]> git.ipfire.org Git - people/ms/u-boot.git/blob - README
* Get (mostly) rid of CFG_MONITOR_LEN definition; compute real length
[people/ms/u-boot.git] / README
1 #
2 # (C) Copyright 2000 - 2002
3 # Wolfgang Denk, DENX Software Engineering, wd@denx.de.
4 #
5 # See file CREDITS for list of people who contributed to this
6 # project.
7 #
8 # This program is free software; you can redistribute it and/or
9 # modify it under the terms of the GNU General Public License as
10 # published by the Free Software Foundation; either version 2 of
11 # the License, or (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 # MA 02111-1307 USA
22 #
23
24 Summary:
25 ========
26
27 This directory contains the source code for U-Boot, a boot loader for
28 Embedded boards based on PowerPC and ARM processors, which can be
29 installed in a boot ROM and used to initialize and test the hardware
30 or to download and run application code.
31
32 The development of U-Boot is closely related to Linux: some parts of
33 the source code originate in the Linux source tree, we have some
34 header files in common, and special provision has been made to
35 support booting of Linux images.
36
37 Some attention has been paid to make this software easily
38 configurable and extendable. For instance, all monitor commands are
39 implemented with the same call interface, so that it's very easy to
40 add new commands. Also, instead of permanently adding rarely used
41 code (for instance hardware test utilities) to the monitor, you can
42 load and run it dynamically.
43
44
45 Status:
46 =======
47
48 In general, all boards for which a configuration option exists in the
49 Makefile have been tested to some extent and can be considered
50 "working". In fact, many of them are used in production systems.
51
52 In case of problems see the CHANGELOG and CREDITS files to find out
53 who contributed the specific port.
54
55
56 Where to get help:
57 ==================
58
59 In case you have questions about, problems with or contributions for
60 U-Boot you should send a message to the U-Boot mailing list at
61 <u-boot-users@lists.sourceforge.net>. There is also an archive of
62 previous traffic on the mailing list - please search the archive
63 before asking FAQ's. Please see
64 http://lists.sourceforge.net/lists/listinfo/u-boot-users/
65
66
67 Where we come from:
68 ===================
69
70 - start from 8xxrom sources
71 - create PPCBoot project (http://sourceforge.net/projects/ppcboot)
72 - clean up code
73 - make it easier to add custom boards
74 - make it possible to add other [PowerPC] CPUs
75 - extend functions, especially:
76 * Provide extended interface to Linux boot loader
77 * S-Record download
78 * network boot
79 * PCMCIA / CompactFLash / ATA disk / SCSI ... boot
80 - create ARMBoot project (http://sourceforge.net/projects/armboot)
81 - add other CPU families (starting with ARM)
82 - create U-Boot project (http://sourceforge.net/projects/u-boot)
83
84
85 Names and Spelling:
86 ===================
87
88 The "official" name of this project is "Das U-Boot". The spelling
89 "U-Boot" shall be used in all written text (documentation, comments
90 in source files etc.). Example:
91
92 This is the README file for the U-Boot project.
93
94 File names etc. shall be based on the string "u-boot". Examples:
95
96 include/asm-ppc/u-boot.h
97
98 #include <asm/u-boot.h>
99
100 Variable names, preprocessor constants etc. shall be either based on
101 the string "u_boot" or on "U_BOOT". Example:
102
103 U_BOOT_VERSION u_boot_logo
104 IH_OS_U_BOOT u_boot_hush_start
105
106
107 Versioning:
108 ===========
109
110 U-Boot uses a 3 level version number containing a version, a
111 sub-version, and a patchlevel: "U-Boot-2.34.5" means version "2",
112 sub-version "34", and patchlevel "4".
113
114 The patchlevel is used to indicate certain stages of development
115 between released versions, i. e. officially released versions of
116 U-Boot will always have a patchlevel of "0".
117
118
119 Directory Hierarchy:
120 ====================
121
122 - board Board dependend files
123 - common Misc architecture independend functions
124 - cpu CPU specific files
125 - disk Code for disk drive partition handling
126 - doc Documentation (don't expect too much)
127 - drivers Common used device drivers
128 - dtt Digital Thermometer and Thermostat drivers
129 - examples Example code for standalone applications, etc.
130 - include Header Files
131 - disk Harddisk interface code
132 - net Networking code
133 - ppc Files generic to PowerPC architecture
134 - post Power On Self Test
135 - post/arch Symlink to architecture specific Power On Self Test
136 - post/arch-ppc PowerPC architecture specific Power On Self Test
137 - post/cpu/mpc8260 MPC8260 CPU specific Power On Self Test
138 - post/cpu/mpc8xx MPC8xx CPU specific Power On Self Test
139 - rtc Real Time Clock drivers
140 - tools Tools to build S-Record or U-Boot images, etc.
141
142 - cpu/74xx_7xx Files specific to Motorola MPC74xx and 7xx CPUs
143 - cpu/mpc5xx Files specific to Motorola MPC5xx CPUs
144 - cpu/mpc8xx Files specific to Motorola MPC8xx CPUs
145 - cpu/mpc824x Files specific to Motorola MPC824x CPUs
146 - cpu/mpc8260 Files specific to Motorola MPC8260 CPU
147 - cpu/ppc4xx Files specific to IBM 4xx CPUs
148
149 - board/LEOX/ Files specific to boards manufactured by The LEOX team
150 - board/LEOX/elpt860 Files specific to ELPT860 boards
151 - board/RPXClassic
152 Files specific to RPXClassic boards
153 - board/RPXlite Files specific to RPXlite boards
154 - board/c2mon Files specific to c2mon boards
155 - board/cmi Files specific to cmi boards
156 - board/cogent Files specific to Cogent boards
157 (need further configuration)
158 Files specific to CPCIISER4 boards
159 - board/cpu86 Files specific to CPU86 boards
160 - board/cray/ Files specific to boards manufactured by Cray
161 - board/cray/L1 Files specific to L1 boards
162 - board/cu824 Files specific to CU824 boards
163 - board/ebony Files specific to IBM Ebony board
164 - board/eric Files specific to ERIC boards
165 - board/esd/ Files specific to boards manufactured by ESD
166 - board/esd/adciop Files specific to ADCIOP boards
167 - board/esd/ar405 Files specific to AR405 boards
168 - board/esd/canbt Files specific to CANBT boards
169 - board/esd/cpci405 Files specific to CPCI405 boards
170 - board/esd/cpciiser4 Files specific to CPCIISER4 boards
171 - board/esd/common Common files for ESD boards
172 - board/esd/dasa_sim Files specific to DASA_SIM boards
173 - board/esd/du405 Files specific to DU405 boards
174 - board/esd/ocrtc Files specific to OCRTC boards
175 - board/esd/pci405 Files specific to PCI405 boards
176 - board/esteem192e
177 Files specific to ESTEEM192E boards
178 - board/etx094 Files specific to ETX_094 boards
179 - board/evb64260
180 Files specific to EVB64260 boards
181 - board/fads Files specific to FADS boards
182 - board/flagadm Files specific to FLAGADM boards
183 - board/gen860t Files specific to GEN860T and GEN860T_SC boards
184 - board/genietv Files specific to GENIETV boards
185 - board/gth Files specific to GTH boards
186 - board/hermes Files specific to HERMES boards
187 - board/hymod Files specific to HYMOD boards
188 - board/icu862 Files specific to ICU862 boards
189 - board/ip860 Files specific to IP860 boards
190 - board/iphase4539
191 Files specific to Interphase4539 boards
192 - board/ivm Files specific to IVMS8/IVML24 boards
193 - board/lantec Files specific to LANTEC boards
194 - board/lwmon Files specific to LWMON boards
195 - board/mbx8xx Files specific to MBX boards
196 - board/mpc8260ads
197 Files specific to MMPC8260ADS boards
198 - board/mpl/ Files specific to boards manufactured by MPL
199 - board/mpl/common Common files for MPL boards
200 - board/mpl/pip405 Files specific to PIP405 boards
201 - board/mpl/mip405 Files specific to MIP405 boards
202 - board/musenki Files specific to MUSEKNI boards
203 - board/mvs1 Files specific to MVS1 boards
204 - board/nx823 Files specific to NX823 boards
205 - board/oxc Files specific to OXC boards
206 - board/pcippc2 Files specific to PCIPPC2/PCIPPC6 boards
207 - board/pm826 Files specific to PM826 boards
208 - board/ppmc8260
209 Files specific to PPMC8260 boards
210 - board/rpxsuper
211 Files specific to RPXsuper boards
212 - board/rsdproto
213 Files specific to RSDproto boards
214 - board/sandpoint
215 Files specific to Sandpoint boards
216 - board/sbc8260 Files specific to SBC8260 boards
217 - board/sacsng Files specific to SACSng boards
218 - board/siemens Files specific to boards manufactured by Siemens AG
219 - board/siemens/CCM Files specific to CCM boards
220 - board/siemens/IAD210 Files specific to IAD210 boards
221 - board/siemens/SCM Files specific to SCM boards
222 - board/siemens/pcu_e Files specific to PCU_E boards
223 - board/sixnet Files specific to SIXNET boards
224 - board/spd8xx Files specific to SPD8xxTS boards
225 - board/tqm8260 Files specific to TQM8260 boards
226 - board/tqm8xx Files specific to TQM8xxL boards
227 - board/w7o Files specific to W7O boards
228 - board/walnut405
229 Files specific to Walnut405 boards
230 - board/westel/ Files specific to boards manufactured by Westel Wireless
231 - board/westel/amx860 Files specific to AMX860 boards
232 - board/utx8245 Files specific to UTX8245 boards
233
234 Software Configuration:
235 =======================
236
237 Configuration is usually done using C preprocessor defines; the
238 rationale behind that is to avoid dead code whenever possible.
239
240 There are two classes of configuration variables:
241
242 * Configuration _OPTIONS_:
243 These are selectable by the user and have names beginning with
244 "CONFIG_".
245
246 * Configuration _SETTINGS_:
247 These depend on the hardware etc. and should not be meddled with if
248 you don't know what you're doing; they have names beginning with
249 "CFG_".
250
251 Later we will add a configuration tool - probably similar to or even
252 identical to what's used for the Linux kernel. Right now, we have to
253 do the configuration by hand, which means creating some symbolic
254 links and editing some configuration files. We use the TQM8xxL boards
255 as an example here.
256
257
258 Selection of Processor Architecture and Board Type:
259 ---------------------------------------------------
260
261 For all supported boards there are ready-to-use default
262 configurations available; just type "make <board_name>_config".
263
264 Example: For a TQM823L module type:
265
266 cd u-boot
267 make TQM823L_config
268
269 For the Cogent platform, you need to specify the cpu type as well;
270 e.g. "make cogent_mpc8xx_config". And also configure the cogent
271 directory according to the instructions in cogent/README.
272
273
274 Configuration Options:
275 ----------------------
276
277 Configuration depends on the combination of board and CPU type; all
278 such information is kept in a configuration file
279 "include/configs/<board_name>.h".
280
281 Example: For a TQM823L module, all configuration settings are in
282 "include/configs/TQM823L.h".
283
284
285 Many of the options are named exactly as the corresponding Linux
286 kernel configuration options. The intention is to make it easier to
287 build a config tool - later.
288
289
290 The following options need to be configured:
291
292 - CPU Type: Define exactly one of
293
294 PowerPC based CPUs:
295 -------------------
296 CONFIG_MPC823, CONFIG_MPC850, CONFIG_MPC855, CONFIG_MPC860
297 or CONFIG_MPC5xx
298 or CONFIG_MPC824X, CONFIG_MPC8260
299 or CONFIG_IOP480
300 or CONFIG_405GP
301 or CONFIG_440
302 or CONFIG_MPC74xx
303
304 ARM based CPUs:
305 ---------------
306 CONFIG_SA1110
307 CONFIG_ARM7
308 CONFIG_PXA250
309
310
311 - Board Type: Define exactly one of
312
313 PowerPC based boards:
314 ---------------------
315
316 CONFIG_ADCIOP, CONFIG_ICU862 CONFIG_RPXsuper,
317 CONFIG_ADS860, CONFIG_IP860, CONFIG_SM850,
318 CONFIG_AMX860, CONFIG_IPHASE4539, CONFIG_SPD823TS,
319 CONFIG_AR405, CONFIG_IVML24, CONFIG_SXNI855T,
320 CONFIG_BAB7xx, CONFIG_IVML24_128, CONFIG_Sandpoint8240,
321 CONFIG_CANBT, CONFIG_IVML24_256, CONFIG_Sandpoint8245,
322 CONFIG_CCM, CONFIG_IVMS8, CONFIG_TQM823L,
323 CONFIG_CPCI405, CONFIG_IVMS8_128, CONFIG_TQM850L,
324 CONFIG_CPCI4052, CONFIG_IVMS8_256, CONFIG_TQM855L,
325 CONFIG_CPCIISER4, CONFIG_LANTEC, CONFIG_TQM860L,
326 CONFIG_CPU86, CONFIG_MBX, CONFIG_TQM8260,
327 CONFIG_CRAYL1, CONFIG_MBX860T, CONFIG_TTTech,
328 CONFIG_CU824, CONFIG_MHPC, CONFIG_UTX8245,
329 CONFIG_DASA_SIM, CONFIG_MIP405, CONFIG_W7OLMC,
330 CONFIG_DU405, CONFIG_MOUSSE, CONFIG_W7OLMG,
331 CONFIG_ELPPC, CONFIG_MPC8260ADS, CONFIG_WALNUT405,
332 CONFIG_ERIC, CONFIG_MUSENKI, CONFIG_ZUMA,
333 CONFIG_ESTEEM192E, CONFIG_MVS1, CONFIG_c2mon,
334 CONFIG_ETX094, CONFIG_NX823, CONFIG_cogent_mpc8260,
335 CONFIG_EVB64260, CONFIG_OCRTC, CONFIG_cogent_mpc8xx,
336 CONFIG_FADS823, CONFIG_ORSG, CONFIG_ep8260,
337 CONFIG_FADS850SAR, CONFIG_OXC, CONFIG_gw8260,
338 CONFIG_FADS860T, CONFIG_PCI405, CONFIG_hermes,
339 CONFIG_FLAGADM, CONFIG_PCIPPC2, CONFIG_hymod,
340 CONFIG_FPS850L, CONFIG_PCIPPC6, CONFIG_lwmon,
341 CONFIG_GEN860T, CONFIG_PIP405, CONFIG_pcu_e,
342 CONFIG_GENIETV, CONFIG_PM826, CONFIG_ppmc8260,
343 CONFIG_GTH, CONFIG_RPXClassic, CONFIG_rsdproto,
344 CONFIG_IAD210, CONFIG_RPXlite, CONFIG_sbc8260,
345 CONFIG_EBONY, CONFIG_sacsng, CONFIG_FPS860L,
346 CONFIG_V37, CONFIG_ELPT860, CONFIG_CMI,
347 CONFIG_NETVIA
348
349 ARM based boards:
350 -----------------
351
352 CONFIG_HHP_CRADLE, CONFIG_DNP1110, CONFIG_EP7312,
353 CONFIG_IMPA7, CONFIG_LART, CONFIG_LUBBOCK,
354 CONFIG_SHANNON, CONFIG_SMDK2400, CONFIG_SMDK2410,
355 CONFIG_TRAB
356
357
358 - CPU Module Type: (if CONFIG_COGENT is defined)
359 Define exactly one of
360 CONFIG_CMA286_60_OLD
361 --- FIXME --- not tested yet:
362 CONFIG_CMA286_60, CONFIG_CMA286_21, CONFIG_CMA286_60P,
363 CONFIG_CMA287_23, CONFIG_CMA287_50
364
365 - Motherboard Type: (if CONFIG_COGENT is defined)
366 Define exactly one of
367 CONFIG_CMA101, CONFIG_CMA102
368
369 - Motherboard I/O Modules: (if CONFIG_COGENT is defined)
370 Define one or more of
371 CONFIG_CMA302
372
373 - Motherboard Options: (if CONFIG_CMA101 or CONFIG_CMA102 are defined)
374 Define one or more of
375 CONFIG_LCD_HEARTBEAT - update a character position on
376 the lcd display every second with
377 a "rotator" |\-/|\-/
378
379 - MPC824X Family Member (if CONFIG_MPC824X is defined)
380 Define exactly one of
381 CONFIG_MPC8240, CONFIG_MPC8245
382
383 - 8xx CPU Options: (if using an 8xx cpu)
