check the pad bytes at the end of a slab page */
780 static int slab_pad_check(struct kmem_cache *s, struct page *page)
781 {
782 u8 *start;
783 u8 *fault;
784 u8 *end;
785 int length;
786 int remainder;
787
788 if (!(s->flags & SLAB_POISON))
789 return 1;
790
791 start = page_address(page);
792 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
793 end = start + length;
794 remainder = length % s->size;
795 if (!remainder)
796 return 1;
797
798 metadata_access_enable();
799 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
800 metadata_access_disable();
801 if (!fault)
802 return 1;
803 while (end > fault && end[-1] == POISON_INUSE)
804 end--;
805
806 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
807 print_section("Padding ", end - remainder, remainder);
808
809 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
810 return 0;
811 }
812
813 static int check_object(struct kmem_cache *s, struct page *page,
814 void *object, u8 val)
815 {
816 u8 *p = object;
817 u8 *endobject = object + s->object_size;
818
819 if (s->flags & SLAB_RED_ZONE) {
820 if (!check_bytes_and_report(s, page, object, "Redzone",
821 endobject, val, s->inuse - s->object_size))
822 return 0;
823 } else {
824 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
825 check_bytes_and_report(s, page, p, "Alignment padding",
826 endobject, POISON_INUSE,
827 s->inuse - s->object_size);
828 }
829 }
830
831 if (s->flags & SLAB_POISON) {
832 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
833 (!check_bytes_and_report(s, page, p, "Poison", p,
834 POISON_FREE, s->object_size - 1) ||
835 !check_bytes_and_report(s, page, p, "Poison",
836 p + s->object_size - 1, POISON_END, 1)))
837 return 0;
838 /*
839 * check_pad_bytes cleans up on its own.
840 */
841 check_pad_bytes(s, page, p);
842 }
843
844 if (!s->offset && val == SLUB_RED_ACTIVE)
845 /*
846 * Object and freepointer overlap. Cannot check
847 * freepointer while object is allocated.
848 */
849 return 1;
850
851 /* Check free pointer validity */
852 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
853 object_err(s, page, p, "Freepointer corrupt");
854 /*
855 * No choice but to zap it and thus lose the remainder
856 * of the free objects in this slab. May cause
857 * another error because the object count is now wrong.
858 */
859 set_freepointer(s, p, NULL);
860 return 0;
861 }
862 return 1;
863 }
864
865 static int check_slab(struct kmem_cache *s, struct page *page)
866 {
867 int maxobj;
868
869 VM_BUG_ON(!irqs_disabled());
870
871 if (!PageSlab(page)) {
872 slab_err(s, page, "Not a valid slab page");
873 return 0;
874 }
875
876 maxobj = order_objects(compound_order(page), s->size, s->reserved);
877 if (page->objects > maxobj) {
878 slab_err(s, page, "objects %u > max %u",
879 page->objects, maxobj);
880 return 0;
881 }
882 if (page->inuse > page->objects) {
883 slab_err(s, page, "inuse %u > max %u",
884 page->inuse, page->objects);
885 return 0;
886 }
887 /* Slab_pad_check fixes things up after itself */
888 slab_pad_check(s, page);
889 return 1;
890 }
891
892 /*
893 * Determine if a certain object on a page is on the freelist. Must hold the
894 * slab lock to guarantee that the chains are in a consistent state.
895 */
896 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
897 {
898 int nr = 0;
899 void *fp;
900 void *object = NULL;
901 int max_objects;
902
903 fp = page->freelist;
904 while (fp && nr <= page->objects) {
905 if (fp == search)
906 return 1;
907 if (!check_valid_pointer(s, page, fp)) {
908 if (object) {
909 object_err(s, page, object,
910 "Freechain corrupt");
911 set_freepointer(s, object, NULL);
912 } else {
913 slab_err(s, page, "Freepointer corrupt");
914 page->freelist = NULL;
915 page->inuse = page->objects;
916 slab_fix(s, "Freelist cleared");
917 return 0;
918 }
919 break;
920 }
921 object = fp;
922 fp = get_freepointer(s, object);
923 nr++;
924 }
925
926 max_objects = order_objects(compound_order(page), s->size, s->reserved);
927 if (max_objects > MAX_OBJS_PER_PAGE)
928 max_objects = MAX_OBJS_PER_PAGE;
929
930 if (page->objects != max_objects) {
931 slab_err(s, page, "Wrong number of objects. Found %d but "
932 "should be %d", page->objects, max_objects);
933 page->objects = max_objects;
934 slab_fix(s, "Number of objects adjusted.");
935 }
936 if (page->inuse != page->objects - nr) {
937 slab_err(s, page, "Wrong object count. Counter is %d but "
938 "counted were %d", page->inuse, page->objects - nr);
939 page->inuse = page->objects - nr;
940 slab_fix(s, "Object count adjusted.");
941 }
942 return search == NULL;
943 }
944
945 static void trace(struct kmem_cache *s, struct page *page, void *object,
946 int alloc)
947 {
948 if (s->flags & SLAB_TRACE) {
949 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
950 s->name,
951 alloc ? "alloc" : "free",
952 object, page->inuse,
953 page->freelist);
954
955 if (!alloc)
956 print_section("Object ", (void *)object,
957 s->object_size);
958
959 dump_stack();
960 }
961 }
962
963 /*
964 * Tracking of fully allocated slabs for debugging purposes.
965 */
966 static void add_full(struct kmem_cache *s,
967 struct kmem_cache_node *n, struct page *page)
968 {
969 if (!(s->flags & SLAB_STORE_USER))
970 return;
971
972 lockdep_assert_held(&n->list_lock);
973 list_add(&page->lru, &n->full);
974 }
975
976 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
977 {
978 if (!(s->flags & SLAB_STORE_USER))
979 return;
980
981 lockdep_assert_held(&n->list_lock);
982 list_del(&page->lru);
983 }
984
985 /* Tracking of the number of slabs for debugging purposes */
986 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
987 {
988 struct kmem_cache_node *n = get_node(s, node);
989
990 return atomic_long_read(&n->nr_slabs);
991 }
992
993 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
994 {
995 return atomic_long_read(&n->nr_slabs);
996 }
997
998 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
999 {
1000 struct kmem_cache_node *n = get_node(s, node);
1001
1002 /*
1003 * May be called early in order to allocate a slab for the
1004 * kmem_cache_node structure. Solve the chicken-egg
1005 * dilemma by deferring the increment of the count during
1006 * bootstrap (see early_kmem_cache_node_alloc).
1007 */
1008 if (likely(n)) {
1009 atomic_long_inc(&n->nr_slabs);
1010 atomic_long_add(objects, &n->total_objects);
1011 }
1012 }
1013 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1014 {
1015 struct kmem_cache_node *n = get_node(s, node);
1016
1017 atomic_long_dec(&n->nr_slabs);
1018 atomic_long_sub(objects, &n->total_objects);
1019 }
1020
1021 /* Object debug checks for alloc/free paths */
1022 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1023 void *object)
1024 {
1025 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1026 return;
1027
1028 init_object(s, object, SLUB_RED_INACTIVE);
1029 init_tracking(s, object);
1030 }
1031
1032 static noinline int alloc_debug_processing(struct kmem_cache *s,
1033 struct page *page,
1034 void *object, unsigned long addr)
1035 {
1036 if (!check_slab(s, page))
1037 goto bad;
1038
1039 if (!check_valid_pointer(s, page, object)) {
1040 object_err(s, page, object, "Freelist Pointer check fails");
1041 goto bad;
1042 }
1043
1044 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1045 goto bad;
1046
1047 /* Success perform special debug activities for allocs */
1048 if (s->flags & SLAB_STORE_USER)
1049 set_track(s, object, TRACK_ALLOC, addr);
1050 trace(s, page, object, 1);
1051 init_object(s, object, SLUB_RED_ACTIVE);
1052 return 1;
1053
1054 bad:
1055 if (PageSlab(page)) {
1056 /*
1057 * If this is a slab page then lets do the best we can
1058 * to avoid issues in the future. Marking all objects
1059 * as used avoids touching the remaining objects.
1060 */
1061 slab_fix(s, "Marking all objects used");
1062 page->inuse = page->objects;
1063 page->freelist = NULL;
1064 }
1065 return 0;
1066 }
1067
1068 /* Supports checking bulk free of a constructed freelist */
1069 static noinline struct kmem_cache_node *free_debug_processing(
1070 struct kmem_cache *s, struct page *page,
1071 void *head, void *tail, int bulk_cnt,
1072 unsigned long addr, unsigned long *flags)
1073 {
1074 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1075 void *object = head;
1076 int cnt = 0;
1077
1078 spin_lock_irqsave(&n->list_lock, *flags);
1079 slab_lock(page);
1080
1081 if (!check_slab(s, page))
1082 goto fail;
1083
1084 next_object:
1085 cnt++;
1086
1087 if (!check_valid_pointer(s, page, object)) {
1088 slab_err(s, page, "Invalid object pointer 0x%p", object);
1089 goto fail;
1090 }
1091
1092 if (on_freelist(s, page, object)) {
1093 object_err(s, page, object, "Object already free");
1094 goto fail;
1095 }
1096
1097 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1098 goto out;
1099
1100 if (unlikely(s != page->slab_cache)) {
1101 if (!PageSlab(page)) {
1102 slab_err(s, page, "Attempt to free object(0x%p) "
1103 "outside of slab", object);
1104 } else if (!page->slab_cache) {
1105 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1106 object);
1107 dump_stack();
1108 } else
1109 object_err(s, page, object,
1110 "page slab pointer corrupt.");
1111 goto fail;
1112 }
1113
1114 if (s->flags & SLAB_STORE_USER)
1115 set_track(s, object, TRACK_FREE, addr);
1116 trace(s, page, object, 0);
1117 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1118 init_object(s, object, SLUB_RED_INACTIVE);
1119
1120 /* Reached end of constructed freelist yet? */
1121 if (object != tail) {
1122 object = get_freepointer(s, object);
1123 goto next_object;
1124 }
1125 out:
1126 if (cnt != bulk_cnt)
1127 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1128 bulk_cnt, cnt);
1129
1130 slab_unlock(page);
1131 /*
1132 * Keep node_lock to preserve integrity
1133 * until the object is actually freed
1134 */
1135 return n;
1136
1137 fail:
1138 slab_unlock(page);
1139 spin_unlock_irqrestore(&n->list_lock, *flags);
1140 slab_fix(s, "Object at 0x%p not freed", object);
1141 return NULL;
1142 }
1143
1144 static int __init setup_slub_debug(char *str)
1145 {
1146 slub_debug = DEBUG_DEFAULT_FLAGS;
1147 if (*str++ != '=' || !*str)
1148 /*
1149 * No options specified. Switch on full debugging.
1150 */
1151 goto out;
1152
1153 if (*str == ',')
1154 /*
1155 * No options but restriction on slabs. This means full
1156 * debugging for slabs matching a pattern.
1157 */
1158 goto check_slabs;
1159
1160 slub_debug = 0;
1161 if (*str == '-')
1162 /*
1163 * Switch off all debugging measures.
1164 */
1165 goto out;
1166
1167 /*
1168 * Determine which debug features should be switched on
1169 */
1170 for (; *str && *str != ','; str++) {
1171 switch (tolower(*str)) {
1172 case 'f':
1173 slub_debug |= SLAB_DEBUG_FREE;
1174 break;
1175 case 'z':
1176 slub_debug |= SLAB_RED_ZONE;
1177 break;
1178 case 'p':
1179 slub_debug |= SLAB_POISON;
1180 break;
1181 case 'u':
1182 slub_debug |= SLAB_STORE_USER;
1183 break;
1184 case 't':
1185 slub_debug |= SLAB_TRACE;
1186 break;
1187 case 'a':
1188 slub_debug |= SLAB_FAILSLAB;
1189 break;
1190 case 'o':
1191 /*
1192 * Avoid enabling debugging on caches if its minimum
1193 * order would increase as a result.
1194 */
1195 disable_higher_order_debug = 1;
1196 break;
1197 default:
1198 pr_err("slub_debug option '%c' unknown. skipped\n",
1199 *str);
1200 }
1201 }
1202
1203 check_slabs:
1204 if (*str == ',')
1205 slub_debug_slabs = str + 1;
1206 out:
1207 return 1;
1208 }
1209
1210 __setup("slub_debug", setup_slub_debug);
1211
1212 unsigned long kmem_cache_flags(unsigned long object_size,
1213 unsigned long flags, const char *name,
1214 void (*ctor)(void *))
1215 {
1216 /*
1217 * Enable debugging if selected on the kernel commandline.
1218 */
1219 if (slub_debug && (!slub_debug_slabs || (name &&
1220 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1221 flags |= slub_debug;
1222
1223 return flags;
1224 }
1225 #else /* !CONFIG_SLUB_DEBUG */
1226 static inline void setup_object_debug(struct kmem_cache *s,
1227 struct page *page, void *object) {}
1228
1229 static inline int alloc_debug_processing(struct kmem_cache *s,
1230 struct page *page, void *object, unsigned long addr) { return 0; }
1231
1232 static inline struct kmem_cache_node *free_debug_processing(
1233 struct kmem_cache *s, struct page *page,
1234 void *head, void *tail, int bulk_cnt,
1235 unsigned long addr, unsigned long *flags) { return NULL; }
1236
1237 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1238 { return 1; }
1239 static inline int check_object(struct kmem_cache *s, struct page *page,
1240 void *object, u8 val) { return 1; }
1241 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1242 struct page *page) {}
1243 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1244 struct page *page) {}
1245 unsigned long kmem_cache_flags(unsigned long object_size,
1246 unsigned long flags, const char *name,
1247 void (*ctor)(void *))
1248 {
1249 return flags;
1250 }
1251 #define slub_debug 0
1252
1253 #define disable_higher_order_debug 0
1254
1255 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1256 { return 0; }
1257 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1258 { return 0; }
1259 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1260 int objects) {}
1261 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1262 int objects) {}
1263
1264 #endif /* CONFIG_SLUB_DEBUG */
1265
1266 /*
1267 * Hooks for other subsystems that check memory allocations. In a typical
1268 * production configuration these hooks all should produce no code at all.
1269 */
1270 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1271 {
1272 kmemleak_alloc(ptr, size, 1, flags);
1273 kasan_kmalloc_large(ptr, size);
1274 }
1275
1276 static inline void kfree_hook(const void *x)
1277 {
1278 kmemleak_free(x);
1279 kasan_kfree_large(x);
1280 }
1281
1282 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1283 gfp_t flags)
1284 {
1285 flags &= gfp_allowed_mask;
1286 lockdep_trace_alloc(flags);
1287 might_sleep_if(gfpflags_allow_blocking(flags));
1288
1289 if (should_failslab(s->object_size, flags, s->flags))
1290 return NULL;
1291
1292 return memcg_kmem_get_cache(s, flags);
1293 }
1294
1295 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1296 size_t size, void **p)
1297 {
1298 size_t i;
1299
1300 flags &= gfp_allowed_mask;
1301 for (i = 0; i < size; i++) {
1302 void *object = p[i];
1303
1304 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1305 kmemleak_alloc_recursive(object, s->object_size, 1,
1306 s->flags, flags);
1307 kasan_slab_alloc(s, object);
1308 }
1309 memcg_kmem_put_cache(s);
1310 }
1311
1312 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1313 {
1314 kmemleak_free_recursive(x, s->flags);
1315
1316 /*
1317 * Trouble is that we may no longer disable interrupts in the fast path
1318 * So in order to make the debug calls that expect irqs to be
1319 * disabled we need to disable interrupts temporarily.
1320 */
1321 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1322 {
1323 unsigned long flags;
1324
1325 local_irq_save(flags);
1326 kmemcheck_slab_free(s, x, s->object_size);
1327 debug_check_no_locks_freed(x, s->object_size);
1328 local_irq_restore(flags);
1329 }
1330 #endif
1331 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1332 debug_check_no_obj_freed(x, s->object_size);
1333
1334 kasan_slab_free(s, x);
1335 }
1336
1337 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1338 void *head, void *tail)
1339 {
1340 /*
1341 * Compiler cannot detect this function can be removed if slab_free_hook()
1342 * evaluates to nothing. Thus, catch all relevant config debug options here.
1343 */
1344 #if defined(CONFIG_KMEMCHECK) || \
1345 defined(CONFIG_LOCKDEP) || \
1346 defined(CONFIG_DEBUG_KMEMLEAK) || \
1347 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1348 defined(CONFIG_KASAN)
1349
1350 void *object = head;
1351 void *tail_obj = tail ? : head;
1352
1353 do {
1354 slab_free_hook(s, object);
1355 } while ((object != tail_obj) &&
1356 (object = get_freepointer(s, object)));
1357 #endif
1358 }
1359
1360 static void setup_object(struct kmem_cache *s, struct page *page,
1361 void *object)
1362 {
1363 setup_object_debug(s, page, object);
1364 if (unlikely(s->ctor)) {
1365 kasan_unpoison_object_data(s, object);
1366 s->ctor(object);
1367 kasan_poison_object_data(s, object);
1368 }
1369 }
1370
1371 /*
1372 * Slab allocation and freeing
1373 */
1374 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1375 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1376 {
1377 struct page *page;
1378 int order = oo_order(oo);
1379
1380 flags |= __GFP_NOTRACK;
1381
1382 if (node == NUMA_NO_NODE)
1383 page = alloc_pages(flags, order);
1384 else
1385 page = __alloc_pages_node(node, flags, order);
1386
1387 if (page && memcg_charge_slab(page, flags, order, s)) {
1388 __free_pages(page, order);
1389 page = NULL;
1390 }
1391
1392 return page;
1393 }
1394
1395 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1396 {
1397 struct page *page;
1398 struct kmem_cache_order_objects oo = s->oo;
1399 gfp_t alloc_gfp;
1400 void *start, *p;
1401 int idx, order;
1402
1403 flags &= gfp_allowed_mask;
1404
1405 if (gfpflags_allow_blocking(flags))
1406 local_irq_enable();
1407
1408 flags |= s->allocflags;
1409
1410 /*
1411 * Let the initial higher-order allocation fail under memory pressure
1412 * so we fall-back to the minimum order allocation.
