]> git.ipfire.org Git - people/ms/u-boot.git/blame - drivers/mtd/nand/davinci_nand.c
NAND: Fix integer overflow in ONFI detection of chips >= 4GiB
[people/ms/u-boot.git] / drivers / mtd / nand / davinci_nand.c
CommitLineData
c74b2108
SK
1/*
2 * NAND driver for TI DaVinci based boards.
3 *
4 * Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net>
5 *
6 * Based on Linux DaVinci NAND driver by TI. Original copyright follows:
7 */
8
9/*
10 *
11 * linux/drivers/mtd/nand/nand_davinci.c
12 *
13 * NAND Flash Driver
14 *
15 * Copyright (C) 2006 Texas Instruments.
16 *
17 * ----------------------------------------------------------------------------
18 *
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License as published by
21 * the Free Software Foundation; either version 2 of the License, or
22 * (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 * ----------------------------------------------------------------------------
33 *
34 * Overview:
35 * This is a device driver for the NAND flash device found on the
36 * DaVinci board which utilizes the Samsung k9k2g08 part.
37 *
38 Modifications:
39 ver. 1.0: Feb 2005, Vinod/Sudhakar
40 -
41 *
42 */
43
44#include <common.h>
cfa460ad 45#include <asm/io.h>
c74b2108
SK
46#include <nand.h>
47#include <asm/arch/nand_defs.h>
48#include <asm/arch/emif_defs.h>
49
77b351cd
SP
50/* Definitions for 4-bit hardware ECC */
51#define NAND_TIMEOUT 10240
52#define NAND_ECC_BUSY 0xC
53#define NAND_4BITECC_MASK 0x03FF03FF
54#define EMIF_NANDFSR_ECC_STATE_MASK 0x00000F00
55#define ECC_STATE_NO_ERR 0x0
56#define ECC_STATE_TOO_MANY_ERRS 0x1
57#define ECC_STATE_ERR_CORR_COMP_P 0x2
58#define ECC_STATE_ERR_CORR_COMP_N 0x3
59
20da6f4d
NT
60/*
61 * Exploit the little endianness of the ARM to do multi-byte transfers
62 * per device read. This can perform over twice as quickly as individual
63 * byte transfers when buffer alignment is conducive.
64 *
65 * NOTE: This only works if the NAND is not connected to the 2 LSBs of
66 * the address bus. On Davinci EVM platforms this has always been true.
67 */
68static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
69{
70 struct nand_chip *chip = mtd->priv;
71 const u32 *nand = chip->IO_ADDR_R;
72
73 /* Make sure that buf is 32 bit aligned */
74 if (((int)buf & 0x3) != 0) {
75 if (((int)buf & 0x1) != 0) {
76 if (len) {
77 *buf = readb(nand);
78 buf += 1;
79 len--;
80 }
81 }
82
83 if (((int)buf & 0x3) != 0) {
84 if (len >= 2) {
85 *(u16 *)buf = readw(nand);
86 buf += 2;
87 len -= 2;
88 }
89 }
90 }
91
92 /* copy aligned data */
93 while (len >= 4) {
cc41a59a 94 *(u32 *)buf = __raw_readl(nand);
20da6f4d
NT
95 buf += 4;
96 len -= 4;
97 }
98
99 /* mop up any remaining bytes */
100 if (len) {
101 if (len >= 2) {
102 *(u16 *)buf = readw(nand);
103 buf += 2;
104 len -= 2;
105 }
106
107 if (len)
108 *buf = readb(nand);
109 }
110}
111
112static void nand_davinci_write_buf(struct mtd_info *mtd, const uint8_t *buf,
113 int len)
114{
115 struct nand_chip *chip = mtd->priv;
116 const u32 *nand = chip->IO_ADDR_W;
117
118 /* Make sure that buf is 32 bit aligned */
119 if (((int)buf & 0x3) != 0) {
