]> git.ipfire.org Git - people/ms/u-boot.git/blame - drivers/ddr/fsl/ddr2_dimm_params.c
Add more SPDX-License-Identifier tags
[people/ms/u-boot.git] / drivers / ddr / fsl / ddr2_dimm_params.c
CommitLineData
233fdd50
KG
1/*
2 * Copyright 2008 Freescale Semiconductor, Inc.
3 *
5b8031cc 4 * SPDX-License-Identifier: GPL-2.0
233fdd50
KG
5 */
6
7#include <common.h>
5614e71b 8#include <fsl_ddr_sdram.h>
233fdd50 9
5614e71b 10#include <fsl_ddr.h>
233fdd50
KG
11/*
12 * Calculate the Density of each Physical Rank.
13 * Returned size is in bytes.
14 *
15 * Study these table from Byte 31 of JEDEC SPD Spec.
16 *
17 * DDR I DDR II
18 * Bit Size Size
19 * --- ----- ------
20 * 7 high 512MB 512MB
21 * 6 256MB 256MB
22 * 5 128MB 128MB
23 * 4 64MB 16GB
24 * 3 32MB 8GB
25 * 2 16MB 4GB
26 * 1 2GB 2GB
27 * 0 low 1GB 1GB
28 *
29 * Reorder Table to be linear by stripping the bottom
30 * 2 or 5 bits off and shifting them up to the top.
31 *
32 */
e7563aff 33static unsigned long long
233fdd50
KG
34compute_ranksize(unsigned int mem_type, unsigned char row_dens)
35{
e7563aff 36 unsigned long long bsize;
233fdd50
KG
37
38 /* Bottom 5 bits up to the top. */
39 bsize = ((row_dens >> 5) | ((row_dens & 31) << 3));
40 bsize <<= 27ULL;
cd84b1fa 41 debug("DDR: DDR II rank density = 0x%16llx\n", bsize);
233fdd50
KG
42
43 return bsize;
44}
45
46/*
47 * Convert a two-nibble BCD value into a cycle time.
48 * While the spec calls for nano-seconds, picos are returned.
49 *
50 * This implements the tables for bytes 9, 23 and 25 for both
51 * DDR I and II. No allowance for distinguishing the invalid
52 * fields absent for DDR I yet present in DDR II is made.
53 * (That is, cycle times of .25, .33, .66 and .75 ns are
54 * allowed for both DDR II and I.)
55 */
56static unsigned int
57convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
58{
59 /* Table look up the lower nibble, allow DDR I & II. */
60 unsigned int tenths_ps[16] = {
61 0,
62 100,
63 200,
64 300,
65 400,
66 500,
67 600,
68 700,
69 800,
70 900,
71 250, /* This and the next 3 entries valid ... */
72 330, /* ... only for tCK calculations. */
73 660,
74 750,
75 0, /* undefined */
76 0 /* undefined */
77 };
78
79 unsigned int whole_ns = (spd_val & 0xF0) >> 4;
80 unsigned int tenth_ns = spd_val & 0x0F;
81 unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
82
83 return ps;
84}
85
86static unsigned int
87convert_bcd_hundredths_to_cycle_time_ps(unsigned int spd_val)
88{
89 unsigned int tenth_ns = (spd_val & 0xF0) >> 4;
90 unsigned int hundredth_ns = spd_val & 0x0F;
91 unsigned int ps = tenth_ns * 100 + hundredth_ns * 10;
92
93 return ps;
94}
95
96static unsigned int byte40_table_ps[8] = {
97 0,
98 250,
99 330,
100 500,
101 660,
102 750,
103 0, /* supposed to be RFC, but not sure what that means */
104 0 /* Undefined */
105};
106
107static unsigned int
108compute_trfc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trfc)
109{
110 unsigned int trfc_ps;
111
112 trfc_ps = (((trctrfc_ext & 0x1) * 256) + trfc) * 1000
113 + byte40_table_ps[(trctrfc_ext >> 1) & 0x7];
114
115 return trfc_ps;
116}
117
118static unsigned int
119compute_trc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trc)
120{
121 unsigned int trc_ps;
122
123 trc_ps = trc * 1000 + byte40_table_ps[(trctrfc_ext >> 4) & 0x7];
124
125 return trc_ps;
126}
127
128/*
129 * Determine Refresh Rate. Ignore self refresh bit on DDR I.
130 * Table from SPD Spec, Byte 12, converted to picoseconds and
131 * filled in with "default" normal values.
