]> git.ipfire.org Git - people/ms/linux.git/blob - net/netfilter/nf_conncount.c
NFQUEUE: Hold RCU read lock while calling nf_reinject
[people/ms/linux.git] / net / netfilter / nf_conncount.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * count the number of connections matching an arbitrary key.
4 *
5 * (C) 2017 Red Hat GmbH
6 * Author: Florian Westphal <fw@strlen.de>
7 *
8 * split from xt_connlimit.c:
9 * (c) 2000 Gerd Knorr <kraxel@bytesex.org>
10 * Nov 2002: Martin Bene <martin.bene@icomedias.com>:
11 * only ignore TIME_WAIT or gone connections
12 * (C) CC Computer Consultants GmbH, 2007
13 */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/in.h>
16 #include <linux/in6.h>
17 #include <linux/ip.h>
18 #include <linux/ipv6.h>
19 #include <linux/jhash.h>
20 #include <linux/slab.h>
21 #include <linux/list.h>
22 #include <linux/rbtree.h>
23 #include <linux/module.h>
24 #include <linux/random.h>
25 #include <linux/skbuff.h>
26 #include <linux/spinlock.h>
27 #include <linux/netfilter/nf_conntrack_tcp.h>
28 #include <linux/netfilter/x_tables.h>
29 #include <net/netfilter/nf_conntrack.h>
30 #include <net/netfilter/nf_conntrack_count.h>
31 #include <net/netfilter/nf_conntrack_core.h>
32 #include <net/netfilter/nf_conntrack_tuple.h>
33 #include <net/netfilter/nf_conntrack_zones.h>
34
35 #define CONNCOUNT_SLOTS 256U
36
37 #define CONNCOUNT_GC_MAX_NODES 8
38 #define MAX_KEYLEN 5
39
40 /* we will save the tuples of all connections we care about */
41 struct nf_conncount_tuple {
42 struct list_head node;
43 struct nf_conntrack_tuple tuple;
44 struct nf_conntrack_zone zone;
45 int cpu;
46 u32 jiffies32;
47 };
48
49 struct nf_conncount_rb {
50 struct rb_node node;
51 struct nf_conncount_list list;
52 u32 key[MAX_KEYLEN];
53 struct rcu_head rcu_head;
54 };
55
56 static spinlock_t nf_conncount_locks[CONNCOUNT_SLOTS] __cacheline_aligned_in_smp;
57
58 struct nf_conncount_data {
59 unsigned int keylen;
60 struct rb_root root[CONNCOUNT_SLOTS];
61 struct net *net;
62 struct work_struct gc_work;
63 unsigned long pending_trees[BITS_TO_LONGS(CONNCOUNT_SLOTS)];
64 unsigned int gc_tree;
65 };
66
67 static u_int32_t conncount_rnd __read_mostly;
68 static struct kmem_cache *conncount_rb_cachep __read_mostly;
69 static struct kmem_cache *conncount_conn_cachep __read_mostly;
70
71 static inline bool already_closed(const struct nf_conn *conn)
72 {
73 if (nf_ct_protonum(conn) == IPPROTO_TCP)
74 return conn->proto.tcp.state == TCP_CONNTRACK_TIME_WAIT ||
75 conn->proto.tcp.state == TCP_CONNTRACK_CLOSE;
76 else
77 return false;
78 }
79
80 static int key_diff(const u32 *a, const u32 *b, unsigned int klen)
81 {
82 return memcmp(a, b, klen * sizeof(u32));
83 }
84
85 static void conn_free(struct nf_conncount_list *list,
86 struct nf_conncount_tuple *conn)
87 {
88 lockdep_assert_held(&list->list_lock);
89
90 list->count--;
91 list_del(&conn->node);
92
93 kmem_cache_free(conncount_conn_cachep, conn);
94 }
95
96 static const struct nf_conntrack_tuple_hash *
97 find_or_evict(struct net *net, struct nf_conncount_list *list,
98 struct nf_conncount_tuple *conn)
99 {
100 const struct nf_conntrack_tuple_hash *found;
101 unsigned long a, b;
102 int cpu = raw_smp_processor_id();
103 u32 age;
104
105 found = nf_conntrack_find_get(net, &conn->zone, &conn->tuple);
106 if (found)
107 return found;
108 b = conn->jiffies32;
109 a = (u32)jiffies;
110
111 /* conn might have been added just before by another cpu and
112 * might still be unconfirmed. In this case, nf_conntrack_find()
113 * returns no result. Thus only evict if this cpu added the
114 * stale entry or if the entry is older than two jiffies.