1413 */
1414 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1415 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1416 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM;
1417
1418 page = alloc_slab_page(s, alloc_gfp, node, oo);
1419 if (unlikely(!page)) {
1420 oo = s->min;
1421 alloc_gfp = flags;
1422 /*
1423 * Allocation may have failed due to fragmentation.
1424 * Try a lower order alloc if possible
1425 */
1426 page = alloc_slab_page(s, alloc_gfp, node, oo);
1427 if (unlikely(!page))
1428 goto out;
1429 stat(s, ORDER_FALLBACK);
1430 }
1431
1432 if (kmemcheck_enabled &&
1433 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1434 int pages = 1 << oo_order(oo);
1435
1436 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1437
1438 /*
1439 * Objects from caches that have a constructor don't get
1440 * cleared when they're allocated, so we need to do it here.
1441 */
1442 if (s->ctor)
1443 kmemcheck_mark_uninitialized_pages(page, pages);
1444 else
1445 kmemcheck_mark_unallocated_pages(page, pages);
1446 }
1447
1448 page->objects = oo_objects(oo);
1449
1450 order = compound_order(page);
1451 page->slab_cache = s;
1452 __SetPageSlab(page);
1453 if (page_is_pfmemalloc(page))
1454 SetPageSlabPfmemalloc(page);
1455
1456 start = page_address(page);
1457
1458 if (unlikely(s->flags & SLAB_POISON))
1459 memset(start, POISON_INUSE, PAGE_SIZE << order);
1460
1461 kasan_poison_slab(page);
1462
1463 for_each_object_idx(p, idx, s, start, page->objects) {
1464 setup_object(s, page, p);
1465 if (likely(idx < page->objects))
1466 set_freepointer(s, p, p + s->size);
1467 else
1468 set_freepointer(s, p, NULL);
1469 }
1470
1471 page->freelist = start;
1472 page->inuse = page->objects;
1473 page->frozen = 1;
1474
1475 out:
1476 if (gfpflags_allow_blocking(flags))
1477 local_irq_disable();
1478 if (!page)
1479 return NULL;
1480
1481 mod_zone_page_state(page_zone(page),
1482 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1483 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1484 1 << oo_order(oo));
1485
1486 inc_slabs_node(s, page_to_nid(page), page->objects);
1487
1488 return page;
1489 }
1490
1491 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1492 {
1493 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1494 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1495 BUG();
1496 }
1497
1498 return allocate_slab(s,
1499 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1500 }
1501
1502 static void __free_slab(struct kmem_cache *s, struct page *page)
1503 {
1504 int order = compound_order(page);
1505 int pages = 1 << order;
1506
1507 if (kmem_cache_debug(s)) {
1508 void *p;
1509
1510 slab_pad_check(s, page);
1511 for_each_object(p, s, page_address(page),
1512 page->objects)
1513 check_object(s, page, p, SLUB_RED_INACTIVE);
1514 }
1515
1516 kmemcheck_free_shadow(page, compound_order(page));
1517
1518 mod_zone_page_state(page_zone(page),
1519 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1520 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1521 -pages);
1522
1523 __ClearPageSlabPfmemalloc(page);
1524 __ClearPageSlab(page);
1525
1526 page_mapcount_reset(page);
1527 if (current->reclaim_state)
1528 current->reclaim_state->reclaimed_slab += pages;
1529 __free_kmem_pages(page, order);
1530 }
1531
1532 #define need_reserve_slab_rcu \
1533 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1534
1535 static void rcu_free_slab(struct rcu_head *h)
1536 {
1537 struct page *page;
1538
1539 if (need_reserve_slab_rcu)
1540 page = virt_to_head_page(h);
1541 else
1542 page = container_of((struct list_head *)h, struct page, lru);
1543
1544 __free_slab(page->slab_cache, page);
1545 }
1546
1547 static void free_slab(struct kmem_cache *s, struct page *page)
1548 {
1549 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1550 struct rcu_head *head;
1551
1552 if (need_reserve_slab_rcu) {
1553 int order = compound_order(page);
1554 int offset = (PAGE_SIZE << order) - s->reserved;
1555
1556 VM_BUG_ON(s->reserved != sizeof(*head));
1557 head = page_address(page) + offset;
1558 } else {
1559 head = &page->rcu_head;
1560 }
1561
1562 call_rcu(head, rcu_free_slab);
1563 } else
1564 __free_slab(s, page);
1565 }
1566
1567 static void discard_slab(struct kmem_cache *s, struct page *page)
1568 {
1569 dec_slabs_node(s, page_to_nid(page), page->objects);
1570 free_slab(s, page);
1571 }
1572
1573 /*
1574 * Management of partially allocated slabs.
1575 */
1576 static inline void
1577 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1578 {
1579 n->nr_partial++;
1580 if (tail == DEACTIVATE_TO_TAIL)
1581 list_add_tail(&page->lru, &n->partial);
1582 else
1583 list_add(&page->lru, &n->partial);
1584 }
1585
1586 static inline void add_partial(struct kmem_cache_node *n,
1587 struct page *page, int tail)
1588 {
1589 lockdep_assert_held(&n->list_lock);
1590 __add_partial(n, page, tail);
1591 }
1592
1593 static inline void
1594 __remove_partial(struct kmem_cache_node *n, struct page *page)
1595 {
1596 list_del(&page->lru);
1597 n->nr_partial--;
1598 }
1599
1600 static inline void remove_partial(struct kmem_cache_node *n,
1601 struct page *page)
1602 {
1603 lockdep_assert_held(&n->list_lock);
1604 __remove_partial(n, page);
1605 }
1606
1607 /*
1608 * Remove slab from the partial list, freeze it and
1609 * return the pointer to the freelist.
1610 *
1611 * Returns a list of objects or NULL if it fails.
1612 */
1613 static inline void *acquire_slab(struct kmem_cache *s,
1614 struct kmem_cache_node *n, struct page *page,
1615 int mode, int *objects)
1616 {
1617 void *freelist;
1618 unsigned long counters;
1619 struct page new;
1620
1621 lockdep_assert_held(&n->list_lock);
1622
1623 /*
1624 * Zap the freelist and set the frozen bit.
1625 * The old freelist is the list of objects for the
1626 * per cpu allocation list.
1627 */
1628 freelist = page->freelist;
1629 counters = page->counters;
1630 new.counters = counters;
1631 *objects = new.objects - new.inuse;
1632 if (mode) {
1633 new.inuse = page->objects;
1634 new.freelist = NULL;
1635 } else {
1636 new.freelist = freelist;
1637 }
1638
1639 VM_BUG_ON(new.frozen);
1640 new.frozen = 1;
1641
1642 if (!__cmpxchg_double_slab(s, page,
1643 freelist, counters,
1644 new.freelist, new.counters,
1645 "acquire_slab"))
1646 return NULL;
1647
1648 remove_partial(n, page);
1649 WARN_ON(!freelist);
1650 return freelist;
1651 }
1652
1653 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1654 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1655
1656 /*
1657 * Try to allocate a partial slab from a specific node.
1658 */
1659 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1660 struct kmem_cache_cpu *c, gfp_t flags)
1661 {
1662 struct page *page, *page2;
1663 void *object = NULL;
1664 int available = 0;
1665 int objects;
1666
1667 /*
1668 * Racy check. If we mistakenly see no partial slabs then we
1669 * just allocate an empty slab. If we mistakenly try to get a
1670 * partial slab and there is none available then get_partials()
1671 * will return NULL.
1672 */
1673 if (!n || !n->nr_partial)
1674 return NULL;
1675
1676 spin_lock(&n->list_lock);
1677 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1678 void *t;
1679
1680 if (!pfmemalloc_match(page, flags))
1681 continue;
1682
1683 t = acquire_slab(s, n, page, object == NULL, &objects);
1684 if (!t)
1685 break;
1686
1687 available += objects;
1688 if (!object) {
1689 c->page = page;
1690 stat(s, ALLOC_FROM_PARTIAL);
1691 object = t;
1692 } else {
1693 put_cpu_partial(s, page, 0);
1694 stat(s, CPU_PARTIAL_NODE);
1695 }
1696 if (!kmem_cache_has_cpu_partial(s)
1697 || available > s->cpu_partial / 2)
1698 break;
1699
1700 }
1701 spin_unlock(&n->list_lock);
1702 return object;
1703 }
1704
1705 /*
1706 * Get a page from somewhere. Search in increasing NUMA distances.
1707 */
1708 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1709 struct kmem_cache_cpu *c)
1710 {
1711 #ifdef CONFIG_NUMA
1712 struct zonelist *zonelist;
1713 struct zoneref *z;
1714 struct zone *zone;
1715 enum zone_type high_zoneidx = gfp_zone(flags);
1716 void *object;
1717 unsigned int cpuset_mems_cookie;
1718
1719 /*
1720 * The defrag ratio allows a configuration of the tradeoffs between
1721 * inter node defragmentation and node local allocations. A lower
1722 * defrag_ratio increases the tendency to do local allocations
1723 * instead of attempting to obtain partial slabs from other nodes.
1724 *
1725 * If the defrag_ratio is set to 0 then kmalloc() always
1726 * returns node local objects. If the ratio is higher then kmalloc()
1727 * may return off node objects because partial slabs are obtained
1728 * from other nodes and filled up.
1729 *
1730 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1731 * defrag_ratio = 1000) then every (well almost) allocation will
1732 * first attempt to defrag slab caches on other nodes. This means
1733 * scanning over all nodes to look for partial slabs which may be
1734 * expensive if we do it every time we are trying to find a slab
1735 * with available objects.
1736 */
1737 if (!s->remote_node_defrag_ratio ||
1738 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1739 return NULL;
1740
1741 do {
1742 cpuset_mems_cookie = read_mems_allowed_begin();
1743 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1744 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1745 struct kmem_cache_node *n;
1746
1747 n = get_node(s, zone_to_nid(zone));
1748
1749 if (n && cpuset_zone_allowed(zone, flags) &&
1750 n->nr_partial > s->min_partial) {
1751 object = get_partial_node(s, n, c, flags);
1752 if (object) {
1753 /*
1754 * Don't check read_mems_allowed_retry()
1755 * here - if mems_allowed was updated in
1756 * parallel, that was a harmless race
1757 * between allocation and the cpuset
1758 * update
1759 */
1760 return object;
1761 }
1762 }
1763 }
1764 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1765 #endif
1766 return NULL;
1767 }
1768
1769 /*
1770 * Get a partial page, lock it and return it.
1771 */
1772 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1773 struct kmem_cache_cpu *c)
1774 {
1775 void *object;
1776 int searchnode = node;
1777
1778 if (node == NUMA_NO_NODE)
1779 searchnode = numa_mem_id();
1780 else if (!node_present_pages(node))
1781 searchnode = node_to_mem_node(node);
1782
1783 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1784 if (object || node != NUMA_NO_NODE)
1785 return object;
1786
1787 return get_any_partial(s, flags, c);
1788 }
1789
1790 #ifdef CONFIG_PREEMPT
1791 /*
1792 * Calculate the next globally unique transaction for disambiguiation
1793 * during cmpxchg. The transactions start with the cpu number and are then
1794 * incremented by CONFIG_NR_CPUS.
1795 */
1796 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1797 #else
1798 /*
1799 * No preemption supported therefore also no need to check for
1800 * different cpus.
1801 */
1802 #define TID_STEP 1
1803 #endif
1804
1805 static inline unsigned long next_tid(unsigned long tid)
1806 {
1807 return tid + TID_STEP;
1808 }
1809
1810 static inline unsigned int tid_to_cpu(unsigned long tid)
1811 {
1812 return tid % TID_STEP;
1813 }
1814
1815 static inline unsigned long tid_to_event(unsigned long tid)
1816 {
1817 return tid / TID_STEP;
1818 }
1819
1820 static inline unsigned int init_tid(int cpu)
1821 {
1822 return cpu;
1823 }
1824
1825 static inline void note_cmpxchg_failure(const char *n,
1826 const struct kmem_cache *s, unsigned long tid)
1827 {
1828 #ifdef SLUB_DEBUG_CMPXCHG
1829 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1830
1831 pr_info("%s %s: cmpxchg redo ", n, s->name);
1832
1833 #ifdef CONFIG_PREEMPT
1834 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1835 pr_warn("due to cpu change %d -> %d\n",
1836 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1837 else
1838 #endif
1839 if (tid_to_event(tid) != tid_to_event(actual_tid))
1840 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1841 tid_to_event(tid), tid_to_event(actual_tid));
1842 else
1843 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1844 actual_tid, tid, next_tid(tid));
1845 #endif
1846 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1847 }
1848
1849 static void init_kmem_cache_cpus(struct kmem_cache *s)
1850 {
1851 int cpu;
1852
1853 for_each_possible_cpu(cpu)
1854 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1855 }
1856
1857 /*
1858 * Remove the cpu slab
1859 */
1860 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1861 void *freelist)
1862 {
1863 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1864 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1865 int lock = 0;
1866 enum slab_modes l = M_NONE, m = M_NONE;
1867 void *nextfree;
1868 int tail = DEACTIVATE_TO_HEAD;
1869 struct page new;
1870 struct page old;
1871
1872 if (page->freelist) {
1873 stat(s, DEACTIVATE_REMOTE_FREES);
1874 tail = DEACTIVATE_TO_TAIL;
1875 }
1876
1877 /*
1878 * Stage one: Free all available per cpu objects back
1879 * to the page freelist while it is still frozen. Leave the
1880 * last one.
1881 *
1882 * There is no need to take the list->lock because the page
1883 * is still frozen.
1884 */
1885 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1886 void *prior;
1887 unsigned long counters;
1888
1889 do {
1890 prior = page->freelist;
1891 counters = page->counters;
1892 set_freepointer(s, freelist, prior);
1893 new.counters = counters;
1894 new.inuse--;
1895 VM_BUG_ON(!new.frozen);
1896
1897 } while (!__cmpxchg_double_slab(s, page,
1898 prior, counters,
1899 freelist, new.counters,
1900 "drain percpu freelist"));
1901
1902 freelist = nextfree;
1903 }
1904
1905 /*
1906 * Stage two: Ensure that the page is unfrozen while the
1907 * list presence reflects the actual number of objects
1908 * during unfreeze.
1909 *
1910 * We setup the list membership and then perform a cmpxchg
1911 * with the count. If there is a mismatch then the page
1912 * is not unfrozen but the page is on the wrong list.
1913 *
1914 * Then we restart the process which may have to remove
1915 * the page from the list that we just put it on again
1916 * because the number of objects in the slab may have
1917 * changed.
1918 */
1919 redo:
1920
1921 old.freelist = page->freelist;
1922 old.counters = page->counters;
1923 VM_BUG_ON(!old.frozen);
1924
1925 /* Determine target state of the slab */
1926 new.counters = old.counters;
1927 if (freelist) {
1928 new.inuse--;
1929 set_freepointer(s, freelist, old.freelist);
1930 new.freelist = freelist;
1931 } else
1932 new.freelist = old.freelist;
1933
1934 new.frozen = 0;
1935
1936 if (!new.inuse && n->nr_partial >= s->min_partial)
1937 m = M_FREE;
1938 else if (new.freelist) {
1939 m = M_PARTIAL;
1940 if (!lock) {
1941 lock = 1;
1942 /*
1943 * Taking the spinlock removes the possiblity
1944 * that acquire_slab() will see a slab page that
1945 * is frozen
1946 */
1947 spin_lock(&n->list_lock);
1948 }
1949 } else {
1950 m = M_FULL;
1951 if (kmem_cache_debug(s) && !lock) {
1952 lock = 1;
1953 /*
1954 * This also ensures that the scanning of full
1955 * slabs from diagnostic functions will not see
1956 * any frozen slabs.
1957 */
1958 spin_lock(&n->list_lock);
1959 }
1960 }
1961
1962 if (l != m) {
1963
1964 if (l == M_PARTIAL)
1965
1966 remove_partial(n, page);
1967
1968 else if (l == M_FULL)
1969
1970 remove_full(s, n, page);
1971
1972 if (m == M_PARTIAL) {
1973
1974 add_partial(n, page, tail);
1975 stat(s, tail);
1976
1977 } else if (m == M_FULL) {
1978
1979 stat(s, DEACTIVATE_FULL);
1980 add_full(s, n, page);
1981
1982 }
1983 }
1984
1985 l = m;
1986 if (!__cmpxchg_double_slab(s, page,
1987 old.freelist, old.counters,
1988 new.freelist, new.counters,
1989 "unfreezing slab"))
1990 goto redo;
1991
1992 if (lock)
1993 spin_unlock(&n->list_lock);
1994
1995 if (m == M_FREE) {
1996 stat(s, DEACTIVATE_EMPTY);
1997 discard_slab(s, page);
1998 stat(s, FREE_SLAB);
1999 }
2000 }
2001
2002 /*
2003 * Unfreeze all the cpu partial slabs.