132 */
133static unsigned int
134determine_refresh_rate_ps(const unsigned int spd_refresh)
135{
136 unsigned int refresh_time_ps[8] = {
137 15625000, /* 0 Normal 1.00x */
138 3900000, /* 1 Reduced .25x */
139 7800000, /* 2 Extended .50x */
140 31300000, /* 3 Extended 2.00x */
141 62500000, /* 4 Extended 4.00x */
142 125000000, /* 5 Extended 8.00x */
143 15625000, /* 6 Normal 1.00x filler */
144 15625000, /* 7 Normal 1.00x filler */
145 };
146
147 return refresh_time_ps[spd_refresh & 0x7];
148}
149
150/*
151 * The purpose of this function is to compute a suitable
152 * CAS latency given the DRAM clock period. The SPD only
153 * defines at most 3 CAS latencies. Typically the slower in
154 * frequency the DIMM runs at, the shorter its CAS latency can.
155 * be. If the DIMM is operating at a sufficiently low frequency,
156 * it may be able to run at a CAS latency shorter than the
157 * shortest SPD-defined CAS latency.
158 *
159 * If a CAS latency is not found, 0 is returned.
160 *
161 * Do this by finding in the standard speed bin table the longest
162 * tCKmin that doesn't exceed the value of mclk_ps (tCK).
163 *
164 * An assumption made is that the SDRAM device allows the
165 * CL to be programmed for a value that is lower than those
166 * advertised by the SPD. This is not always the case,
167 * as those modes not defined in the SPD are optional.
168 *
169 * CAS latency de-rating based upon values JEDEC Standard No. 79-2C
170 * Table 40, "DDR2 SDRAM stanadard speed bins and tCK, tRCD, tRP, tRAS,
171 * and tRC for corresponding bin"
172 *
173 * ordinal 2, ddr2_speed_bins[1] contains tCK for CL=3
174 * Not certain if any good value exists for CL=2
175 */
bcb6c2bb
YS
176 /* CL2 CL3 CL4 CL5 CL6 CL7*/
177unsigned short ddr2_speed_bins[] = { 0, 5000, 3750, 3000, 2500, 1875 };
233fdd50
KG
178
179unsigned int
180compute_derated_DDR2_CAS_latency(unsigned int mclk_ps)
181{
182 const unsigned int num_speed_bins = ARRAY_SIZE(ddr2_speed_bins);
183 unsigned int lowest_tCKmin_found = 0;
184 unsigned int lowest_tCKmin_CL = 0;
185 unsigned int i;
186
187 debug("mclk_ps = %u\n", mclk_ps);
188
189 for (i = 0; i < num_speed_bins; i++) {
190 unsigned int x = ddr2_speed_bins[i];
191 debug("i=%u, x = %u, lowest_tCKmin_found = %u\n",
192 i, x, lowest_tCKmin_found);
193 if (x && x <= mclk_ps && x >= lowest_tCKmin_found ) {
194 lowest_tCKmin_found = x;
195 lowest_tCKmin_CL = i + 2;
196 }
197 }
198
199 debug("lowest_tCKmin_CL = %u\n", lowest_tCKmin_CL);
200
201 return lowest_tCKmin_CL;
202}
203
204/*
205 * ddr_compute_dimm_parameters for DDR2 SPD
206 *
207 * Compute DIMM parameters based upon the SPD information in spd.
208 * Writes the results to the dimm_params_t structure pointed by pdimm.
209 *
210 * FIXME: use #define for the retvals
211 */
03e664d8
YS
212unsigned int ddr_compute_dimm_parameters(const unsigned int ctrl_num,
213 const ddr2_spd_eeprom_t *spd,
214 dimm_params_t *pdimm,
215 unsigned int dimm_number)
233fdd50
KG
216{
217 unsigned int retval;
218
219 if (spd->mem_type) {
220 if (spd->mem_type != SPD_MEMTYPE_DDR2) {
221 printf("DIMM %u: is not a DDR2 SPD.\n", dimm_number);
222 return 1;
223 }
224 } else {
225 memset(pdimm, 0, sizeof(dimm_params_t));
226 return 1;
227 }
228
229 retval = ddr2_spd_check(spd);
230 if (retval) {
231 printf("DIMM %u: failed checksum\n", dimm_number);
232 return 2;
233 }
234
235 /*
236 * The part name in ASCII in the SPD EEPROM is not null terminated.