384 Define one or more of
385 CONFIG_8xx_GCLK_FREQ - if get_gclk_freq() can not work e.g.
386 no 32KHz reference PIT/RTC clock
387
388 - Clock Interface:
389 CONFIG_CLOCKS_IN_MHZ
390
391 U-Boot stores all clock information in Hz
392 internally. For binary compatibility with older Linux
393 kernels (which expect the clocks passed in the
394 bd_info data to be in MHz) the environment variable
395 "clocks_in_mhz" can be defined so that U-Boot
396 converts clock data to MHZ before passing it to the
397 Linux kernel.
398
399 When CONFIG_CLOCKS_IN_MHZ is defined, a definition of
400 "clocks_in_mhz=1" is automatically included in the
401 default environment.
402
403 - Console Interface:
404 Depending on board, define exactly one serial port
405 (like CONFIG_8xx_CONS_SMC1, CONFIG_8xx_CONS_SMC2,
406 CONFIG_8xx_CONS_SCC1, ...), or switch off the serial
407 console by defining CONFIG_8xx_CONS_NONE
408
409 Note: if CONFIG_8xx_CONS_NONE is defined, the serial
410 port routines must be defined elsewhere
411 (i.e. serial_init(), serial_getc(), ...)
412
413 CONFIG_CFB_CONSOLE
414 Enables console device for a color framebuffer. Needs following
415 defines (cf. smiLynxEM, i8042, board/eltec/bab7xx)
416 VIDEO_FB_LITTLE_ENDIAN graphic memory organisation
417 (default big endian)
418 VIDEO_HW_RECTFILL graphic chip supports
419 rectangle fill
420 (cf. smiLynxEM)
421 VIDEO_HW_BITBLT graphic chip supports
422 bit-blit (cf. smiLynxEM)
423 VIDEO_VISIBLE_COLS visible pixel columns
424 (cols=pitch)
425 VIDEO_VISIBLE_ROWS visible pixel rows
426 VIDEO_PIXEL_SIZE bytes per pixel
427 VIDEO_DATA_FORMAT graphic data format
428 (0-5, cf. cfb_console.c)
429 VIDEO_FB_ADRS framebuffer address
430 VIDEO_KBD_INIT_FCT keyboard int fct
431 (i.e. i8042_kbd_init())
432 VIDEO_TSTC_FCT test char fct
433 (i.e. i8042_tstc)
434 VIDEO_GETC_FCT get char fct
435 (i.e. i8042_getc)
436 CONFIG_CONSOLE_CURSOR cursor drawing on/off
437 (requires blink timer
438 cf. i8042.c)
439 CFG_CONSOLE_BLINK_COUNT blink interval (cf. i8042.c)
440 CONFIG_CONSOLE_TIME display time/date info in
441 upper right corner
442 (requires CFG_CMD_DATE)
443 CONFIG_VIDEO_LOGO display Linux logo in
444 upper left corner
445 CONFIG_VIDEO_BMP_LOGO use bmp_logo.h instead of
446 linux_logo.h for logo.
447 Requires CONFIG_VIDEO_LOGO
448 CONFIG_CONSOLE_EXTRA_INFO
449 addional board info beside
450 the logo
451
452 When CONFIG_CFB_CONSOLE is defined, video console is
453 default i/o. Serial console can be forced with
454 environment 'console=serial'.
455
456 - Console Baudrate:
457 CONFIG_BAUDRATE - in bps
458 Select one of the baudrates listed in
459 CFG_BAUDRATE_TABLE, see below.
460
461 - Interrupt driven serial port input:
462 CONFIG_SERIAL_SOFTWARE_FIFO
463
464 PPC405GP only.
465 Use an interrupt handler for receiving data on the
466 serial port. It also enables using hardware handshake
467 (RTS/CTS) and UART's built-in FIFO. Set the number of
468 bytes the interrupt driven input buffer should have.
469
470 Set to 0 to disable this feature (this is the default).
471 This will also disable hardware handshake.
472
473 - Console UART Number:
474 CONFIG_UART1_CONSOLE
475
476 IBM PPC4xx only.
477 If defined internal UART1 (and not UART0) is used
478 as default U-Boot console.
479
480 - Boot Delay: CONFIG_BOOTDELAY - in seconds
481 Delay before automatically booting the default image;
482 set to -1 to disable autoboot.
483
484 See doc/README.autoboot for these options that
485 work with CONFIG_BOOTDELAY. None are required.
486 CONFIG_BOOT_RETRY_TIME
487 CONFIG_BOOT_RETRY_MIN
488 CONFIG_AUTOBOOT_KEYED
489 CONFIG_AUTOBOOT_PROMPT
490 CONFIG_AUTOBOOT_DELAY_STR
491 CONFIG_AUTOBOOT_STOP_STR
492 CONFIG_AUTOBOOT_DELAY_STR2
493 CONFIG_AUTOBOOT_STOP_STR2
494 CONFIG_ZERO_BOOTDELAY_CHECK
495 CONFIG_RESET_TO_RETRY
496
497 - Autoboot Command:
498 CONFIG_BOOTCOMMAND
499 Only needed when CONFIG_BOOTDELAY is enabled;
500 define a command string that is automatically executed
501 when no character is read on the console interface
502 within "Boot Delay" after reset.
503
504 CONFIG_BOOTARGS
505 This can be used to pass arguments to the bootm
506 command. The value of CONFIG_BOOTARGS goes into the
507 environment value "bootargs".
508
509 CONFIG_RAMBOOT and CONFIG_NFSBOOT
510 The value of these goes into the environment as
511 "ramboot" and "nfsboot" respectively, and can be used
512 as a convenience, when switching between booting from
513 ram and nfs.
514
515 - Pre-Boot Commands:
516 CONFIG_PREBOOT
517
518 When this option is #defined, the existence of the
519 environment variable "preboot" will be checked
520 immediately before starting the CONFIG_BOOTDELAY
521 countdown and/or running the auto-boot command resp.
522 entering interactive mode.
523
524 This feature is especially useful when "preboot" is
525 automatically generated or modified. For an example
526 see the LWMON board specific code: here "preboot" is
527 modified when the user holds down a certain
528 combination of keys on the (special) keyboard when
529 booting the systems
530
531 - Serial Download Echo Mode:
532 CONFIG_LOADS_ECHO
533 If defined to 1, all characters received during a
534 serial download (using the "loads" command) are
535 echoed back. This might be needed by some terminal
536 emulations (like "cu"), but may as well just take
537 time on others. This setting #define's the initial
538 value of the "loads_echo" environment variable.
539
540 - Kgdb Serial Baudrate: (if CFG_CMD_KGDB is defined)
541 CONFIG_KGDB_BAUDRATE
542 Select one of the baudrates listed in
543 CFG_BAUDRATE_TABLE, see below.
544
545 - Monitor Functions:
546 CONFIG_COMMANDS
547 Most monitor functions can be selected (or
548 de-selected) by adjusting the definition of
549 CONFIG_COMMANDS; to select individual functions,
550 #define CONFIG_COMMANDS by "OR"ing any of the
551 following values:
552
553 #define enables commands:
554 -------------------------
555 CFG_CMD_ASKENV * ask for env variable
556 CFG_CMD_BDI bdinfo
557 CFG_CMD_BEDBUG Include BedBug Debugger
558 CFG_CMD_BOOTD bootd
559 CFG_CMD_CACHE icache, dcache
560 CFG_CMD_CONSOLE coninfo
561 CFG_CMD_DATE * support for RTC, date/time...
562 CFG_CMD_DHCP DHCP support
563 CFG_CMD_ECHO * echo arguments
564 CFG_CMD_EEPROM * EEPROM read/write support
565 CFG_CMD_ELF bootelf, bootvx
566 CFG_CMD_ENV saveenv
567 CFG_CMD_FDC * Floppy Disk Support
568 CFG_CMD_FDOS * Dos diskette Support
569 CFG_CMD_FLASH flinfo, erase, protect
570 CFG_CMD_FPGA FPGA device initialization support
571 CFG_CMD_I2C * I2C serial bus support
572 CFG_CMD_IDE * IDE harddisk support
573 CFG_CMD_IMI iminfo
574 CFG_CMD_IMMAP * IMMR dump support
575 CFG_CMD_IRQ * irqinfo
576 CFG_CMD_KGDB * kgdb
577 CFG_CMD_LOADB loadb
578 CFG_CMD_LOADS loads
579 CFG_CMD_MEMORY md, mm, nm, mw, cp, cmp, crc, base,
580 loop, mtest
581 CFG_CMD_MII MII utility commands
582 CFG_CMD_NET bootp, tftpboot, rarpboot
583 CFG_CMD_PCI * pciinfo
584 CFG_CMD_PCMCIA * PCMCIA support
585 CFG_CMD_REGINFO * Register dump
586 CFG_CMD_RUN run command in env variable
587 CFG_CMD_SCSI * SCSI Support
588 CFG_CMD_SETGETDCR Support for DCR Register access (4xx only)
589 CFG_CMD_SPI * SPI serial bus support
590 CFG_CMD_USB * USB support
591 CFG_CMD_BSP * Board SPecific functions
592 -----------------------------------------------
593 CFG_CMD_ALL all
594
595 CFG_CMD_DFL Default configuration; at the moment
596 this is includes all commands, except
597 the ones marked with "*" in the list
598 above.
599
600 If you don't define CONFIG_COMMANDS it defaults to
601 CFG_CMD_DFL in include/cmd_confdefs.h. A board can
602 override the default settings in the respective
603 include file.
604
605 EXAMPLE: If you want all functions except of network
606 support you can write:
607
608 #define CONFIG_COMMANDS (CFG_CMD_ALL & ~CFG_CMD_NET)
609
610
611 Note: Don't enable the "icache" and "dcache" commands
612 (configuration option CFG_CMD_CACHE) unless you know
613 what you (and your U-Boot users) are doing. Data
614 cache cannot be enabled on systems like the 8xx or
615 8260 (where accesses to the IMMR region must be
616 uncached), and it cannot be disabled on all other
617 systems where we (mis-) use the data cache to hold an
618 initial stack and some data.
619
620
621 XXX - this list needs to get updated!
622
623 - Watchdog:
624 CONFIG_WATCHDOG
625 If this variable is defined, it enables watchdog
626 support. There must support in the platform specific
627 code for a watchdog. For the 8xx and 8260 CPUs, the
628 SIU Watchdog feature is enabled in the SYPCR
629 register.
630
631 - U-Boot Version:
632 CONFIG_VERSION_VARIABLE
633 If this variable is defined, an environment variable
634 named "ver" is created by U-Boot showing the U-Boot
635 version as printed by the "version" command.
636 This variable is readonly.
637
638 - Real-Time Clock:
639
640 When CFG_CMD_DATE is selected, the type of the RTC
641 has to be selected, too. Define exactly one of the
642 following options:
643
644 CONFIG_RTC_MPC8xx - use internal RTC of MPC8xx
645 CONFIG_RTC_PCF8563 - use Philips PCF8563 RTC
646 CONFIG_RTC_MC146818 - use MC146818 RTC
647 CONFIG_RTC_DS1307 - use Maxim, Inc. DS1307 RTC
648 CONFIG_RTC_DS1337 - use Maxim, Inc. DS1337 RTC
649 CONFIG_RTC_DS1338 - use Maxim, Inc. DS1338 RTC
650 CONFIG_RTC_DS164x - use Dallas DS164x RTC
651
652 - Timestamp Support:
653
654 When CONFIG_TIMESTAMP is selected, the timestamp
655 (date and time) of an image is printed by image
656 commands like bootm or iminfo. This option is
657 automatically enabled when you select CFG_CMD_DATE .
658
659 - Partition Support:
660 CONFIG_MAC_PARTITION and/or CONFIG_DOS_PARTITION
661 and/or CONFIG_ISO_PARTITION
662
663 If IDE or SCSI support is enabled (CFG_CMD_IDE or
664 CFG_CMD_SCSI) you must configure support for at least
665 one partition type as well.
666
667 - IDE Reset method:
668 CONFIG_IDE_RESET_ROUTINE
669
670 Set this to define that instead of a reset Pin, the
671 routine ide_set_reset(int idereset) will be used.
672
673 - ATAPI Support:
674 CONFIG_ATAPI
675
676 Set this to enable ATAPI support.
677
678 - SCSI Support:
679 At the moment only there is only support for the
680 SYM53C8XX SCSI controller; define
681 CONFIG_SCSI_SYM53C8XX to enable it.
682
683 CFG_SCSI_MAX_LUN [8], CFG_SCSI_MAX_SCSI_ID [7] and
684 CFG_SCSI_MAX_DEVICE [CFG_SCSI_MAX_SCSI_ID *
685 CFG_SCSI_MAX_LUN] can be adjusted to define the
686 maximum numbers of LUNs, SCSI ID's and target
687 devices.
688 CFG_SCSI_SYM53C8XX_CCF to fix clock timing (80Mhz)
689
690 - NETWORK Support (PCI):
691 CONFIG_EEPRO100
692 Support for Intel 82557/82559/82559ER chips.
693 Optional CONFIG_EEPRO100_SROM_WRITE enables eeprom
694 write routine for first time initialisation.
695
696 CONFIG_TULIP
697 Support for Digital 2114x chips.
698 Optional CONFIG_TULIP_SELECT_MEDIA for board specific
699 modem chip initialisation (KS8761/QS6611).