2004 *
2005 * This function must be called with interrupts disabled
2006 * for the cpu using c (or some other guarantee must be there
2007 * to guarantee no concurrent accesses).
2008 */
2009 static void unfreeze_partials(struct kmem_cache *s,
2010 struct kmem_cache_cpu *c)
2011 {
2012 #ifdef CONFIG_SLUB_CPU_PARTIAL
2013 struct kmem_cache_node *n = NULL, *n2 = NULL;
2014 struct page *page, *discard_page = NULL;
2015
2016 while ((page = c->partial)) {
2017 struct page new;
2018 struct page old;
2019
2020 c->partial = page->next;
2021
2022 n2 = get_node(s, page_to_nid(page));
2023 if (n != n2) {
2024 if (n)
2025 spin_unlock(&n->list_lock);
2026
2027 n = n2;
2028 spin_lock(&n->list_lock);
2029 }
2030
2031 do {
2032
2033 old.freelist = page->freelist;
2034 old.counters = page->counters;
2035 VM_BUG_ON(!old.frozen);
2036
2037 new.counters = old.counters;
2038 new.freelist = old.freelist;
2039
2040 new.frozen = 0;
2041
2042 } while (!__cmpxchg_double_slab(s, page,
2043 old.freelist, old.counters,
2044 new.freelist, new.counters,
2045 "unfreezing slab"));
2046
2047 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2048 page->next = discard_page;
2049 discard_page = page;
2050 } else {
2051 add_partial(n, page, DEACTIVATE_TO_TAIL);
2052 stat(s, FREE_ADD_PARTIAL);
2053 }
2054 }
2055
2056 if (n)
2057 spin_unlock(&n->list_lock);
2058
2059 while (discard_page) {
2060 page = discard_page;
2061 discard_page = discard_page->next;
2062
2063 stat(s, DEACTIVATE_EMPTY);
2064 discard_slab(s, page);
2065 stat(s, FREE_SLAB);
2066 }
2067 #endif
2068 }
2069
2070 /*
2071 * Put a page that was just frozen (in __slab_free) into a partial page
2072 * slot if available. This is done without interrupts disabled and without
2073 * preemption disabled. The cmpxchg is racy and may put the partial page
2074 * onto a random cpus partial slot.
2075 *
2076 * If we did not find a slot then simply move all the partials to the
2077 * per node partial list.
2078 */
2079 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2080 {
2081 #ifdef CONFIG_SLUB_CPU_PARTIAL
2082 struct page *oldpage;
2083 int pages;
2084 int pobjects;
2085
2086 preempt_disable();
2087 do {
2088 pages = 0;
2089 pobjects = 0;
2090 oldpage = this_cpu_read(s->cpu_slab->partial);
2091
2092 if (oldpage) {
2093 pobjects = oldpage->pobjects;
2094 pages = oldpage->pages;
2095 if (drain && pobjects > s->cpu_partial) {
2096 unsigned long flags;
2097 /*
2098 * partial array is full. Move the existing
2099 * set to the per node partial list.
2100 */
2101 local_irq_save(flags);
2102 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2103 local_irq_restore(flags);
2104 oldpage = NULL;
2105 pobjects = 0;
2106 pages = 0;
2107 stat(s, CPU_PARTIAL_DRAIN);
2108 }
2109 }
2110
2111 pages++;
2112 pobjects += page->objects - page->inuse;
2113
2114 page->pages = pages;
2115 page->pobjects = pobjects;
2116 page->next = oldpage;
2117
2118 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2119 != oldpage);
2120 if (unlikely(!s->cpu_partial)) {
2121 unsigned long flags;
2122
2123 local_irq_save(flags);
2124 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2125 local_irq_restore(flags);
2126 }
2127 preempt_enable();
2128 #endif
2129 }
2130
2131 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2132 {
2133 stat(s, CPUSLAB_FLUSH);
2134 deactivate_slab(s, c->page, c->freelist);
2135
2136 c->tid = next_tid(c->tid);
2137 c->page = NULL;
2138 c->freelist = NULL;
2139 }
2140
2141 /*
2142 * Flush cpu slab.
2143 *
2144 * Called from IPI handler with interrupts disabled.
2145 */
2146 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2147 {
2148 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2149
2150 if (likely(c)) {
2151 if (c->page)
2152 flush_slab(s, c);
2153
2154 unfreeze_partials(s, c);
2155 }
2156 }
2157
2158 static void flush_cpu_slab(void *d)
2159 {
2160 struct kmem_cache *s = d;
2161
2162 __flush_cpu_slab(s, smp_processor_id());
2163 }
2164
2165 static bool has_cpu_slab(int cpu, void *info)
2166 {
2167 struct kmem_cache *s = info;
2168 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2169
2170 return c->page || c->partial;
2171 }
2172
2173 static void flush_all(struct kmem_cache *s)
2174 {
2175 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2176 }
2177
2178 /*
2179 * Check if the objects in a per cpu structure fit numa
2180 * locality expectations.
2181 */
2182 static inline int node_match(struct page *page, int node)
2183 {
2184 #ifdef CONFIG_NUMA
2185 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2186 return 0;
2187 #endif
2188 return 1;
2189 }
2190
2191 #ifdef CONFIG_SLUB_DEBUG
2192 static int count_free(struct page *page)
2193 {
2194 return page->objects - page->inuse;
2195 }
2196
2197 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2198 {
2199 return atomic_long_read(&n->total_objects);
2200 }
2201 #endif /* CONFIG_SLUB_DEBUG */
2202
2203 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2204 static unsigned long count_partial(struct kmem_cache_node *n,
2205 int (*get_count)(struct page *))
2206 {
2207 unsigned long flags;
2208 unsigned long x = 0;
2209 struct page *page;
2210
2211 spin_lock_irqsave(&n->list_lock, flags);
2212 list_for_each_entry(page, &n->partial, lru)
2213 x += get_count(page);
2214 spin_unlock_irqrestore(&n->list_lock, flags);
2215 return x;
2216 }
2217 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2218
2219 static noinline void
2220 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2221 {
2222 #ifdef CONFIG_SLUB_DEBUG
2223 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2224 DEFAULT_RATELIMIT_BURST);
2225 int node;
2226 struct kmem_cache_node *n;
2227
2228 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2229 return;
2230
2231 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2232 nid, gfpflags);
2233 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2234 s->name, s->object_size, s->size, oo_order(s->oo),
2235 oo_order(s->min));
2236
2237 if (oo_order(s->min) > get_order(s->object_size))
2238 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2239 s->name);
2240
2241 for_each_kmem_cache_node(s, node, n) {
2242 unsigned long nr_slabs;
2243 unsigned long nr_objs;
2244 unsigned long nr_free;
2245
2246 nr_free = count_partial(n, count_free);
2247 nr_slabs = node_nr_slabs(n);
2248 nr_objs = node_nr_objs(n);
2249
2250 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2251 node, nr_slabs, nr_objs, nr_free);
2252 }
2253 #endif
2254 }
2255
2256 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2257 int node, struct kmem_cache_cpu **pc)
2258 {
2259 void *freelist;
2260 struct kmem_cache_cpu *c = *pc;
2261 struct page *page;
2262
2263 freelist = get_partial(s, flags, node, c);
2264
2265 if (freelist)
2266 return freelist;
2267
2268 page = new_slab(s, flags, node);
2269 if (page) {
2270 c = raw_cpu_ptr(s->cpu_slab);
2271 if (c->page)
2272 flush_slab(s, c);
2273
2274 /*
2275 * No other reference to the page yet so we can
2276 * muck around with it freely without cmpxchg
2277 */
2278 freelist = page->freelist;
2279 page->freelist = NULL;
2280
2281 stat(s, ALLOC_SLAB);
2282 c->page = page;
2283 *pc = c;
2284 } else
2285 freelist = NULL;
2286
2287 return freelist;
2288 }
2289
2290 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2291 {
2292 if (unlikely(PageSlabPfmemalloc(page)))
2293 return gfp_pfmemalloc_allowed(gfpflags);
2294
2295 return true;
2296 }
2297
2298 /*
2299 * Check the page->freelist of a page and either transfer the freelist to the
2300 * per cpu freelist or deactivate the page.
2301 *
2302 * The page is still frozen if the return value is not NULL.
2303 *
2304 * If this function returns NULL then the page has been unfrozen.
2305 *
2306 * This function must be called with interrupt disabled.
2307 */
2308 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2309 {
2310 struct page new;
2311 unsigned long counters;
2312 void *freelist;
2313
2314 do {
2315 freelist = page->freelist;
2316 counters = page->counters;
2317
2318 new.counters = counters;
2319 VM_BUG_ON(!new.frozen);
2320
2321 new.inuse = page->objects;
2322 new.frozen = freelist != NULL;
2323
2324 } while (!__cmpxchg_double_slab(s, page,
2325 freelist, counters,
2326 NULL, new.counters,
2327 "get_freelist"));
2328
2329 return freelist;
2330 }
2331
2332 /*
2333 * Slow path. The lockless freelist is empty or we need to perform
2334 * debugging duties.
2335 *
2336 * Processing is still very fast if new objects have been freed to the
2337 * regular freelist. In that case we simply take over the regular freelist
2338 * as the lockless freelist and zap the regular freelist.
2339 *
2340 * If that is not working then we fall back to the partial lists. We take the
2341 * first element of the freelist as the object to allocate now and move the
2342 * rest of the freelist to the lockless freelist.
2343 *
2344 * And if we were unable to get a new slab from the partial slab lists then
2345 * we need to allocate a new slab. This is the slowest path since it involves
2346 * a call to the page allocator and the setup of a new slab.
2347 *
2348 * Version of __slab_alloc to use when we know that interrupts are
2349 * already disabled (which is the case for bulk allocation).
2350 */
2351 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2352 unsigned long addr, struct kmem_cache_cpu *c)
2353 {
2354 void *freelist;
2355 struct page *page;
2356
2357 page = c->page;
2358 if (!page)
2359 goto new_slab;
2360 redo:
2361
2362 if (unlikely(!node_match(page, node))) {
2363 int searchnode = node;
2364
2365 if (node != NUMA_NO_NODE && !node_present_pages(node))
2366 searchnode = node_to_mem_node(node);
2367
2368 if (unlikely(!node_match(page, searchnode))) {
2369 stat(s, ALLOC_NODE_MISMATCH);
2370 deactivate_slab(s, page, c->freelist);
2371 c->page = NULL;
2372 c->freelist = NULL;
2373 goto new_slab;
2374 }
2375 }
2376
2377 /*
2378 * By rights, we should be searching for a slab page that was
2379 * PFMEMALLOC but right now, we are losing the pfmemalloc
2380 * information when the page leaves the per-cpu allocator
2381 */
2382 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2383 deactivate_slab(s, page, c->freelist);
2384 c->page = NULL;
2385 c->freelist = NULL;
2386 goto new_slab;
2387 }
2388
2389 /* must check again c->freelist in case of cpu migration or IRQ */
2390 freelist = c->freelist;
2391 if (freelist)
2392 goto load_freelist;
2393
2394 freelist = get_freelist(s, page);
2395
2396 if (!freelist) {
2397 c->page = NULL;
2398 stat(s, DEACTIVATE_BYPASS);
2399 goto new_slab;
2400 }
2401
2402 stat(s, ALLOC_REFILL);
2403
2404 load_freelist:
2405 /*
2406 * freelist is pointing to the list of objects to be used.
2407 * page is pointing to the page from which the objects are obtained.
2408 * That page must be frozen for per cpu allocations to work.
2409 */
2410 VM_BUG_ON(!c->page->frozen);
2411 c->freelist = get_freepointer(s, freelist);
2412 c->tid = next_tid(c->tid);
2413 return freelist;
2414
2415 new_slab:
2416
2417 if (c->partial) {
2418 page = c->page = c->partial;
2419 c->partial = page->next;
2420 stat(s, CPU_PARTIAL_ALLOC);
2421 c->freelist = NULL;
2422 goto redo;
2423 }
2424
2425 freelist = new_slab_objects(s, gfpflags, node, &c);
2426
2427 if (unlikely(!freelist)) {
2428 slab_out_of_memory(s, gfpflags, node);
2429 return NULL;
2430 }
2431
2432 page = c->page;
2433 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2434 goto load_freelist;
2435
2436 /* Only entered in the debug case */
2437 if (kmem_cache_debug(s) &&
2438 !alloc_debug_processing(s, page, freelist, addr))
2439 goto new_slab; /* Slab failed checks. Next slab needed */
2440
2441 deactivate_slab(s, page, get_freepointer(s, freelist));
2442 c->page = NULL;
2443 c->freelist = NULL;
2444 return freelist;
2445 }
2446
2447 /*
2448 * Another one that disabled interrupt and compensates for possible
2449 * cpu changes by refetching the per cpu area pointer.
2450 */
2451 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2452 unsigned long addr, struct kmem_cache_cpu *c)
2453 {
2454 void *p;
2455 unsigned long flags;
2456
2457 local_irq_save(flags);
2458 #ifdef CONFIG_PREEMPT
2459 /*
2460 * We may have been preempted and rescheduled on a different
2461 * cpu before disabling interrupts. Need to reload cpu area
2462 * pointer.
2463 */
2464 c = this_cpu_ptr(s->cpu_slab);
2465 #endif
2466
2467 p = ___slab_alloc(s, gfpflags, node, addr, c);
2468 local_irq_restore(flags);
2469 return p;
2470 }
2471
2472 /*
2473 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2474 * have the fastpath folded into their functions. So no function call
2475 * overhead for requests that can be satisfied on the fastpath.
2476 *
2477 * The fastpath works by first checking if the lockless freelist can be used.
2478 * If not then __slab_alloc is called for slow processing.
2479 *
2480 * Otherwise we can simply pick the next object from the lockless free list.
2481 */
2482 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2483 gfp_t gfpflags, int node, unsigned long addr)
2484 {
2485 void *object;
2486 struct kmem_cache_cpu *c;
2487 struct page *page;
2488 unsigned long tid;
2489
2490 s = slab_pre_alloc_hook(s, gfpflags);
2491 if (!s)
2492 return NULL;
2493 redo:
2494 /*
2495 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2496 * enabled. We may switch back and forth between cpus while
2497 * reading from one cpu area. That does not matter as long
2498 * as we end up on the original cpu again when doing the cmpxchg.
2499 *
2500 * We should guarantee that tid and kmem_cache are retrieved on
2501 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2502 * to check if it is matched or not.
2503 */
2504 do {
2505 tid = this_cpu_read(s->cpu_slab->tid);
2506 c = raw_cpu_ptr(s->cpu_slab);
2507 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2508 unlikely(tid != READ_ONCE(c->tid)));
2509
2510 /*
2511 * Irqless object alloc/free algorithm used here depends on sequence
2512 * of fetching cpu_slab's data. tid should be fetched before anything
2513 * on c to guarantee that object and page associated with previous tid
2514 * won't be used with current tid. If we fetch tid first, object and
2515 * page could be one associated with next tid and our alloc/free
2516 * request will be failed. In this case, we will retry. So, no problem.
2517 */
2518 barrier();
2519
2520 /*
2521 * The transaction ids are globally unique per cpu and per operation on
2522 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2523 * occurs on the right processor and that there was no operation on the
2524 * linked list in between.
2525 */
2526
2527 object = c->freelist;
2528 page = c->page;
2529 if (unlikely(!object || !node_match(page, node))) {
2530 object = __slab_alloc(s, gfpflags, node, addr, c);
2531 stat(s, ALLOC_SLOWPATH);
2532 } else {
2533 void *next_object = get_freepointer_safe(s, object);
2534
2535 /*
2536 * The cmpxchg will only match if there was no additional
2537 * operation and if we are on the right processor.
2538 *
2539 * The cmpxchg does the following atomically (without lock
2540 * semantics!)
2541 * 1. Relocate first pointer to the current per cpu area.
2542 * 2. Verify that tid and freelist have not been changed
2543 * 3. If they were not changed replace tid and freelist
2544 *
2545 * Since this is without lock semantics the protection is only
2546 * against code executing on this cpu *not* from access by
2547 * other cpus.
