]> git.ipfire.org Git - people/ms/putty.git/blob - icons/mkicon.py
Add search to connection list box.
[people/ms/putty.git] / icons / mkicon.py
1 #!/usr/bin/env python
2
3 import math
4
5 # Python code which draws the PuTTY icon components at a range of
6 # sizes.
7
8 # TODO
9 # ----
10 #
11 # - use of alpha blending
12 # + try for variable-transparency borders
13 #
14 # - can we integrate the Mac icons into all this? Do we want to?
15
16 def pixel(x, y, colour, canvas):
17 canvas[(int(x),int(y))] = colour
18
19 def overlay(src, x, y, dst):
20 x = int(x)
21 y = int(y)
22 for (sx, sy), colour in src.items():
23 dst[sx+x, sy+y] = blend(colour, dst.get((sx+x, sy+y), cT))
24
25 def finalise(canvas):
26 for k in canvas.keys():
27 canvas[k] = finalisepix(canvas[k])
28
29 def bbox(canvas):
30 minx, miny, maxx, maxy = None, None, None, None
31 for (x, y) in canvas.keys():
32 if minx == None:
33 minx, miny, maxx, maxy = x, y, x+1, y+1
34 else:
35 minx = min(minx, x)
36 miny = min(miny, y)
37 maxx = max(maxx, x+1)
38 maxy = max(maxy, y+1)
39 return (minx, miny, maxx, maxy)
40
41 def topy(canvas):
42 miny = {}
43 for (x, y) in canvas.keys():
44 miny[x] = min(miny.get(x, y), y)
45 return miny
46
47 def render(canvas, minx, miny, maxx, maxy):
48 w = maxx - minx
49 h = maxy - miny
50 ret = []
51 for y in range(h):
52 ret.append([outpix(cT)] * w)
53 for (x, y), colour in canvas.items():
54 if x >= minx and x < maxx and y >= miny and y < maxy:
55 ret[y-miny][x-minx] = outpix(colour)
56 return ret
57
58 # Code to actually draw pieces of icon. These don't generally worry
59 # about positioning within a canvas; they just draw at a standard
60 # location, return some useful coordinates, and leave composition
61 # to other pieces of code.
62
63 sqrthash = {}
64 def memoisedsqrt(x):
65 if not sqrthash.has_key(x):
66 sqrthash[x] = math.sqrt(x)
67 return sqrthash[x]
68
69 BR, TR, BL, TL = range(4) # enumeration of quadrants for border()
70
71 def border(canvas, thickness, squarecorners, out={}):
72 # I haven't yet worked out exactly how to do borders in a
73 # properly alpha-blended fashion.
74 #
75 # When you have two shades of dark available (half-dark H and
76 # full-dark F), the right sequence of circular border sections
77 # around a pixel x starts off with these two layouts:
78 #
79 # H F
80 # HxH FxF
81 # H F
82 #
83 # Where it goes after that I'm not entirely sure, but I'm
84 # absolutely sure those are the right places to start. However,
85 # every automated algorithm I've tried has always started off
86 # with the two layouts
87 #
88 # H HHH
89 # HxH HxH
90 # H HHH
91 #
92 # which looks much worse. This is true whether you do
93 # pixel-centre sampling (define an inner circle and an outer
94 # circle with radii differing by 1, set any pixel whose centre
95 # is inside the inner circle to F, any pixel whose centre is
96 # outside the outer one to nothing, interpolate between the two
97 # and round sensibly), _or_ whether you plot a notional circle
98 # of a given radius and measure the actual _proportion_ of each
99 # pixel square taken up by it.
100 #
101 # It's not clear what I should be doing to prevent this. One
102 # option is to attempt error-diffusion: Ian Jackson proved on
103 # paper that if you round each pixel's ideal value to the
104 # nearest of the available output values, then measure the
105 # error at each pixel, propagate that error outwards into the
106 # original values of the surrounding pixels, and re-round
107 # everything, you do get the correct second stage. However, I
108 # haven't tried it at a proper range of radii.
109 #
110 # Another option is that the automated mechanisms described
111 # above would be entirely adequate if it weren't for the fact
112 # that the human visual centres are adapted to detect
113 # horizontal and vertical lines in particular, so the only
114 # place you have to behave a bit differently is at the ends of
115 # the top and bottom row of pixels in the circle, and the top
116 # and bottom of the extreme columns.
117 #
118 # For the moment, what I have below is a very simple mechanism
119 # which always uses only one alpha level for any given border
120 # thickness, and which seems to work well enough for Windows
121 # 16-colour icons. Everything else will have to wait.
122
123 thickness = memoisedsqrt(thickness)
124
125 if thickness < 0.9:
126 darkness = 0.5
127 else:
128 darkness = 1
129 if thickness < 1: thickness = 1
130 thickness = round(thickness - 0.5) + 0.3
131
132 out["borderthickness"] = thickness
133
134 dmax = int(round(thickness))
135 if dmax < thickness: dmax = dmax + 1
136
137 cquadrant = [[0] * (dmax+1) for x in range(dmax+1)]
138 squadrant = [[0] * (dmax+1) for x in range(dmax+1)]
139
140 for x in range(dmax+1):
141 for y in range(dmax+1):
142 if max(x, y) < thickness:
143 squadrant[x][y] = darkness
144 if memoisedsqrt(x*x+y*y) < thickness:
145 cquadrant[x][y] = darkness
146
147 bvalues = {}
148 for (x, y), colour in canvas.items():
149 for dx in range(-dmax, dmax+1):
150 for dy in range(-dmax, dmax+1):
151 quadrant = 2 * (dx < 0) + (dy < 0)
152 if (x, y, quadrant) in squarecorners:
153 bval = squadrant[abs(dx)][abs(dy)]
154 else:
155 bval = cquadrant[abs(dx)][abs(dy)]
156 if bvalues.get((x+dx,y+dy),0) < bval:
157 bvalues[(x+dx,y+dy)] = bval
158
159 for (x, y), value in bvalues.items():
160 if not canvas.has_key((x,y)):
161 canvas[(x,y)] = dark(value)
162
163 def sysbox(size, out={}):
164 canvas = {}
165
166 # The system box of the computer.