120 if (((int)buf & 0x1) != 0) {
121 if (len) {
122 writeb(*buf, nand);
123 buf += 1;
124 len--;
125 }
126 }
127
128 if (((int)buf & 0x3) != 0) {
129 if (len >= 2) {
130 writew(*(u16 *)buf, nand);
131 buf += 2;
132 len -= 2;
133 }
134 }
135 }
136
137 /* copy aligned data */
138 while (len >= 4) {
cc41a59a 139 __raw_writel(*(u32 *)buf, nand);
20da6f4d
NT
140 buf += 4;
141 len -= 4;
142 }
143
144 /* mop up any remaining bytes */
145 if (len) {
146 if (len >= 2) {
147 writew(*(u16 *)buf, nand);
148 buf += 2;
149 len -= 2;
150 }
151
152 if (len)
153 writeb(*buf, nand);
154 }
155}
156
cc41a59a
CC
157static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
158 unsigned int ctrl)
c74b2108
SK
159{
160 struct nand_chip *this = mtd->priv;
161 u_int32_t IO_ADDR_W = (u_int32_t)this->IO_ADDR_W;
162
cfa460ad 163 if (ctrl & NAND_CTRL_CHANGE) {
20da6f4d
NT
164 IO_ADDR_W &= ~(MASK_ALE|MASK_CLE);
165
cc41a59a 166 if (ctrl & NAND_CLE)
c74b2108 167 IO_ADDR_W |= MASK_CLE;
cc41a59a 168 if (ctrl & NAND_ALE)
c74b2108 169 IO_ADDR_W |= MASK_ALE;
cfa460ad 170 this->IO_ADDR_W = (void __iomem *) IO_ADDR_W;
c74b2108
SK
171 }
172
5e1dae5c 173 if (cmd != NAND_CMD_NONE)
20da6f4d 174 writeb(cmd, IO_ADDR_W);
c74b2108
SK
175}
176
6d0f6bcf 177#ifdef CONFIG_SYS_NAND_HW_ECC
c74b2108
SK
178
179static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode)
180{
97f4eb8c 181 u_int32_t val;
c74b2108 182
cc41a59a
CC
183 (void)__raw_readl(&(davinci_emif_regs->nandfecc[
184 CONFIG_SYS_NAND_CS - 2]));
c74b2108 185
cc41a59a 186 val = __raw_readl(&davinci_emif_regs->nandfcr);
26be2c53 187 val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
97f4eb8c 188 val |= DAVINCI_NANDFCR_1BIT_ECC_START(CONFIG_SYS_NAND_CS);
cc41a59a 189 __raw_writel(val, &davinci_emif_regs->nandfcr);
c74b2108
SK
190}
191
192static u_int32_t nand_davinci_readecc(struct mtd_info *mtd, u_int32_t region)
193{
194 u_int32_t ecc = 0;
c74b2108 195
cc41a59a 196 ecc = __raw_readl(&(davinci_emif_regs->nandfecc[region - 1]));
c74b2108 197
cc41a59a 198 return ecc;
c74b2108
SK
199}
200
cc41a59a
CC
201static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
202 u_char *ecc_code)
c74b2108
SK
203{
204 u_int32_t tmp;
9b05aa78
HV
205 const int region = 1;
206
207 tmp = nand_davinci_readecc(mtd, region);
208
209 /* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits
210 * and shifting. RESERVED bits are 31 to 28 and 15 to 12. */
211 tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4);
212
213 /* Invert so that erased block ECC is correct */
214 tmp = ~tmp;
215
216 *ecc_code++ = tmp;
217 *ecc_code++ = tmp >> 8;
218 *ecc_code++ = tmp >> 16;
c74b2108 219
6e29ed8e
DB
220 /* NOTE: the above code matches mainline Linux:
221 * .PQR.stu ==> ~PQRstu
222 *
223 * MontaVista/TI kernels encode those bytes differently, use
224 * complicated (and allegedly sometimes-wrong) correction code,
225 * and usually shipped with U-Boot that uses software ECC:
226 * .PQR.stu ==> PsQRtu
227 *
228 * If you need MV/TI compatible NAND I/O in U-Boot, it should
229 * be possible to (a) change the mangling above, (b) reverse
230 * that mangling in nand_davinci_correct_data() below.