2548 */
2549 if (unlikely(!this_cpu_cmpxchg_double(
2550 s->cpu_slab->freelist, s->cpu_slab->tid,
2551 object, tid,
2552 next_object, next_tid(tid)))) {
2553
2554 note_cmpxchg_failure("slab_alloc", s, tid);
2555 goto redo;
2556 }
2557 prefetch_freepointer(s, next_object);
2558 stat(s, ALLOC_FASTPATH);
2559 }
2560
2561 if (unlikely(gfpflags & __GFP_ZERO) && object)
2562 memset(object, 0, s->object_size);
2563
2564 slab_post_alloc_hook(s, gfpflags, 1, &object);
2565
2566 return object;
2567 }
2568
2569 static __always_inline void *slab_alloc(struct kmem_cache *s,
2570 gfp_t gfpflags, unsigned long addr)
2571 {
2572 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2573 }
2574
2575 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2576 {
2577 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2578
2579 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2580 s->size, gfpflags);
2581
2582 return ret;
2583 }
2584 EXPORT_SYMBOL(kmem_cache_alloc);
2585
2586 #ifdef CONFIG_TRACING
2587 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2588 {
2589 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2590 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2591 kasan_kmalloc(s, ret, size);
2592 return ret;
2593 }
2594 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2595 #endif
2596
2597 #ifdef CONFIG_NUMA
2598 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2599 {
2600 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2601
2602 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2603 s->object_size, s->size, gfpflags, node);
2604
2605 return ret;
2606 }
2607 EXPORT_SYMBOL(kmem_cache_alloc_node);
2608
2609 #ifdef CONFIG_TRACING
2610 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2611 gfp_t gfpflags,
2612 int node, size_t size)
2613 {
2614 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2615
2616 trace_kmalloc_node(_RET_IP_, ret,
2617 size, s->size, gfpflags, node);
2618
2619 kasan_kmalloc(s, ret, size);
2620 return ret;
2621 }
2622 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2623 #endif
2624 #endif
2625
2626 /*
2627 * Slow path handling. This may still be called frequently since objects
2628 * have a longer lifetime than the cpu slabs in most processing loads.
2629 *
2630 * So we still attempt to reduce cache line usage. Just take the slab
2631 * lock and free the item. If there is no additional partial page
2632 * handling required then we can return immediately.
2633 */
2634 static void __slab_free(struct kmem_cache *s, struct page *page,
2635 void *head, void *tail, int cnt,
2636 unsigned long addr)
2637
2638 {
2639 void *prior;
2640 int was_frozen;
2641 struct page new;
2642 unsigned long counters;
2643 struct kmem_cache_node *n = NULL;
2644 unsigned long uninitialized_var(flags);
2645
2646 stat(s, FREE_SLOWPATH);
2647
2648 if (kmem_cache_debug(s) &&
2649 !(n = free_debug_processing(s, page, head, tail, cnt,
2650 addr, &flags)))
2651 return;
2652
2653 do {
2654 if (unlikely(n)) {
2655 spin_unlock_irqrestore(&n->list_lock, flags);
2656 n = NULL;
2657 }
2658 prior = page->freelist;
2659 counters = page->counters;
2660 set_freepointer(s, tail, prior);
2661 new.counters = counters;
2662 was_frozen = new.frozen;
2663 new.inuse -= cnt;
2664 if ((!new.inuse || !prior) && !was_frozen) {
2665
2666 if (kmem_cache_has_cpu_partial(s) && !prior) {
2667
2668 /*
2669 * Slab was on no list before and will be
2670 * partially empty
2671 * We can defer the list move and instead
2672 * freeze it.
2673 */
2674 new.frozen = 1;
2675
2676 } else { /* Needs to be taken off a list */
2677
2678 n = get_node(s, page_to_nid(page));
2679 /*
2680 * Speculatively acquire the list_lock.
2681 * If the cmpxchg does not succeed then we may
2682 * drop the list_lock without any processing.
2683 *
2684 * Otherwise the list_lock will synchronize with
2685 * other processors updating the list of slabs.
2686 */
2687 spin_lock_irqsave(&n->list_lock, flags);
2688
2689 }
2690 }
2691
2692 } while (!cmpxchg_double_slab(s, page,
2693 prior, counters,
2694 head, new.counters,
2695 "__slab_free"));
2696
2697 if (likely(!n)) {
2698
2699 /*
2700 * If we just froze the page then put it onto the
2701 * per cpu partial list.
2702 */
2703 if (new.frozen && !was_frozen) {
2704 put_cpu_partial(s, page, 1);
2705 stat(s, CPU_PARTIAL_FREE);
2706 }
2707 /*
2708 * The list lock was not taken therefore no list
2709 * activity can be necessary.
2710 */
2711 if (was_frozen)
2712 stat(s, FREE_FROZEN);
2713 return;
2714 }
2715
2716 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2717 goto slab_empty;
2718
2719 /*
2720 * Objects left in the slab. If it was not on the partial list before
2721 * then add it.
2722 */
2723 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2724 if (kmem_cache_debug(s))
2725 remove_full(s, n, page);
2726 add_partial(n, page, DEACTIVATE_TO_TAIL);
2727 stat(s, FREE_ADD_PARTIAL);
2728 }
2729 spin_unlock_irqrestore(&n->list_lock, flags);
2730 return;
2731
2732 slab_empty:
2733 if (prior) {
2734 /*
2735 * Slab on the partial list.
2736 */
2737 remove_partial(n, page);
2738 stat(s, FREE_REMOVE_PARTIAL);
2739 } else {
2740 /* Slab must be on the full list */
2741 remove_full(s, n, page);
2742 }
2743
2744 spin_unlock_irqrestore(&n->list_lock, flags);
2745 stat(s, FREE_SLAB);
2746 discard_slab(s, page);
2747 }
2748
2749 /*
2750 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2751 * can perform fastpath freeing without additional function calls.
2752 *
2753 * The fastpath is only possible if we are freeing to the current cpu slab
2754 * of this processor. This typically the case if we have just allocated
2755 * the item before.
2756 *
2757 * If fastpath is not possible then fall back to __slab_free where we deal
2758 * with all sorts of special processing.
2759 *
2760 * Bulk free of a freelist with several objects (all pointing to the
2761 * same page) possible by specifying head and tail ptr, plus objects
2762 * count (cnt). Bulk free indicated by tail pointer being set.
2763 */
2764 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2765 void *head, void *tail, int cnt,
2766 unsigned long addr)
2767 {
2768 void *tail_obj = tail ? : head;
2769 struct kmem_cache_cpu *c;
2770 unsigned long tid;
2771
2772 slab_free_freelist_hook(s, head, tail);
2773
2774 redo:
2775 /*
2776 * Determine the currently cpus per cpu slab.
2777 * The cpu may change afterward. However that does not matter since
2778 * data is retrieved via this pointer. If we are on the same cpu
2779 * during the cmpxchg then the free will succeed.
2780 */
2781 do {
2782 tid = this_cpu_read(s->cpu_slab->tid);
2783 c = raw_cpu_ptr(s->cpu_slab);
2784 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2785 unlikely(tid != READ_ONCE(c->tid)));
2786
2787 /* Same with comment on barrier() in slab_alloc_node() */
2788 barrier();
2789
2790 if (likely(page == c->page)) {
2791 set_freepointer(s, tail_obj, c->freelist);
2792
2793 if (unlikely(!this_cpu_cmpxchg_double(
2794 s->cpu_slab->freelist, s->cpu_slab->tid,
2795 c->freelist, tid,
2796 head, next_tid(tid)))) {
2797
2798 note_cmpxchg_failure("slab_free", s, tid);
2799 goto redo;
2800 }
2801 stat(s, FREE_FASTPATH);
2802 } else
2803 __slab_free(s, page, head, tail_obj, cnt, addr);
2804
2805 }
2806
2807 void kmem_cache_free(struct kmem_cache *s, void *x)
2808 {
2809 s = cache_from_obj(s, x);
2810 if (!s)
2811 return;
2812 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2813 trace_kmem_cache_free(_RET_IP_, x);
2814 }
2815 EXPORT_SYMBOL(kmem_cache_free);
2816
2817 struct detached_freelist {
2818 struct page *page;
2819 void *tail;
2820 void *freelist;
2821 int cnt;
2822 };
2823
2824 /*
2825 * This function progressively scans the array with free objects (with
2826 * a limited look ahead) and extract objects belonging to the same
2827 * page. It builds a detached freelist directly within the given
2828 * page/objects. This can happen without any need for
2829 * synchronization, because the objects are owned by running process.
2830 * The freelist is build up as a single linked list in the objects.
2831 * The idea is, that this detached freelist can then be bulk
2832 * transferred to the real freelist(s), but only requiring a single
2833 * synchronization primitive. Look ahead in the array is limited due
2834 * to performance reasons.
2835 */
2836 static int build_detached_freelist(struct kmem_cache *s, size_t size,
2837 void **p, struct detached_freelist *df)
2838 {
2839 size_t first_skipped_index = 0;
2840 int lookahead = 3;
2841 void *object;
2842
2843 /* Always re-init detached_freelist */
2844 df->page = NULL;
2845
2846 do {
2847 object = p[--size];
2848 } while (!object && size);
2849
2850 if (!object)
2851 return 0;
2852
2853 /* Start new detached freelist */
2854 set_freepointer(s, object, NULL);
2855 df->page = virt_to_head_page(object);
2856 df->tail = object;
2857 df->freelist = object;
2858 p[size] = NULL; /* mark object processed */
2859 df->cnt = 1;
2860
2861 while (size) {
2862 object = p[--size];
2863 if (!object)
2864 continue; /* Skip processed objects */
2865
2866 /* df->page is always set at this point */
2867 if (df->page == virt_to_head_page(object)) {
2868 /* Opportunity build freelist */
2869 set_freepointer(s, object, df->freelist);
2870 df->freelist = object;
2871 df->cnt++;
2872 p[size] = NULL; /* mark object processed */
2873
2874 continue;
2875 }
2876
2877 /* Limit look ahead search */
2878 if (!--lookahead)
2879 break;
2880
2881 if (!first_skipped_index)
2882 first_skipped_index = size + 1;
2883 }
2884
2885 return first_skipped_index;
2886 }
2887
2888
2889 /* Note that interrupts must be enabled when calling this function. */
2890 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
2891 {
2892 if (WARN_ON(!size))
2893 return;
2894
2895 do {
2896 struct detached_freelist df;
2897 struct kmem_cache *s;
2898
2899 /* Support for memcg */
2900 s = cache_from_obj(orig_s, p[size - 1]);
2901
2902 size = build_detached_freelist(s, size, p, &df);
2903 if (unlikely(!df.page))
2904 continue;
2905
2906 slab_free(s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
2907 } while (likely(size));
2908 }
2909 EXPORT_SYMBOL(kmem_cache_free_bulk);
2910
2911 /* Note that interrupts must be enabled when calling this function. */
2912 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2913 void **p)
2914 {
2915 struct kmem_cache_cpu *c;
2916 int i;
2917
2918 /* memcg and kmem_cache debug support */
2919 s = slab_pre_alloc_hook(s, flags);
2920 if (unlikely(!s))
2921 return false;
2922 /*
2923 * Drain objects in the per cpu slab, while disabling local
2924 * IRQs, which protects against PREEMPT and interrupts
2925 * handlers invoking normal fastpath.
2926 */
2927 local_irq_disable();
2928 c = this_cpu_ptr(s->cpu_slab);
2929
2930 for (i = 0; i < size; i++) {
2931 void *object = c->freelist;
2932
2933 if (unlikely(!object)) {
2934 /*
2935 * Invoking slow path likely have side-effect
2936 * of re-populating per CPU c->freelist
2937 */
2938 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
2939 _RET_IP_, c);
2940 if (unlikely(!p[i]))
2941 goto error;
2942
2943 c = this_cpu_ptr(s->cpu_slab);
2944 continue; /* goto for-loop */
2945 }
2946 c->freelist = get_freepointer(s, object);
2947 p[i] = object;
2948 }
2949 c->tid = next_tid(c->tid);
2950 local_irq_enable();
2951
2952 /* Clear memory outside IRQ disabled fastpath loop */
2953 if (unlikely(flags & __GFP_ZERO)) {
2954 int j;
2955
2956 for (j = 0; j < i; j++)
2957 memset(p[j], 0, s->object_size);
2958 }
2959
2960 /* memcg and kmem_cache debug support */
2961 slab_post_alloc_hook(s, flags, size, p);
2962 return i;
2963 error:
2964 local_irq_enable();
2965 slab_post_alloc_hook(s, flags, i, p);
2966 __kmem_cache_free_bulk(s, i, p);
2967 return 0;
2968 }
2969 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2970
2971
2972 /*
2973 * Object placement in a slab is made very easy because we always start at
2974 * offset 0. If we tune the size of the object to the alignment then we can
2975 * get the required alignment by putting one properly sized object after
2976 * another.
2977 *
2978 * Notice that the allocation order determines the sizes of the per cpu
2979 * caches. Each processor has always one slab available for allocations.
2980 * Increasing the allocation order reduces the number of times that slabs
2981 * must be moved on and off the partial lists and is therefore a factor in
2982 * locking overhead.
2983 */
2984
2985 /*
2986 * Mininum / Maximum order of slab pages. This influences locking overhead
2987 * and slab fragmentation. A higher order reduces the number of partial slabs
2988 * and increases the number of allocations possible without having to
2989 * take the list_lock.
2990 */
2991 static int slub_min_order;
2992 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2993 static int slub_min_objects;
2994
2995 /*
2996 * Calculate the order of allocation given an slab object size.
2997 *
2998 * The order of allocation has significant impact on performance and other
2999 * system components. Generally order 0 allocations should be preferred since
3000 * order 0 does not cause fragmentation in the page allocator. Larger objects
3001 * be problematic to put into order 0 slabs because there may be too much
3002 * unused space left. We go to a higher order if more than 1/16th of the slab
3003 * would be wasted.
3004 *
3005 * In order to reach satisfactory performance we must ensure that a minimum
3006 * number of objects is in one slab. Otherwise we may generate too much
3007 * activity on the partial lists which requires taking the list_lock. This is
3008 * less a concern for large slabs though which are rarely used.
3009 *
3010 * slub_max_order specifies the order where we begin to stop considering the
3011 * number of objects in a slab as critical. If we reach slub_max_order then
3012 * we try to keep the page order as low as possible. So we accept more waste
3013 * of space in favor of a small page order.
3014 *
3015 * Higher order allocations also allow the placement of more objects in a
3016 * slab and thereby reduce object handling overhead. If the user has
3017 * requested a higher mininum order then we start with that one instead of
3018 * the smallest order which will fit the object.
3019 */
3020 static inline int slab_order(int size, int min_objects,
3021 int max_order, int fract_leftover, int reserved)
3022 {
3023 int order;
3024 int rem;
3025 int min_order = slub_min_order;
3026
3027 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3028 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3029
3030 for (order = max(min_order, get_order(min_objects * size + reserved));
3031 order <= max_order; order++) {
3032
3033 unsigned long slab_size = PAGE_SIZE << order;
3034
3035 rem = (slab_size - reserved) % size;
3036
3037 if (rem <= slab_size / fract_leftover)
3038 break;
3039 }
3040
3041 return order;
3042 }
3043
3044 static inline int calculate_order(int size, int reserved)
3045 {
3046 int order;
3047 int min_objects;
3048 int fraction;
3049 int max_objects;
3050
3051 /*
3052 * Attempt to find best configuration for a slab. This
3053 * works by first attempting to generate a layout with
3054 * the best configuration and backing off gradually.
3055 *
3056 * First we increase the acceptable waste in a slab. Then
3057 * we reduce the minimum objects required in a slab.
3058 */
3059 min_objects = slub_min_objects;
3060 if (!min_objects)
3061 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3062 max_objects = order_objects(slub_max_order, size, reserved);
3063 min_objects = min(min_objects, max_objects);
3064
3065 while (min_objects > 1) {
3066 fraction = 16;
3067 while (fraction >= 4) {
3068 order = slab_order(size, min_objects,
3069 slub_max_order, fraction, reserved);
3070 if (order <= slub_max_order)
3071 return order;
3072 fraction /= 2;
3073 }
3074 min_objects--;
3075 }
3076
3077 /*
3078 * We were unable to place multiple objects in a slab. Now
3079 * lets see if we can place a single object there.
3080 */
3081 order = slab_order(size, 1, slub_max_order, 1, reserved);
3082 if (order <= slub_max_order)
3083 return order;
3084
3085 /*
3086 * Doh this slab cannot be placed using slub_max_order.
3087 */
3088 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3089 if (order < MAX_ORDER)
3090 return order;
3091 return -ENOSYS;
3092 }
3093
3094 static void
3095 init_kmem_cache_node(struct kmem_cache_node *n)
3096 {
3097 n->nr_partial = 0;
3098 spin_lock_init(&n->list_lock);
3099 INIT_LIST_HEAD(&n->partial);
3100 #ifdef CONFIG_SLUB_DEBUG
3101 atomic_long_set(&n->nr_slabs, 0);
3102 atomic_long_set(&n->total_objects, 0);
3103 INIT_LIST_HEAD(&n->full);
3104 #endif
3105 }
3106
3107 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3108 {
3109 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3110 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3111
3112 /*
3113 * Must align to double word boundary for the double cmpxchg
3114 * instructions to work; see __pcpu_double_call_return_bool().
3115 */
3116 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3117 2 * sizeof(void *));
3118
3119 if (!s->cpu_slab)
3120 return 0;
3121
3122 init_kmem_cache_cpus(s);
3123
3124 return 1;
3125 }
3126
3127 static struct kmem_cache *kmem_cache_node;
3128
3129 /*
3130 * No kmalloc_node yet so do it by hand. We know that this is the first
3131 * slab on the node for this slabcache. There are no concurrent accesses
3132 * possible.
3133 *
3134 * Note that this function only works on the kmem_cache_node
3135 * when allocating for the kmem_cache_node. This is used for bootstrapping
3136 * memory on a fresh node that has no slab structures yet.