167
168 height = int(round(3.6*size))
169 width = int(round(16.51*size))
170 depth = int(round(2*size))
171 highlight = int(round(1*size))
172 bothighlight = int(round(1*size))
173
174 out["sysboxheight"] = height
175
176 floppystart = int(round(19*size)) # measured in half-pixels
177 floppyend = int(round(29*size)) # measured in half-pixels
178 floppybottom = height - bothighlight
179 floppyrheight = 0.7 * size
180 floppyheight = int(round(floppyrheight))
181 if floppyheight < 1:
182 floppyheight = 1
183 floppytop = floppybottom - floppyheight
184
185 # The front panel is rectangular.
186 for x in range(width):
187 for y in range(height):
188 grey = 3
189 if x < highlight or y < highlight:
190 grey = grey + 1
191 if x >= width-highlight or y >= height-bothighlight:
192 grey = grey - 1
193 if y < highlight and x >= width-highlight:
194 v = (highlight-1-y) - (x-(width-highlight))
195 if v < 0:
196 grey = grey - 1
197 elif v > 0:
198 grey = grey + 1
199 if y >= floppytop and y < floppybottom and \
200 2*x+2 > floppystart and 2*x < floppyend:
201 if 2*x >= floppystart and 2*x+2 <= floppyend and \
202 floppyrheight >= 0.7:
203 grey = 0
204 else:
205 grey = 2
206 pixel(x, y, greypix(grey/4.0), canvas)
207
208 # The side panel is a parallelogram.
209 for x in range(depth):
210 for y in range(height):
211 pixel(x+width, y-(x+1), greypix(0.5), canvas)
212
213 # The top panel is another parallelogram.
214 for x in range(width-1):
215 for y in range(depth):
216 grey = 3
217 if x >= width-1 - highlight:
218 grey = grey + 1
219 pixel(x+(y+1), -(y+1), greypix(grey/4.0), canvas)
220
221 # And draw a border.
222 border(canvas, size, [], out)
223
224 return canvas
225
226 def monitor(size):
227 canvas = {}
228
229 # The computer's monitor.
230
231 height = int(round(9.55*size))
232 width = int(round(11.49*size))
233 surround = int(round(1*size))
234 botsurround = int(round(2*size))
235 sheight = height - surround - botsurround
236 swidth = width - 2*surround
237 depth = int(round(2*size))
238 highlight = int(round(math.sqrt(size)))
239 shadow = int(round(0.55*size))
240
241 # The front panel is rectangular.
242 for x in range(width):
243 for y in range(height):
244 if x >= surround and y >= surround and \
245 x < surround+swidth and y < surround+sheight:
246 # Screen.
247 sx = (float(x-surround) - swidth/3) / swidth
248 sy = (float(y-surround) - sheight/3) / sheight
249 shighlight = 1.0 - (sx*sx+sy*sy)*0.27
250 pix = bluepix(shighlight)
251 if x < surround+shadow or y < surround+shadow:
252 pix = blend(cD, pix) # sharp-edged shadow on top and left
253 else:
254 # Complicated double bevel on the screen surround.
255
256 # First, the outer bevel. We compute the distance
257 # from this pixel to each edge of the front
258 # rectangle.
259 list = [
260 (x, +1),
261 (y, +1),
262 (width-1-x, -1),
263 (height-1-y, -1)
264 ]
265 # Now sort the list to find the distance to the
266 # _nearest_ edge, or the two joint nearest.
267 list.sort()
268 # If there's one nearest edge, that determines our
269 # bevel colour. If there are two joint nearest, our
270 # bevel colour is their shared one if they agree,
271 # and neutral otherwise.
272 outerbevel = 0
273 if list[0][0] < list[1][0] or list[0][1] == list[1][1]:
274 if list[0][0] < highlight:
275 outerbevel = list[0][1]
276
277 # Now, the inner bevel. We compute the distance
278 # from this pixel to each edge of the screen
279 # itself.
280 list = [
281 (surround-1-x, -1),
282 (surround-1-y, -1),
283 (x-(surround+swidth), +1),
284 (y-(surround+sheight), +1)
285 ]
286 # Now we sort to find the _maximum_ distance, which
287 # conveniently ignores any less than zero.
288 list.sort()
289 # And now the strategy is pretty much the same as
290 # above, only we're working from the opposite end
291 # of the list.
292 innerbevel = 0
293 if list[-1][0] > list[-2][0] or list[-1][1] == list[-2][1]:
294 if list[-1][0] >= 0 and list[-1][0] < highlight:
295 innerbevel = list[-1][1]
296
297 # Now we know the adjustment we want to make to the
298 # pixel's overall grey shade due to the outer
299 # bevel, and due to the inner one. We break a tie
300 # in favour of a light outer bevel, but otherwise
301 # add.