231 */
c74b2108 232
6e29ed8e 233 return 0;
c74b2108
SK
234}
235
cc41a59a
CC
236static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat,
237 u_char *read_ecc, u_char *calc_ecc)
c74b2108 238{
9b05aa78 239 struct nand_chip *this = mtd->priv;
9b05aa78
HV
240 u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) |
241 (read_ecc[2] << 16);
242 u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) |
243 (calc_ecc[2] << 16);
244 u_int32_t diff = ecc_calc ^ ecc_nand;
245
246 if (diff) {
247 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
248 /* Correctable error */
249 if ((diff >> (12 + 3)) < this->ecc.size) {
250 uint8_t find_bit = 1 << ((diff >> 12) & 7);
251 uint32_t find_byte = diff >> (12 + 3);
252
253 dat[find_byte] ^= find_bit;
254 MTDDEBUG(MTD_DEBUG_LEVEL0, "Correcting single "
255 "bit ECC error at offset: %d, bit: "
256 "%d\n", find_byte, find_bit);
257 return 1;
258 } else {
259 return -1;
260 }
261 } else if (!(diff & (diff - 1))) {
262 /* Single bit ECC error in the ECC itself,
263 nothing to fix */
264 MTDDEBUG(MTD_DEBUG_LEVEL0, "Single bit ECC error in "
265 "ECC.\n");
266 return 1;
267 } else {
268 /* Uncorrectable error */
269 MTDDEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
270 return -1;
271 }
272 }
cc41a59a 273 return 0;
c74b2108 274}
6d0f6bcf 275#endif /* CONFIG_SYS_NAND_HW_ECC */
c74b2108 276
77b351cd
SP
277#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
278static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = {
10a5a799 279#if defined(CONFIG_SYS_NAND_PAGE_2K)
77b351cd
SP
280 .eccbytes = 40,
281 .eccpos = {
282 24, 25, 26, 27, 28,
283 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
284 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
285 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
286 59, 60, 61, 62, 63,
287 },
288 .oobfree = {
289 {.offset = 2, .length = 22, },
290 },
10a5a799
SP
291#elif defined(CONFIG_SYS_NAND_PAGE_4K)
292 .eccbytes = 80,
293 .eccpos = {
294 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
295 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
296 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
297 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
298 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
299 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
300 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
301 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
302 },
303 .oobfree = {
304 {.offset = 2, .length = 46, },
305 },
77b351cd
SP
306#endif
307};
77b351cd
SP
308
309static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode)
310{
311 u32 val;
312
313 switch (mode) {
314 case NAND_ECC_WRITE:
315 case NAND_ECC_READ:
316 /*
317 * Start a new ECC calculation for reading or writing 512 bytes
318 * of data.
319 */
cc41a59a 320 val = __raw_readl(&davinci_emif_regs->nandfcr);
97f4eb8c 321 val &= ~DAVINCI_NANDFCR_4BIT_ECC_SEL_MASK;
26be2c53 322 val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
97f4eb8c
NT
323 val |= DAVINCI_NANDFCR_4BIT_ECC_SEL(CONFIG_SYS_NAND_CS);
324 val |= DAVINCI_NANDFCR_4BIT_ECC_START;
cc41a59a 325 __raw_writel(val, &davinci_emif_regs->nandfcr);
77b351cd
SP
326 break;
327 case NAND_ECC_READSYN:
cc41a59a 328 val = __raw_readl(&davinci_emif_regs->nand4bitecc[0]);
77b351cd
SP
329 break;
330 default:
331 break;
332 }
333}
334
335static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4])
336{
cc41a59a
CC
337 int i;
338
339 for (i = 0; i < 4; i++) {
340 ecc[i] = __raw_readl(&davinci_emif_regs->nand4bitecc[i]) &
341 NAND_4BITECC_MASK;
342 }
77b351cd
SP
343
344 return 0;
345}
346
347static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd,
348 const uint8_t *dat,
349 uint8_t *ecc_code)
350{
20da6f4d
NT
351 unsigned int hw_4ecc[4];
352 unsigned int i;
77b351cd
SP
353