3137 */
3138 static void early_kmem_cache_node_alloc(int node)
3139 {
3140 struct page *page;
3141 struct kmem_cache_node *n;
3142
3143 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3144
3145 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3146
3147 BUG_ON(!page);
3148 if (page_to_nid(page) != node) {
3149 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3150 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3151 }
3152
3153 n = page->freelist;
3154 BUG_ON(!n);
3155 page->freelist = get_freepointer(kmem_cache_node, n);
3156 page->inuse = 1;
3157 page->frozen = 0;
3158 kmem_cache_node->node[node] = n;
3159 #ifdef CONFIG_SLUB_DEBUG
3160 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3161 init_tracking(kmem_cache_node, n);
3162 #endif
3163 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
3164 init_kmem_cache_node(n);
3165 inc_slabs_node(kmem_cache_node, node, page->objects);
3166
3167 /*
3168 * No locks need to be taken here as it has just been
3169 * initialized and there is no concurrent access.
3170 */
3171 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3172 }
3173
3174 static void free_kmem_cache_nodes(struct kmem_cache *s)
3175 {
3176 int node;
3177 struct kmem_cache_node *n;
3178
3179 for_each_kmem_cache_node(s, node, n) {
3180 kmem_cache_free(kmem_cache_node, n);
3181 s->node[node] = NULL;
3182 }
3183 }
3184
3185 static int init_kmem_cache_nodes(struct kmem_cache *s)
3186 {
3187 int node;
3188
3189 for_each_node_state(node, N_NORMAL_MEMORY) {
3190 struct kmem_cache_node *n;
3191
3192 if (slab_state == DOWN) {
3193 early_kmem_cache_node_alloc(node);
3194 continue;
3195 }
3196 n = kmem_cache_alloc_node(kmem_cache_node,
3197 GFP_KERNEL, node);
3198
3199 if (!n) {
3200 free_kmem_cache_nodes(s);
3201 return 0;
3202 }
3203
3204 s->node[node] = n;
3205 init_kmem_cache_node(n);
3206 }
3207 return 1;
3208 }
3209
3210 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3211 {
3212 if (min < MIN_PARTIAL)
3213 min = MIN_PARTIAL;
3214 else if (min > MAX_PARTIAL)
3215 min = MAX_PARTIAL;
3216 s->min_partial = min;
3217 }
3218
3219 /*
3220 * calculate_sizes() determines the order and the distribution of data within
3221 * a slab object.
3222 */
3223 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3224 {
3225 unsigned long flags = s->flags;
3226 unsigned long size = s->object_size;
3227 int order;
3228
3229 /*
3230 * Round up object size to the next word boundary. We can only
3231 * place the free pointer at word boundaries and this determines
3232 * the possible location of the free pointer.
3233 */
3234 size = ALIGN(size, sizeof(void *));
3235
3236 #ifdef CONFIG_SLUB_DEBUG
3237 /*
3238 * Determine if we can poison the object itself. If the user of
3239 * the slab may touch the object after free or before allocation
3240 * then we should never poison the object itself.
3241 */
3242 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3243 !s->ctor)
3244 s->flags |= __OBJECT_POISON;
3245 else
3246 s->flags &= ~__OBJECT_POISON;
3247
3248
3249 /*
3250 * If we are Redzoning then check if there is some space between the
3251 * end of the object and the free pointer. If not then add an
3252 * additional word to have some bytes to store Redzone information.
3253 */
3254 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3255 size += sizeof(void *);
3256 #endif
3257
3258 /*
3259 * With that we have determined the number of bytes in actual use
3260 * by the object. This is the potential offset to the free pointer.
3261 */
3262 s->inuse = size;
3263
3264 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3265 s->ctor)) {
3266 /*
3267 * Relocate free pointer after the object if it is not
3268 * permitted to overwrite the first word of the object on
3269 * kmem_cache_free.
3270 *
3271 * This is the case if we do RCU, have a constructor or
3272 * destructor or are poisoning the objects.
3273 */
3274 s->offset = size;
3275 size += sizeof(void *);
3276 }
3277
3278 #ifdef CONFIG_SLUB_DEBUG
3279 if (flags & SLAB_STORE_USER)
3280 /*
3281 * Need to store information about allocs and frees after
3282 * the object.
3283 */
3284 size += 2 * sizeof(struct track);
3285
3286 if (flags & SLAB_RED_ZONE)
3287 /*
3288 * Add some empty padding so that we can catch
3289 * overwrites from earlier objects rather than let
3290 * tracking information or the free pointer be
3291 * corrupted if a user writes before the start
3292 * of the object.
3293 */
3294 size += sizeof(void *);
3295 #endif
3296
3297 /*
3298 * SLUB stores one object immediately after another beginning from
3299 * offset 0. In order to align the objects we have to simply size
3300 * each object to conform to the alignment.
3301 */
3302 size = ALIGN(size, s->align);
3303 s->size = size;
3304 if (forced_order >= 0)
3305 order = forced_order;
3306 else
3307 order = calculate_order(size, s->reserved);
3308
3309 if (order < 0)
3310 return 0;
3311
3312 s->allocflags = 0;
3313 if (order)
3314 s->allocflags |= __GFP_COMP;
3315
3316 if (s->flags & SLAB_CACHE_DMA)
3317 s->allocflags |= GFP_DMA;
3318
3319 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3320 s->allocflags |= __GFP_RECLAIMABLE;
3321
3322 /*
3323 * Determine the number of objects per slab
3324 */
3325 s->oo = oo_make(order, size, s->reserved);
3326 s->min = oo_make(get_order(size), size, s->reserved);
3327 if (oo_objects(s->oo) > oo_objects(s->max))
3328 s->max = s->oo;
3329
3330 return !!oo_objects(s->oo);
3331 }
3332
3333 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3334 {
3335 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3336 s->reserved = 0;
3337
3338 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3339 s->reserved = sizeof(struct rcu_head);
3340
3341 if (!calculate_sizes(s, -1))
3342 goto error;
3343 if (disable_higher_order_debug) {
3344 /*
3345 * Disable debugging flags that store metadata if the min slab
3346 * order increased.
3347 */
3348 if (get_order(s->size) > get_order(s->object_size)) {
3349 s->flags &= ~DEBUG_METADATA_FLAGS;
3350 s->offset = 0;
3351 if (!calculate_sizes(s, -1))
3352 goto error;
3353 }
3354 }
3355
3356 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3357 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3358 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3359 /* Enable fast mode */
3360 s->flags |= __CMPXCHG_DOUBLE;
3361 #endif
3362
3363 /*
3364 * The larger the object size is, the more pages we want on the partial
3365 * list to avoid pounding the page allocator excessively.
3366 */
3367 set_min_partial(s, ilog2(s->size) / 2);
3368
3369 /*
3370 * cpu_partial determined the maximum number of objects kept in the
3371 * per cpu partial lists of a processor.
3372 *
3373 * Per cpu partial lists mainly contain slabs that just have one
3374 * object freed. If they are used for allocation then they can be
3375 * filled up again with minimal effort. The slab will never hit the
3376 * per node partial lists and therefore no locking will be required.
3377 *
3378 * This setting also determines
3379 *
3380 * A) The number of objects from per cpu partial slabs dumped to the
3381 * per node list when we reach the limit.
3382 * B) The number of objects in cpu partial slabs to extract from the
3383 * per node list when we run out of per cpu objects. We only fetch
3384 * 50% to keep some capacity around for frees.
3385 */
3386 if (!kmem_cache_has_cpu_partial(s))
3387 s->cpu_partial = 0;
3388 else if (s->size >= PAGE_SIZE)
3389 s->cpu_partial = 2;
3390 else if (s->size >= 1024)
3391 s->cpu_partial = 6;
3392 else if (s->size >= 256)
3393 s->cpu_partial = 13;
3394 else
3395 s->cpu_partial = 30;
3396
3397 #ifdef CONFIG_NUMA
3398 s->remote_node_defrag_ratio = 1000;
3399 #endif
3400 if (!init_kmem_cache_nodes(s))
3401 goto error;
3402
3403 if (alloc_kmem_cache_cpus(s))
3404 return 0;
3405
3406 free_kmem_cache_nodes(s);
3407 error:
3408 if (flags & SLAB_PANIC)
3409 panic("Cannot create slab %s size=%lu realsize=%u "
3410 "order=%u offset=%u flags=%lx\n",
3411 s->name, (unsigned long)s->size, s->size,
3412 oo_order(s->oo), s->offset, flags);
3413 return -EINVAL;
3414 }
3415
3416 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3417 const char *text)
3418 {
3419 #ifdef CONFIG_SLUB_DEBUG
3420 void *addr = page_address(page);
3421 void *p;
3422 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3423 sizeof(long), GFP_ATOMIC);
3424 if (!map)
3425 return;
3426 slab_err(s, page, text, s->name);
3427 slab_lock(page);
3428
3429 get_map(s, page, map);
3430 for_each_object(p, s, addr, page->objects) {
3431
3432 if (!test_bit(slab_index(p, s, addr), map)) {
3433 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3434 print_tracking(s, p);
3435 }
3436 }
3437 slab_unlock(page);
3438 kfree(map);
3439 #endif
3440 }
3441
3442 /*
3443 * Attempt to free all partial slabs on a node.
3444 * This is called from kmem_cache_close(). We must be the last thread
3445 * using the cache and therefore we do not need to lock anymore.
3446 */
3447 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3448 {
3449 struct page *page, *h;
3450
3451 list_for_each_entry_safe(page, h, &n->partial, lru) {
3452 if (!page->inuse) {
3453 __remove_partial(n, page);
3454 discard_slab(s, page);
3455 } else {
3456 list_slab_objects(s, page,
3457 "Objects remaining in %s on kmem_cache_close()");
3458 }
3459 }
3460 }
3461
3462 /*
3463 * Release all resources used by a slab cache.
3464 */
3465 static inline int kmem_cache_close(struct kmem_cache *s)
3466 {
3467 int node;
3468 struct kmem_cache_node *n;
3469
3470 flush_all(s);
3471 /* Attempt to free all objects */
3472 for_each_kmem_cache_node(s, node, n) {
3473 free_partial(s, n);
3474 if (n->nr_partial || slabs_node(s, node))
3475 return 1;
3476 }
3477 free_percpu(s->cpu_slab);
3478 free_kmem_cache_nodes(s);
3479 return 0;
3480 }
3481
3482 int __kmem_cache_shutdown(struct kmem_cache *s)
3483 {
3484 return kmem_cache_close(s);
3485 }
3486
3487 /********************************************************************
3488 * Kmalloc subsystem
3489 *******************************************************************/
3490
3491 static int __init setup_slub_min_order(char *str)
3492 {
3493 get_option(&str, &slub_min_order);
3494
3495 return 1;
3496 }
3497
3498 __setup("slub_min_order=", setup_slub_min_order);
3499
3500 static int __init setup_slub_max_order(char *str)
3501 {
3502 get_option(&str, &slub_max_order);
3503 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3504
3505 return 1;
3506 }
3507
3508 __setup("slub_max_order=", setup_slub_max_order);
3509
3510 static int __init setup_slub_min_objects(char *str)
3511 {
3512 get_option(&str, &slub_min_objects);
3513
3514 return 1;
3515 }
3516
3517 __setup("slub_min_objects=", setup_slub_min_objects);
3518
3519 void *__kmalloc(size_t size, gfp_t flags)
3520 {
3521 struct kmem_cache *s;
3522 void *ret;
3523
3524 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3525 return kmalloc_large(size, flags);
3526
3527 s = kmalloc_slab(size, flags);
3528
3529 if (unlikely(ZERO_OR_NULL_PTR(s)))
3530 return s;
3531
3532 ret = slab_alloc(s, flags, _RET_IP_);
3533
3534 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3535
3536 kasan_kmalloc(s, ret, size);
3537
3538 return ret;
3539 }
3540 EXPORT_SYMBOL(__kmalloc);
3541
3542 #ifdef CONFIG_NUMA
3543 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3544 {
3545 struct page *page;
3546 void *ptr = NULL;
3547
3548 flags |= __GFP_COMP | __GFP_NOTRACK;
3549 page = alloc_kmem_pages_node(node, flags, get_order(size));
3550 if (page)
3551 ptr = page_address(page);
3552
3553 kmalloc_large_node_hook(ptr, size, flags);
3554 return ptr;
3555 }
3556
3557 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3558 {
3559 struct kmem_cache *s;
3560 void *ret;
3561
3562 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3563 ret = kmalloc_large_node(size, flags, node);
3564
3565 trace_kmalloc_node(_RET_IP_, ret,
3566 size, PAGE_SIZE << get_order(size),
3567 flags, node);
3568
3569 return ret;
3570 }
3571
3572 s = kmalloc_slab(size, flags);
3573
3574 if (unlikely(ZERO_OR_NULL_PTR(s)))
3575 return s;
3576
3577 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3578
3579 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3580
3581 kasan_kmalloc(s, ret, size);
3582
3583 return ret;
3584 }
3585 EXPORT_SYMBOL(__kmalloc_node);
3586 #endif
3587
3588 static size_t __ksize(const void *object)
3589 {
3590 struct page *page;
3591
3592 if (unlikely(object == ZERO_SIZE_PTR))
3593 return 0;
3594
3595 page = virt_to_head_page(object);
3596
3597 if (unlikely(!PageSlab(page))) {
3598 WARN_ON(!PageCompound(page));
3599 return PAGE_SIZE << compound_order(page);
3600 }
3601
3602 return slab_ksize(page->slab_cache);
3603 }
3604
3605 size_t ksize(const void *object)
3606 {
3607 size_t size = __ksize(object);
3608 /* We assume that ksize callers could use whole allocated area,
3609 so we need unpoison this area. */
3610 kasan_krealloc(object, size);
3611 return size;
3612 }
3613 EXPORT_SYMBOL(ksize);
3614
3615 void kfree(const void *x)
3616 {
3617 struct page *page;
3618 void *object = (void *)x;
3619
3620 trace_kfree(_RET_IP_, x);
3621
3622 if (unlikely(ZERO_OR_NULL_PTR(x)))
3623 return;
3624
3625 page = virt_to_head_page(x);
3626 if (unlikely(!PageSlab(page))) {
3627 BUG_ON(!PageCompound(page));
3628 kfree_hook(x);
3629 __free_kmem_pages(page, compound_order(page));
3630 return;
3631 }
3632 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3633 }
3634 EXPORT_SYMBOL(kfree);
3635
3636 #define SHRINK_PROMOTE_MAX 32
3637
3638 /*
3639 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3640 * up most to the head of the partial lists. New allocations will then
3641 * fill those up and thus they can be removed from the partial lists.
3642 *
3643 * The slabs with the least items are placed last. This results in them
3644 * being allocated from last increasing the chance that the last objects
3645 * are freed in them.
3646 */
3647 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3648 {
3649 int node;
3650 int i;
3651 struct kmem_cache_node *n;
3652 struct page *page;
3653 struct page *t;
3654 struct list_head discard;
3655 struct list_head promote[SHRINK_PROMOTE_MAX];
3656 unsigned long flags;
3657 int ret = 0;
3658
3659 if (deactivate) {
3660 /*
3661 * Disable empty slabs caching. Used to avoid pinning offline
3662 * memory cgroups by kmem pages that can be freed.
3663 */
3664 s->cpu_partial = 0;
3665 s->min_partial = 0;
3666
3667 /*
3668 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3669 * so we have to make sure the change is visible.
3670 */
3671 kick_all_cpus_sync();
3672 }
3673
3674 flush_all(s);
3675 for_each_kmem_cache_node(s, node, n) {
3676 INIT_LIST_HEAD(&discard);
3677 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3678 INIT_LIST_HEAD(promote + i);
3679
3680 spin_lock_irqsave(&n->list_lock, flags);
3681
3682 /*
3683 * Build lists of slabs to discard or promote.
3684 *
3685 * Note that concurrent frees may occur while we hold the
3686 * list_lock. page->inuse here is the upper limit.
3687 */
3688 list_for_each_entry_safe(page, t, &n->partial, lru) {
3689 int free = page->objects - page->inuse;
3690
3691 /* Do not reread page->inuse */
3692 barrier();
3693
3694 /* We do not keep full slabs on the list */
3695 BUG_ON(free <= 0);
3696
3697 if (free == page->objects) {
3698 list_move(&page->lru, &discard);
3699 n->nr_partial--;
3700 } else if (free <= SHRINK_PROMOTE_MAX)
3701 list_move(&page->lru, promote + free - 1);
3702 }
3703
3704 /*
3705 * Promote the slabs filled up most to the head of the
3706 * partial list.
3707 */
3708 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3709 list_splice(promote + i, &n->partial);
3710
3711 spin_unlock_irqrestore(&n->list_lock, flags);
3712
3713 /* Release empty slabs */
3714 list_for_each_entry_safe(page, t, &discard, lru)
3715 discard_slab(s, page);
3716
3717 if (slabs_node(s, node))
3718 ret = 1;
3719 }
3720
3721 return ret;
3722 }
3723
3724 static int slab_mem_going_offline_callback(void *arg)
3725 {
3726 struct kmem_cache *s;
3727
3728 mutex_lock(&slab_mutex);
3729 list_for_each_entry(s, &slab_caches, list)
3730 __kmem_cache_shrink(s, false);
3731 mutex_unlock(&slab_mutex);
3732
3733 return 0;
3734 }
3735
3736 static void slab_mem_offline_callback(void *arg)
3737 {
3738 struct kmem_cache_node *n;
3739 struct kmem_cache *s;
3740 struct memory_notify *marg = arg;
3741 int offline_node;
3742
3743 offline_node = marg->status_change_nid_normal;
3744
3745 /*
3746 * If the node still has available memory. we need kmem_cache_node
3747 * for it yet.