237 * Guarantee null termination here by presetting all bytes to 0
238 * and copying the part name in ASCII from the SPD onto it
239 */
240 memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
241 memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
242
243 /* DIMM organization parameters */
244 pdimm->n_ranks = (spd->mod_ranks & 0x7) + 1;
245 pdimm->rank_density = compute_ranksize(spd->mem_type, spd->rank_dens);
246 pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
247 pdimm->data_width = spd->dataw;
248 pdimm->primary_sdram_width = spd->primw;
249 pdimm->ec_sdram_width = spd->ecw;
250
c7fd27cc 251 /* These are all the types defined by the JEDEC DDR2 SPD 1.3 spec */
233fdd50 252 switch (spd->dimm_type) {
c7fd27cc
KM
253 case DDR2_SPD_DIMMTYPE_RDIMM:
254 case DDR2_SPD_DIMMTYPE_72B_SO_RDIMM:
255 case DDR2_SPD_DIMMTYPE_MINI_RDIMM:
256 /* Registered/buffered DIMMs */
257 pdimm->registered_dimm = 1;
233fdd50
KG
258 break;
259
c7fd27cc
KM
260 case DDR2_SPD_DIMMTYPE_UDIMM:
261 case DDR2_SPD_DIMMTYPE_SO_DIMM:
262 case DDR2_SPD_DIMMTYPE_MICRO_DIMM:
263 case DDR2_SPD_DIMMTYPE_MINI_UDIMM:
264 /* Unbuffered DIMMs */
265 pdimm->registered_dimm = 0;
233fdd50
KG
266 break;
267
c7fd27cc 268 case DDR2_SPD_DIMMTYPE_72B_SO_CDIMM:
233fdd50
KG
269 default:
270 printf("unknown dimm_type 0x%02X\n", spd->dimm_type);
271 return 1;
233fdd50
KG
272 }
273
274 /* SDRAM device parameters */
275 pdimm->n_row_addr = spd->nrow_addr;
276 pdimm->n_col_addr = spd->ncol_addr;
277 pdimm->n_banks_per_sdram_device = spd->nbanks;
278 pdimm->edc_config = spd->config;
279 pdimm->burst_lengths_bitmask = spd->burstl;
280 pdimm->row_density = spd->rank_dens;
281
282 /*
283 * Calculate the Maximum Data Rate based on the Minimum Cycle time.
284 * The SPD clk_cycle field (tCKmin) is measured in tenths of
285 * nanoseconds and represented as BCD.
286 */
0dd38a35 287 pdimm->tckmin_x_ps
233fdd50 288 = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle);
0dd38a35 289 pdimm->tckmin_x_minus_1_ps
233fdd50 290 = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle2);
0dd38a35 291 pdimm->tckmin_x_minus_2_ps
233fdd50
KG
292 = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle3);
293
0dd38a35 294 pdimm->tckmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd->tckmax);
233fdd50
KG
295
296 /*
297 * Compute CAS latencies defined by SPD
0dd38a35 298 * The SPD caslat_x should have at least 1 and at most 3 bits set.
233fdd50
KG
299 *
300 * If cas_lat after masking is 0, the __ilog2 function returns
301 * 255 into the variable. This behavior is abused once.
302 */
0dd38a35
PJ
303 pdimm->caslat_x = __ilog2(spd->cas_lat);
304 pdimm->caslat_x_minus_1 = __ilog2(spd->cas_lat
305 & ~(1 << pdimm->caslat_x));
306 pdimm->caslat_x_minus_2 = __ilog2(spd->cas_lat
307 & ~(1 << pdimm->caslat_x)
308 & ~(1 << pdimm->caslat_x_minus_1));
233fdd50
KG
309
310 /* Compute CAS latencies below that defined by SPD */
03e664d8
YS
311 pdimm->caslat_lowest_derated = compute_derated_DDR2_CAS_latency(
312 get_memory_clk_period_ps(ctrl_num));
233fdd50
KG
313
314 /* Compute timing parameters */
0dd38a35
PJ
315 pdimm->trcd_ps = spd->trcd * 250;
316 pdimm->trp_ps = spd->trp * 250;
317 pdimm->tras_ps = spd->tras * 1000;
233fdd50 318
0dd38a35
PJ
319 pdimm->twr_ps = spd->twr * 250;
320 pdimm->twtr_ps = spd->twtr * 250;
321 pdimm->trfc_ps = compute_trfc_ps_from_spd(spd->trctrfc_ext, spd->trfc);
233fdd50 322
0dd38a35
PJ
323 pdimm->trrd_ps = spd->trrd * 250;
324 pdimm->trc_ps = compute_trc_ps_from_spd(spd->trctrfc_ext, spd->trc);
233fdd50
KG
325
326 pdimm->refresh_rate_ps = determine_refresh_rate_ps(spd->refresh);
327
0dd38a35
PJ
328 pdimm->tis_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_setup);
329 pdimm->tih_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_hold);
330 pdimm->tds_ps
233fdd50 331 = convert_bcd_hundredths_to_cycle_time_ps(spd->data_setup);
0dd38a35 332 pdimm->tdh_ps
233fdd50
KG
333 = convert_bcd_hundredths_to_cycle_time_ps(spd->data_hold);
334
0dd38a35
PJ
335 pdimm->trtp_ps = spd->trtp * 250;
336 pdimm->tdqsq_max_ps = spd->tdqsq * 10;
337 pdimm->tqhs_ps = spd->tqhs * 10;
233fdd50
KG
338
339 return 0;
340}