302 grey = 3
303 if outerbevel > 0 or outerbevel == innerbevel:
304 innerbevel = 0
305 grey = grey + outerbevel + innerbevel
306
307 pix = greypix(grey / 4.0)
308
309 pixel(x, y, pix, canvas)
310
311 # The side panel is a parallelogram.
312 for x in range(depth):
313 for y in range(height):
314 pixel(x+width, y-x, greypix(0.5), canvas)
315
316 # The top panel is another parallelogram.
317 for x in range(width):
318 for y in range(depth-1):
319 pixel(x+(y+1), -(y+1), greypix(0.75), canvas)
320
321 # And draw a border.
322 border(canvas, size, [(0,int(height-1),BL)])
323
324 return canvas
325
326 def computer(size):
327 # Monitor plus sysbox.
328 out = {}
329 m = monitor(size)
330 s = sysbox(size, out)
331 x = int(round((2+size/(size+1))*size))
332 y = int(out["sysboxheight"] + out["borderthickness"])
333 mb = bbox(m)
334 sb = bbox(s)
335 xoff = sb[0] - mb[0] + x
336 yoff = sb[3] - mb[3] - y
337 overlay(m, xoff, yoff, s)
338 return s
339
340 def lightning(size):
341 canvas = {}
342
343 # The lightning bolt motif.
344
345 # We always want this to be an even number of pixels in height,
346 # and an odd number in width.
347 width = round(7*size) * 2 - 1
348 height = round(8*size) * 2
349
350 # The outer edge of each side of the bolt goes to this point.
351 outery = round(8.4*size)
352 outerx = round(11*size)
353
354 # And the inner edge goes to this point.
355 innery = height - 1 - outery
356 innerx = round(7*size)
357
358 for y in range(int(height)):
359 list = []
360 if y <= outery:
361 list.append(width-1-int(outerx * float(y) / outery + 0.3))
362 if y <= innery:
363 list.append(width-1-int(innerx * float(y) / innery + 0.3))
364 y0 = height-1-y
365 if y0 <= outery:
366 list.append(int(outerx * float(y0) / outery + 0.3))
367 if y0 <= innery:
368 list.append(int(innerx * float(y0) / innery + 0.3))
369 list.sort()
370 for x in range(int(list[0]), int(list[-1]+1)):
371 pixel(x, y, cY, canvas)
372
373 # And draw a border.
374 border(canvas, size, [(int(width-1),0,TR), (0,int(height-1),BL)])
375
376 return canvas
377
378 def document(size):
379 canvas = {}
380
381 # The document used in the PSCP/PSFTP icon.
382
383 width = round(13*size)
384 height = round(16*size)
385
386 lineht = round(1*size)
387 if lineht < 1: lineht = 1
388 linespc = round(0.7*size)
389 if linespc < 1: linespc = 1
390 nlines = int((height-linespc)/(lineht+linespc))
391 height = nlines*(lineht+linespc)+linespc # round this so it fits better
392
393 # Start by drawing a big white rectangle.
394 for y in range(int(height)):
395 for x in range(int(width)):
396 pixel(x, y, cW, canvas)
397
398 # Now draw lines of text.
399 for line in range(nlines):
400 # Decide where this line of text begins.
401 if line == 0:
402 start = round(4*size)
403 elif line < 5*nlines/7:
404 start = round((line - (nlines/7)) * size)
405 else:
406 start = round(1*size)
407 if start < round(1*size):
408 start = round(1*size)
409 # Decide where it ends.
410 endpoints = [10, 8, 11, 6, 5, 7, 5]
411 ey = line * 6.0 / (nlines-1)
412 eyf = math.floor(ey)
413 eyc = math.ceil(ey)
414 exf = endpoints[int(eyf)]
415 exc = endpoints[int(eyc)]
416 if eyf == eyc:
417 end = exf
418 else:
419 end = exf * (eyc-ey) + exc * (ey-eyf)
420 end = round(end * size)
421
422 liney = height - (lineht+linespc) * (line+1)
423 for x in range(int(start), int(end)):
424 for y in range(int(lineht)):
425 pixel(x, y+liney, cK, canvas)
426
427 # And draw a border.
428 border(canvas, size, \
429 [(0,0,TL),(int(width-1),0,TR),(0,int(height-1),BL), \
430 (int(width-1),int(height-1),BR)])
431
432 return canvas
433
434 def hat(size):
435 canvas = {}
436
437 # The secret-agent hat in the Pageant icon.
438
439 topa = [6]*9+[5,3,1,0,0,1,2,2,1,1,1,9,9,10,10,11,11,12,12]
440 topa = [round(x*size) for x in topa]
441 botl = round(topa[0]+2.4*math.sqrt(size))
442 botr = round(topa[-1]+2.4*math.sqrt(size))
443 width = round(len(topa)*size)
444
445 # Line equations for the top and bottom of the hat brim, in the
446 # form y=mx+c. c, of course, needs scaling by size, but m is
447 # independent of size.