3748 */
3749 if (offline_node < 0)
3750 return;
3751
3752 mutex_lock(&slab_mutex);
3753 list_for_each_entry(s, &slab_caches, list) {
3754 n = get_node(s, offline_node);
3755 if (n) {
3756 /*
3757 * if n->nr_slabs > 0, slabs still exist on the node
3758 * that is going down. We were unable to free them,
3759 * and offline_pages() function shouldn't call this
3760 * callback. So, we must fail.
3761 */
3762 BUG_ON(slabs_node(s, offline_node));
3763
3764 s->node[offline_node] = NULL;
3765 kmem_cache_free(kmem_cache_node, n);
3766 }
3767 }
3768 mutex_unlock(&slab_mutex);
3769 }
3770
3771 static int slab_mem_going_online_callback(void *arg)
3772 {
3773 struct kmem_cache_node *n;
3774 struct kmem_cache *s;
3775 struct memory_notify *marg = arg;
3776 int nid = marg->status_change_nid_normal;
3777 int ret = 0;
3778
3779 /*
3780 * If the node's memory is already available, then kmem_cache_node is
3781 * already created. Nothing to do.
3782 */
3783 if (nid < 0)
3784 return 0;
3785
3786 /*
3787 * We are bringing a node online. No memory is available yet. We must
3788 * allocate a kmem_cache_node structure in order to bring the node
3789 * online.
3790 */
3791 mutex_lock(&slab_mutex);
3792 list_for_each_entry(s, &slab_caches, list) {
3793 /*
3794 * XXX: kmem_cache_alloc_node will fallback to other nodes
3795 * since memory is not yet available from the node that
3796 * is brought up.
3797 */
3798 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3799 if (!n) {
3800 ret = -ENOMEM;
3801 goto out;
3802 }
3803 init_kmem_cache_node(n);
3804 s->node[nid] = n;
3805 }
3806 out:
3807 mutex_unlock(&slab_mutex);
3808 return ret;
3809 }
3810
3811 static int slab_memory_callback(struct notifier_block *self,
3812 unsigned long action, void *arg)
3813 {
3814 int ret = 0;
3815
3816 switch (action) {
3817 case MEM_GOING_ONLINE:
3818 ret = slab_mem_going_online_callback(arg);
3819 break;
3820 case MEM_GOING_OFFLINE:
3821 ret = slab_mem_going_offline_callback(arg);
3822 break;
3823 case MEM_OFFLINE:
3824 case MEM_CANCEL_ONLINE:
3825 slab_mem_offline_callback(arg);
3826 break;
3827 case MEM_ONLINE:
3828 case MEM_CANCEL_OFFLINE:
3829 break;
3830 }
3831 if (ret)
3832 ret = notifier_from_errno(ret);
3833 else
3834 ret = NOTIFY_OK;
3835 return ret;
3836 }
3837
3838 static struct notifier_block slab_memory_callback_nb = {
3839 .notifier_call = slab_memory_callback,
3840 .priority = SLAB_CALLBACK_PRI,
3841 };
3842
3843 /********************************************************************
3844 * Basic setup of slabs
3845 *******************************************************************/
3846
3847 /*
3848 * Used for early kmem_cache structures that were allocated using
3849 * the page allocator. Allocate them properly then fix up the pointers
3850 * that may be pointing to the wrong kmem_cache structure.
3851 */
3852
3853 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3854 {
3855 int node;
3856 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3857 struct kmem_cache_node *n;
3858
3859 memcpy(s, static_cache, kmem_cache->object_size);
3860
3861 /*
3862 * This runs very early, and only the boot processor is supposed to be
3863 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3864 * IPIs around.
3865 */
3866 __flush_cpu_slab(s, smp_processor_id());
3867 for_each_kmem_cache_node(s, node, n) {
3868 struct page *p;
3869
3870 list_for_each_entry(p, &n->partial, lru)
3871 p->slab_cache = s;
3872
3873 #ifdef CONFIG_SLUB_DEBUG
3874 list_for_each_entry(p, &n->full, lru)
3875 p->slab_cache = s;
3876 #endif
3877 }
3878 slab_init_memcg_params(s);
3879 list_add(&s->list, &slab_caches);
3880 return s;
3881 }
3882
3883 void __init kmem_cache_init(void)
3884 {
3885 static __initdata struct kmem_cache boot_kmem_cache,
3886 boot_kmem_cache_node;
3887
3888 if (debug_guardpage_minorder())
3889 slub_max_order = 0;
3890
3891 kmem_cache_node = &boot_kmem_cache_node;
3892 kmem_cache = &boot_kmem_cache;
3893
3894 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3895 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3896
3897 register_hotmemory_notifier(&slab_memory_callback_nb);
3898
3899 /* Able to allocate the per node structures */
3900 slab_state = PARTIAL;
3901
3902 create_boot_cache(kmem_cache, "kmem_cache",
3903 offsetof(struct kmem_cache, node) +
3904 nr_node_ids * sizeof(struct kmem_cache_node *),
3905 SLAB_HWCACHE_ALIGN);
3906
3907 kmem_cache = bootstrap(&boot_kmem_cache);
3908
3909 /*
3910 * Allocate kmem_cache_node properly from the kmem_cache slab.
3911 * kmem_cache_node is separately allocated so no need to
3912 * update any list pointers.
3913 */
3914 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3915
3916 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3917 setup_kmalloc_cache_index_table();
3918 create_kmalloc_caches(0);
3919
3920 #ifdef CONFIG_SMP
3921 register_cpu_notifier(&slab_notifier);
3922 #endif
3923
3924 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3925 cache_line_size(),
3926 slub_min_order, slub_max_order, slub_min_objects,
3927 nr_cpu_ids, nr_node_ids);
3928 }
3929
3930 void __init kmem_cache_init_late(void)
3931 {
3932 }
3933
3934 struct kmem_cache *
3935 __kmem_cache_alias(const char *name, size_t size, size_t align,
3936 unsigned long flags, void (*ctor)(void *))
3937 {
3938 struct kmem_cache *s, *c;
3939
3940 s = find_mergeable(size, align, flags, name, ctor);
3941 if (s) {
3942 s->refcount++;
3943
3944 /*
3945 * Adjust the object sizes so that we clear
3946 * the complete object on kzalloc.
3947 */
3948 s->object_size = max(s->object_size, (int)size);
3949 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3950
3951 for_each_memcg_cache(c, s) {
3952 c->object_size = s->object_size;
3953 c->inuse = max_t(int, c->inuse,
3954 ALIGN(size, sizeof(void *)));
3955 }
3956
3957 if (sysfs_slab_alias(s, name)) {
3958 s->refcount--;
3959 s = NULL;
3960 }
3961 }
3962
3963 return s;
3964 }
3965
3966 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3967 {
3968 int err;
3969
3970 err = kmem_cache_open(s, flags);
3971 if (err)
3972 return err;
3973
3974 /* Mutex is not taken during early boot */
3975 if (slab_state <= UP)
3976 return 0;
3977
3978 memcg_propagate_slab_attrs(s);
3979 err = sysfs_slab_add(s);
3980 if (err)
3981 kmem_cache_close(s);
3982
3983 return err;
3984 }
3985
3986 #ifdef CONFIG_SMP
3987 /*
3988 * Use the cpu notifier to insure that the cpu slabs are flushed when
3989 * necessary.
3990 */
3991 static int slab_cpuup_callback(struct notifier_block *nfb,
3992 unsigned long action, void *hcpu)
3993 {
3994 long cpu = (long)hcpu;
3995 struct kmem_cache *s;
3996 unsigned long flags;
3997
3998 switch (action) {
3999 case CPU_UP_CANCELED:
4000 case CPU_UP_CANCELED_FROZEN:
4001 case CPU_DEAD:
4002 case CPU_DEAD_FROZEN:
4003 mutex_lock(&slab_mutex);
4004 list_for_each_entry(s, &slab_caches, list) {
4005 local_irq_save(flags);
4006 __flush_cpu_slab(s, cpu);
4007 local_irq_restore(flags);
4008 }
4009 mutex_unlock(&slab_mutex);
4010 break;
4011 default:
4012 break;
4013 }
4014 return NOTIFY_OK;
4015 }
4016
4017 static struct notifier_block slab_notifier = {
4018 .notifier_call = slab_cpuup_callback
4019 };
4020
4021 #endif
4022
4023 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4024 {
4025 struct kmem_cache *s;
4026 void *ret;
4027
4028 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4029 return kmalloc_large(size, gfpflags);
4030
4031 s = kmalloc_slab(size, gfpflags);
4032
4033 if (unlikely(ZERO_OR_NULL_PTR(s)))
4034 return s;
4035
4036 ret = slab_alloc(s, gfpflags, caller);
4037
4038 /* Honor the call site pointer we received. */
4039 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4040
4041 return ret;
4042 }
4043
4044 #ifdef CONFIG_NUMA
4045 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4046 int node, unsigned long caller)
4047 {
4048 struct kmem_cache *s;
4049 void *ret;
4050
4051 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4052 ret = kmalloc_large_node(size, gfpflags, node);
4053
4054 trace_kmalloc_node(caller, ret,
4055 size, PAGE_SIZE << get_order(size),
4056 gfpflags, node);
4057
4058 return ret;
4059 }
4060
4061 s = kmalloc_slab(size, gfpflags);
4062
4063 if (unlikely(ZERO_OR_NULL_PTR(s)))
4064 return s;
4065
4066 ret = slab_alloc_node(s, gfpflags, node, caller);
4067
4068 /* Honor the call site pointer we received. */
4069 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4070
4071 return ret;
4072 }
4073 #endif
4074
4075 #ifdef CONFIG_SYSFS
4076 static int count_inuse(struct page *page)
4077 {
4078 return page->inuse;
4079 }
4080
4081 static int count_total(struct page *page)
4082 {
4083 return page->objects;
4084 }
4085 #endif
4086
4087 #ifdef CONFIG_SLUB_DEBUG
4088 static int validate_slab(struct kmem_cache *s, struct page *page,
4089 unsigned long *map)
4090 {
4091 void *p;
4092 void *addr = page_address(page);
4093
4094 if (!check_slab(s, page) ||
4095 !on_freelist(s, page, NULL))
4096 return 0;
4097
4098 /* Now we know that a valid freelist exists */
4099 bitmap_zero(map, page->objects);
4100
4101 get_map(s, page, map);
4102 for_each_object(p, s, addr, page->objects) {
4103 if (test_bit(slab_index(p, s, addr), map))
4104 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4105 return 0;
4106 }
4107
4108 for_each_object(p, s, addr, page->objects)
4109 if (!test_bit(slab_index(p, s, addr), map))
4110 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4111 return 0;
4112 return 1;
4113 }
4114
4115 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4116 unsigned long *map)
4117 {
4118 slab_lock(page);
4119 validate_slab(s, page, map);
4120 slab_unlock(page);
4121 }
4122
4123 static int validate_slab_node(struct kmem_cache *s,
4124 struct kmem_cache_node *n, unsigned long *map)
4125 {
4126 unsigned long count = 0;
4127 struct page *page;
4128 unsigned long flags;
4129
4130 spin_lock_irqsave(&n->list_lock, flags);
4131
4132 list_for_each_entry(page, &n->partial, lru) {
4133 validate_slab_slab(s, page, map);
4134 count++;
4135 }
4136 if (count != n->nr_partial)
4137 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4138 s->name, count, n->nr_partial);
4139
4140 if (!(s->flags & SLAB_STORE_USER))
4141 goto out;
4142
4143 list_for_each_entry(page, &n->full, lru) {
4144 validate_slab_slab(s, page, map);
4145 count++;
4146 }
4147 if (count != atomic_long_read(&n->nr_slabs))
4148 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4149 s->name, count, atomic_long_read(&n->nr_slabs));
4150
4151 out:
4152 spin_unlock_irqrestore(&n->list_lock, flags);
4153 return count;
4154 }
4155
4156 static long validate_slab_cache(struct kmem_cache *s)
4157 {
4158 int node;
4159 unsigned long count = 0;
4160 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4161 sizeof(unsigned long), GFP_KERNEL);
4162 struct kmem_cache_node *n;
4163
4164 if (!map)
4165 return -ENOMEM;
4166
4167 flush_all(s);
4168 for_each_kmem_cache_node(s, node, n)
4169 count += validate_slab_node(s, n, map);
4170 kfree(map);
4171 return count;
4172 }
4173 /*
4174 * Generate lists of code addresses where slabcache objects are allocated
4175 * and freed.
4176 */
4177
4178 struct location {
4179 unsigned long count;
4180 unsigned long addr;
4181 long long sum_time;
4182 long min_time;
4183 long max_time;
4184 long min_pid;
4185 long max_pid;
4186 DECLARE_BITMAP(cpus, NR_CPUS);
4187 nodemask_t nodes;
4188 };
4189
4190 struct loc_track {
4191 unsigned long max;
4192 unsigned long count;
4193 struct location *loc;
4194 };
4195
4196 static void free_loc_track(struct loc_track *t)
4197 {
4198 if (t->max)
4199 free_pages((unsigned long)t->loc,
4200 get_order(sizeof(struct location) * t->max));
4201 }
4202
4203 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4204 {
4205 struct location *l;
4206 int order;
4207
4208 order = get_order(sizeof(struct location) * max);
4209
4210 l = (void *)__get_free_pages(flags, order);
4211 if (!l)
4212 return 0;
4213
4214 if (t->count) {
4215 memcpy(l, t->loc, sizeof(struct location) * t->count);
4216 free_loc_track(t);
4217 }
4218 t->max = max;
4219 t->loc = l;
4220 return 1;
4221 }
4222
4223 static int add_location(struct loc_track *t, struct kmem_cache *s,
4224 const struct track *track)
4225 {
4226 long start, end, pos;
4227 struct location *l;
4228 unsigned long caddr;
4229 unsigned long age = jiffies - track->when;
4230
4231 start = -1;
4232 end = t->count;
4233
4234 for ( ; ; ) {
4235 pos = start + (end - start + 1) / 2;
4236
4237 /*
4238 * There is nothing at "end". If we end up there
4239 * we need to add something to before end.
4240 */
4241 if (pos == end)
4242 break;
4243
4244 caddr = t->loc[pos].addr;
4245 if (track->addr == caddr) {
4246
4247 l = &t->loc[pos];
4248 l->count++;
4249 if (track->when) {
4250 l->sum_time += age;
4251 if (age < l->min_time)
4252 l->min_time = age;
4253 if (age > l->max_time)
4254 l->max_time = age;
4255
4256 if (track->pid < l->min_pid)
4257 l->min_pid = track->pid;
4258 if (track->pid > l->max_pid)
4259 l->max_pid = track->pid;
4260
4261 cpumask_set_cpu(track->cpu,
4262 to_cpumask(l->cpus));
4263 }
4264 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4265 return 1;
4266 }
4267
4268 if (track->addr < caddr)
4269 end = pos;
4270 else
4271 start = pos;
4272 }
4273
4274 /*
4275 * Not found. Insert new tracking element.