354 nand_davinci_4bit_readecc(mtd, hw_4ecc);
355
356 /*Convert 10 bit ecc value to 8 bit */
20da6f4d
NT
357 for (i = 0; i < 2; i++) {
358 unsigned int hw_ecc_low = hw_4ecc[i * 2];
359 unsigned int hw_ecc_hi = hw_4ecc[(i * 2) + 1];
77b351cd
SP
360
361 /* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */
20da6f4d 362 *ecc_code++ = hw_ecc_low & 0xFF;
77b351cd
SP
363
364 /*
365 * Take 2 bits as LSB bits from val1 (count1=0) or val5
366 * (count1=1) and 6 bits from val2 (count1=0) or
367 * val5 (count1=1)
368 */
20da6f4d
NT
369 *ecc_code++ =
370 ((hw_ecc_low >> 8) & 0x3) | ((hw_ecc_low >> 14) & 0xFC);
77b351cd
SP
371
372 /*
373 * Take 4 bits from val2 (count1=0) or val5 (count1=1) and
374 * 4 bits from val3 (count1=0) or val6 (count1=1)
375 */
20da6f4d
NT
376 *ecc_code++ =
377 ((hw_ecc_low >> 22) & 0xF) | ((hw_ecc_hi << 4) & 0xF0);
77b351cd
SP
378
379 /*
380 * Take 6 bits from val3(count1=0) or val6 (count1=1) and
381 * 2 bits from val4 (count1=0) or val7 (count1=1)
382 */
20da6f4d
NT
383 *ecc_code++ =
384 ((hw_ecc_hi >> 4) & 0x3F) | ((hw_ecc_hi >> 10) & 0xC0);
77b351cd
SP
385
386 /* Take 8 bits from val4 (count1=0) or val7 (count1=1) */
20da6f4d 387 *ecc_code++ = (hw_ecc_hi >> 18) & 0xFF;
77b351cd 388 }
20da6f4d 389
77b351cd
SP
390 return 0;
391}
392
77b351cd
SP
393static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat,
394 uint8_t *read_ecc, uint8_t *calc_ecc)
395{
77b351cd 396 int i;
20da6f4d
NT
397 unsigned int hw_4ecc[4];
398 unsigned int iserror;
399 unsigned short *ecc16;
77b351cd
SP
400 unsigned int numerrors, erroraddress, errorvalue;
401 u32 val;
402
403 /*
404 * Check for an ECC where all bytes are 0xFF. If this is the case, we
405 * will assume we are looking at an erased page and we should ignore
406 * the ECC.
407 */
408 for (i = 0; i < 10; i++) {
409 if (read_ecc[i] != 0xFF)
410 break;
411 }
412 if (i == 10)
413 return 0;
414
415 /* Convert 8 bit in to 10 bit */
20da6f4d 416 ecc16 = (unsigned short *)&read_ecc[0];
77b351cd 417
20da6f4d
NT
418 /*
419 * Write the parity values in the NAND Flash 4-bit ECC Load register.
420 * Write each parity value one at a time starting from 4bit_ecc_val8
421 * to 4bit_ecc_val1.
422 */
77b351cd 423
20da6f4d 424 /*Take 2 bits from 8th byte and 8 bits from 9th byte */
cc41a59a
CC
425 __raw_writel(((ecc16[4]) >> 6) & 0x3FF,
426 &davinci_emif_regs->nand4biteccload);
77b351cd 427
20da6f4d 428 /* Take 4 bits from 7th byte and 6 bits from 8th byte */
cc41a59a
CC
429 __raw_writel((((ecc16[3]) >> 12) & 0xF) | ((((ecc16[4])) << 4) & 0x3F0),
430 &davinci_emif_regs->nand4biteccload);
77b351cd 431
20da6f4d 432 /* Take 6 bits from 6th byte and 4 bits from 7th byte */
cc41a59a
CC
433 __raw_writel((ecc16[3] >> 2) & 0x3FF,
434 &davinci_emif_regs->nand4biteccload);
77b351cd
SP
435
436 /* Take 8 bits from 5th byte and 2 bits from 6th byte */
cc41a59a
CC
437 __raw_writel(((ecc16[2]) >> 8) | ((((ecc16[3])) << 8) & 0x300),
438 &davinci_emif_regs->nand4biteccload);
77b351cd 439
20da6f4d 440 /*Take 2 bits from 3rd byte and 8 bits from 4th byte */
cc41a59a
CC
441 __raw_writel((((ecc16[1]) >> 14) & 0x3) | ((((ecc16[2])) << 2) & 0x3FC),
442 &davinci_emif_regs->nand4biteccload);
77b351cd 443
20da6f4d 444 /* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */
cc41a59a
CC
445 __raw_writel(((ecc16[1]) >> 4) & 0x3FF,
446 &davinci_emif_regs->nand4biteccload);
77b351cd 447
20da6f4d 448 /* Take 6 bits from 1st byte and 4 bits from 2nd byte */
cc41a59a
CC
449 __raw_writel((((ecc16[0]) >> 10) & 0x3F) | (((ecc16[1]) << 6) & 0x3C0),
450 &davinci_emif_regs->nand4biteccload);
77b351cd 451
20da6f4d 452 /* Take 10 bits from 0th and 1st bytes */
cc41a59a
CC
453 __raw_writel((ecc16[0]) & 0x3FF,
454 &davinci_emif_regs->nand4biteccload);
77b351cd
SP
455
456 /*
457 * Perform a dummy read to the EMIF Revision Code and Status register.