115 */
116 age = a - b;
117 if (conn->cpu == cpu || age >= 2) {
118 conn_free(list, conn);
119 return ERR_PTR(-ENOENT);
120 }
121
122 return ERR_PTR(-EAGAIN);
123 }
124
125 static int __nf_conncount_add(struct net *net,
126 struct nf_conncount_list *list,
127 const struct nf_conntrack_tuple *tuple,
128 const struct nf_conntrack_zone *zone)
129 {
130 const struct nf_conntrack_tuple_hash *found;
131 struct nf_conncount_tuple *conn, *conn_n;
132 struct nf_conn *found_ct;
133 unsigned int collect = 0;
134
135 /* check the saved connections */
136 list_for_each_entry_safe(conn, conn_n, &list->head, node) {
137 if (collect > CONNCOUNT_GC_MAX_NODES)
138 break;
139
140 found = find_or_evict(net, list, conn);
141 if (IS_ERR(found)) {
142 /* Not found, but might be about to be confirmed */
143 if (PTR_ERR(found) == -EAGAIN) {
144 if (nf_ct_tuple_equal(&conn->tuple, tuple) &&
145 nf_ct_zone_id(&conn->zone, conn->zone.dir) ==
146 nf_ct_zone_id(zone, zone->dir))
147 return 0; /* already exists */
148 } else {
149 collect++;
150 }
151 continue;
152 }
153
154 found_ct = nf_ct_tuplehash_to_ctrack(found);
155
156 if (nf_ct_tuple_equal(&conn->tuple, tuple) &&
157 nf_ct_zone_equal(found_ct, zone, zone->dir)) {
158 /*
159 * We should not see tuples twice unless someone hooks
160 * this into a table without "-p tcp --syn".
161 *
162 * Attempt to avoid a re-add in this case.
163 */
164 nf_ct_put(found_ct);
165 return 0;
166 } else if (already_closed(found_ct)) {
167 /*
168 * we do not care about connections which are
169 * closed already -> ditch it
170 */
171 nf_ct_put(found_ct);
172 conn_free(list, conn);
173 collect++;
174 continue;
175 }
176
177 nf_ct_put(found_ct);
178 }
179
180 if (WARN_ON_ONCE(list->count > INT_MAX))
181 return -EOVERFLOW;
182
183 conn = kmem_cache_alloc(conncount_conn_cachep, GFP_ATOMIC);
184 if (conn == NULL)
185 return -ENOMEM;
186
187 conn->tuple = *tuple;
188 conn->zone = *zone;
189 conn->cpu = raw_smp_processor_id();
190 conn->jiffies32 = (u32)jiffies;
191 list_add_tail(&conn->node, &list->head);
192 list->count++;
193 return 0;
194 }
195
196 int nf_conncount_add(struct net *net,
197 struct nf_conncount_list *list,
198 const struct nf_conntrack_tuple *tuple,
199 const struct nf_conntrack_zone *zone)
200 {
201 int ret;
202
203 /* check the saved connections */
204 spin_lock_bh(&list->list_lock);
205 ret = __nf_conncount_add(net, list, tuple, zone);
206 spin_unlock_bh(&list->list_lock);
207
208 return ret;
209 }
210 EXPORT_SYMBOL_GPL(nf_conncount_add);
211
212 void nf_conncount_list_init(struct nf_conncount_list *list)
213 {
214 spin_lock_init(&list->list_lock);
215 INIT_LIST_HEAD(&list->head);
216 list->count = 0;
217 }
218 EXPORT_SYMBOL_GPL(nf_conncount_list_init);
219
220 /* Return true if the list is empty. Must be called with BH disabled. */
221 bool nf_conncount_gc_list(struct net *net,
222 struct nf_conncount_list *list)
223 {
224 const struct nf_conntrack_tuple_hash *found;
225 struct nf_conncount_tuple *conn, *conn_n;
226 struct nf_conn *found_ct;
227 unsigned int collected = 0;
228 bool ret = false;
229
230 /* don't bother if other cpu is already doing GC */
231 if (!spin_trylock(&list->list_lock))
232 return false;
233
234 list_for_each_entry_safe(conn, conn_n, &list->head, node) {
235 found = find_or_evict(net, list, conn);
236 if (IS_ERR(found)) {
237 if (PTR_ERR(found) == -ENOENT)
238 collected++;
239 continue;
240 }
241
242 found_ct = nf_ct_tuplehash_to_ctrack(found);