4276 */
4277 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4278 return 0;
4279
4280 l = t->loc + pos;
4281 if (pos < t->count)
4282 memmove(l + 1, l,
4283 (t->count - pos) * sizeof(struct location));
4284 t->count++;
4285 l->count = 1;
4286 l->addr = track->addr;
4287 l->sum_time = age;
4288 l->min_time = age;
4289 l->max_time = age;
4290 l->min_pid = track->pid;
4291 l->max_pid = track->pid;
4292 cpumask_clear(to_cpumask(l->cpus));
4293 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4294 nodes_clear(l->nodes);
4295 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4296 return 1;
4297 }
4298
4299 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4300 struct page *page, enum track_item alloc,
4301 unsigned long *map)
4302 {
4303 void *addr = page_address(page);
4304 void *p;
4305
4306 bitmap_zero(map, page->objects);
4307 get_map(s, page, map);
4308
4309 for_each_object(p, s, addr, page->objects)
4310 if (!test_bit(slab_index(p, s, addr), map))
4311 add_location(t, s, get_track(s, p, alloc));
4312 }
4313
4314 static int list_locations(struct kmem_cache *s, char *buf,
4315 enum track_item alloc)
4316 {
4317 int len = 0;
4318 unsigned long i;
4319 struct loc_track t = { 0, 0, NULL };
4320 int node;
4321 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4322 sizeof(unsigned long), GFP_KERNEL);
4323 struct kmem_cache_node *n;
4324
4325 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4326 GFP_TEMPORARY)) {
4327 kfree(map);
4328 return sprintf(buf, "Out of memory\n");
4329 }
4330 /* Push back cpu slabs */
4331 flush_all(s);
4332
4333 for_each_kmem_cache_node(s, node, n) {
4334 unsigned long flags;
4335 struct page *page;
4336
4337 if (!atomic_long_read(&n->nr_slabs))
4338 continue;
4339
4340 spin_lock_irqsave(&n->list_lock, flags);
4341 list_for_each_entry(page, &n->partial, lru)
4342 process_slab(&t, s, page, alloc, map);
4343 list_for_each_entry(page, &n->full, lru)
4344 process_slab(&t, s, page, alloc, map);
4345 spin_unlock_irqrestore(&n->list_lock, flags);
4346 }
4347
4348 for (i = 0; i < t.count; i++) {
4349 struct location *l = &t.loc[i];
4350
4351 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4352 break;
4353 len += sprintf(buf + len, "%7ld ", l->count);
4354
4355 if (l->addr)
4356 len += sprintf(buf + len, "%pS", (void *)l->addr);
4357 else
4358 len += sprintf(buf + len, "<not-available>");
4359
4360 if (l->sum_time != l->min_time) {
4361 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4362 l->min_time,
4363 (long)div_u64(l->sum_time, l->count),
4364 l->max_time);
4365 } else
4366 len += sprintf(buf + len, " age=%ld",
4367 l->min_time);
4368
4369 if (l->min_pid != l->max_pid)
4370 len += sprintf(buf + len, " pid=%ld-%ld",
4371 l->min_pid, l->max_pid);
4372 else
4373 len += sprintf(buf + len, " pid=%ld",
4374 l->min_pid);
4375
4376 if (num_online_cpus() > 1 &&
4377 !cpumask_empty(to_cpumask(l->cpus)) &&
4378 len < PAGE_SIZE - 60)
4379 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4380 " cpus=%*pbl",
4381 cpumask_pr_args(to_cpumask(l->cpus)));
4382
4383 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4384 len < PAGE_SIZE - 60)
4385 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4386 " nodes=%*pbl",
4387 nodemask_pr_args(&l->nodes));
4388
4389 len += sprintf(buf + len, "\n");
4390 }
4391
4392 free_loc_track(&t);
4393 kfree(map);
4394 if (!t.count)
4395 len += sprintf(buf, "No data\n");
4396 return len;
4397 }
4398 #endif
4399
4400 #ifdef SLUB_RESILIENCY_TEST
4401 static void __init resiliency_test(void)
4402 {
4403 u8 *p;
4404
4405 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4406
4407 pr_err("SLUB resiliency testing\n");
4408 pr_err("-----------------------\n");
4409 pr_err("A. Corruption after allocation\n");
4410
4411 p = kzalloc(16, GFP_KERNEL);
4412 p[16] = 0x12;
4413 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4414 p + 16);
4415
4416 validate_slab_cache(kmalloc_caches[4]);
4417
4418 /* Hmmm... The next two are dangerous */
4419 p = kzalloc(32, GFP_KERNEL);
4420 p[32 + sizeof(void *)] = 0x34;
4421 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4422 p);
4423 pr_err("If allocated object is overwritten then not detectable\n\n");
4424
4425 validate_slab_cache(kmalloc_caches[5]);
4426 p = kzalloc(64, GFP_KERNEL);
4427 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4428 *p = 0x56;
4429 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4430 p);
4431 pr_err("If allocated object is overwritten then not detectable\n\n");
4432 validate_slab_cache(kmalloc_caches[6]);
4433
4434 pr_err("\nB. Corruption after free\n");
4435 p = kzalloc(128, GFP_KERNEL);
4436 kfree(p);
4437 *p = 0x78;
4438 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4439 validate_slab_cache(kmalloc_caches[7]);
4440
4441 p = kzalloc(256, GFP_KERNEL);
4442 kfree(p);
4443 p[50] = 0x9a;
4444 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4445 validate_slab_cache(kmalloc_caches[8]);
4446
4447 p = kzalloc(512, GFP_KERNEL);
4448 kfree(p);
4449 p[512] = 0xab;
4450 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4451 validate_slab_cache(kmalloc_caches[9]);
4452 }
4453 #else
4454 #ifdef CONFIG_SYSFS
4455 static void resiliency_test(void) {};
4456 #endif
4457 #endif
4458
4459 #ifdef CONFIG_SYSFS
4460 enum slab_stat_type {
4461 SL_ALL, /* All slabs */
4462 SL_PARTIAL, /* Only partially allocated slabs */
4463 SL_CPU, /* Only slabs used for cpu caches */
4464 SL_OBJECTS, /* Determine allocated objects not slabs */
4465 SL_TOTAL /* Determine object capacity not slabs */
4466 };
4467
4468 #define SO_ALL (1 << SL_ALL)
4469 #define SO_PARTIAL (1 << SL_PARTIAL)
4470 #define SO_CPU (1 << SL_CPU)
4471 #define SO_OBJECTS (1 << SL_OBJECTS)
4472 #define SO_TOTAL (1 << SL_TOTAL)
4473
4474 static ssize_t show_slab_objects(struct kmem_cache *s,
4475 char *buf, unsigned long flags)
4476 {
4477 unsigned long total = 0;
4478 int node;
4479 int x;
4480 unsigned long *nodes;
4481
4482 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4483 if (!nodes)
4484 return -ENOMEM;
4485
4486 if (flags & SO_CPU) {
4487 int cpu;
4488
4489 for_each_possible_cpu(cpu) {
4490 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4491 cpu);
4492 int node;
4493 struct page *page;
4494
4495 page = READ_ONCE(c->page);
4496 if (!page)
4497 continue;
4498
4499 node = page_to_nid(page);
4500 if (flags & SO_TOTAL)
4501 x = page->objects;
4502 else if (flags & SO_OBJECTS)
4503 x = page->inuse;
4504 else
4505 x = 1;
4506
4507 total += x;
4508 nodes[node] += x;
4509
4510 page = READ_ONCE(c->partial);
4511 if (page) {
4512 node = page_to_nid(page);
4513 if (flags & SO_TOTAL)
4514 WARN_ON_ONCE(1);
4515 else if (flags & SO_OBJECTS)
4516 WARN_ON_ONCE(1);
4517 else
4518 x = page->pages;
4519 total += x;
4520 nodes[node] += x;
4521 }
4522 }
4523 }
4524
4525 get_online_mems();
4526 #ifdef CONFIG_SLUB_DEBUG
4527 if (flags & SO_ALL) {
4528 struct kmem_cache_node *n;
4529
4530 for_each_kmem_cache_node(s, node, n) {
4531
4532 if (flags & SO_TOTAL)
4533 x = atomic_long_read(&n->total_objects);
4534 else if (flags & SO_OBJECTS)
4535 x = atomic_long_read(&n->total_objects) -
4536 count_partial(n, count_free);
4537 else
4538 x = atomic_long_read(&n->nr_slabs);
4539 total += x;
4540 nodes[node] += x;
4541 }
4542
4543 } else
4544 #endif
4545 if (flags & SO_PARTIAL) {
4546 struct kmem_cache_node *n;
4547
4548 for_each_kmem_cache_node(s, node, n) {
4549 if (flags & SO_TOTAL)
4550 x = count_partial(n, count_total);
4551 else if (flags & SO_OBJECTS)
4552 x = count_partial(n, count_inuse);
4553 else
4554 x = n->nr_partial;
4555 total += x;
4556 nodes[node] += x;
4557 }
4558 }
4559 x = sprintf(buf, "%lu", total);
4560 #ifdef CONFIG_NUMA
4561 for (node = 0; node < nr_node_ids; node++)
4562 if (nodes[node])
4563 x += sprintf(buf + x, " N%d=%lu",
4564 node, nodes[node]);
4565 #endif
4566 put_online_mems();
4567 kfree(nodes);
4568 return x + sprintf(buf + x, "\n");
4569 }
4570
4571 #ifdef CONFIG_SLUB_DEBUG
4572 static int any_slab_objects(struct kmem_cache *s)
4573 {
4574 int node;
4575 struct kmem_cache_node *n;
4576
4577 for_each_kmem_cache_node(s, node, n)
4578 if (atomic_long_read(&n->total_objects))
4579 return 1;
4580
4581 return 0;
4582 }
4583 #endif
4584
4585 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4586 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4587
4588 struct slab_attribute {
4589 struct attribute attr;
4590 ssize_t (*show)(struct kmem_cache *s, char *buf);
4591 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4592 };
4593
4594 #define SLAB_ATTR_RO(_name) \
4595 static struct slab_attribute _name##_attr = \
4596 __ATTR(_name, 0400, _name##_show, NULL)
4597
4598 #define SLAB_ATTR(_name) \
4599 static struct slab_attribute _name##_attr = \
4600 __ATTR(_name, 0600, _name##_show, _name##_store)
4601
4602 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4603 {
4604 return sprintf(buf, "%d\n", s->size);
4605 }
4606 SLAB_ATTR_RO(slab_size);
4607
4608 static ssize_t align_show(struct kmem_cache *s, char *buf)
4609 {
4610 return sprintf(buf, "%d\n", s->align);
4611 }
4612 SLAB_ATTR_RO(align);
4613
4614 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4615 {
4616 return sprintf(buf, "%d\n", s->object_size);
4617 }
4618 SLAB_ATTR_RO(object_size);
4619
4620 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4621 {
4622 return sprintf(buf, "%d\n", oo_objects(s->oo));
4623 }
4624 SLAB_ATTR_RO(objs_per_slab);
4625
4626 static ssize_t order_store(struct kmem_cache *s,
4627 const char *buf, size_t length)
4628 {
4629 unsigned long order;
4630 int err;
4631
4632 err = kstrtoul(buf, 10, &order);
4633 if (err)
4634 return err;
4635
4636 if (order > slub_max_order || order < slub_min_order)
4637 return -EINVAL;
4638
4639 calculate_sizes(s, order);
4640 return length;
4641 }
4642
4643 static ssize_t order_show(struct kmem_cache *s, char *buf)
4644 {
4645 return sprintf(buf, "%d\n", oo_order(s->oo));
4646 }
4647 SLAB_ATTR(order);
4648
4649 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4650 {
4651 return sprintf(buf, "%lu\n", s->min_partial);
4652 }
4653
4654 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4655 size_t length)
4656 {
4657 unsigned long min;
4658 int err;
4659
4660 err = kstrtoul(buf, 10, &min);
4661 if (err)
4662 return err;
4663
4664 set_min_partial(s, min);
4665 return length;
4666 }
4667 SLAB_ATTR(min_partial);
4668
4669 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4670 {
4671 return sprintf(buf, "%u\n", s->cpu_partial);
4672 }
4673
4674 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4675 size_t length)
4676 {
4677 unsigned long objects;
4678 int err;
4679
4680 err = kstrtoul(buf, 10, &objects);
4681 if (err)
4682 return err;
4683 if (objects && !kmem_cache_has_cpu_partial(s))
4684 return -EINVAL;
4685
4686 s->cpu_partial = objects;
4687 flush_all(s);
4688 return length;
4689 }
4690 SLAB_ATTR(cpu_partial);
4691
4692 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4693 {
4694 if (!s->ctor)
4695 return 0;
4696 return sprintf(buf, "%pS\n", s->ctor);
4697 }
4698 SLAB_ATTR_RO(ctor);
4699
4700 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4701 {
4702 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4703 }
4704 SLAB_ATTR_RO(aliases);
4705
4706 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4707 {
4708 return show_slab_objects(s, buf, SO_PARTIAL);
4709 }
4710 SLAB_ATTR_RO(partial);
4711
4712 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4713 {
4714 return show_slab_objects(s, buf, SO_CPU);
4715 }
4716 SLAB_ATTR_RO(cpu_slabs);
4717
4718 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4719 {
4720 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4721 }
4722 SLAB_ATTR_RO(objects);
4723
4724 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4725 {
4726 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4727 }
4728 SLAB_ATTR_RO(objects_partial);
4729
4730 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4731 {
4732 int objects = 0;
4733 int pages = 0;
4734 int cpu;
4735 int len;
4736
4737 for_each_online_cpu(cpu) {
4738 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4739
4740 if (page) {
4741 pages += page->pages;
4742 objects += page->pobjects;
4743 }
4744 }
4745
4746 len = sprintf(buf, "%d(%d)", objects, pages);
4747
4748 #ifdef CONFIG_SMP
4749 for_each_online_cpu(cpu) {
4750 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4751
4752 if (page && len < PAGE_SIZE - 20)
4753 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4754 page->pobjects, page->pages);
4755 }
4756 #endif
4757 return len + sprintf(buf + len, "\n");
4758 }
4759 SLAB_ATTR_RO(slabs_cpu_partial);
4760
4761 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4762 {
4763 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4764 }
4765
4766 static ssize_t reclaim_account_store(struct kmem_cache *s,
4767 const char *buf, size_t length)
4768 {
4769 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4770 if (buf[0] == '1')
4771 s->flags |= SLAB_RECLAIM_ACCOUNT;
4772 return length;
4773 }
4774 SLAB_ATTR(reclaim_account);
4775
4776 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4777 {
4778 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4779 }
4780 SLAB_ATTR_RO(hwcache_align);
4781
4782 #ifdef CONFIG_ZONE_DMA
4783 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4784 {
4785 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4786 }
4787 SLAB_ATTR_RO(cache_dma);
4788 #endif
4789
4790 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4791 {
4792 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4793 }
4794 SLAB_ATTR_RO(destroy_by_rcu);
4795
4796 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4797 {
4798 return sprintf(buf, "%d\n", s->reserved);
4799 }
4800 SLAB_ATTR_RO(reserved);
4801
4802 #ifdef CONFIG_SLUB_DEBUG
4803 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4804 {
4805 return show_slab_objects(s, buf, SO_ALL);
4806 }
4807 SLAB_ATTR_RO(slabs);
4808
4809 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4810 {
4811 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4812 }
4813 SLAB_ATTR_RO(total_objects);
4814
4815 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4816 {
4817 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4818 }
4819
4820 static ssize_t sanity_checks_store(struct kmem_cache *s,
4821 const char *buf, size_t length)
4822 {
4823 s->flags &= ~SLAB_DEBUG_FREE;
4824 if (buf[0] == '1') {
4825 s->flags &= ~__CMPXCHG_DOUBLE;
4826 s->flags |= SLAB_DEBUG_FREE;
4827 }
4828 return length;
4829 }
4830 SLAB_ATTR(sanity_checks);
4831
4832 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4833 {
4834 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4835 }
4836
4837 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4838 size_t length)
4839 {
4840 /*
4841 * Tracing a merged cache is going to give confusing results
4842 * as well as cause other issues like converting a mergeable
4843 * cache into an umergeable one.