458 * This is required to ensure time for syndrome calculation after
459 * writing the ECC values in previous step.
460 */
461
cc41a59a 462 val = __raw_readl(&davinci_emif_regs->nandfsr);
77b351cd
SP
463
464 /*
465 * Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers.
466 * A syndrome value of 0 means no bit errors. If the syndrome is
467 * non-zero then go further otherwise return.
468 */
469 nand_davinci_4bit_readecc(mtd, hw_4ecc);
470
20da6f4d 471 if (!(hw_4ecc[0] | hw_4ecc[1] | hw_4ecc[2] | hw_4ecc[3]))
77b351cd
SP
472 return 0;
473
474 /*
475 * Clear any previous address calculation by doing a dummy read of an
476 * error address register.
477 */
cc41a59a 478 val = __raw_readl(&davinci_emif_regs->nanderradd1);
77b351cd
SP
479
480 /*
481 * Set the addr_calc_st bit(bit no 13) in the NAND Flash Control
482 * register to 1.
483 */
10d6ac94
BG
484 __raw_writel(DAVINCI_NANDFCR_4BIT_CALC_START,
485 &davinci_emif_regs->nandfcr);
77b351cd
SP
486
487 /*
1075b07e
WS
488 * Wait for the corr_state field (bits 8 to 11) in the
489 * NAND Flash Status register to be not equal to 0x0, 0x1, 0x2, or 0x3.
490 * Otherwise ECC calculation has not even begun and the next loop might
491 * fail because of a false positive!
492 */
493 i = NAND_TIMEOUT;
494 do {
495 val = __raw_readl(&davinci_emif_regs->nandfsr);
496 val &= 0xc00;
497 i--;
498 } while ((i > 0) && !val);
499
500 /*
501 * Wait for the corr_state field (bits 8 to 11) in the
77b351cd
SP
502 * NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3.
503 */
504 i = NAND_TIMEOUT;
505 do {
cc41a59a 506 val = __raw_readl(&davinci_emif_regs->nandfsr);
77b351cd
SP
507 val &= 0xc00;
508 i--;
509 } while ((i > 0) && val);
510
cc41a59a 511 iserror = __raw_readl(&davinci_emif_regs->nandfsr);
77b351cd
SP
512 iserror &= EMIF_NANDFSR_ECC_STATE_MASK;
513 iserror = iserror >> 8;
514
515 /*
516 * ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be
517 * corrected (five or more errors). The number of errors
518 * calculated (err_num field) differs from the number of errors
519 * searched. ECC_STATE_ERR_CORR_COMP_P (0x2) means error
520 * correction complete (errors on bit 8 or 9).
521 * ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction
522 * complete (error exists).
523 */
524
525 if (iserror == ECC_STATE_NO_ERR) {
cc41a59a 526 val = __raw_readl(&davinci_emif_regs->nanderrval1);
77b351cd
SP
527 return 0;
528 } else if (iserror == ECC_STATE_TOO_MANY_ERRS) {
cc41a59a 529 val = __raw_readl(&davinci_emif_regs->nanderrval1);
77b351cd
SP
530 return -1;
531 }
532
cc41a59a
CC
533 numerrors = ((__raw_readl(&davinci_emif_regs->nandfsr) >> 16)
534 & 0x3) + 1;
77b351cd
SP
535
536 /* Read the error address, error value and correct */
537 for (i = 0; i < numerrors; i++) {
538 if (i > 1) {
539 erroraddress =
cc41a59a 540 ((__raw_readl(&davinci_emif_regs->nanderradd2) >>
77b351cd
SP
541 (16 * (i & 1))) & 0x3FF);
542 erroraddress = ((512 + 7) - erroraddress);
543 errorvalue =
cc41a59a 544 ((__raw_readl(&davinci_emif_regs->nanderrval2) >>
77b351cd
SP
545 (16 * (i & 1))) & 0xFF);
546 } else {
547 erroraddress =
cc41a59a 548 ((__raw_readl(&davinci_emif_regs->nanderradd1) >>
77b351cd
SP
549 (16 * (i & 1))) & 0x3FF);
550 erroraddress = ((512 + 7) - erroraddress);
551 errorvalue =
cc41a59a 552 ((__raw_readl(&davinci_emif_regs->nanderrval1) >>
77b351cd
SP
553 (16 * (i & 1))) & 0xFF);
554 }
555 /* xor the corrupt data with error value */
556 if (erroraddress < 512)
557 dat[erroraddress] ^= errorvalue;
558 }
559
560 return numerrors;
561}
d44e9c17 562#endif /* CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST */
77b351cd 563
c74b2108
SK
564static int nand_davinci_dev_ready(struct mtd_info *mtd)
565{
cc41a59a 566 return __raw_readl(&davinci_emif_regs->nandfsr) & 0x1;
c74b2108
SK
567}
568
569static void nand_flash_init(void)
570{
fcb77477
DB
571 /* This is for DM6446 EVM and *very* similar. DO NOT GROW THIS!