448 brimm = 1.0 / 3.75
449 brimtopc = round(4*size/3)
450 brimbotc = round(10*size/3)
451
452 for x in range(int(width)):
453 xs = float(x) * (len(topa)-1) / (width-1)
454 xf = math.floor(xs)
455 xc = math.ceil(xs)
456 topf = topa[int(xf)]
457 topc = topa[int(xc)]
458 if xf == xc:
459 top = topf
460 else:
461 top = topf * (xc-xs) + topc * (xs-xf)
462 top = math.floor(top)
463 bot = round(botl + (botr-botl) * x/(width-1))
464
465 for y in range(int(top), int(bot)):
466 pixel(x, y, cK, canvas)
467
468 # Now draw the brim.
469 for x in range(int(width)):
470 brimtop = brimtopc + brimm * x
471 brimbot = brimbotc + brimm * x
472 for y in range(int(math.floor(brimtop)), int(math.ceil(brimbot))):
473 tophere = max(min(brimtop - y, 1), 0)
474 bothere = max(min(brimbot - y, 1), 0)
475 grey = bothere - tophere
476 # Only draw brim pixels over pixels which are (a) part
477 # of the main hat, and (b) not right on its edge.
478 if canvas.has_key((x,y)) and \
479 canvas.has_key((x,y-1)) and \
480 canvas.has_key((x,y+1)) and \
481 canvas.has_key((x-1,y)) and \
482 canvas.has_key((x+1,y)):
483 pixel(x, y, greypix(grey), canvas)
484
485 return canvas
486
487 def key(size):
488 canvas = {}
489
490 # The key in the PuTTYgen icon.
491
492 keyheadw = round(9.5*size)
493 keyheadh = round(12*size)
494 keyholed = round(4*size)
495 keyholeoff = round(2*size)
496 # Ensure keyheadh and keyshafth have the same parity.
497 keyshafth = round((2*size - (int(keyheadh)&1)) / 2) * 2 + (int(keyheadh)&1)
498 keyshaftw = round(18.5*size)
499 keyhead = [round(x*size) for x in [12,11,8,10,9,8,11,12]]
500
501 squarepix = []
502
503 # Ellipse for the key head, minus an off-centre circular hole.
504 for y in range(int(keyheadh)):
505 dy = (y-(keyheadh-1)/2.0) / (keyheadh/2.0)
506 dyh = (y-(keyheadh-1)/2.0) / (keyholed/2.0)
507 for x in range(int(keyheadw)):
508 dx = (x-(keyheadw-1)/2.0) / (keyheadw/2.0)
509 dxh = (x-(keyheadw-1)/2.0-keyholeoff) / (keyholed/2.0)
510 if dy*dy+dx*dx <= 1 and dyh*dyh+dxh*dxh > 1:
511 pixel(x + keyshaftw, y, cy, canvas)
512
513 # Rectangle for the key shaft, extended at the bottom for the
514 # key head detail.
515 for x in range(int(keyshaftw)):
516 top = round((keyheadh - keyshafth) / 2)
517 bot = round((keyheadh + keyshafth) / 2)
518 xs = float(x) * (len(keyhead)-1) / round((len(keyhead)-1)*size)
519 xf = math.floor(xs)
520 xc = math.ceil(xs)
521 in_head = 0
522 if xc < len(keyhead):
523 in_head = 1
524 yf = keyhead[int(xf)]
525 yc = keyhead[int(xc)]
526 if xf == xc:
527 bot = yf
528 else:
529 bot = yf * (xc-xs) + yc * (xs-xf)
530 for y in range(int(top),int(bot)):
531 pixel(x, y, cy, canvas)
532 if in_head:
533 last = (x, y)
534 if x == 0:
535 squarepix.append((x, int(top), TL))
536 if x == 0:
537 squarepix.append(last + (BL,))
538 if last != None and not in_head:
539 squarepix.append(last + (BR,))
540 last = None
541
542 # And draw a border.
543 border(canvas, size, squarepix)
544
545 return canvas
546
547 def linedist(x1,y1, x2,y2, x,y):
548 # Compute the distance from the point x,y to the line segment
549 # joining x1,y1 to x2,y2. Returns the distance vector, measured
550 # with x,y at the origin.
551
552 vectors = []
553
554 # Special case: if x1,y1 and x2,y2 are the same point, we
555 # don't attempt to extrapolate it into a line at all.
556 if x1 != x2 or y1 != y2:
557 # First, find the nearest point to x,y on the infinite
558 # projection of the line segment. So we construct a vector
559 # n perpendicular to that segment...
560 nx = y2-y1
561 ny = x1-x2
562 # ... compute the dot product of (x1,y1)-(x,y) with that
563 # vector...
564 nd = (x1-x)*nx + (y1-y)*ny
565 # ... multiply by the vector we first thought of...
566 ndx = nd * nx
567 ndy = nd * ny
568 # ... and divide twice by the length of n.
569 ndx = ndx / (nx*nx+ny*ny)
570 ndy = ndy / (nx*nx+ny*ny)
571 # That gives us a displacement vector from x,y to the
572 # nearest point. See if it's within the range of the line
573 # segment.
574 cx = x + ndx
575 cy = y + ndy
576 if cx >= min(x1,x2) and cx <= max(x1,x2) and \
577 cy >= min(y1,y2) and cy <= max(y1,y2):
578 vectors.append((ndx,ndy))
579
580 # Now we have up to three candidate result vectors: (ndx,ndy)
581 # as computed just above, and the two vectors to the ends of
582 # the line segment, (x1-x,y1-y) and (x2-x,y2-y). Pick the
583 # shortest.