243 if (already_closed(found_ct)) {
244 /*
245 * we do not care about connections which are
246 * closed already -> ditch it
247 */
248 nf_ct_put(found_ct);
249 conn_free(list, conn);
250 collected++;
251 continue;
252 }
253
254 nf_ct_put(found_ct);
255 if (collected > CONNCOUNT_GC_MAX_NODES)
256 break;
257 }
258
259 if (!list->count)
260 ret = true;
261 spin_unlock(&list->list_lock);
262
263 return ret;
264 }
265 EXPORT_SYMBOL_GPL(nf_conncount_gc_list);
266
267 static void __tree_nodes_free(struct rcu_head *h)
268 {
269 struct nf_conncount_rb *rbconn;
270
271 rbconn = container_of(h, struct nf_conncount_rb, rcu_head);
272 kmem_cache_free(conncount_rb_cachep, rbconn);
273 }
274
275 /* caller must hold tree nf_conncount_locks[] lock */
276 static void tree_nodes_free(struct rb_root *root,
277 struct nf_conncount_rb *gc_nodes[],
278 unsigned int gc_count)
279 {
280 struct nf_conncount_rb *rbconn;
281
282 while (gc_count) {
283 rbconn = gc_nodes[--gc_count];
284 spin_lock(&rbconn->list.list_lock);
285 if (!rbconn->list.count) {
286 rb_erase(&rbconn->node, root);
287 call_rcu(&rbconn->rcu_head, __tree_nodes_free);
288 }
289 spin_unlock(&rbconn->list.list_lock);
290 }
291 }
292
293 static void schedule_gc_worker(struct nf_conncount_data *data, int tree)
294 {
295 set_bit(tree, data->pending_trees);
296 schedule_work(&data->gc_work);
297 }
298
299 static unsigned int
300 insert_tree(struct net *net,
301 struct nf_conncount_data *data,
302 struct rb_root *root,
303 unsigned int hash,
304 const u32 *key,
305 const struct nf_conntrack_tuple *tuple,
306 const struct nf_conntrack_zone *zone)
307 {
308 struct nf_conncount_rb *gc_nodes[CONNCOUNT_GC_MAX_NODES];
309 struct rb_node **rbnode, *parent;
310 struct nf_conncount_rb *rbconn;
311 struct nf_conncount_tuple *conn;
312 unsigned int count = 0, gc_count = 0;
313 u8 keylen = data->keylen;
314 bool do_gc = true;
315
316 spin_lock_bh(&nf_conncount_locks[hash]);
317 restart:
318 parent = NULL;
319 rbnode = &(root->rb_node);
320 while (*rbnode) {
321 int diff;
322 rbconn = rb_entry(*rbnode, struct nf_conncount_rb, node);
323
324 parent = *rbnode;
325 diff = key_diff(key, rbconn->key, keylen);
326 if (diff < 0) {
327 rbnode = &((*rbnode)->rb_left);
328 } else if (diff > 0) {
329 rbnode = &((*rbnode)->rb_right);
330 } else {
331 int ret;
332
333 ret = nf_conncount_add(net, &rbconn->list, tuple, zone);
334 if (ret)
335 count = 0; /* hotdrop */
336 else
337 count = rbconn->list.count;
338 tree_nodes_free(root, gc_nodes, gc_count);
339 goto out_unlock;
340 }
341
342 if (gc_count >= ARRAY_SIZE(gc_nodes))
343 continue;
344
345 if (do_gc && nf_conncount_gc_list(net, &rbconn->list))
346 gc_nodes[gc_count++] = rbconn;
347 }
348
349 if (gc_count) {
350 tree_nodes_free(root, gc_nodes, gc_count);
351 schedule_gc_worker(data, hash);
352 gc_count = 0;
353 do_gc = false;
354 goto restart;
355 }
356
357 /* expected case: match, insert new node */
358 rbconn = kmem_cache_alloc(conncount_rb_cachep, GFP_ATOMIC);
359 if (rbconn == NULL)
360 goto out_unlock;
361
362 conn = kmem_cache_alloc(conncount_conn_cachep, GFP_ATOMIC);
363 if (conn == NULL) {
364 kmem_cache_free(conncount_rb_cachep, rbconn);
365 goto out_unlock;
366 }
367
368 conn->tuple = *tuple;
369 conn->zone = *zone;
370 memcpy(rbconn->key, key, sizeof(u32) * keylen);
371
372 nf_conncount_list_init(&rbconn->list);
373 list_add(&conn->node, &rbconn->list.head);
374 count = 1;
375 rbconn->list.count = count;