572 * Instead, have your board_init() set EMIF timings, based on its
573 * knowledge of the clocks and what devices are hooked up ... and
574 * don't even do that unless no UBL handled it.
575 */
ed727d39 576#ifdef CONFIG_SOC_DM644X
950a3924 577 u_int32_t acfg1 = 0x3ffffffc;
950a3924
WD
578
579 /*------------------------------------------------------------------*
580 * NAND FLASH CHIP TIMEOUT @ 459 MHz *
581 * *
582 * AEMIF.CLK freq = PLL1/6 = 459/6 = 76.5 MHz *
583 * AEMIF.CLK period = 1/76.5 MHz = 13.1 ns *
584 * *
585 *------------------------------------------------------------------*/
586 acfg1 = 0
cc41a59a
CC
587 | (0 << 31) /* selectStrobe */
588 | (0 << 30) /* extWait */
589 | (1 << 26) /* writeSetup 10 ns */
590 | (3 << 20) /* writeStrobe 40 ns */
591 | (1 << 17) /* writeHold 10 ns */
592 | (1 << 13) /* readSetup 10 ns */
593 | (5 << 7) /* readStrobe 60 ns */
594 | (1 << 4) /* readHold 10 ns */
595 | (3 << 2) /* turnAround ?? ns */
596 | (0 << 0) /* asyncSize 8-bit bus */
53677ef1 597 ;
950a3924 598
cc41a59a 599 __raw_writel(acfg1, &davinci_emif_regs->ab1cr); /* CS2 */
d583ef51 600
cc41a59a
CC
601 /* NAND flash on CS2 */
602 __raw_writel(0x00000101, &davinci_emif_regs->nandfcr);
fcb77477 603#endif
c74b2108
SK
604}
605
154b5484 606void davinci_nand_init(struct nand_chip *nand)
c74b2108 607{
c74b2108 608 nand->chip_delay = 0;
6d0f6bcf 609#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
77b351cd 610 nand->options |= NAND_USE_FLASH_BBT;
c74b2108 611#endif
6d0f6bcf 612#ifdef CONFIG_SYS_NAND_HW_ECC
5e1dae5c 613 nand->ecc.mode = NAND_ECC_HW;
9b05aa78
HV
614 nand->ecc.size = 512;
615 nand->ecc.bytes = 3;
cfa460ad
WJ
616 nand->ecc.calculate = nand_davinci_calculate_ecc;
617 nand->ecc.correct = nand_davinci_correct_data;
4cbb651b 618 nand->ecc.hwctl = nand_davinci_enable_hwecc;
c74b2108 619#else
5e1dae5c 620 nand->ecc.mode = NAND_ECC_SOFT;
6d0f6bcf 621#endif /* CONFIG_SYS_NAND_HW_ECC */
77b351cd
SP
622#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
623 nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
624 nand->ecc.size = 512;
625 nand->ecc.bytes = 10;
626 nand->ecc.calculate = nand_davinci_4bit_calculate_ecc;
627 nand->ecc.correct = nand_davinci_4bit_correct_data;
628 nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc;
629 nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst;
630#endif
c74b2108 631 /* Set address of hardware control function */
cfa460ad 632 nand->cmd_ctrl = nand_davinci_hwcontrol;
c74b2108 633
20da6f4d
NT
634 nand->read_buf = nand_davinci_read_buf;
635 nand->write_buf = nand_davinci_write_buf;
636
c74b2108 637 nand->dev_ready = nand_davinci_dev_ready;
c74b2108
SK
638
639 nand_flash_init();
154b5484 640}
c74b2108 641
154b5484
DB
642int board_nand_init(struct nand_chip *chip) __attribute__((weak));
643
644int board_nand_init(struct nand_chip *chip)
645{
646 davinci_nand_init(chip);
647 return 0;
c74b2108 648}