584 vectors = vectors + [(x1-x,y1-y), (x2-x,y2-y)]
585 bestlen, best = None, None
586 for v in vectors:
587 vlen = v[0]*v[0]+v[1]*v[1]
588 if bestlen == None or bestlen > vlen:
589 bestlen = vlen
590 best = v
591 return best
592
593 def spanner(size):
594 canvas = {}
595
596 # The spanner in the config box icon.
597
598 headcentre = 0.5 + round(4*size)
599 headradius = headcentre + 0.1
600 headhighlight = round(1.5*size)
601 holecentre = 0.5 + round(3*size)
602 holeradius = round(2*size)
603 holehighlight = round(1.5*size)
604 shaftend = 0.5 + round(25*size)
605 shaftwidth = round(2*size)
606 shafthighlight = round(1.5*size)
607 cmax = shaftend + shaftwidth
608
609 # Define three line segments, such that the shortest distance
610 # vectors from any point to each of these segments determines
611 # everything we need to know about where it is on the spanner
612 # shape.
613 segments = [
614 ((0,0), (holecentre, holecentre)),
615 ((headcentre, headcentre), (headcentre, headcentre)),
616 ((headcentre+headradius/math.sqrt(2), headcentre+headradius/math.sqrt(2)),
617 (cmax, cmax))
618 ]
619
620 for y in range(int(cmax)):
621 for x in range(int(cmax)):
622 vectors = [linedist(a,b,c,d,x,y) for ((a,b),(c,d)) in segments]
623 dists = [memoisedsqrt(vx*vx+vy*vy) for (vx,vy) in vectors]
624
625 # If the distance to the hole line is less than
626 # holeradius, we're not part of the spanner.
627 if dists[0] < holeradius:
628 continue
629 # If the distance to the head `line' is less than
630 # headradius, we are part of the spanner; likewise if
631 # the distance to the shaft line is less than
632 # shaftwidth _and_ the resulting shaft point isn't
633 # beyond the shaft end.
634 if dists[1] > headradius and \
635 (dists[2] > shaftwidth or x+vectors[2][0] >= shaftend):
636 continue
637
638 # We're part of the spanner. Now compute the highlight
639 # on this pixel. We do this by computing a `slope
640 # vector', which points from this pixel in the
641 # direction of its nearest edge. We store an array of
642 # slope vectors, in polar coordinates.
643 angles = [math.atan2(vy,vx) for (vx,vy) in vectors]
644 slopes = []
645 if dists[0] < holeradius + holehighlight:
646 slopes.append(((dists[0]-holeradius)/holehighlight,angles[0]))
647 if dists[1]/headradius < dists[2]/shaftwidth:
648 if dists[1] > headradius - headhighlight and dists[1] < headradius:
649 slopes.append(((headradius-dists[1])/headhighlight,math.pi+angles[1]))
650 else:
651 if dists[2] > shaftwidth - shafthighlight and dists[2] < shaftwidth:
652 slopes.append(((shaftwidth-dists[2])/shafthighlight,math.pi+angles[2]))
653 # Now we find the smallest distance in that array, if
654 # any, and that gives us a notional position on a
655 # sphere which we can use to compute the final
656 # highlight level.
657 bestdist = None
658 bestangle = 0
659 for dist, angle in slopes:
660 if bestdist == None or bestdist > dist:
661 bestdist = dist
662 bestangle = angle
663 if bestdist == None:
664 bestdist = 1.0
665 sx = (1.0-bestdist) * math.cos(bestangle)
666 sy = (1.0-bestdist) * math.sin(bestangle)
667 sz = math.sqrt(1.0 - sx*sx - sy*sy)
668 shade = sx-sy+sz / math.sqrt(3) # can range from -1 to +1
669 shade = 1.0 - (1-shade)/3
670
671 pixel(x, y, yellowpix(shade), canvas)
672
673 # And draw a border.
674 border(canvas, size, [])
675
676 return canvas
677
678 def box(size, back):
679 canvas = {}
680
681 # The back side of the cardboard box in the installer icon.
682
683 boxwidth = round(15 * size)
684 boxheight = round(12 * size)
685 boxdepth = round(4 * size)
686 boxfrontflapheight = round(5 * size)
687 boxrightflapheight = round(3 * size)
688
689 # Three shades of basically acceptable brown, all achieved by
690 # halftoning between two of the Windows-16 colours. I'm quite
691 # pleased that was feasible at all!
692 dark = halftone(cr, cK)
693 med = halftone(cr, cy)
694 light = halftone(cr, cY)
695 # We define our halftoning parity in such a way that the black
696 # pixels along the RHS of the visible part of the box back
697 # match up with the one-pixel black outline around the
698 # right-hand side of the box. In other words, we want the pixel
699 # at (-1, boxwidth-1) to be black, and hence the one at (0,
700 # boxwidth) too.
701 parityadjust = int(boxwidth) % 2
702
703 # The entire back of the box.
704 if back:
705 for x in range(int(boxwidth + boxdepth)):
706 ytop = max(-x-1, -boxdepth-1)
707 ybot = min(boxheight, boxheight+boxwidth-1-x)
708 for y in range(int(ytop), int(ybot)):
709 pixel(x, y, dark[(x+y+parityadjust) % 2], canvas)
710
711 # Even when drawing the back of the box, we still draw the
712 # whole shape, because that means we get the right overall size
713 # (the flaps make the box front larger than the box back) and
714 # it'll all be overwritten anyway.
715
716 # The front face of the box.