700
701 CONFIG_NATSEMI
702 Support for National dp83815 chips.
703
704 CONFIG_NS8382X
705 Support for National dp8382[01] gigabit chips.
706
707 - NETWORK Support (other):
708
709 CONFIG_DRIVER_LAN91C96
710 Support for SMSC's LAN91C96 chips.
711
712 CONFIG_LAN91C96_BASE
713 Define this to hold the physical address
714 of the LAN91C96's I/O space
715
716 CONFIG_LAN91C96_USE_32_BIT
717 Define this to enable 32 bit addressing
718
719 - USB Support:
720 At the moment only the UHCI host controller is
721 supported (PIP405, MIP405); define
722 CONFIG_USB_UHCI to enable it.
723 define CONFIG_USB_KEYBOARD to enable the USB Keyboard
724 end define CONFIG_USB_STORAGE to enable the USB
725 storage devices.
726 Note:
727 Supported are USB Keyboards and USB Floppy drives
728 (TEAC FD-05PUB).
729
730 - Keyboard Support:
731 CONFIG_ISA_KEYBOARD
732
733 Define this to enable standard (PC-Style) keyboard
734 support
735
736 CONFIG_I8042_KBD
737 Standard PC keyboard driver with US (is default) and
738 GERMAN key layout (switch via environment 'keymap=de') support.
739 Export function i8042_kbd_init, i8042_tstc and i8042_getc
740 for cfb_console. Supports cursor blinking.
741
742 - Video support:
743 CONFIG_VIDEO
744
745 Define this to enable video support (for output to
746 video).
747
748 CONFIG_VIDEO_CT69000
749
750 Enable Chips & Technologies 69000 Video chip
751
752 CONFIG_VIDEO_SMI_LYNXEM
753 Enable Silicon Motion SMI 712/710/810 Video chip
754 Videomode are selected via environment 'videomode' with
755 standard LiLo mode numbers.
756 Following modes are supported (* is default):
757
758 800x600 1024x768 1280x1024
759 256 (8bit) 303* 305 307
760 65536 (16bit) 314 317 31a
761 16,7 Mill (24bit) 315 318 31b
762 (i.e. setenv videomode 317; saveenv; reset;)
763
764 CONFIG_VIDEO_SED13806
765 Enable Epson SED13806 driver. This driver supports 8bpp
766 and 16bpp modes defined by CONFIG_VIDEO_SED13806_8BPP
767 or CONFIG_VIDEO_SED13806_16BPP
768
769
770 - LCD Support: CONFIG_LCD
771
772 Define this to enable LCD support (for output to LCD
773 display); also select one of the supported displays
774 by defining one of these:
775
776 CONFIG_NEC_NL6648AC33:
777
778 NEC NL6648AC33-18. Active, color, single scan.
779
780 CONFIG_NEC_NL6648BC20
781
782 NEC NL6648BC20-08. 6.5", 640x480.
783 Active, color, single scan.
784
785 CONFIG_SHARP_16x9
786
787 Sharp 320x240. Active, color, single scan.
788 It isn't 16x9, and I am not sure what it is.
789
790 CONFIG_SHARP_LQ64D341
791
792 Sharp LQ64D341 display, 640x480.
793 Active, color, single scan.
794
795 CONFIG_HLD1045
796
797 HLD1045 display, 640x480.
798 Active, color, single scan.
799
800 CONFIG_OPTREX_BW
801
802 Optrex CBL50840-2 NF-FW 99 22 M5
803 or
804 Hitachi LMG6912RPFC-00T
805 or
806 Hitachi SP14Q002
807
808 320x240. Black & white.
809
810 Normally display is black on white background; define
811 CFG_WHITE_ON_BLACK to get it inverted.
812
813 - Spash Screen Support: CONFIG_SPLASH_SCREEN
814
815 If this option is set, the environment is checked for
816 a variable "splashimage". If found, the usual display
817 of logo, copyright and system information on the LCD
818 is supressed and the BMP image at the address
819 specified in "splashimage" is loaded instead. The
820 console is redirected to the "nulldev", too. This
821 allows for a "silent" boot where a splash screen is
822 loaded very quickly after power-on.
823
824
825 - Ethernet address:
826 CONFIG_ETHADDR
827 CONFIG_ETH2ADDR
828 CONFIG_ETH3ADDR
829
830 Define a default value for ethernet address to use
831 for the respective ethernet interface, in case this
832 is not determined automatically.
833
834 - IP address:
835 CONFIG_IPADDR
836
837 Define a default value for the IP address to use for
838 the default ethernet interface, in case this is not
839 determined through e.g. bootp.
840
841 - Server IP address:
842 CONFIG_SERVERIP
843
844 Defines a default value for theIP address of a TFTP
845 server to contact when using the "tftboot" command.
846
847 - BOOTP Recovery Mode:
848 CONFIG_BOOTP_RANDOM_DELAY
849
850 If you have many targets in a network that try to
851 boot using BOOTP, you may want to avoid that all
852 systems send out BOOTP requests at precisely the same
853 moment (which would happen for instance at recovery
854 from a power failure, when all systems will try to
855 boot, thus flooding the BOOTP server. Defining
856 CONFIG_BOOTP_RANDOM_DELAY causes a random delay to be
857 inserted before sending out BOOTP requests. The
858 following delays are insterted then:
859
860 1st BOOTP request: delay 0 ... 1 sec
861 2nd BOOTP request: delay 0 ... 2 sec
862 3rd BOOTP request: delay 0 ... 4 sec
863 4th and following
864 BOOTP requests: delay 0 ... 8 sec
865
866 - Status LED: CONFIG_STATUS_LED
867
868 Several configurations allow to display the current
869 status using a LED. For instance, the LED will blink
870 fast while running U-Boot code, stop blinking as
871 soon as a reply to a BOOTP request was received, and
872 start blinking slow once the Linux kernel is running
873 (supported by a status LED driver in the Linux
874 kernel). Defining CONFIG_STATUS_LED enables this
875 feature in U-Boot.
876
877 - CAN Support: CONFIG_CAN_DRIVER
878
879 Defining CONFIG_CAN_DRIVER enables CAN driver support
880 on those systems that support this (optional)
881 feature, like the TQM8xxL modules.
882
883 - I2C Support: CONFIG_HARD_I2C | CONFIG_SOFT_I2C
884
885 Enables I2C serial bus commands. If this is selected,
886 either CONFIG_HARD_I2C or CONFIG_SOFT_I2C must be defined
887 to include the appropriate I2C driver.
888
889 See also: common/cmd_i2c.c for a description of the
890 command line interface.
891
892
893 CONFIG_HARD_I2C
894
895 Selects the CPM hardware driver for I2C.
896
897 CONFIG_SOFT_I2C
898
899 Use software (aka bit-banging) driver instead of CPM
900 or similar hardware support for I2C. This is configured
901 via the following defines.
902
903 I2C_INIT
904
905 (Optional). Any commands necessary to enable I2C
906 controller or configure ports.
907
908 I2C_PORT
909
910 (Only for MPC8260 CPU). The I/O port to use (the code
911 assumes both bits are on the same port). Valid values
912 are 0..3 for ports A..D.
913
914 I2C_ACTIVE
915
916 The code necessary to make the I2C data line active
917 (driven). If the data line is open collector, this
918 define can be null.
919
920 I2C_TRISTATE
921
922 The code necessary to make the I2C data line tri-stated
923 (inactive). If the data line is open collector, this
924 define can be null.
925
926 I2C_READ
927
928 Code that returns TRUE if the I2C data line is high,
929 FALSE if it is low.
930
931 I2C_SDA(bit)
932
933 If <bit> is TRUE, sets the I2C data line high. If it
934 is FALSE, it clears it (low).
935
936 I2C_SCL(bit)
937
938 If <bit> is TRUE, sets the I2C clock line high. If it
939 is FALSE, it clears it (low).
940
941 I2C_DELAY
942
943 This delay is invoked four times per clock cycle so this
944 controls the rate of data transfer. The data rate thus
945 is 1 / (I2C_DELAY * 4).
946
947 CFG_I2C_INIT_BOARD
948
949 When a board is reset during an i2c bus transfer
950 chips might think that the current transfer is still
951 in progress. On some boards it is possible to access
952 the i2c SCLK line directly, either by using the
953 processor pin as a GPIO or by having a second pin
954 connected to the bus. If this option is defined a
955 custom i2c_init_board() routine in boards/xxx/board.c
956 is run early in the boot sequence.
957
958 - SPI Support: CONFIG_SPI
959
960 Enables SPI driver (so far only tested with
961 SPI EEPROM, also an instance works with Crystal A/D and
962 D/As on the SACSng board)
963
964 CONFIG_SPI_X
965
966 Enables extended (16-bit) SPI EEPROM addressing.
967 (symmetrical to CONFIG_I2C_X)
968
969 CONFIG_SOFT_SPI
970
971 Enables a software (bit-bang) SPI driver rather than
972 using hardware support. This is a general purpose
973 driver that only requires three general I/O port pins
974 (two outputs, one input) to function. If this is
975 defined, the board configuration must define several
976 SPI configuration items (port pins to use, etc). For
977 an example, see include/configs/sacsng.h.
978
979 - FPGA Support: CONFIG_FPGA_COUNT
980
981 Specify the number of FPGA devices to support.
982
983 CONFIG_FPGA
984
985 Used to specify the types of FPGA devices. For
986 example,
987 #define CONFIG_FPGA CFG_XILINX_VIRTEX2
988
989 CFG_FPGA_PROG_FEEDBACK
990
991 Enable printing of hash marks during FPGA
992 configuration.
993
994 CFG_FPGA_CHECK_BUSY
995
996 Enable checks on FPGA configuration interface busy
997 status by the configuration function. This option
998 will require a board or device specific function to
999 be written.
1000
1001 CONFIG_FPGA_DELAY
1002
1003 If defined, a function that provides delays in the
1004 FPGA configuration driver.
1005
1006 CFG_FPGA_CHECK_CTRLC
1007
1008 Allow Control-C to interrupt FPGA configuration
1009
1010 CFG_FPGA_CHECK_ERROR
1011
1012 Check for configuration errors during FPGA bitfile
1013 loading. For example, abort during Virtex II
1014 configuration if the INIT_B line goes low (which
1015 indicated a CRC error).
1016
1017 CFG_FPGA_WAIT_INIT
1018
1019 Maximum time to wait for the INIT_B line to deassert
1020 after PROB_B has been deasserted during a Virtex II
1021 FPGA configuration sequence. The default time is 500 mS.
1022
1023 CFG_FPGA_WAIT_BUSY
1024
1025 Maximum time to wait for BUSY to deassert during
1026 Virtex II FPGA configuration. The default is 5 mS.
1027
1028 CFG_FPGA_WAIT_CONFIG
1029
1030 Time to wait after FPGA configuration. The default is
1031 200 mS.
1032
1033 - FPGA Support: CONFIG_FPGA_COUNT
1034
1035 Specify the number of FPGA devices to support.
1036
1037 CONFIG_FPGA
1038
1039 Used to specify the types of FPGA devices. For example,
1040 #define CONFIG_FPGA CFG_XILINX_VIRTEX2
1041
1042 CFG_FPGA_PROG_FEEDBACK
1043
1044 Enable printing of hash marks during FPGA configuration.
1045
1046 CFG_FPGA_CHECK_BUSY
1047
1048 Enable checks on FPGA configuration interface busy
1049 status by the configuration function. This option
1050 will require a board or device specific function to
1051 be written.
1052
1053 CONFIG_FPGA_DELAY
1054
1055 If defined, a function that provides delays in the FPGA
1056 configuration driver.
1057
1058 CFG_FPGA_CHECK_CTRLC
1059 Allow Control-C to interrupt FPGA configuration
1060
1061 CFG_FPGA_CHECK_ERROR
1062
1063 Check for configuration errors during FPGA bitfile
1064 loading. For example, abort during Virtex II
1065 configuration if the INIT_B line goes low (which
1066 indicated a CRC error).
1067
1068 CFG_FPGA_WAIT_INIT
1069
1070 Maximum time to wait for the INIT_B line to deassert
1071 after PROB_B has been deasserted during a Virtex II
1072 FPGA configuration sequence. The default time is 500
1073 mS.
1074
1075 CFG_FPGA_WAIT_BUSY
1076
1077 Maximum time to wait for BUSY to deassert during
1078 Virtex II FPGA configuration. The default is 5 mS.
1079
1080 CFG_FPGA_WAIT_CONFIG
1081
1082 Time to wait after FPGA configuration. The default is
1083 200 mS.
1084
1085 - Configuration Management:
1086 CONFIG_IDENT_STRING
1087
1088 If defined, this string will be added to the U-Boot
1089 version information (U_BOOT_VERSION)
1090
1091 - Vendor Parameter Protection:
1092
1093 U-Boot considers the values of the environment
1094 variables "serial#" (Board Serial Number) and
1095 "ethaddr" (Ethernet Address) to bb parameters that
1096 are set once by the board vendor / manufacturer, and
1097 protects these variables from casual modification by
1098 the user. Once set, these variables are read-only,
1099 and write or delete attempts are rejected. You can
1100 change this behviour:
1101
1102 If CONFIG_ENV_OVERWRITE is #defined in your config
1103 file, the write protection for vendor parameters is
1104 completely disabled. Anybody can change or delete
1105 these parameters.
1106
1107 Alternatively, if you #define _both_ CONFIG_ETHADDR
1108 _and_ CONFIG_OVERWRITE_ETHADDR_ONCE, a default
1109 ethernet address is installed in the environment,
1110 which can be changed exactly ONCE by the user. [The
1111 serial# is unaffected by this, i. e. it remains
1112 read-only.]
1113
1114 - Protected RAM:
1115 CONFIG_PRAM
1116
1117 Define this variable to enable the reservation of
1118 "protected RAM", i. e. RAM which is not overwritten
1119 by U-Boot. Define CONFIG_PRAM to hold the number of
1120 kB you want to reserve for pRAM. You can overwrite
1121 this default value by defining an environment
1122 variable "pram" to the number of kB you want to
1123 reserve. Note that the board info structure will
1124 still show the full amount of RAM. If pRAM is
1125 reserved, a new environment variable "mem" will
1126 automatically be defined to hold the amount of
1127 remaining RAM in a form that can be passed as boot
1128 argument to Linux, for instance like that:
1129
1130 setenv bootargs ... mem=\$(mem)
1131 saveenv
1132
1133 This way you can tell Linux not to use this memory,
1134 either, which results in a memory region that will
1135 not be affected by reboots.