4844 */
4845 if (s->refcount > 1)
4846 return -EINVAL;
4847
4848 s->flags &= ~SLAB_TRACE;
4849 if (buf[0] == '1') {
4850 s->flags &= ~__CMPXCHG_DOUBLE;
4851 s->flags |= SLAB_TRACE;
4852 }
4853 return length;
4854 }
4855 SLAB_ATTR(trace);
4856
4857 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4858 {
4859 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4860 }
4861
4862 static ssize_t red_zone_store(struct kmem_cache *s,
4863 const char *buf, size_t length)
4864 {
4865 if (any_slab_objects(s))
4866 return -EBUSY;
4867
4868 s->flags &= ~SLAB_RED_ZONE;
4869 if (buf[0] == '1') {
4870 s->flags &= ~__CMPXCHG_DOUBLE;
4871 s->flags |= SLAB_RED_ZONE;
4872 }
4873 calculate_sizes(s, -1);
4874 return length;
4875 }
4876 SLAB_ATTR(red_zone);
4877
4878 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4879 {
4880 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4881 }
4882
4883 static ssize_t poison_store(struct kmem_cache *s,
4884 const char *buf, size_t length)
4885 {
4886 if (any_slab_objects(s))
4887 return -EBUSY;
4888
4889 s->flags &= ~SLAB_POISON;
4890 if (buf[0] == '1') {
4891 s->flags &= ~__CMPXCHG_DOUBLE;
4892 s->flags |= SLAB_POISON;
4893 }
4894 calculate_sizes(s, -1);
4895 return length;
4896 }
4897 SLAB_ATTR(poison);
4898
4899 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4900 {
4901 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4902 }
4903
4904 static ssize_t store_user_store(struct kmem_cache *s,
4905 const char *buf, size_t length)
4906 {
4907 if (any_slab_objects(s))
4908 return -EBUSY;
4909
4910 s->flags &= ~SLAB_STORE_USER;
4911 if (buf[0] == '1') {
4912 s->flags &= ~__CMPXCHG_DOUBLE;
4913 s->flags |= SLAB_STORE_USER;
4914 }
4915 calculate_sizes(s, -1);
4916 return length;
4917 }
4918 SLAB_ATTR(store_user);
4919
4920 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4921 {
4922 return 0;
4923 }
4924
4925 static ssize_t validate_store(struct kmem_cache *s,
4926 const char *buf, size_t length)
4927 {
4928 int ret = -EINVAL;
4929
4930 if (buf[0] == '1') {
4931 ret = validate_slab_cache(s);
4932 if (ret >= 0)
4933 ret = length;
4934 }
4935 return ret;
4936 }
4937 SLAB_ATTR(validate);
4938
4939 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4940 {
4941 if (!(s->flags & SLAB_STORE_USER))
4942 return -ENOSYS;
4943 return list_locations(s, buf, TRACK_ALLOC);
4944 }
4945 SLAB_ATTR_RO(alloc_calls);
4946
4947 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4948 {
4949 if (!(s->flags & SLAB_STORE_USER))
4950 return -ENOSYS;
4951 return list_locations(s, buf, TRACK_FREE);
4952 }
4953 SLAB_ATTR_RO(free_calls);
4954 #endif /* CONFIG_SLUB_DEBUG */
4955
4956 #ifdef CONFIG_FAILSLAB
4957 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4958 {
4959 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4960 }
4961
4962 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4963 size_t length)
4964 {
4965 if (s->refcount > 1)
4966 return -EINVAL;
4967
4968 s->flags &= ~SLAB_FAILSLAB;
4969 if (buf[0] == '1')
4970 s->flags |= SLAB_FAILSLAB;
4971 return length;
4972 }
4973 SLAB_ATTR(failslab);
4974 #endif
4975
4976 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4977 {
4978 return 0;
4979 }
4980
4981 static ssize_t shrink_store(struct kmem_cache *s,
4982 const char *buf, size_t length)
4983 {
4984 if (buf[0] == '1')
4985 kmem_cache_shrink(s);
4986 else
4987 return -EINVAL;
4988 return length;
4989 }
4990 SLAB_ATTR(shrink);
4991
4992 #ifdef CONFIG_NUMA
4993 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4994 {
4995 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4996 }
4997
4998 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4999 const char *buf, size_t length)
5000 {
5001 unsigned long ratio;
5002 int err;
5003
5004 err = kstrtoul(buf, 10, &ratio);
5005 if (err)
5006 return err;
5007
5008 if (ratio <= 100)
5009 s->remote_node_defrag_ratio = ratio * 10;
5010
5011 return length;
5012 }
5013 SLAB_ATTR(remote_node_defrag_ratio);
5014 #endif
5015
5016 #ifdef CONFIG_SLUB_STATS
5017 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5018 {
5019 unsigned long sum = 0;
5020 int cpu;
5021 int len;
5022 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5023
5024 if (!data)
5025 return -ENOMEM;
5026
5027 for_each_online_cpu(cpu) {
5028 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5029
5030 data[cpu] = x;
5031 sum += x;
5032 }
5033
5034 len = sprintf(buf, "%lu", sum);
5035
5036 #ifdef CONFIG_SMP
5037 for_each_online_cpu(cpu) {
5038 if (data[cpu] && len < PAGE_SIZE - 20)
5039 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5040 }
5041 #endif
5042 kfree(data);
5043 return len + sprintf(buf + len, "\n");
5044 }
5045
5046 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5047 {
5048 int cpu;
5049
5050 for_each_online_cpu(cpu)
5051 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5052 }
5053
5054 #define STAT_ATTR(si, text) \
5055 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5056 { \
5057 return show_stat(s, buf, si); \
5058 } \
5059 static ssize_t text##_store(struct kmem_cache *s, \
5060 const char *buf, size_t length) \
5061 { \
5062 if (buf[0] != '0') \
5063 return -EINVAL; \
5064 clear_stat(s, si); \
5065 return length; \
5066 } \
5067 SLAB_ATTR(text); \
5068
5069 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5070 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5071 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5072 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5073 STAT_ATTR(FREE_FROZEN, free_frozen);
5074 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5075 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5076 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5077 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5078 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5079 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5080 STAT_ATTR(FREE_SLAB, free_slab);
5081 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5082 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5083 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5084 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5085 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5086 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5087 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5088 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5089 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5090 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5091 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5092 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5093 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5094 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5095 #endif
5096
5097 static struct attribute *slab_attrs[] = {
5098 &slab_size_attr.attr,
5099 &object_size_attr.attr,
5100 &objs_per_slab_attr.attr,
5101 &order_attr.attr,
5102 &min_partial_attr.attr,
5103 &cpu_partial_attr.attr,
5104 &objects_attr.attr,
5105 &objects_partial_attr.attr,
5106 &partial_attr.attr,
5107 &cpu_slabs_attr.attr,
5108 &ctor_attr.attr,
5109 &aliases_attr.attr,
5110 &align_attr.attr,
5111 &hwcache_align_attr.attr,
5112 &reclaim_account_attr.attr,
5113 &destroy_by_rcu_attr.attr,
5114 &shrink_attr.attr,
5115 &reserved_attr.attr,
5116 &slabs_cpu_partial_attr.attr,
5117 #ifdef CONFIG_SLUB_DEBUG
5118 &total_objects_attr.attr,
5119 &slabs_attr.attr,
5120 &sanity_checks_attr.attr,
5121 &trace_attr.attr,
5122 &red_zone_attr.attr,
5123 &poison_attr.attr,
5124 &store_user_attr.attr,
5125 &validate_attr.attr,
5126 &alloc_calls_attr.attr,
5127 &free_calls_attr.attr,
5128 #endif
5129 #ifdef CONFIG_ZONE_DMA
5130 &cache_dma_attr.attr,
5131 #endif
5132 #ifdef CONFIG_NUMA
5133 &remote_node_defrag_ratio_attr.attr,
5134 #endif
5135 #ifdef CONFIG_SLUB_STATS
5136 &alloc_fastpath_attr.attr,
5137 &alloc_slowpath_attr.attr,
5138 &free_fastpath_attr.attr,
5139 &free_slowpath_attr.attr,
5140 &free_frozen_attr.attr,
5141 &free_add_partial_attr.attr,
5142 &free_remove_partial_attr.attr,
5143 &alloc_from_partial_attr.attr,
5144 &alloc_slab_attr.attr,
5145 &alloc_refill_attr.attr,
5146 &alloc_node_mismatch_attr.attr,
5147 &free_slab_attr.attr,
5148 &cpuslab_flush_attr.attr,
5149 &deactivate_full_attr.attr,
5150 &deactivate_empty_attr.attr,
5151 &deactivate_to_head_attr.attr,
5152 &deactivate_to_tail_attr.attr,
5153 &deactivate_remote_frees_attr.attr,
5154 &deactivate_bypass_attr.attr,
5155 &order_fallback_attr.attr,
5156 &cmpxchg_double_fail_attr.attr,
5157 &cmpxchg_double_cpu_fail_attr.attr,
5158 &cpu_partial_alloc_attr.attr,
5159 &cpu_partial_free_attr.attr,
5160 &cpu_partial_node_attr.attr,
5161 &cpu_partial_drain_attr.attr,
5162 #endif
5163 #ifdef CONFIG_FAILSLAB
5164 &failslab_attr.attr,
5165 #endif
5166
5167 NULL
5168 };
5169
5170 static struct attribute_group slab_attr_group = {
5171 .attrs = slab_attrs,
5172 };
5173
5174 static ssize_t slab_attr_show(struct kobject *kobj,
5175 struct attribute *attr,
5176 char *buf)
5177 {
5178 struct slab_attribute *attribute;
5179 struct kmem_cache *s;
5180 int err;
5181
5182 attribute = to_slab_attr(attr);
5183 s = to_slab(kobj);
5184
5185 if (!attribute->show)
5186 return -EIO;
5187
5188 err = attribute->show(s, buf);
5189
5190 return err;
5191 }
5192
5193 static ssize_t slab_attr_store(struct kobject *kobj,
5194 struct attribute *attr,
5195 const char *buf, size_t len)
5196 {
5197 struct slab_attribute *attribute;
5198 struct kmem_cache *s;
5199 int err;
5200
5201 attribute = to_slab_attr(attr);
5202 s = to_slab(kobj);
5203
5204 if (!attribute->store)
5205 return -EIO;
5206
5207 err = attribute->store(s, buf, len);
5208 #ifdef CONFIG_MEMCG_KMEM
5209 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5210 struct kmem_cache *c;
5211
5212 mutex_lock(&slab_mutex);
5213 if (s->max_attr_size < len)
5214 s->max_attr_size = len;
5215
5216 /*
5217 * This is a best effort propagation, so this function's return
5218 * value will be determined by the parent cache only. This is
5219 * basically because not all attributes will have a well
5220 * defined semantics for rollbacks - most of the actions will
5221 * have permanent effects.
5222 *
5223 * Returning the error value of any of the children that fail
5224 * is not 100 % defined, in the sense that users seeing the
5225 * error code won't be able to know anything about the state of
5226 * the cache.
5227 *
5228 * Only returning the error code for the parent cache at least
5229 * has well defined semantics. The cache being written to
5230 * directly either failed or succeeded, in which case we loop
5231 * through the descendants with best-effort propagation.
5232 */
5233 for_each_memcg_cache(c, s)
5234 attribute->store(c, buf, len);
5235 mutex_unlock(&slab_mutex);
5236 }
5237 #endif
5238 return err;
5239 }
5240
5241 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5242 {
5243 #ifdef CONFIG_MEMCG_KMEM
5244 int i;
5245 char *buffer = NULL;
5246 struct kmem_cache *root_cache;
5247
5248 if (is_root_cache(s))
5249 return;
5250
5251 root_cache = s->memcg_params.root_cache;
5252
5253 /*
5254 * This mean this cache had no attribute written. Therefore, no point
5255 * in copying default values around
5256 */
5257 if (!root_cache->max_attr_size)
5258 return;
5259
5260 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5261 char mbuf[64];
5262 char *buf;
5263 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5264
5265 if (!attr || !attr->store || !attr->show)
5266 continue;
5267
5268 /*
5269 * It is really bad that we have to allocate here, so we will
5270 * do it only as a fallback. If we actually allocate, though,
5271 * we can just use the allocated buffer until the end.
5272 *
5273 * Most of the slub attributes will tend to be very small in
5274 * size, but sysfs allows buffers up to a page, so they can
5275 * theoretically happen.
5276 */
5277 if (buffer)
5278 buf = buffer;
5279 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5280 buf = mbuf;
5281 else {
5282 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5283 if (WARN_ON(!buffer))
5284 continue;
5285 buf = buffer;
5286 }
5287
5288 attr->show(root_cache, buf);
5289 attr->store(s, buf, strlen(buf));
5290 }
5291
5292 if (buffer)
5293 free_page((unsigned long)buffer);
5294 #endif
5295 }
5296
5297 static void kmem_cache_release(struct kobject *k)
5298 {
5299 slab_kmem_cache_release(to_slab(k));
5300 }
5301
5302 static const struct sysfs_ops slab_sysfs_ops = {
5303 .show = slab_attr_show,
5304 .store = slab_attr_store,
5305 };
5306
5307 static struct kobj_type slab_ktype = {
5308 .sysfs_ops = &slab_sysfs_ops,
5309 .release = kmem_cache_release,
5310 };
5311
5312 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5313 {
5314 struct kobj_type *ktype = get_ktype(kobj);
5315
5316 if (ktype == &slab_ktype)
5317 return 1;
5318 return 0;
5319 }
5320
5321 static const struct kset_uevent_ops slab_uevent_ops = {
5322 .filter = uevent_filter,
5323 };
5324
5325 static struct kset *slab_kset;
5326
5327 static inline struct kset *cache_kset(struct kmem_cache *s)
5328 {
5329 #ifdef CONFIG_MEMCG_KMEM
5330 if (!is_root_cache(s))
5331 return s->memcg_params.root_cache->memcg_kset;
5332 #endif
5333 return slab_kset;
5334 }
5335
5336 #define ID_STR_LENGTH 64
5337
5338 /* Create a unique string id for a slab cache:
5339 *
5340 * Format :[flags-]size
5341 */
5342 static char *create_unique_id(struct kmem_cache *s)
5343 {
5344 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5345 char *p = name;
5346
5347 BUG_ON(!name);
5348
5349 *p++ = ':';
5350 /*
5351 * First flags affecting slabcache operations. We will only
5352 * get here for aliasable slabs so we do not need to support
5353 * too many flags. The flags here must cover all flags that
5354 * are matched during merging to guarantee that the id is
5355 * unique.
5356 */
5357 if (s->flags & SLAB_CACHE_DMA)
5358 *p++ = 'd';
5359 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5360 *p++ = 'a';
5361 if (s->flags & SLAB_DEBUG_FREE)
5362 *p++ = 'F';
5363 if (!(s->flags & SLAB_NOTRACK))
5364 *p++ = 't';
5365 if (p != name + 1)
5366 *p++ = '-';
5367 p += sprintf(p, "%07d", s->size);
5368
5369 BUG_ON(p > name + ID_STR_LENGTH - 1);
5370 return name;
5371 }
5372
5373 static int sysfs_slab_add(struct kmem_cache *s)
5374 {
5375 int err;
5376 const char *name;
5377 int unmergeable = slab_unmergeable(s);
5378
5379 if (unmergeable) {
5380 /*
5381 * Slabcache can never be merged so we can use the name proper.
5382 * This is typically the case for debug situations. In that
5383 * case we can catch duplicate names easily.
5384 */
5385 sysfs_remove_link(&slab_kset->kobj, s->name);
5386 name = s->name;
5387 } else {
5388 /*
5389 * Create a unique name for the slab as a target
5390 * for the symlinks.
5391 */
5392 name = create_unique_id(s);
5393 }
5394
5395 s->kobj.kset = cache_kset(s);
5396 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5397 if (err)
5398 goto out;
5399
5400 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5401 if (err)
5402 goto out_del_kobj;
5403
5404 #ifdef CONFIG_MEMCG_KMEM
5405 if (is_root_cache(s)) {
5406 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5407 if (!s->memcg_kset) {
5408 err = -ENOMEM;
5409 goto out_del_kobj;
5410 }
5411 }
5412 #endif
5413
5414 kobject_uevent(&s->kobj, KOBJ_ADD);
5415 if (!unmergeable) {
5416 /* Setup first alias */
5417 sysfs_slab_alias(s, s->name);
5418 }
5419 out:
5420 if (!unmergeable)
5421 kfree(name);
5422 return err;
5423 out_del_kobj:
5424 kobject_del(&s->kobj);
5425 goto out;
5426 }
5427
5428 void sysfs_slab_remove(struct kmem_cache *s)
5429 {
5430 if (slab_state < FULL)
5431 /*
5432 * Sysfs has not been setup yet so no need to remove the
5433 * cache from sysfs.
5434 */
5435 return;
5436
5437 #ifdef CONFIG_MEMCG_KMEM
5438 kset_unregister(s->memcg_kset);
5439 #endif
5440 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5441 kobject_del(&s->kobj);
5442 kobject_put(&s->kobj);
5443 }
5444
5445 /*
5446 * Need to buffer aliases during bootup until sysfs becomes
5447 * available lest we lose that information.
5448 */
5449 struct saved_alias {
5450 struct kmem_cache *s;
5451 const char *name;
5452 struct saved_alias *next;
5453 };
5454
5455 static struct saved_alias *alias_list;
5456
5457 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5458 {
5459 struct saved_alias *al;
5460
5461 if (slab_state == FULL) {
5462 /*
5463 * If we have a leftover link then remove it.
5464 */
5465 sysfs_remove_link(&slab_kset->kobj, name);
5466 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5467 }
5468
5469 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5470 if (!al)
5471 return -ENOMEM;
5472
5473 al->s = s;
5474 al->name = name;
5475 al->next = alias_list;
5476 alias_list = al;
5477 return 0;
5478 }
5479
5480 static int __init slab_sysfs_init(void)
5481 {
5482 struct kmem_cache *s;
5483 int err;
5484
5485 mutex_lock(&slab_mutex);
5486
5487 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5488 if (!slab_kset) {
5489 mutex_unlock(&slab_mutex);
5490 pr_err("Cannot register slab subsystem.\n");
5491 return -ENOSYS;
5492 }
5493
5494 slab_state = FULL;
5495
5496 list_for_each_entry(s, &slab_caches, list) {
5497 err = sysfs_slab_add(s);
5498 if (err)
5499 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5500 s->name);
5501 }
5502
5503 while (alias_list) {
5504 struct saved_alias *al = alias_list;
5505
5506 alias_list = alias_list->next;
5507 err = sysfs_slab_alias(al->s, al->name);
5508 if (err)
5509 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5510 al->name);
5511 kfree(al);
5512 }
5513
5514 mutex_unlock(&slab_mutex);
5515 resiliency_test();
5516 return 0;
5517 }
5518
5519 __initcall(slab_sysfs_init);
5520 #endif /* CONFIG_SYSFS */
5521
5522 /*
5523 * The /proc/slabinfo ABI
5524 */
5525 #ifdef CONFIG_SLABINFO
5526 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5527 {
5528 unsigned long nr_slabs = 0;
5529 unsigned long nr_objs = 0;
5530 unsigned long nr_free = 0;
5531 int node;
5532 struct kmem_cache_node *n;
5533
5534 for_each_kmem_cache_node(s, node, n) {
5535 nr_slabs += node_nr_slabs(n);
5536 nr_objs += node_nr_objs(n);
5537 nr_free += count_partial(n, count_free);
5538 }
5539
5540 sinfo->active_objs = nr_objs - nr_free;
5541 sinfo->num_objs = nr_objs;
5542 sinfo->active_slabs = nr_slabs;
5543 sinfo->num_slabs = nr_slabs;
5544 sinfo->objects_per_slab = oo_objects(s->oo);
5545 sinfo->cache_order = oo_order(s->oo);
5546 }
5547
5548 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5549 {
5550 }
5551
5552 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5553 size_t count, loff_t *ppos)
5554 {
5555 return -EIO;
5556 }
5557 #endif /* CONFIG_SLABINFO */