717 for x in range(int(boxwidth)):
718 for y in range(int(boxheight)):
719 pixel(x, y, med[(x+y+parityadjust) % 2], canvas)
720 # The right face of the box.
721 for x in range(int(boxwidth), int(boxwidth+boxdepth)):
722 ybot = boxheight + boxwidth-x
723 ytop = ybot - boxheight
724 for y in range(int(ytop), int(ybot)):
725 pixel(x, y, dark[(x+y+parityadjust) % 2], canvas)
726 # The front flap of the box.
727 for y in range(int(boxfrontflapheight)):
728 xadj = int(round(-0.5*y))
729 for x in range(int(xadj), int(xadj+boxwidth)):
730 pixel(x, y, light[(x+y+parityadjust) % 2], canvas)
731 # The right flap of the box.
732 for x in range(int(boxwidth), int(boxwidth + boxdepth + boxrightflapheight + 1)):
733 ytop = max(boxwidth - 1 - x, x - boxwidth - 2*boxdepth - 1)
734 ybot = min(x - boxwidth - 1, boxwidth + 2*boxrightflapheight - 1 - x)
735 for y in range(int(ytop), int(ybot+1)):
736 pixel(x, y, med[(x+y+parityadjust) % 2], canvas)
737
738 # And draw a border.
739 border(canvas, size, [(0, int(boxheight)-1, BL)])
740
741 return canvas
742
743 def boxback(size):
744 return box(size, 1)
745 def boxfront(size):
746 return box(size, 0)
747
748 # Functions to draw entire icons by composing the above components.
749
750 def xybolt(c1, c2, size, boltoffx=0, boltoffy=0, aux={}):
751 # Two unspecified objects and a lightning bolt.
752
753 canvas = {}
754 w = h = round(32 * size)
755
756 bolt = lightning(size)
757
758 # Position c2 against the top right of the icon.
759 bb = bbox(c2)
760 assert bb[2]-bb[0] <= w and bb[3]-bb[1] <= h
761 overlay(c2, w-bb[2], 0-bb[1], canvas)
762 aux["c2pos"] = (w-bb[2], 0-bb[1])
763 # Position c1 against the bottom left of the icon.
764 bb = bbox(c1)
765 assert bb[2]-bb[0] <= w and bb[3]-bb[1] <= h
766 overlay(c1, 0-bb[0], h-bb[3], canvas)
767 aux["c1pos"] = (0-bb[0], h-bb[3])
768 # Place the lightning bolt artistically off-centre. (The
769 # rationale for this positioning is that it's centred on the
770 # midpoint between the centres of the two monitors in the PuTTY
771 # icon proper, but it's not really feasible to _base_ the
772 # calculation here on that.)
773 bb = bbox(bolt)
774 assert bb[2]-bb[0] <= w and bb[3]-bb[1] <= h
775 overlay(bolt, (w-bb[0]-bb[2])/2 + round(boltoffx*size), \
776 (h-bb[1]-bb[3])/2 + round((boltoffy-2)*size), canvas)
777
778 return canvas
779
780 def putty_icon(size):
781 return xybolt(computer(size), computer(size), size)
782
783 def puttycfg_icon(size):
784 w = h = round(32 * size)
785 s = spanner(size)
786 canvas = putty_icon(size)
787 # Centre the spanner.
788 bb = bbox(s)
789 overlay(s, (w-bb[0]-bb[2])/2, (h-bb[1]-bb[3])/2, canvas)
790 return canvas
791
792 def puttygen_icon(size):
793 return xybolt(computer(size), key(size), size, boltoffx=2)
794
795 def pscp_icon(size):
796 return xybolt(document(size), computer(size), size)
797
798 def puttyins_icon(size):
799 aret = {}
800 # The box back goes behind the lightning bolt.
801 canvas = xybolt(boxback(size), computer(size), size, boltoffx=-2, boltoffy=+1, aux=aret)
802 # But the box front goes over the top, so that the lightning
803 # bolt appears to come _out_ of the box. Here it's useful to
804 # know the exact coordinates where xybolt placed the box back,
805 # so we can overlay the box front exactly on top of it.
806 c1x, c1y = aret["c1pos"]
807 overlay(boxfront(size), c1x, c1y, canvas)
808 return canvas
809
810 def pterm_icon(size):
811 # Just a really big computer.
812
813 canvas = {}
814 w = h = round(32 * size)
815
816 c = computer(size * 1.4)
817
818 # Centre c in the return canvas.
819 bb = bbox(c)
820 assert bb[2]-bb[0] <= w and bb[3]-bb[1] <= h
821 overlay(c, (w-bb[0]-bb[2])/2, (h-bb[1]-bb[3])/2, canvas)
822
823 return canvas
824
825 def ptermcfg_icon(size):
826 w = h = round(32 * size)
827 s = spanner(size)
828 canvas = pterm_icon(size)
829 # Centre the spanner.
830 bb = bbox(s)
831 overlay(s, (w-bb[0]-bb[2])/2, (h-bb[1]-bb[3])/2, canvas)
832 return canvas
833
834 def pageant_icon(size):
835 # A biggish computer, in a hat.
836
837 canvas = {}
838 w = h = round(32 * size)
839
840 c = computer(size * 1.2)
841 ht = hat(size)
842
843 cbb = bbox(c)
844 hbb = bbox(ht)
845
846 # Determine the relative y-coordinates of the computer and hat.
847 # We just centre the one on the other.