1136
1137 *WARNING* If your board configuration uses automatic
1138 detection of the RAM size, you must make sure that
1139 this memory test is non-destructive. So far, the
1140 following board configurations are known to be
1141 "pRAM-clean":
1142
1143 ETX094, IVMS8, IVML24, SPD8xx, TQM8xxL,
1144 HERMES, IP860, RPXlite, LWMON, LANTEC,
1145 PCU_E, FLAGADM, TQM8260
1146
1147 - Error Recovery:
1148 CONFIG_PANIC_HANG
1149
1150 Define this variable to stop the system in case of a
1151 fatal error, so that you have to reset it manually.
1152 This is probably NOT a good idea for an embedded
1153 system where you want to system to reboot
1154 automatically as fast as possible, but it may be
1155 useful during development since you can try to debug
1156 the conditions that lead to the situation.
1157
1158 CONFIG_NET_RETRY_COUNT
1159
1160 This variable defines the number of retries for
1161 network operations like ARP, RARP, TFTP, or BOOTP
1162 before giving up the operation. If not defined, a
1163 default value of 5 is used.
1164
1165 - Command Interpreter:
1166 CFG_HUSH_PARSER
1167
1168 Define this variable to enable the "hush" shell (from
1169 Busybox) as command line interpreter, thus enabling
1170 powerful command line syntax like
1171 if...then...else...fi conditionals or `&&' and '||'
1172 constructs ("shell scripts").
1173
1174 If undefined, you get the old, much simpler behaviour
1175 with a somewhat smaller memory footprint.
1176
1177
1178 CFG_PROMPT_HUSH_PS2
1179
1180 This defines the secondary prompt string, which is
1181 printed when the command interpreter needs more input
1182 to complete a command. Usually "> ".
1183
1184 Note:
1185
1186 In the current implementation, the local variables
1187 space and global environment variables space are
1188 separated. Local variables are those you define by
1189 simply typing `name=value'. To access a local
1190 variable later on, you have write `$name' or
1191 `${name}'; to execute the contents of a variable
1192 directly type `$name' at the command prompt.
1193
1194 Global environment variables are those you use
1195 setenv/printenv to work with. To run a command stored
1196 in such a variable, you need to use the run command,
1197 and you must not use the '$' sign to access them.
1198
1199 To store commands and special characters in a
1200 variable, please use double quotation marks
1201 surrounding the whole text of the variable, instead
1202 of the backslashes before semicolons and special
1203 symbols.
1204
1205 - Default Environment
1206 CONFIG_EXTRA_ENV_SETTINGS
1207
1208 Define this to contain any number of null terminated
1209 strings (variable = value pairs) that will be part of
1210 the default enviroment compiled into the boot image.
1211
1212 For example, place something like this in your
1213 board's config file:
1214
1215 #define CONFIG_EXTRA_ENV_SETTINGS \
1216 "myvar1=value1\0" \
1217 "myvar2=value2\0"
1218
1219 Warning: This method is based on knowledge about the
1220 internal format how the environment is stored by the
1221 U-Boot code. This is NOT an official, exported
1222 interface! Although it is unlikely that this format
1223 will change soon, but there is no guarantee either.
1224 You better know what you are doing here.
1225
1226 Note: overly (ab)use of the default environment is
1227 discouraged. Make sure to check other ways to preset
1228 the environment like the autoscript function or the
1229 boot command first.
1230
1231 - Show boot progress
1232 CONFIG_SHOW_BOOT_PROGRESS
1233
1234 Defining this option allows to add some board-
1235 specific code (calling a user-provided function
1236 "show_boot_progress(int)") that enables you to show
1237 the system's boot progress on some display (for
1238 example, some LED's) on your board. At the moment,
1239 the following checkpoints are implemented:
1240
1241 Arg Where When
1242 1 common/cmd_bootm.c before attempting to boot an image
1243 -1 common/cmd_bootm.c Image header has bad magic number
1244 2 common/cmd_bootm.c Image header has correct magic number
1245 -2 common/cmd_bootm.c Image header has bad checksum
1246 3 common/cmd_bootm.c Image header has correct checksum
1247 -3 common/cmd_bootm.c Image data has bad checksum
1248 4 common/cmd_bootm.c Image data has correct checksum
1249 -4 common/cmd_bootm.c Image is for unsupported architecture
1250 5 common/cmd_bootm.c Architecture check OK
1251 -5 common/cmd_bootm.c Wrong Image Type (not kernel, multi, standalone)
1252 6 common/cmd_bootm.c Image Type check OK
1253 -6 common/cmd_bootm.c gunzip uncompression error
1254 -7 common/cmd_bootm.c Unimplemented compression type
1255 7 common/cmd_bootm.c Uncompression OK
1256 -8 common/cmd_bootm.c Wrong Image Type (not kernel, multi, standalone)
1257 8 common/cmd_bootm.c Image Type check OK
1258 -9 common/cmd_bootm.c Unsupported OS (not Linux, BSD, VxWorks, QNX)
1259 9 common/cmd_bootm.c Start initial ramdisk verification
1260 -10 common/cmd_bootm.c Ramdisk header has bad magic number
1261 -11 common/cmd_bootm.c Ramdisk header has bad checksum
1262 10 common/cmd_bootm.c Ramdisk header is OK
1263 -12 common/cmd_bootm.c Ramdisk data has bad checksum
1264 11 common/cmd_bootm.c Ramdisk data has correct checksum
1265 12 common/cmd_bootm.c Ramdisk verification complete, start loading
1266 -13 common/cmd_bootm.c Wrong Image Type (not PPC Linux Ramdisk)
1267 13 common/cmd_bootm.c Start multifile image verification
1268 14 common/cmd_bootm.c No initial ramdisk, no multifile, continue.
1269 15 common/cmd_bootm.c All preparation done, transferring control to OS
1270
1271 -1 common/cmd_doc.c Bad usage of "doc" command
1272 -1 common/cmd_doc.c No boot device
1273 -1 common/cmd_doc.c Unknown Chip ID on boot device
1274 -1 common/cmd_doc.c Read Error on boot device
1275 -1 common/cmd_doc.c Image header has bad magic number
1276
1277 -1 common/cmd_ide.c Bad usage of "ide" command
1278 -1 common/cmd_ide.c No boot device
1279 -1 common/cmd_ide.c Unknown boot device
1280 -1 common/cmd_ide.c Unknown partition table
1281 -1 common/cmd_ide.c Invalid partition type
1282 -1 common/cmd_ide.c Read Error on boot device
1283 -1 common/cmd_ide.c Image header has bad magic number
1284
1285 -1 common/cmd_nvedit.c Environment not changable, but has bad CRC
1286
1287
1288 Modem Support:
1289 --------------
1290
1291 [so far only for SMDK2400 and TRAB boards]
1292
1293 - Modem support endable:
1294 CONFIG_MODEM_SUPPORT
1295
1296 - RTS/CTS Flow control enable:
1297 CONFIG_HWFLOW
1298
1299 - Modem debug support:
1300 CONFIG_MODEM_SUPPORT_DEBUG
1301
1302 Enables debugging stuff (char screen[1024], dbg())
1303 for modem support. Useful only with BDI2000.
1304
1305 - General:
1306
1307 In the target system modem support is enabled when a
1308 specific key (key combination) is pressed during
1309 power-on. Otherwise U-Boot will boot normally
1310 (autoboot). The key_pressed() fuction is called from
1311 board_init(). Currently key_pressed() is a dummy
1312 function, returning 1 and thus enabling modem
1313 initialization.
1314
1315 If there are no modem init strings in the
1316 environment, U-Boot proceed to autoboot; the
1317 previous output (banner, info printfs) will be
1318 supressed, though.
1319
1320 See also: doc/README.Modem
1321
1322
1323
1324
1325 Configuration Settings:
1326 -----------------------
1327
1328 - CFG_LONGHELP: Defined when you want long help messages included;
1329 undefine this when you're short of memory.
1330
1331 - CFG_PROMPT: This is what U-Boot prints on the console to
1332 prompt for user input.
1333
1334 - CFG_CBSIZE: Buffer size for input from the Console
1335
1336 - CFG_PBSIZE: Buffer size for Console output
1337
1338 - CFG_MAXARGS: max. Number of arguments accepted for monitor commands
1339
1340 - CFG_BARGSIZE: Buffer size for Boot Arguments which are passed to
1341 the application (usually a Linux kernel) when it is
1342 booted
1343
1344 - CFG_BAUDRATE_TABLE:
1345 List of legal baudrate settings for this board.
1346
1347 - CFG_CONSOLE_INFO_QUIET
1348 Suppress display of console information at boot.
1349
1350 - CFG_CONSOLE_IS_IN_ENV
1351 If the board specific function
1352 extern int overwrite_console (void);
1353 returns 1, the stdin, stderr and stdout are switched to the
1354 serial port, else the settings in the environment are used.
1355
1356 - CFG_CONSOLE_OVERWRITE_ROUTINE
1357 Enable the call to overwrite_console().
1358
1359 - CFG_CONSOLE_ENV_OVERWRITE
1360 Enable overwrite of previous console environment settings.
1361
1362 - CFG_MEMTEST_START, CFG_MEMTEST_END:
1363 Begin and End addresses of the area used by the
1364 simple memory test.
1365
1366 - CFG_ALT_MEMTEST:
1367 Enable an alternate, more extensive memory test.
1368
1369 - CFG_TFTP_LOADADDR:
1370 Default load address for network file downloads
1371
1372 - CFG_LOADS_BAUD_CHANGE:
1373 Enable temporary baudrate change while serial download
1374
1375 - CFG_SDRAM_BASE:
1376 Physical start address of SDRAM. _Must_ be 0 here.
1377
1378 - CFG_MBIO_BASE:
1379 Physical start address of Motherboard I/O (if using a
1380 Cogent motherboard)
1381
1382 - CFG_FLASH_BASE:
1383 Physical start address of Flash memory.
1384
1385 - CFG_MONITOR_BASE:
1386 Physical start address of boot monitor code (set by
1387 make config files to be same as the text base address
1388 (TEXT_BASE) used when linking) - same as
1389 CFG_FLASH_BASE when booting from flash.
1390
1391 - CFG_MONITOR_LEN:
1392 Size of memory reserved for monitor code, used to
1393 determine _at_compile_time_ (!) if the environment is
1394 embedded within the U-Boot image, or in a separate
1395 flash sector.
1396
1397 - CFG_MALLOC_LEN:
1398 Size of DRAM reserved for malloc() use.
1399
1400 - CFG_BOOTMAPSZ:
1401 Maximum size of memory mapped by the startup code of
1402 the Linux kernel; all data that must be processed by
1403 the Linux kernel (bd_info, boot arguments, eventually
1404 initrd image) must be put below this limit.
1405
1406 - CFG_MAX_FLASH_BANKS:
1407 Max number of Flash memory banks
1408
1409 - CFG_MAX_FLASH_SECT:
1410 Max number of sectors on a Flash chip
1411
1412 - CFG_FLASH_ERASE_TOUT:
1413 Timeout for Flash erase operations (in ms)
1414
1415 - CFG_FLASH_WRITE_TOUT:
1416 Timeout for Flash write operations (in ms)
1417
1418 - CFG_DIRECT_FLASH_TFTP:
1419
1420 Enable TFTP transfers directly to flash memory;
1421 without this option such a download has to be
1422 performed in two steps: (1) download to RAM, and (2)
1423 copy from RAM to flash.
1424
1425 The two-step approach is usually more reliable, since
1426 you can check if the download worked before you erase
1427 the flash, but in some situations (when sytem RAM is
1428 too limited to allow for a tempory copy of the
1429 downloaded image) this option may be very useful.
1430
1431 - CFG_FLASH_CFI:
1432 Define if the flash driver uses extra elements in the
1433 common flash structure for storing flash geometry
1434
1435 The following definitions that deal with the placement and management
1436 of environment data (variable area); in general, we support the
1437 following configurations:
1438
1439 - CFG_ENV_IS_IN_FLASH:
1440
1441 Define this if the environment is in flash memory.
1442
1443 a) The environment occupies one whole flash sector, which is
1444 "embedded" in the text segment with the U-Boot code. This
1445 happens usually with "bottom boot sector" or "top boot
1446 sector" type flash chips, which have several smaller
1447 sectors at the start or the end. For instance, such a
1448 layout can have sector sizes of 8, 2x4, 16, Nx32 kB. In
1449 such a case you would place the environment in one of the
1450 4 kB sectors - with U-Boot code before and after it. With
1451 "top boot sector" type flash chips, you would put the
1452 environment in one of the last sectors, leaving a gap
1453 between U-Boot and the environment.
1454
1455 - CFG_ENV_OFFSET:
1456
1457 Offset of environment data (variable area) to the
1458 beginning of flash memory; for instance, with bottom boot
1459 type flash chips the second sector can be used: the offset
1460 for this sector is given here.
1461
1462 CFG_ENV_OFFSET is used relative to CFG_FLASH_BASE.
1463
1464 - CFG_ENV_ADDR:
1465
1466 This is just another way to specify the start address of
1467 the flash sector containing the environment (instead of
1468 CFG_ENV_OFFSET).
1469
1470 - CFG_ENV_SECT_SIZE:
1471
1472 Size of the sector containing the environment.
1473
1474
1475 b) Sometimes flash chips have few, equal sized, BIG sectors.
1476 In such a case you don't want to spend a whole sector for
1477 the environment.
1478
1479 - CFG_ENV_SIZE:
1480
1481 If you use this in combination with CFG_ENV_IS_IN_FLASH
1482 and CFG_ENV_SECT_SIZE, you can specify to use only a part
1483 of this flash sector for the environment. This saves
1484 memory for the RAM copy of the environment.
1485
1486 It may also save flash memory if you decide to use this
1487 when your environment is "embedded" within U-Boot code,
1488 since then the remainder of the flash sector could be used
1489 for U-Boot code. It should be pointed out that this is
1490 STRONGLY DISCOURAGED from a robustness point of view:
1491 updating the environment in flash makes it always
1492 necessary to erase the WHOLE sector. If something goes
1493 wrong before the contents has been restored from a copy in
1494 RAM, your target system will be dead.
1495
1496 - CFG_ENV_ADDR_REDUND
1497 CFG_ENV_SIZE_REDUND
1498
1499 These settings describe a second storage area used to hold
1500 a redundand copy of the environment data, so that there is
1501 a valid backup copy in case there is a power failure during
1502 a "saveenv" operation.
1503
1504 BE CAREFUL! Any changes to the flash layout, and some changes to the
1505 source code will make it necessary to adapt <board>/u-boot.lds*
1506 accordingly!
1507
1508
1509 - CFG_ENV_IS_IN_NVRAM:
1510
1511 Define this if you have some non-volatile memory device
1512 (NVRAM, battery buffered SRAM) which you want to use for the
1513 environment.
1514
1515 - CFG_ENV_ADDR:
1516 - CFG_ENV_SIZE:
1517
1518 These two #defines are used to determin the memory area you
1519 want to use for environment. It is assumed that this memory
1520 can just be read and written to, without any special
1521 provision.