376
377 rb_link_node_rcu(&rbconn->node, parent, rbnode);
378 rb_insert_color(&rbconn->node, root);
379 out_unlock:
380 spin_unlock_bh(&nf_conncount_locks[hash]);
381 return count;
382 }
383
384 static unsigned int
385 count_tree(struct net *net,
386 struct nf_conncount_data *data,
387 const u32 *key,
388 const struct nf_conntrack_tuple *tuple,
389 const struct nf_conntrack_zone *zone)
390 {
391 struct rb_root *root;
392 struct rb_node *parent;
393 struct nf_conncount_rb *rbconn;
394 unsigned int hash;
395 u8 keylen = data->keylen;
396
397 hash = jhash2(key, data->keylen, conncount_rnd) % CONNCOUNT_SLOTS;
398 root = &data->root[hash];
399
400 parent = rcu_dereference_raw(root->rb_node);
401 while (parent) {
402 int diff;
403
404 rbconn = rb_entry(parent, struct nf_conncount_rb, node);
405
406 diff = key_diff(key, rbconn->key, keylen);
407 if (diff < 0) {
408 parent = rcu_dereference_raw(parent->rb_left);
409 } else if (diff > 0) {
410 parent = rcu_dereference_raw(parent->rb_right);
411 } else {
412 int ret;
413
414 if (!tuple) {
415 nf_conncount_gc_list(net, &rbconn->list);
416 return rbconn->list.count;
417 }
418
419 spin_lock_bh(&rbconn->list.list_lock);
420 /* Node might be about to be free'd.
421 * We need to defer to insert_tree() in this case.
422 */
423 if (rbconn->list.count == 0) {
424 spin_unlock_bh(&rbconn->list.list_lock);
425 break;
426 }
427
428 /* same source network -> be counted! */
429 ret = __nf_conncount_add(net, &rbconn->list, tuple, zone);
430 spin_unlock_bh(&rbconn->list.list_lock);
431 if (ret)
432 return 0; /* hotdrop */
433 else
434 return rbconn->list.count;
435 }
436 }
437
438 if (!tuple)
439 return 0;
440
441 return insert_tree(net, data, root, hash, key, tuple, zone);
442 }
443
444 static void tree_gc_worker(struct work_struct *work)
445 {
446 struct nf_conncount_data *data = container_of(work, struct nf_conncount_data, gc_work);
447 struct nf_conncount_rb *gc_nodes[CONNCOUNT_GC_MAX_NODES], *rbconn;
448 struct rb_root *root;
449 struct rb_node *node;
450 unsigned int tree, next_tree, gc_count = 0;
451
452 tree = data->gc_tree % CONNCOUNT_SLOTS;
453 root = &data->root[tree];
454
455 local_bh_disable();
456 rcu_read_lock();
457 for (node = rb_first(root); node != NULL; node = rb_next(node)) {
458 rbconn = rb_entry(node, struct nf_conncount_rb, node);
459 if (nf_conncount_gc_list(data->net, &rbconn->list))
460 gc_count++;
461 }
462 rcu_read_unlock();
463 local_bh_enable();
464
465 cond_resched();
466
467 spin_lock_bh(&nf_conncount_locks[tree]);
468 if (gc_count < ARRAY_SIZE(gc_nodes))
469 goto next; /* do not bother */
470
471 gc_count = 0;
472 node = rb_first(root);
473 while (node != NULL) {
474 rbconn = rb_entry(node, struct nf_conncount_rb, node);
475 node = rb_next(node);
476
477 if (rbconn->list.count > 0)
478 continue;
479
480 gc_nodes[gc_count++] = rbconn;
481 if (gc_count >= ARRAY_SIZE(gc_nodes)) {
482 tree_nodes_free(root, gc_nodes, gc_count);
483 gc_count = 0;
484 }
485 }
486
487 tree_nodes_free(root, gc_nodes, gc_count);
488 next:
489 clear_bit(tree, data->pending_trees);
490
491 next_tree = (tree + 1) % CONNCOUNT_SLOTS;
492 next_tree = find_next_bit(data->pending_trees, CONNCOUNT_SLOTS, next_tree);
493
494 if (next_tree < CONNCOUNT_SLOTS) {
495 data->gc_tree = next_tree;
496 schedule_work(work);
497 }
498
499 spin_unlock_bh(&nf_conncount_locks[tree]);
500 }
501
502 /* Count and return number of conntrack entries in 'net' with particular 'key'.