848 xrel = (cbb[0]+cbb[2]-hbb[0]-hbb[2])/2
849
850 # Determine the relative y-coordinates of the computer and hat.
851 # We do this by sitting the hat as low down on the computer as
852 # possible without any computer showing over the top. To do
853 # this we first have to find the minimum x coordinate at each
854 # y-coordinate of both components.
855 cty = topy(c)
856 hty = topy(ht)
857 yrelmin = None
858 for cx in cty.keys():
859 hx = cx - xrel
860 assert hty.has_key(hx)
861 yrel = cty[cx] - hty[hx]
862 if yrelmin == None:
863 yrelmin = yrel
864 else:
865 yrelmin = min(yrelmin, yrel)
866
867 # Overlay the hat on the computer.
868 overlay(ht, xrel, yrelmin, c)
869
870 # And centre the result in the main icon canvas.
871 bb = bbox(c)
872 assert bb[2]-bb[0] <= w and bb[3]-bb[1] <= h
873 overlay(c, (w-bb[0]-bb[2])/2, (h-bb[1]-bb[3])/2, canvas)
874
875 return canvas
876
877 # Test and output functions.
878
879 import os
880 import sys
881
882 def testrun(func, fname):
883 canvases = []
884 for size in [0.5, 0.6, 1.0, 1.2, 1.5, 4.0]:
885 canvases.append(func(size))
886 wid = 0
887 ht = 0
888 for canvas in canvases:
889 minx, miny, maxx, maxy = bbox(canvas)
890 wid = max(wid, maxx-minx+4)
891 ht = ht + maxy-miny+4
892 block = []
893 for canvas in canvases:
894 minx, miny, maxx, maxy = bbox(canvas)
895 block.extend(render(canvas, minx-2, miny-2, minx-2+wid, maxy+2))
896 p = os.popen("convert -depth 8 -size %dx%d rgb:- %s" % (wid,ht,fname), "w")
897 assert len(block) == ht
898 for line in block:
899 assert len(line) == wid
900 for r, g, b, a in line:
901 # Composite on to orange.
902 r = int(round((r * a + 255 * (255-a)) / 255.0))
903 g = int(round((g * a + 128 * (255-a)) / 255.0))
904 b = int(round((b * a + 0 * (255-a)) / 255.0))
905 p.write("%c%c%c" % (r,g,b))
906 p.close()
907
908 def drawicon(func, width, fname, orangebackground = 0):
909 canvas = func(width / 32.0)
910 finalise(canvas)
911 minx, miny, maxx, maxy = bbox(canvas)
912 assert minx >= 0 and miny >= 0 and maxx <= width and maxy <= width
913
914 block = render(canvas, 0, 0, width, width)
915 p = os.popen("convert -depth 8 -size %dx%d rgba:- %s" % (width,width,fname), "w")
916 assert len(block) == width
917 for line in block:
918 assert len(line) == width
919 for r, g, b, a in line:
920 if orangebackground:
921 # Composite on to orange.
922 r = int(round((r * a + 255 * (255-a)) / 255.0))
923 g = int(round((g * a + 128 * (255-a)) / 255.0))
924 b = int(round((b * a + 0 * (255-a)) / 255.0))
925 a = 255
926 p.write("%c%c%c%c" % (r,g,b,a))
927 p.close()
928
929 args = sys.argv[1:]
930
931 orangebackground = test = 0
932 colours = 1 # 0=mono, 1=16col, 2=truecol
933 doingargs = 1
934
935 realargs = []
936 for arg in args:
937 if doingargs and arg[0] == "-":
938 if arg == "-t":
939 test = 1
940 elif arg == "-it":
941 orangebackground = 1
942 elif arg == "-2":
943 colours = 0
944 elif arg == "-T":
945 colours = 2
946 elif arg == "--":
947 doingargs = 0
948 else:
949 sys.stderr.write("unrecognised option '%s'\n" % arg)
950 sys.exit(1)
951 else:
952 realargs.append(arg)
953
954 if colours == 0:
955 # Monochrome.
956 cK=cr=cg=cb=cm=cc=cP=cw=cR=cG=cB=cM=cC=cD = 0
957 cY=cy=cW = 1
958 cT = -1
959 def greypix(value):
960 return [cK,cW][int(round(value))]
961 def yellowpix(value):
962 return [cK,cW][int(round(value))]
963 def bluepix(value):
964 return cK
965 def dark(value):
966 return [cT,cK][int(round(value))]
967 def blend(col1, col2):
968 if col1 == cT:
969 return col2
970 else:
971 return col1
972 pixvals = [
973 (0x00, 0x00, 0x00, 0xFF), # cK
974 (0xFF, 0xFF, 0xFF, 0xFF), # cW
975 (0x00, 0x00, 0x00, 0x00), # cT
976 ]
977 def outpix(colour):
978 return pixvals[colour]
979 def finalisepix(colour):
980 return colour
981 def halftone(col1, col2):
982 return (col1, col2)
983 elif colours == 1:
984 # Windows 16-colour palette.