1522
1523 BE CAREFUL! The first access to the environment happens quite early
1524 in U-Boot initalization (when we try to get the setting of for the
1525 console baudrate). You *MUST* have mappend your NVRAM area then, or
1526 U-Boot will hang.
1527
1528 Please note that even with NVRAM we still use a copy of the
1529 environment in RAM: we could work on NVRAM directly, but we want to
1530 keep settings there always unmodified except somebody uses "saveenv"
1531 to save the current settings.
1532
1533
1534 - CFG_ENV_IS_IN_EEPROM:
1535
1536 Use this if you have an EEPROM or similar serial access
1537 device and a driver for it.
1538
1539 - CFG_ENV_OFFSET:
1540 - CFG_ENV_SIZE:
1541
1542 These two #defines specify the offset and size of the
1543 environment area within the total memory of your EEPROM.
1544
1545 - CFG_I2C_EEPROM_ADDR:
1546 If defined, specified the chip address of the EEPROM device.
1547 The default address is zero.
1548
1549 - CFG_EEPROM_PAGE_WRITE_BITS:
1550 If defined, the number of bits used to address bytes in a
1551 single page in the EEPROM device. A 64 byte page, for example
1552 would require six bits.
1553
1554 - CFG_EEPROM_PAGE_WRITE_DELAY_MS:
1555 If defined, the number of milliseconds to delay between
1556 page writes. The default is zero milliseconds.
1557
1558 - CFG_I2C_EEPROM_ADDR_LEN:
1559 The length in bytes of the EEPROM memory array address. Note
1560 that this is NOT the chip address length!
1561
1562 - CFG_EEPROM_SIZE:
1563 The size in bytes of the EEPROM device.
1564
1565
1566 - CFG_SPI_INIT_OFFSET
1567
1568 Defines offset to the initial SPI buffer area in DPRAM. The
1569 area is used at an early stage (ROM part) if the environment
1570 is configured to reside in the SPI EEPROM: We need a 520 byte
1571 scratch DPRAM area. It is used between the two initialization
1572 calls (spi_init_f() and spi_init_r()). A value of 0xB00 seems
1573 to be a good choice since it makes it far enough from the
1574 start of the data area as well as from the stack pointer.
1575
1576 Please note that the environment is read-only as long as the monitor
1577 has been relocated to RAM and a RAM copy of the environment has been
1578 created; also, when using EEPROM you will have to use getenv_r()
1579 until then to read environment variables.
1580
1581 The environment is protected by a CRC32 checksum. Before the monitor
1582 is relocated into RAM, as a result of a bad CRC you will be working
1583 with the compiled-in default environment - *silently*!!! [This is
1584 necessary, because the first environment variable we need is the
1585 "baudrate" setting for the console - if we have a bad CRC, we don't
1586 have any device yet where we could complain.]
1587
1588 Note: once the monitor has been relocated, then it will complain if
1589 the default environment is used; a new CRC is computed as soon as you
1590 use the "saveenv" command to store a valid environment.
1591
1592
1593 Low Level (hardware related) configuration options:
1594 ---------------------------------------------------
1595
1596 - CFG_CACHELINE_SIZE:
1597 Cache Line Size of the CPU.
1598
1599 - CFG_DEFAULT_IMMR:
1600 Default address of the IMMR after system reset.
1601 Needed on some 8260 systems (MPC8260ADS and RPXsuper)
1602 to be able to adjust the position of the IMMR
1603 register after a reset.
1604
1605 - Floppy Disk Support:
1606 CFG_FDC_DRIVE_NUMBER
1607
1608 the default drive number (default value 0)
1609
1610 CFG_ISA_IO_STRIDE
1611
1612 defines the spacing between fdc chipset registers
1613 (default value 1)
1614
1615 CFG_ISA_IO_OFFSET
1616
1617 defines the offset of register from address. It
1618 depends on which part of the data bus is connected to
1619 the fdc chipset. (default value 0)
1620
1621 If CFG_ISA_IO_STRIDE CFG_ISA_IO_OFFSET and
1622 CFG_FDC_DRIVE_NUMBER are undefined, they take their
1623 default value.
1624
1625 if CFG_FDC_HW_INIT is defined, then the function
1626 fdc_hw_init() is called at the beginning of the FDC
1627 setup. fdc_hw_init() must be provided by the board
1628 source code. It is used to make hardware dependant
1629 initializations.
1630
1631 - CFG_IMMR: Physical address of the Internal Memory Mapped
1632 Register; DO NOT CHANGE! (11-4)
1633 [MPC8xx systems only]
1634
1635 - CFG_INIT_RAM_ADDR:
1636
1637 Start address of memory area tha can be used for
1638 initial data and stack; please note that this must be
1639 writable memory that is working WITHOUT special
1640 initialization, i. e. you CANNOT use normal RAM which
1641 will become available only after programming the
1642 memory controller and running certain initialization
1643 sequences.
1644
1645 U-Boot uses the following memory types:
1646 - MPC8xx and MPC8260: IMMR (internal memory of the CPU)
1647 - MPC824X: data cache
1648 - PPC4xx: data cache
1649
1650 - CFG_GBL_DATA_OFFSET:
1651
1652 Offset of the initial data structure in the memory
1653 area defined by CFG_INIT_RAM_ADDR. Usually
1654 CFG_GBL_DATA_OFFSET is chosen such that the initial
1655 data is located at the end of the available space
1656 (sometimes written as (CFG_INIT_RAM_END -
1657 CFG_INIT_DATA_SIZE), and the initial stack is just
1658 below that area (growing from (CFG_INIT_RAM_ADDR +
1659 CFG_GBL_DATA_OFFSET) downward.
1660
1661 Note:
1662 On the MPC824X (or other systems that use the data
1663 cache for initial memory) the address chosen for
1664 CFG_INIT_RAM_ADDR is basically arbitrary - it must
1665 point to an otherwise UNUSED address space between
1666 the top of RAM and the start of the PCI space.
1667
1668 - CFG_SIUMCR: SIU Module Configuration (11-6)
1669
1670 - CFG_SYPCR: System Protection Control (11-9)
1671
1672 - CFG_TBSCR: Time Base Status and Control (11-26)
1673
1674 - CFG_PISCR: Periodic Interrupt Status and Control (11-31)
1675
1676 - CFG_PLPRCR: PLL, Low-Power, and Reset Control Register (15-30)
1677
1678 - CFG_SCCR: System Clock and reset Control Register (15-27)
1679
1680 - CFG_OR_TIMING_SDRAM:
1681 SDRAM timing
1682
1683 - CFG_MAMR_PTA:
1684 periodic timer for refresh
1685
1686 - CFG_DER: Debug Event Register (37-47)
1687
1688 - FLASH_BASE0_PRELIM, FLASH_BASE1_PRELIM, CFG_REMAP_OR_AM,
1689 CFG_PRELIM_OR_AM, CFG_OR_TIMING_FLASH, CFG_OR0_REMAP,
1690 CFG_OR0_PRELIM, CFG_BR0_PRELIM, CFG_OR1_REMAP, CFG_OR1_PRELIM,
1691 CFG_BR1_PRELIM:
1692 Memory Controller Definitions: BR0/1 and OR0/1 (FLASH)
1693
1694 - SDRAM_BASE2_PRELIM, SDRAM_BASE3_PRELIM, SDRAM_MAX_SIZE,
1695 CFG_OR_TIMING_SDRAM, CFG_OR2_PRELIM, CFG_BR2_PRELIM,
1696 CFG_OR3_PRELIM, CFG_BR3_PRELIM:
1697 Memory Controller Definitions: BR2/3 and OR2/3 (SDRAM)
1698
1699 - CFG_MAMR_PTA, CFG_MPTPR_2BK_4K, CFG_MPTPR_1BK_4K, CFG_MPTPR_2BK_8K,
1700 CFG_MPTPR_1BK_8K, CFG_MAMR_8COL, CFG_MAMR_9COL:
1701 Machine Mode Register and Memory Periodic Timer
1702 Prescaler definitions (SDRAM timing)
1703
1704 - CFG_I2C_UCODE_PATCH, CFG_I2C_DPMEM_OFFSET [0x1FC0]:
1705 enable I2C microcode relocation patch (MPC8xx);
1706 define relocation offset in DPRAM [DSP2]
1707
1708 - CFG_SPI_UCODE_PATCH, CFG_SPI_DPMEM_OFFSET [0x1FC0]:
1709 enable SPI microcode relocation patch (MPC8xx);
1710 define relocation offset in DPRAM [SCC4]
1711
1712 - CFG_USE_OSCCLK:
1713 Use OSCM clock mode on MBX8xx board. Be careful,
1714 wrong setting might damage your board. Read
1715 doc/README.MBX before setting this variable!
1716
1717 - CFG_CPM_POST_WORD_ADDR: (MPC8xx, MPC8260 only)
1718 Offset of the bootmode word in DPRAM used by post
1719 (Power On Self Tests). This definition overrides
1720 #define'd default value in commproc.h resp.
1721 cpm_8260.h.
1722
1723 - CFG_PCI_SLV_MEM_LOCAL, CFG_PCI_SLV_MEM_BUS, CFG_PICMR0_MASK_ATTRIB,
1724 CFG_PCI_MSTR0_LOCAL, CFG_PCIMSK0_MASK, CFG_PCI_MSTR1_LOCAL,
1725 CFG_PCIMSK1_MASK, CFG_PCI_MSTR_MEM_LOCAL, CFG_PCI_MSTR_MEM_BUS,
1726 CFG_CPU_PCI_MEM_START, CFG_PCI_MSTR_MEM_SIZE, CFG_POCMR0_MASK_ATTRIB,
1727 CFG_PCI_MSTR_MEMIO_LOCAL, CFG_PCI_MSTR_MEMIO_BUS, CPU_PCI_MEMIO_START,
1728 CFG_PCI_MSTR_MEMIO_SIZE, CFG_POCMR1_MASK_ATTRIB, CFG_PCI_MSTR_IO_LOCAL,
1729 CFG_PCI_MSTR_IO_BUS, CFG_CPU_PCI_IO_START, CFG_PCI_MSTR_IO_SIZE,
1730 CFG_POCMR2_MASK_ATTRIB: (MPC826x only)
1731 Overrides the default PCI memory map in cpu/mpc8260/pci.c if set.
1732
1733 Building the Software:
1734 ======================
1735
1736 Building U-Boot has been tested in native PPC environments (on a
1737 PowerBook G3 running LinuxPPC 2000) and in cross environments
1738 (running RedHat 6.x and 7.x Linux on x86, Solaris 2.6 on a SPARC, and
1739 NetBSD 1.5 on x86).
1740
1741 If you are not using a native PPC environment, it is assumed that you
1742 have the GNU cross compiling tools available in your path and named
1743 with a prefix of "powerpc-linux-". If this is not the case, (e.g. if
1744 you are using Monta Vista's Hard Hat Linux CDK 1.2) you must change
1745 the definition of CROSS_COMPILE in Makefile. For HHL on a 4xx CPU,
1746 change it to:
1747
1748 CROSS_COMPILE = ppc_4xx-
1749
1750
1751 U-Boot is intended to be simple to build. After installing the
1752 sources you must configure U-Boot for one specific board type. This
1753 is done by typing:
1754
1755 make NAME_config
1756
1757 where "NAME_config" is the name of one of the existing
1758 configurations; the following names are supported:
1759
1760 ADCIOP_config GTH_config TQM850L_config
1761 ADS860_config IP860_config TQM855L_config
1762 AR405_config IVML24_config TQM860L_config
1763 CANBT_config IVMS8_config WALNUT405_config
1764 CPCI405_config LANTEC_config cogent_common_config
1765 CPCIISER4_config MBX_config cogent_mpc8260_config
1766 CU824_config MBX860T_config cogent_mpc8xx_config
1767 ESTEEM192E_config RPXlite_config hermes_config
1768 ETX094_config RPXsuper_config hymod_config
1769 FADS823_config SM850_config lwmon_config
1770 FADS850SAR_config SPD823TS_config pcu_e_config
1771 FADS860T_config SXNI855T_config rsdproto_config
1772 FPS850L_config Sandpoint8240_config sbc8260_config
1773 GENIETV_config TQM823L_config PIP405_config
1774 GEN860T_config EBONY_config FPS860L_config
1775 ELPT860_config cmi_mpc5xx_config NETVIA_config
1776
1777 Note: for some board special configuration names may exist; check if
1778 additional information is available from the board vendor; for
1779 instance, the TQM8xxL systems run normally at 50 MHz and use a
1780 SCC for 10baseT ethernet; there are also systems with 80 MHz
1781 CPU clock, and an optional Fast Ethernet module is available
1782 for CPU's with FEC. You can select such additional "features"
1783 when chosing the configuration, i. e.
1784
1785 make TQM860L_config
1786 - will configure for a plain TQM860L, i. e. 50MHz, no FEC
1787
1788 make TQM860L_FEC_config
1789 - will configure for a TQM860L at 50MHz with FEC for ethernet
1790
1791 make TQM860L_80MHz_config
1792 - will configure for a TQM860L at 80 MHz, with normal 10baseT
1793 interface
1794
1795 make TQM860L_FEC_80MHz_config
1796 - will configure for a TQM860L at 80 MHz with FEC for ethernet
1797
1798 make TQM823L_LCD_config
1799 - will configure for a TQM823L with U-Boot console on LCD
1800
1801 make TQM823L_LCD_80MHz_config
1802 - will configure for a TQM823L at 80 MHz with U-Boot console on LCD
1803
1804 etc.
1805
1806
1807
1808 Finally, type "make all", and you should get some working U-Boot
1809 images ready for downlod to / installation on your system:
1810
1811 - "u-boot.bin" is a raw binary image
1812 - "u-boot" is an image in ELF binary format
1813 - "u-boot.srec" is in Motorola S-Record format
1814
1815
1816 Please be aware that the Makefiles assume you are using GNU make, so
1817 for instance on NetBSD you might need to use "gmake" instead of
1818 native "make".
1819
1820
1821 If the system board that you have is not listed, then you will need
1822 to port U-Boot to your hardware platform. To do this, follow these
1823 steps:
1824
1825 1. Add a new configuration option for your board to the toplevel
1826 "Makefile" and to the "MAKEALL" script, using the existing
1827 entries as examples. Note that here and at many other places
1828 boards and other names are listed alphabetically sorted. Please
1829 keep this order.
1830 2. Create a new directory to hold your board specific code. Add any
1831 files you need. In your board directory, you will need at least
1832 the "Makefile", a "<board>.c", "flash.c" and "u-boot.lds".
1833 3. Create a new configuration file "include/configs/<board>.h" for
1834 your board
1835 3. If you're porting U-Boot to a new CPU, then also create a new
1836 directory to hold your CPU specific code. Add any files you need.
1837 4. Run "make <board>_config" with your new name.
1838 5. Type "make", and you should get a working "u-boot.srec" file
1839 to be installed on your target system.
1840 6. Debug and solve any problems that might arise.