503 * If 'tuple' is not null, insert it into the accounting data structure.
504 * Call with RCU read lock.
505 */
506 unsigned int nf_conncount_count(struct net *net,
507 struct nf_conncount_data *data,
508 const u32 *key,
509 const struct nf_conntrack_tuple *tuple,
510 const struct nf_conntrack_zone *zone)
511 {
512 return count_tree(net, data, key, tuple, zone);
513 }
514 EXPORT_SYMBOL_GPL(nf_conncount_count);
515
516 struct nf_conncount_data *nf_conncount_init(struct net *net, unsigned int family,
517 unsigned int keylen)
518 {
519 struct nf_conncount_data *data;
520 int ret, i;
521
522 if (keylen % sizeof(u32) ||
523 keylen / sizeof(u32) > MAX_KEYLEN ||
524 keylen == 0)
525 return ERR_PTR(-EINVAL);
526
527 net_get_random_once(&conncount_rnd, sizeof(conncount_rnd));
528
529 data = kmalloc(sizeof(*data), GFP_KERNEL);
530 if (!data)
531 return ERR_PTR(-ENOMEM);
532
533 ret = nf_ct_netns_get(net, family);
534 if (ret < 0) {
535 kfree(data);
536 return ERR_PTR(ret);
537 }
538
539 for (i = 0; i < ARRAY_SIZE(data->root); ++i)
540 data->root[i] = RB_ROOT;
541
542 data->keylen = keylen / sizeof(u32);
543 data->net = net;
544 INIT_WORK(&data->gc_work, tree_gc_worker);
545
546 return data;
547 }
548 EXPORT_SYMBOL_GPL(nf_conncount_init);
549
550 void nf_conncount_cache_free(struct nf_conncount_list *list)
551 {
552 struct nf_conncount_tuple *conn, *conn_n;
553
554 list_for_each_entry_safe(conn, conn_n, &list->head, node)
555 kmem_cache_free(conncount_conn_cachep, conn);
556 }
557 EXPORT_SYMBOL_GPL(nf_conncount_cache_free);
558
559 static void destroy_tree(struct rb_root *r)
560 {
561 struct nf_conncount_rb *rbconn;
562 struct rb_node *node;
563
564 while ((node = rb_first(r)) != NULL) {
565 rbconn = rb_entry(node, struct nf_conncount_rb, node);
566
567 rb_erase(node, r);
568
569 nf_conncount_cache_free(&rbconn->list);
570
571 kmem_cache_free(conncount_rb_cachep, rbconn);
572 }
573 }
574
575 void nf_conncount_destroy(struct net *net, unsigned int family,
576 struct nf_conncount_data *data)
577 {
578 unsigned int i;
579
580 cancel_work_sync(&data->gc_work);
581 nf_ct_netns_put(net, family);
582
583 for (i = 0; i < ARRAY_SIZE(data->root); ++i)
584 destroy_tree(&data->root[i]);
585
586 kfree(data);
587 }
588 EXPORT_SYMBOL_GPL(nf_conncount_destroy);
589
590 static int __init nf_conncount_modinit(void)
591 {
592 int i;
593
594 for (i = 0; i < CONNCOUNT_SLOTS; ++i)
595 spin_lock_init(&nf_conncount_locks[i]);
596
597 conncount_conn_cachep = kmem_cache_create("nf_conncount_tuple",
598 sizeof(struct nf_conncount_tuple),
599 0, 0, NULL);
600 if (!conncount_conn_cachep)
601 return -ENOMEM;
602
603 conncount_rb_cachep = kmem_cache_create("nf_conncount_rb",
604 sizeof(struct nf_conncount_rb),
605 0, 0, NULL);
606 if (!conncount_rb_cachep) {
607 kmem_cache_destroy(conncount_conn_cachep);
608 return -ENOMEM;
609 }
610
611 return 0;
612 }
613
614 static void __exit nf_conncount_modexit(void)
615 {
616 kmem_cache_destroy(conncount_conn_cachep);
617 kmem_cache_destroy(conncount_rb_cachep);
618 }
619
620 module_init(nf_conncount_modinit);
621 module_exit(nf_conncount_modexit);
622 MODULE_AUTHOR("Jan Engelhardt <jengelh@medozas.de>");
623 MODULE_AUTHOR("Florian Westphal <fw@strlen.de>");
624 MODULE_DESCRIPTION("netfilter: count number of connections matching a key");
625 MODULE_LICENSE("GPL");