985 cK,cr,cg,cy,cb,cm,cc,cP,cw,cR,cG,cY,cB,cM,cC,cW = range(16)
986 cT = -1
987 cD = -2 # special translucent half-darkening value used internally
988 def greypix(value):
989 return [cK,cw,cw,cP,cW][int(round(4*value))]
990 def yellowpix(value):
991 return [cK,cy,cY][int(round(2*value))]
992 def bluepix(value):
993 return [cK,cb,cB][int(round(2*value))]
994 def dark(value):
995 return [cT,cD,cK][int(round(2*value))]
996 def blend(col1, col2):
997 if col1 == cT:
998 return col2
999 elif col1 == cD:
1000 return [cK,cK,cK,cK,cK,cK,cK,cw,cK,cr,cg,cy,cb,cm,cc,cw,cD,cD][col2]
1001 else:
1002 return col1
1003 pixvals = [
1004 (0x00, 0x00, 0x00, 0xFF), # cK
1005 (0x80, 0x00, 0x00, 0xFF), # cr
1006 (0x00, 0x80, 0x00, 0xFF), # cg
1007 (0x80, 0x80, 0x00, 0xFF), # cy
1008 (0x00, 0x00, 0x80, 0xFF), # cb
1009 (0x80, 0x00, 0x80, 0xFF), # cm
1010 (0x00, 0x80, 0x80, 0xFF), # cc
1011 (0xC0, 0xC0, 0xC0, 0xFF), # cP
1012 (0x80, 0x80, 0x80, 0xFF), # cw
1013 (0xFF, 0x00, 0x00, 0xFF), # cR
1014 (0x00, 0xFF, 0x00, 0xFF), # cG
1015 (0xFF, 0xFF, 0x00, 0xFF), # cY
1016 (0x00, 0x00, 0xFF, 0xFF), # cB
1017 (0xFF, 0x00, 0xFF, 0xFF), # cM
1018 (0x00, 0xFF, 0xFF, 0xFF), # cC
1019 (0xFF, 0xFF, 0xFF, 0xFF), # cW
1020 (0x00, 0x00, 0x00, 0x80), # cD
1021 (0x00, 0x00, 0x00, 0x00), # cT
1022 ]
1023 def outpix(colour):
1024 return pixvals[colour]
1025 def finalisepix(colour):
1026 # cD is used internally, but can't be output. Convert to cK.
1027 if colour == cD:
1028 return cK
1029 return colour
1030 def halftone(col1, col2):
1031 return (col1, col2)
1032 else:
1033 # True colour.
1034 cK = (0x00, 0x00, 0x00, 0xFF)
1035 cr = (0x80, 0x00, 0x00, 0xFF)
1036 cg = (0x00, 0x80, 0x00, 0xFF)
1037 cy = (0x80, 0x80, 0x00, 0xFF)
1038 cb = (0x00, 0x00, 0x80, 0xFF)
1039 cm = (0x80, 0x00, 0x80, 0xFF)
1040 cc = (0x00, 0x80, 0x80, 0xFF)
1041 cP = (0xC0, 0xC0, 0xC0, 0xFF)
1042 cw = (0x80, 0x80, 0x80, 0xFF)
1043 cR = (0xFF, 0x00, 0x00, 0xFF)
1044 cG = (0x00, 0xFF, 0x00, 0xFF)
1045 cY = (0xFF, 0xFF, 0x00, 0xFF)
1046 cB = (0x00, 0x00, 0xFF, 0xFF)
1047 cM = (0xFF, 0x00, 0xFF, 0xFF)
1048 cC = (0x00, 0xFF, 0xFF, 0xFF)
1049 cW = (0xFF, 0xFF, 0xFF, 0xFF)
1050 cD = (0x00, 0x00, 0x00, 0x80)
1051 cT = (0x00, 0x00, 0x00, 0x00)
1052 def greypix(value):
1053 value = max(min(value, 1), 0)
1054 return (int(round(0xFF*value)),) * 3 + (0xFF,)
1055 def yellowpix(value):
1056 value = max(min(value, 1), 0)
1057 return (int(round(0xFF*value)),) * 2 + (0, 0xFF)
1058 def bluepix(value):
1059 value = max(min(value, 1), 0)
1060 return (0, 0, int(round(0xFF*value)), 0xFF)
1061 def dark(value):
1062 value = max(min(value, 1), 0)
1063 return (0, 0, 0, int(round(0xFF*value)))
1064 def blend(col1, col2):
1065 r1,g1,b1,a1 = col1
1066 r2,g2,b2,a2 = col2
1067 r = int(round((r1*a1 + r2*(0xFF-a1)) / 255.0))
1068 g = int(round((g1*a1 + g2*(0xFF-a1)) / 255.0))
1069 b = int(round((b1*a1 + b2*(0xFF-a1)) / 255.0))
1070 a = int(round((255*a1 + a2*(0xFF-a1)) / 255.0))
1071 return r, g, b, a
1072 def outpix(colour):
1073 return colour
1074 if colours == 2:
1075 # True colour with no alpha blending: we still have to
1076 # finalise half-dark pixels to black.
1077 def finalisepix(colour):
1078 if colour[3] > 0:
1079 return colour[:3] + (0xFF,)
1080 return colour
1081 else:
1082 def finalisepix(colour):
1083 return colour
1084 def halftone(col1, col2):
1085 r1,g1,b1,a1 = col1
1086 r2,g2,b2,a2 = col2
1087 colret = (int(r1+r2)/2, int(g1+g2)/2, int(b1+b2)/2, int(a1+a2)/2)
1088 return (colret, colret)
1089
1090 if test:
1091 testrun(eval(realargs[0]), realargs[1])
1092 else:
1093 drawicon(eval(realargs[0]), int(realargs[1]), realargs[2], orangebackground)