1841 [Of course, this last step is much harder than it sounds.]
1842
1843
1844 Testing of U-Boot Modifications, Ports to New Hardware, etc.:
1845 ==============================================================
1846
1847 If you have modified U-Boot sources (for instance added a new board
1848 or support for new devices, a new CPU, etc.) you are expected to
1849 provide feedback to the other developers. The feedback normally takes
1850 the form of a "patch", i. e. a context diff against a certain (latest
1851 official or latest in CVS) version of U-Boot sources.
1852
1853 But before you submit such a patch, please verify that your modifi-
1854 cation did not break existing code. At least make sure that *ALL* of
1855 the supported boards compile WITHOUT ANY compiler warnings. To do so,
1856 just run the "MAKEALL" script, which will configure and build U-Boot
1857 for ALL supported system. Be warned, this will take a while. You can
1858 select which (cross) compiler to use py passing a `CROSS_COMPILE'
1859 environment variable to the script, i. e. to use the cross tools from
1860 MontaVista's Hard Hat Linux you can type
1861
1862 CROSS_COMPILE=ppc_8xx- MAKEALL
1863
1864 or to build on a native PowerPC system you can type
1865
1866 CROSS_COMPILE=' ' MAKEALL
1867
1868 See also "U-Boot Porting Guide" below.
1869
1870
1871
1872 Monitor Commands - Overview:
1873 ============================
1874
1875 go - start application at address 'addr'
1876 run - run commands in an environment variable
1877 bootm - boot application image from memory
1878 bootp - boot image via network using BootP/TFTP protocol
1879 tftpboot- boot image via network using TFTP protocol
1880 and env variables "ipaddr" and "serverip"
1881 (and eventually "gatewayip")
1882 rarpboot- boot image via network using RARP/TFTP protocol
1883 diskboot- boot from IDE devicebootd - boot default, i.e., run 'bootcmd'
1884 loads - load S-Record file over serial line
1885 loadb - load binary file over serial line (kermit mode)
1886 md - memory display
1887 mm - memory modify (auto-incrementing)
1888 nm - memory modify (constant address)
1889 mw - memory write (fill)
1890 cp - memory copy
1891 cmp - memory compare
1892 crc32 - checksum calculation
1893 imd - i2c memory display
1894 imm - i2c memory modify (auto-incrementing)
1895 inm - i2c memory modify (constant address)
1896 imw - i2c memory write (fill)
1897 icrc32 - i2c checksum calculation
1898 iprobe - probe to discover valid I2C chip addresses
1899 iloop - infinite loop on address range
1900 isdram - print SDRAM configuration information
1901 sspi - SPI utility commands
1902 base - print or set address offset
1903 printenv- print environment variables
1904 setenv - set environment variables
1905 saveenv - save environment variables to persistent storage
1906 protect - enable or disable FLASH write protection
1907 erase - erase FLASH memory
1908 flinfo - print FLASH memory information
1909 bdinfo - print Board Info structure
1910 iminfo - print header information for application image
1911 coninfo - print console devices and informations
1912 ide - IDE sub-system
1913 loop - infinite loop on address range
1914 mtest - simple RAM test
1915 icache - enable or disable instruction cache
1916 dcache - enable or disable data cache
1917 reset - Perform RESET of the CPU
1918 echo - echo args to console
1919 version - print monitor version
1920 help - print online help
1921 ? - alias for 'help'
1922
1923
1924 Monitor Commands - Detailed Description:
1925 ========================================
1926
1927 TODO.
1928
1929 For now: just type "help <command>".
1930
1931
1932 Environment Variables:
1933 ======================
1934
1935 U-Boot supports user configuration using Environment Variables which
1936 can be made persistent by saving to Flash memory.
1937
1938 Environment Variables are set using "setenv", printed using
1939 "printenv", and saved to Flash using "saveenv". Using "setenv"
1940 without a value can be used to delete a variable from the
1941 environment. As long as you don't save the environment you are
1942 working with an in-memory copy. In case the Flash area containing the
1943 environment is erased by accident, a default environment is provided.
1944
1945 Some configuration options can be set using Environment Variables:
1946
1947 baudrate - see CONFIG_BAUDRATE
1948
1949 bootdelay - see CONFIG_BOOTDELAY
1950
1951 bootcmd - see CONFIG_BOOTCOMMAND
1952
1953 bootargs - Boot arguments when booting an RTOS image
1954
1955 bootfile - Name of the image to load with TFTP
1956
1957 autoload - if set to "no" (any string beginning with 'n'),
1958 "bootp" will just load perform a lookup of the
1959 configuration from the BOOTP server, but not try to
1960 load any image using TFTP
1961
1962 autostart - if set to "yes", an image loaded using the "bootp",
1963 "rarpboot", "tftpboot" or "diskboot" commands will
1964 be automatically started (by internally calling
1965 "bootm")
1966
1967 If set to "no", a standalone image passed to the
1968 "bootm" command will be copied to the load address
1969 (and eventually uncompressed), but NOT be started.
1970 This can be used to load and uncompress arbitrary
1971 data.
1972
1973 initrd_high - restrict positioning of initrd images:
1974 If this variable is not set, initrd images will be
1975 copied to the highest possible address in RAM; this
1976 is usually what you want since it allows for
1977 maximum initrd size. If for some reason you want to
1978 make sure that the initrd image is loaded below the
1979 CFG_BOOTMAPSZ limit, you can set this environment
1980 variable to a value of "no" or "off" or "0".
1981 Alternatively, you can set it to a maximum upper
1982 address to use (U-Boot will still check that it
1983 does not overwrite the U-Boot stack and data).
1984
1985 For instance, when you have a system with 16 MB
1986 RAM, and want to reseve 4 MB from use by Linux,
1987 you can do this by adding "mem=12M" to the value of
1988 the "bootargs" variable. However, now you must make
1989 sure, that the initrd image is placed in the first
1990 12 MB as well - this can be done with
1991
1992 setenv initrd_high 00c00000
1993
1994 If you set initrd_high to 0xFFFFFFFF, this is an
1995 indication to U-Boot that all addresses are legal
1996 for the Linux kernel, including addresses in flash
1997 memory. In this case U-Boot will NOT COPY the
1998 ramdisk at all. This may be useful to reduce the
1999 boot time on your system, but requires that this
2000 feature is supported by your Linux kernel.
2001
2002 ipaddr - IP address; needed for tftpboot command
2003
2004 loadaddr - Default load address for commands like "bootp",
2005 "rarpboot", "tftpboot", "loadb" or "diskboot"
2006
2007 loads_echo - see CONFIG_LOADS_ECHO
2008
2009 serverip - TFTP server IP address; needed for tftpboot command
2010
2011 bootretry - see CONFIG_BOOT_RETRY_TIME
2012
2013 bootdelaykey - see CONFIG_AUTOBOOT_DELAY_STR
2014
2015 bootstopkey - see CONFIG_AUTOBOOT_STOP_STR
2016
2017
2018 The following environment variables may be used and automatically
2019 updated by the network boot commands ("bootp" and "rarpboot"),
2020 depending the information provided by your boot server:
2021
2022 bootfile - see above
2023 dnsip - IP address of your Domain Name Server
2024 gatewayip - IP address of the Gateway (Router) to use
2025 hostname - Target hostname
2026 ipaddr - see above
2027 netmask - Subnet Mask
2028 rootpath - Pathname of the root filesystem on the NFS server
2029 serverip - see above
2030
2031
2032 There are two special Environment Variables:
2033
2034 serial# - contains hardware identification information such
2035 as type string and/or serial number
2036 ethaddr - Ethernet address
2037
2038 These variables can be set only once (usually during manufacturing of
2039 the board). U-Boot refuses to delete or overwrite these variables
2040 once they have been set once.
2041
2042
2043 Further special Environment Variables:
2044
2045 ver - Contains the U-Boot version string as printed
2046 with the "version" command. This variable is
2047 readonly (see CONFIG_VERSION_VARIABLE).
2048
2049
2050 Please note that changes to some configuration parameters may take
2051 only effect after the next boot (yes, that's just like Windoze :-).
2052
2053
2054 Command Line Parsing:
2055 =====================
2056
2057 There are two different command line parsers available with U-Boot:
2058 the old "simple" one, and the much more pwerful "hush" shell:
2059
2060 Old, simple command line parser:
2061 --------------------------------
2062
2063 - supports environment variables (through setenv / saveenv commands)
2064 - several commands on one line, separated by ';'
2065 - variable substitution using "... $(name) ..." syntax
2066 - special characters ('$', ';') can be escaped by prefixing with '\',
2067 for example:
2068 setenv bootcmd bootm \$(address)
2069 - You can also escape text by enclosing in single apostrophes, for example:
2070 setenv addip 'setenv bootargs $bootargs ip=$ipaddr:$serverip:$gatewayip:$netmask:$hostname::off'
2071
2072 Hush shell:
2073 -----------
2074
2075 - similar to Bourne shell, with control structures like
2076 if...then...else...fi, for...do...done; while...do...done,
2077 until...do...done, ...
2078 - supports environment ("global") variables (through setenv / saveenv
2079 commands) and local shell variables (through standard shell syntax
2080 "name=value"); only environment variables can be used with "run"
2081 command
2082
2083 General rules:
2084 --------------
2085
2086 (1) If a command line (or an environment variable executed by a "run"
2087 command) contains several commands separated by semicolon, and
2088 one of these commands fails, then the remaining commands will be
2089 executed anyway.
2090
2091 (2) If you execute several variables with one call to run (i. e.
2092 calling run with a list af variables as arguments), any failing
2093 command will cause "run" to terminate, i. e. the remaining
2094 variables are not executed.
2095
2096 Note for Redundant Ethernet Interfaces:
2097 =======================================
2098
2099 Some boards come with redundand ethernet interfaces; U-Boot supports
2100 such configurations and is capable of automatic selection of a
2101 "working" interface when needed. MAC assignemnt works as follows:
2102
2103 Network interfaces are numbered eth0, eth1, eth2, ... Corresponding
2104 MAC addresses can be stored in the environment as "ethaddr" (=>eth0),
2105 "eth1addr" (=>eth1), "eth2addr", ...
2106
2107 If the network interface stores some valid MAC address (for instance
2108 in SROM), this is used as default address if there is NO correspon-
2109 ding setting in the environment; if the corresponding environment
2110 variable is set, this overrides the settings in the card; that means:
2111
2112 o If the SROM has a valid MAC address, and there is no address in the
2113 environment, the SROM's address is used.
2114
2115 o If there is no valid address in the SROM, and a definition in the
2116 environment exists, then the value from the environment variable is
2117 used.
2118
2119 o If both the SROM and the environment contain a MAC address, and
2120 both addresses are the same, this MAC address is used.
2121
2122 o If both the SROM and the environment contain a MAC address, and the
2123 addresses differ, the value from the environment is used and a
2124 warning is printed.
2125
2126 o If neither SROM nor the environment contain a MAC address, an error
2127 is raised.
2128
2129
2130
2131 Image Formats:
2132 ==============
2133
2134 The "boot" commands of this monitor operate on "image" files which
2135 can be basicly anything, preceeded by a special header; see the
2136 definitions in include/image.h for details; basicly, the header
2137 defines the following image properties:
2138
2139 * Target Operating System (Provisions for OpenBSD, NetBSD, FreeBSD,
2140 4.4BSD, Linux, SVR4, Esix, Solaris, Irix, SCO, Dell, NCR, VxWorks,
2141 LynxOS, pSOS, QNX, RTEMS, ARTOS;
2142 Currently supported: Linux, NetBSD, VxWorks, QNX, RTEMS, ARTOS).
2143 * Target CPU Architecture (Provisions for Alpha, ARM, Intel x86,
2144 IA64, MIPS, MIPS, PowerPC, IBM S390, SuperH, Sparc, Sparc 64 Bit;
2145 Currently supported: PowerPC).
2146 * Compression Type (Provisions for uncompressed, gzip, bzip2;
2147 Currently supported: uncompressed, gzip).
2148 * Load Address
2149 * Entry Point
2150 * Image Name
2151 * Image Timestamp
2152
2153 The header is marked by a special Magic Number, and both the header
2154 and the data portions of the image are secured against corruption by
2155 CRC32 checksums.
2156
2157
2158 Linux Support:
2159 ==============
2160
2161 Although U-Boot should support any OS or standalone application
2162 easily, Linux has always been in the focus during the design of
2163 U-Boot.
2164
2165 U-Boot includes many features that so far have been part of some
2166 special "boot loader" code within the Linux kernel. Also, any
2167 "initrd" images to be used are no longer part of one big Linux image;
2168 instead, kernel and "initrd" are separate images. This implementation
2169 serves serveral purposes:
2170
2171 - the same features can be used for other OS or standalone
2172 applications (for instance: using compressed images to reduce the
2173 Flash memory footprint)
2174
2175 - it becomes much easier to port new Linux kernel versions because
2176 lots of low-level, hardware dependend stuff are done by U-Boot
2177
2178 - the same Linux kernel image can now be used with different "initrd"
2179 images; of course this also means that different kernel images can
2180 be run with the same "initrd". This makes testing easier (you don't
2181 have to build a new "zImage.initrd" Linux image when you just
2182 change a file in your "initrd"). Also, a field-upgrade of the
2183 software is easier now.
2184
2185
2186 Linux HOWTO:
2187 ============
2188
2189 Porting Linux to U-Boot based systems:
2190 ---------------------------------------
2191
2192 U-Boot cannot save you from doing all the necessary modifications to
2193 configure the Linux device drivers for use with your target hardware
2194 (no, we don't intend to provide a full virtual machine interface to
2195 Linux :-).
2196
2197 But now you can ignore ALL boot loader code (in arch/ppc/mbxboot).
2198
2199 Just make sure your machine specific header file (for instance
2200 include/asm-ppc/tqm8xx.h) includes the same definition of the Board
2201 Information structure as we define in include/u-boot.h, and make
2202 sure that your definition of IMAP_ADDR uses the same value as your
2203 U-Boot configuration in CFG_IMMR.
2204
2205
2206 Configuring the Linux kernel:
2207 -----------------------------
2208
2209 No specific requirements for U-Boot. Make sure you have some root
2210 device (initial ramdisk, NFS) for your target system.
2211
2212
2213 Building a Linux Image:
2214 -----------------------
2215
2216 With U-Boot, "normal" build targets like "zImage" or "bzImage" are
2217 not used. If you use recent kernel source, a new build target
2218 "uImage" will exist which automatically builds an image usable by
2219 U-Boot. Most older kernels also have support for a "pImage" target,
2220 which was introduced for our predecessor project PPCBoot and uses a
2221 100% compatible format.
2222
2223 Example:
2224
2225 make TQM850L_config
2226 make oldconfig
2227 make dep
2228 make uImage
2229
2230 The "uImage" build target uses a special tool (in 'tools/mkimage') to
2231 encapsulate a compressed Linux kernel image with header information,
2232 CRC32 checksum etc. for use with U-Boot. This is what we are doing:
2233
2234 * build a standard "vmlinux" kernel image (in ELF binary format):
2235
2236 * convert the kernel into a raw binary image:
2237
2238 ${CROSS_COMPILE}-objcopy -O binary \
2239 -R .note -R .comment \
2240 -S vmlinux linux.bin
2241
2242 * compress the binary image:
2243
2244 gzip -9 linux.bin
2245
2246 * package compressed binary image for U-Boot:
2247
2248 mkimage -A ppc -O linux -T kernel -C gzip \
2249 -a 0 -e 0 -n "Linux Kernel Image" \
2250 -d linux.bin.gz uImage
2251
2252
2253 The "mkimage" tool can also be used to create ramdisk images for use
2254 with U-Boot, either separated from the Linux kernel image, or
2255 combined into one file. "mkimage" encapsulates the images with a 64
2256 byte header containing information about target architecture,
2257 operating system, image type, compression method, entry points, time
2258 stamp, CRC32 checksums, etc.
2259
2260 "mkimage" can be called in two ways: to verify existing images and
2261 print the header information, or to build new images.
2262
2263 In the first form (with "-l" option) mkimage lists the information
2264 contained in the header of an existing U-Boot image; this includes
2265 checksum verification:
2266
2267 tools/mkimage -l image
2268 -l ==> list image header information
2269
2270 The second form (with "-d" option) is used to build a U-Boot image
2271 from a "data file" which is used as image payload:
2272
2273 tools/mkimage -A arch -O os -T type -C comp -a addr -e ep \
2274 -n name -d data_file image
2275 -A ==> set architecture to 'arch'
2276 -O ==> set operating system to 'os'
2277 -T ==> set image type to 'type'
2278 -C ==> set compression type 'comp'
2279 -a ==> set load address to 'addr' (hex)
2280 -e ==> set entry point to 'ep' (hex)
2281 -n ==> set image name to 'name'
2282 -d ==> use image data from 'datafile'
2283
2284 Right now, all Linux kernels use the same load address (0x00000000),
2285 but the entry point address depends on the kernel version:
2286
2287 - 2.2.x kernels have the entry point at 0x0000000C,
2288 - 2.3.x and later kernels have the entry point at 0x00000000.
2289
2290 So a typical call to build a U-Boot image would read:
2291
2292 -> tools/mkimage -n '2.4.4 kernel for TQM850L' \
2293 > -A ppc -O linux -T kernel -C gzip -a 0 -e 0 \
2294 > -d /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/ppc/coffboot/vmlinux.gz \
2295 > examples/uImage.TQM850L
2296 Image Name: 2.4.4 kernel for TQM850L
2297 Created: Wed Jul 19 02:34:59 2000
2298 Image Type: PowerPC Linux Kernel Image (gzip compressed)
2299 Data Size: 335725 Bytes = 327.86 kB = 0.32 MB
2300 Load Address: 0x00000000
2301 Entry Point: 0x00000000
2302
2303 To verify the contents of the image (or check for corruption):
2304
2305 -> tools/mkimage -l examples/uImage.TQM850L
2306 Image Name: 2.4.4 kernel for TQM850L
2307 Created: Wed Jul 19 02:34:59 2000
2308 Image Type: PowerPC Linux Kernel Image (gzip compressed)
2309 Data Size: 335725 Bytes = 327.86 kB = 0.32 MB
2310 Load Address: 0x00000000
2311 Entry Point: 0x00000000
2312
2313 NOTE: for embedded systems where boot time is critical you can trade
2314 speed for memory and install an UNCOMPRESSED image instead: this
2315 needs more space in Flash, but boots much faster since it does not
2316 need to be uncompressed:
2317
2318 -> gunzip /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/ppc/coffboot/vmlinux.gz
2319 -> tools/mkimage -n '2.4.4 kernel for TQM850L' \
2320 > -A ppc -O linux -T kernel -C none -a 0 -e 0 \
2321 > -d /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/ppc/coffboot/vmlinux \
2322 > examples/uImage.TQM850L-uncompressed
2323 Image Name: 2.4.4 kernel for TQM850L
2324 Created: Wed Jul 19 02:34:59 2000
2325 Image Type: PowerPC Linux Kernel Image (uncompressed)
2326 Data Size: 792160 Bytes = 773.59 kB = 0.76 MB
2327 Load Address: 0x00000000
2328 Entry Point: 0x00000000
2329
2330
2331 Similar you can build U-Boot images from a 'ramdisk.image.gz' file
2332 when your kernel is intended to use an initial ramdisk:
2333
2334 -> tools/mkimage -n 'Simple Ramdisk Image' \
2335 > -A ppc -O linux -T ramdisk -C gzip \
2336 > -d /LinuxPPC/images/SIMPLE-ramdisk.image.gz examples/simple-initrd
2337 Image Name: Simple Ramdisk Image
2338 Created: Wed Jan 12 14:01:50 2000
2339 Image Type: PowerPC Linux RAMDisk Image (gzip compressed)
2340 Data Size: 566530 Bytes = 553.25 kB = 0.54 MB
2341 Load Address: 0x00000000
2342 Entry Point: 0x00000000
2343
2344
2345 Installing a Linux Image:
2346 -------------------------
2347
2348 To downloading a U-Boot image over the serial (console) interface,
2349 you must convert the image to S-Record format:
2350
2351 objcopy -I binary -O srec examples/image examples/image.srec
2352
2353 The 'objcopy' does not understand the information in the U-Boot
2354 image header, so the resulting S-Record file will be relative to
2355 address 0x00000000. To load it to a given address, you need to
2356 specify the target address as 'offset' parameter with the 'loads'
2357 command.
2358
2359 Example: install the image to address 0x40100000 (which on the
2360 TQM8xxL is in the first Flash bank):
2361
2362 => erase 40100000 401FFFFF
2363
2364 .......... done
2365 Erased 8 sectors
2366
2367 => loads 40100000
2368 ## Ready for S-Record download ...
2369 ~>examples/image.srec
2370 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
2371 ...
2372 15989 15990 15991 15992
2373 [file transfer complete]
2374 [connected]
2375 ## Start Addr = 0x00000000
2376
2377
2378 You can check the success of the download using the 'iminfo' command;
2379 this includes a checksum verification so you can be sure no data
2380 corruption happened:
2381
2382 => imi 40100000
2383
2384 ## Checking Image at 40100000 ...
2385 Image Name: 2.2.13 for initrd on TQM850L
2386 Image Type: PowerPC Linux Kernel Image (gzip compressed)
2387 Data Size: 335725 Bytes = 327 kB = 0 MB
2388 Load Address: 00000000
2389 Entry Point: 0000000c
2390 Verifying Checksum ... OK
2391
2392
2393
2394 Boot Linux:
2395 -----------
2396
2397 The "bootm" command is used to boot an application that is stored in
2398 memory (RAM or Flash). In case of a Linux kernel image, the contents
2399 of the "bootargs" environment variable is passed to the kernel as
2400 parameters. You can check and modify this variable using the
2401 "printenv" and "setenv" commands:
2402
2403
2404 => printenv bootargs
2405 bootargs=root=/dev/ram
2406
2407 => setenv bootargs root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2
2408
2409 => printenv bootargs
2410 bootargs=root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2
2411
2412 => bootm 40020000
2413 ## Booting Linux kernel at 40020000 ...
2414 Image Name: 2.2.13 for NFS on TQM850L
2415 Image Type: PowerPC Linux Kernel Image (gzip compressed)
2416 Data Size: 381681 Bytes = 372 kB = 0 MB
2417 Load Address: 00000000
2418 Entry Point: 0000000c
2419 Verifying Checksum ... OK
2420 Uncompressing Kernel Image ... OK
2421 Linux version 2.2.13 (wd@denx.local.net) (gcc version 2.95.2 19991024 (release)) #1 Wed Jul 19 02:35:17 MEST 2000
2422 Boot arguments: root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2
2423 time_init: decrementer frequency = 187500000/60
2424 Calibrating delay loop... 49.77 BogoMIPS
2425 Memory: 15208k available (700k kernel code, 444k data, 32k init) [c0000000,c1000000]
2426 ...
2427
2428 If you want to boot a Linux kernel with initial ram disk, you pass
2429 the memory addreses of both the kernel and the initrd image (PPBCOOT
2430 format!) to the "bootm" command:
2431
2432 => imi 40100000 40200000
2433
2434 ## Checking Image at 40100000 ...
2435 Image Name: 2.2.13 for initrd on TQM850L
2436 Image Type: PowerPC Linux Kernel Image (gzip compressed)
2437 Data Size: 335725 Bytes = 327 kB = 0 MB
2438 Load Address: 00000000
2439 Entry Point: 0000000c
2440 Verifying Checksum ... OK
2441
2442 ## Checking Image at 40200000 ...
2443 Image Name: Simple Ramdisk Image
2444 Image Type: PowerPC Linux RAMDisk Image (gzip compressed)
2445 Data Size: 566530 Bytes = 553 kB = 0 MB
2446 Load Address: 00000000
2447 Entry Point: 00000000
2448 Verifying Checksum ... OK
2449
2450 => bootm 40100000 40200000
2451 ## Booting Linux kernel at 40100000 ...
2452 Image Name: 2.2.13 for initrd on TQM850L
2453 Image Type: PowerPC Linux Kernel Image (gzip compressed)
2454 Data Size: 335725 Bytes = 327 kB = 0 MB
2455 Load Address: 00000000
2456 Entry Point: 0000000c
2457 Verifying Checksum ... OK
2458 Uncompressing Kernel Image ... OK
2459 ## Loading RAMDisk Image at 40200000 ...
2460 Image Name: Simple Ramdisk Image
2461 Image Type: PowerPC Linux RAMDisk Image (gzip compressed)
2462 Data Size: 566530 Bytes = 553 kB = 0 MB
2463 Load Address: 00000000
2464 Entry Point: 00000000
2465 Verifying Checksum ... OK
2466 Loading Ramdisk ... OK
2467 Linux version 2.2.13 (wd@denx.local.net) (gcc version 2.95.2 19991024 (release)) #1 Wed Jul 19 02:32:08 MEST 2000
2468 Boot arguments: root=/dev/ram
2469 time_init: decrementer frequency = 187500000/60
2470 Calibrating delay loop... 49.77 BogoMIPS
2471 ...
2472 RAMDISK: Compressed image found at block 0
2473 VFS: Mounted root (ext2 filesystem).
2474
2475 bash#
2476
2477 More About U-Boot Image Types:
2478 ------------------------------
2479
2480 U-Boot supports the following image types:
2481
2482 "Standalone Programs" are directly runnable in the environment
2483 provided by U-Boot; it is expected that (if they behave
2484 well) you can continue to work in U-Boot after return from
2485 the Standalone Program.
2486 "OS Kernel Images" are usually images of some Embedded OS which
2487 will take over control completely. Usually these programs
2488 will install their own set of exception handlers, device
2489 drivers, set up the MMU, etc. - this means, that you cannot
2490 expect to re-enter U-Boot except by resetting the CPU.
2491 "RAMDisk Images" are more or less just data blocks, and their
2492 parameters (address, size) are passed to an OS kernel that is
2493 being started.
2494 "Multi-File Images" contain several images, typically an OS
2495 (Linux) kernel image and one or more data images like
2496 RAMDisks. This construct is useful for instance when you want
2497 to boot over the network using BOOTP etc., where the boot
2498 server provides just a single image file, but you want to get
2499 for instance an OS kernel and a RAMDisk image.
2500
2501 "Multi-File Images" start with a list of image sizes, each
2502 image size (in bytes) specified by an "uint32_t" in network
2503 byte order. This list is terminated by an "(uint32_t)0".
2504 Immediately after the terminating 0 follow the images, one by
2505 one, all aligned on "uint32_t" boundaries (size rounded up to
2506 a multiple of 4 bytes).
2507
2508 "Firmware Images" are binary images containing firmware (like
2509 U-Boot or FPGA images) which usually will be programmed to
2510 flash memory.
2511
2512 "Script files" are command sequences that will be executed by
2513 U-Boot's command interpreter; this feature is especially
2514 useful when you configure U-Boot to use a real shell (hush)
2515 as command interpreter.
2516
2517
2518 Standalone HOWTO:
2519 =================
2520
2521 One of the features of U-Boot is that you can dynamically load and
2522 run "standalone" applications, which can use some resources of
2523 U-Boot like console I/O functions or interrupt services.
2524
2525 Two simple examples are included with the sources:
2526
2527 "Hello World" Demo:
2528 -------------------
2529
2530 'examples/hello_world.c' contains a small "Hello World" Demo
2531 application; it is automatically compiled when you build U-Boot.
2532 It's configured to run at address 0x00040004, so you can play with it
2533 like that:
2534
2535 => loads
2536 ## Ready for S-Record download ...
2537 ~>examples/hello_world.srec
2538 1 2 3 4 5 6 7 8 9 10 11 ...
2539 [file transfer complete]
2540 [connected]
2541 ## Start Addr = 0x00040004
2542
2543 => go 40004 Hello World! This is a test.
2544 ## Starting application at 0x00040004 ...
2545 Hello World
2546 argc = 7
2547 argv[0] = "40004"
2548 argv[1] = "Hello"
2549 argv[2] = "World!"
2550 argv[3] = "This"
2551 argv[4] = "is"
2552 argv[5] = "a"
2553 argv[6] = "test."
2554 argv[7] = "<NULL>"
2555 Hit any key to exit ...
2556
2557 ## Application terminated, rc = 0x0
2558
2559 Another example, which demonstrates how to register a CPM interrupt
2560 handler with the U-Boot code, can be found in 'examples/timer.c'.
2561 Here, a CPM timer is set up to generate an interrupt every second.
2562 The interrupt service routine is trivial, just printing a '.'
2563 character, but this is just a demo program. The application can be
2564 controlled by the following keys:
2565
2566 ? - print current values og the CPM Timer registers
2567 b - enable interrupts and start timer
2568 e - stop timer and disable interrupts
2569 q - quit application
2570
2571 => loads
2572 ## Ready for S-Record download ...
2573 ~>examples/timer.srec
2574 1 2 3 4 5 6 7 8 9 10 11 ...
2575 [file transfer complete]
2576 [connected]
2577 ## Start Addr = 0x00040004
2578
2579 => go 40004
2580 ## Starting application at 0x00040004 ...
2581 TIMERS=0xfff00980
2582 Using timer 1
2583 tgcr @ 0xfff00980, tmr @ 0xfff00990, trr @ 0xfff00994, tcr @ 0xfff00998, tcn @ 0xfff0099c, ter @ 0xfff009b0
2584
2585 Hit 'b':
2586 [q, b, e, ?] Set interval 1000000 us
2587 Enabling timer
2588 Hit '?':
2589 [q, b, e, ?] ........
2590 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0xef6, ter=0x0
2591 Hit '?':
2592 [q, b, e, ?] .
2593 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x2ad4, ter=0x0
2594 Hit '?':
2595 [q, b, e, ?] .
2596 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x1efc, ter=0x0
2597 Hit '?':
2598 [q, b, e, ?] .
2599 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x169d, ter=0x0
2600 Hit 'e':
2601 [q, b, e, ?] ...Stopping timer
2602 Hit 'q':
2603 [q, b, e, ?] ## Application terminated, rc = 0x0
2604
2605
2606
2607 Minicom warning:
2608 ================
2609
2610 Over time, many people have reported problems when trying to used the
2611 "minicom" terminal emulation program for serial download. I (wd)
2612 consider minicom to be broken, and recommend not to use it. Under
2613 Unix, I recommend to use C-Kermit for general purpose use (and
2614 especially for kermit binary protocol download ("loadb" command), and
2615 use "cu" for S-Record download ("loads" command).
2616
2617 NetBSD Notes:
2618 =============
2619
2620 Starting at version 0.9.2, U-Boot supports NetBSD both as host
2621 (build U-Boot) and target system (boots NetBSD/mpc8xx).
2622
2623 Building requires a cross environment; it is known to work on
2624 NetBSD/i386 with the cross-powerpc-netbsd-1.3 package (you will also
2625 need gmake since the Makefiles are not compatible with BSD make).
2626 Note that the cross-powerpc package does not install include files;
2627 attempting to build U-Boot will fail because <machine/ansi.h> is
2628 missing. This file has to be installed and patched manually:
2629
2630 # cd /usr/pkg/cross/powerpc-netbsd/include
2631 # mkdir powerpc
2632 # ln -s powerpc machine
2633 # cp /usr/src/sys/arch/powerpc/include/ansi.h powerpc/ansi.h
2634 # ${EDIT} powerpc/ansi.h ## must remove __va_list, _BSD_VA_LIST
2635
2636 Native builds *don't* work due to incompatibilities between native
2637 and U-Boot include files.
2638
2639 Booting assumes that (the first part of) the image booted is a
2640 stage-2 loader which in turn loads and then invokes the kernel
2641 proper. Loader sources will eventually appear in the NetBSD source
2642 tree (probably in sys/arc/mpc8xx/stand/u-boot_stage2/); in the
2643 meantime, send mail to bruno@exet-ag.de and/or wd@denx.de for
2644 details.
2645
2646
2647 Implementation Internals:
2648 =========================
2649
2650 The following is not intended to be a complete description of every
2651 implementation detail. However, it should help to understand the
2652 inner workings of U-Boot and make it easier to port it to custom
2653 hardware.
2654
2655
2656 Initial Stack, Global Data:
2657 ---------------------------
2658
2659 The implementation of U-Boot is complicated by the fact that U-Boot
2660 starts running out of ROM (flash memory), usually without access to
2661 system RAM (because the memory controller is not initialized yet).
2662 This means that we don't have writable Data or BSS segments, and BSS
2663 is not initialized as zero. To be able to get a C environment working
2664 at all, we have to allocate at least a minimal stack. Implementation
2665 options for this are defined and restricted by the CPU used: Some CPU
2666 models provide on-chip memory (like the IMMR area on MPC8xx and
2667 MPC826x processors), on others (parts of) the data cache can be
2668 locked as (mis-) used as memory, etc.
2669
2670 Chris Hallinan posted a good summy of these issues to the
2671 u-boot-users mailing list:
2672
2673 Subject: RE: [U-Boot-Users] RE: More On Memory Bank x (nothingness)?
2674 From: "Chris Hallinan" <clh@net1plus.com>
2675 Date: Mon, 10 Feb 2003 16:43:46 -0500 (22:43 MET)
2676 ...
2677
2678 Correct me if I'm wrong, folks, but the way I understand it
2679 is this: Using DCACHE as initial RAM for Stack, etc, does not
2680 require any physical RAM backing up the cache. The cleverness
2681 is that the cache is being used as a temporary supply of
2682 necessary storage before the SDRAM controller is setup. It's
2683 beyond the scope of this list to expain the details, but you
2684 can see how this works by studying the cache architecture and
2685 operation in the architecture and processor-specific manuals.
2686
2687 OCM is On Chip Memory, which I believe the 405GP has 4K. It
2688 is another option for the system designer to use as an
2689 initial stack/ram area prior to SDRAM being available. Either
2690 option should work for you. Using CS 4 should be fine if your
2691 board designers haven't used it for something that would
2692 cause you grief during the initial boot! It is frequently not
2693 used.
2694
2695 CFG_INIT_RAM_ADDR should be somewhere that won't interfere
2696 with your processor/board/system design. The default value
2697 you will find in any recent u-boot distribution in
2698 Walnut405.h should work for you. I'd set it to a value larger
2699 than your SDRAM module. If you have a 64MB SDRAM module, set
2700 it above 400_0000. Just make sure your board has no resources
2701 that are supposed to respond to that address! That code in
2702 start.S has been around a while and should work as is when
2703 you get the config right.
2704
2705 -Chris Hallinan
2706 DS4.COM, Inc.
2707
2708 It is essential to remember this, since it has some impact on the C
2709 code for the initialization procedures:
2710
2711 * Initialized global data (data segment) is read-only. Do not attempt
2712 to write it.
2713
2714 * Do not use any unitialized global data (or implicitely initialized
2715 as zero data - BSS segment) at all - this is undefined, initiali-
2716 zation is performed later (when relocationg to RAM).
2717
2718 * Stack space is very limited. Avoid big data buffers or things like
2719 that.
2720
2721 Having only the stack as writable memory limits means we cannot use
2722 normal global data to share information beween the code. But it
2723 turned out that the implementation of U-Boot can be greatly
2724 simplified by making a global data structure (gd_t) available to all
2725 functions. We could pass a pointer to this data as argument to _all_
2726 functions, but this would bloat the code. Instead we use a feature of
2727 the GCC compiler (Global Register Variables) to share the data: we
2728 place a pointer (gd) to the global data into a register which we
2729 reserve for this purpose.
2730
2731 When chosing a register for such a purpose we are restricted by the
2732 relevant (E)ABI specifications for the current architecture, and by
2733 GCC's implementation.
2734
2735 For PowerPC, the following registers have specific use:
2736 R1: stack pointer
2737 R2: TOC pointer
2738 R3-R4: parameter passing and return values
2739 R5-R10: parameter passing
2740 R13: small data area pointer
2741 R30: GOT pointer
2742 R31: frame pointer
2743
2744 (U-Boot also uses R14 as internal GOT pointer.)
2745
2746 ==> U-Boot will use R29 to hold a pointer to the global data
2747
2748 Note: on PPC, we could use a static initializer (since the
2749 address of the global data structure is known at compile time),
2750 but it turned out that reserving a register results in somewhat
2751 smaller code - although the code savings are not that big (on
2752 average for all boards 752 bytes for the whole U-Boot image,
2753 624 text + 127 data).
2754
2755 On ARM, the following registers are used:
2756
2757 R0: function argument word/integer result
2758 R1-R3: function argument word
2759 R9: GOT pointer
2760 R10: stack limit (used only if stack checking if enabled)
2761 R11: argument (frame) pointer
2762 R12: temporary workspace
2763 R13: stack pointer
2764 R14: link register
2765 R15: program counter
2766
2767 ==> U-Boot will use R8 to hold a pointer to the global data
2768
2769
2770
2771 Memory Management:
2772 ------------------
2773
2774 U-Boot runs in system state and uses physical addresses, i.e. the
2775 MMU is not used either for address mapping nor for memory protection.
2776
2777 The available memory is mapped to fixed addresses using the memory
2778 controller. In this process, a contiguous block is formed for each
2779 memory type (Flash, SDRAM, SRAM), even when it consists of several
2780 physical memory banks.
2781
2782 U-Boot is installed in the first 128 kB of the first Flash bank (on
2783 TQM8xxL modules this is the range 0x40000000 ... 0x4001FFFF). After
2784 booting and sizing and initializing DRAM, the code relocates itself
2785 to the upper end of DRAM. Immediately below the U-Boot code some
2786 memory is reserved for use by malloc() [see CFG_MALLOC_LEN
2787 configuration setting]. Below that, a structure with global Board
2788 Info data is placed, followed by the stack (growing downward).
2789
2790 Additionally, some exception handler code is copied to the low 8 kB
2791 of DRAM (0x00000000 ... 0x00001FFF).
2792
2793 So a typical memory configuration with 16 MB of DRAM could look like
2794 this:
2795
2796 0x0000 0000 Exception Vector code
2797 :
2798 0x0000 1FFF
2799 0x0000 2000 Free for Application Use
2800 :
2801 :
2802
2803 :
2804 :
2805 0x00FB FF20 Monitor Stack (Growing downward)
2806 0x00FB FFAC Board Info Data and permanent copy of global data
2807 0x00FC 0000 Malloc Arena
2808 :
2809 0x00FD FFFF
2810 0x00FE 0000 RAM Copy of Monitor Code
2811 ... eventually: LCD or video framebuffer
2812 ... eventually: pRAM (Protected RAM - unchanged by reset)
2813 0x00FF FFFF [End of RAM]
2814
2815
2816 System Initialization:
2817 ----------------------
2818
2819 In the reset configuration, U-Boot starts at the reset entry point
2820 (on most PowerPC systens at address 0x00000100). Because of the reset
2821 configuration for CS0# this is a mirror of the onboard Flash memory.
2822 To be able to re-map memory U-Boot then jumps to it's link address.
2823 To be able to implement the initialization code in C, a (small!)
2824 initial stack is set up in the internal Dual Ported RAM (in case CPUs
2825 which provide such a feature like MPC8xx or MPC8260), or in a locked
2826 part of the data cache. After that, U-Boot initializes the CPU core,
2827 the caches and the SIU.
2828
2829 Next, all (potentially) available memory banks are mapped using a
2830 preliminary mapping. For example, we put them on 512 MB boundaries
2831 (multiples of 0x20000000: SDRAM on 0x00000000 and 0x20000000, Flash
2832 on 0x40000000 and 0x60000000, SRAM on 0x80000000). Then UPM A is
2833 programmed for SDRAM access. Using the temporary configuration, a
2834 simple memory test is run that determines the size of the SDRAM
2835 banks.
2836
2837 When there is more than one SDRAM bank, and the banks are of
2838 different size, the larger is mapped first. For equal size, the first
2839 bank (CS2#) is mapped first. The first mapping is always for address
2840 0x00000000, with any additional banks following immediately to create
2841 contiguous memory starting from 0.
2842
2843 Then, the monitor installs itself at the upper end of the SDRAM area
2844 and allocates memory for use by malloc() and for the global Board
2845 Info data; also, the exception vector code is copied to the low RAM
2846 pages, and the final stack is set up.
2847
2848 Only after this relocation will you have a "normal" C environment;
2849 until that you are restricted in several ways, mostly because you are
2850 running from ROM, and because the code will have to be relocated to a
2851 new address in RAM.
2852
2853
2854 U-Boot Porting Guide:
2855 ----------------------
2856
2857 [Based on messages by Jerry Van Baren in the U-Boot-Users mailing
2858 list, October 2002]
2859
2860
2861 int main (int argc, char *argv[])
2862 {
2863 sighandler_t no_more_time;
2864
2865 signal (SIGALRM, no_more_time);
2866 alarm (PROJECT_DEADLINE - toSec (3 * WEEK));
2867
2868 if (available_money > available_manpower) {
2869 pay consultant to port U-Boot;
2870 return 0;
2871 }
2872
2873 Download latest U-Boot source;
2874
2875 Subscribe to u-boot-users mailing list;
2876
2877 if (clueless) {
2878 email ("Hi, I am new to U-Boot, how do I get started?");
2879 }
2880
2881 while (learning) {
2882 Read the README file in the top level directory;
2883 Read http://www.denx.de/re/DPLG.html
2884 Read the source, Luke;
2885 }
2886
2887 if (available_money > toLocalCurrency ($2500)) {
2888 Buy a BDI2000;
2889 } else {
2890 Add a lot of aggravation and time;
2891 }
2892
2893 Create your own board support subdirectory;
2894
2895 Create your own board config file;
2896
2897 while (!running) {
2898 do {
2899 Add / modify source code;
2900 } until (compiles);
2901 Debug;
2902 if (clueless)
2903 email ("Hi, I am having problems...");
2904 }
2905 Send patch file to Wolfgang;
2906
2907 return 0;
2908 }
2909
2910 void no_more_time (int sig)
2911 {
2912 hire_a_guru();
2913 }
2914
2915
2916
2917 Coding Standards:
2918 -----------------
2919
2920 All contributions to U-Boot should conform to the Linux kernel
2921 coding style; see the file "Documentation/CodingStyle" in your Linux
2922 kernel source directory.
2923
2924 Please note that U-Boot is implemented in C (and to some small parts
2925 in Assembler); no C++ is used, so please do not use C++ style
2926 comments (//) in your code.
2927
2928 Submissions which do not conform to the standards may be returned
2929 with a request to reformat the changes.
2930
2931
2932 Submitting Patches:
2933 -------------------
2934
2935 Since the number of patches for U-Boot is growing, we need to
2936 establish some rules. Submissions which do not conform to these rules
2937 may be rejected, even when they contain important and valuable stuff.
2938
2939
2940 When you send a patch, please include the following information with
2941 it:
2942
2943 * For bug fixes: a description of the bug and how your patch fixes
2944 this bug. Please try to include a way of demonstrating that the
2945 patch actually fixes something.
2946
2947 * For new features: a description of the feature and your
2948 implementation.
2949
2950 * A CHANGELOG entry as plaintext (separate from the patch)
2951
2952 * For major contributions, your entry to the CREDITS file
2953
2954 * When you add support for a new board, don't forget to add this
2955 board to the MAKEALL script, too.
2956
2957 * If your patch adds new configuration options, don't forget to
2958 document these in the README file.
2959
2960 * The patch itself. If you are accessing the CVS repository use "cvs
2961 update; cvs diff -puRN"; else, use "diff -purN OLD NEW". If your
2962 version of diff does not support these options, then get the latest
2963 version of GNU diff.
2964
2965 We accept patches as plain text, MIME attachments or as uuencoded
2966 gzipped text.
2967
2968 Notes:
2969
2970 * Before sending the patch, run the MAKEALL script on your patched
2971 source tree and make sure that no errors or warnings are reported
2972 for any of the boards.
2973
2974 * Keep your modifications to the necessary minimum: A patch
2975 containing several unrelated changes or arbitrary reformats will be
2976 returned with a request to re-formatting / split it.
2977
2978 * If you modify existing code, make sure that your new code does not
2979 add to the memory footprint of the code ;-) Small is beautiful!
2980 When adding new features, these should compile conditionally only
2981 (using #ifdef), and the resulting code with the new feature
2982 disabled must not need more memory than the old code without your
2983 modification.