]> git.ipfire.org Git - people/ms/u-boot.git/blob - README
fs: Convert CONFIG_CMD_CBFS to Kconfig
[people/ms/u-boot.git] / README
1 #
2 # (C) Copyright 2000 - 2013
3 # Wolfgang Denk, DENX Software Engineering, wd@denx.de.
4 #
5 # SPDX-License-Identifier: GPL-2.0+
6 #
7
8 Summary:
9 ========
10
11 This directory contains the source code for U-Boot, a boot loader for
12 Embedded boards based on PowerPC, ARM, MIPS and several other
13 processors, which can be installed in a boot ROM and used to
14 initialize and test the hardware or to download and run application
15 code.
16
17 The development of U-Boot is closely related to Linux: some parts of
18 the source code originate in the Linux source tree, we have some
19 header files in common, and special provision has been made to
20 support booting of Linux images.
21
22 Some attention has been paid to make this software easily
23 configurable and extendable. For instance, all monitor commands are
24 implemented with the same call interface, so that it's very easy to
25 add new commands. Also, instead of permanently adding rarely used
26 code (for instance hardware test utilities) to the monitor, you can
27 load and run it dynamically.
28
29
30 Status:
31 =======
32
33 In general, all boards for which a configuration option exists in the
34 Makefile have been tested to some extent and can be considered
35 "working". In fact, many of them are used in production systems.
36
37 In case of problems see the CHANGELOG file to find out who contributed
38 the specific port. In addition, there are various MAINTAINERS files
39 scattered throughout the U-Boot source identifying the people or
40 companies responsible for various boards and subsystems.
41
42 Note: As of August, 2010, there is no longer a CHANGELOG file in the
43 actual U-Boot source tree; however, it can be created dynamically
44 from the Git log using:
45
46 make CHANGELOG
47
48
49 Where to get help:
50 ==================
51
52 In case you have questions about, problems with or contributions for
53 U-Boot, you should send a message to the U-Boot mailing list at
54 <u-boot@lists.denx.de>. There is also an archive of previous traffic
55 on the mailing list - please search the archive before asking FAQ's.
56 Please see http://lists.denx.de/pipermail/u-boot and
57 http://dir.gmane.org/gmane.comp.boot-loaders.u-boot
58
59
60 Where to get source code:
61 =========================
62
63 The U-Boot source code is maintained in the Git repository at
64 git://www.denx.de/git/u-boot.git ; you can browse it online at
65 http://www.denx.de/cgi-bin/gitweb.cgi?p=u-boot.git;a=summary
66
67 The "snapshot" links on this page allow you to download tarballs of
68 any version you might be interested in. Official releases are also
69 available for FTP download from the ftp://ftp.denx.de/pub/u-boot/
70 directory.
71
72 Pre-built (and tested) images are available from
73 ftp://ftp.denx.de/pub/u-boot/images/
74
75
76 Where we come from:
77 ===================
78
79 - start from 8xxrom sources
80 - create PPCBoot project (http://sourceforge.net/projects/ppcboot)
81 - clean up code
82 - make it easier to add custom boards
83 - make it possible to add other [PowerPC] CPUs
84 - extend functions, especially:
85 * Provide extended interface to Linux boot loader
86 * S-Record download
87 * network boot
88 * PCMCIA / CompactFlash / ATA disk / SCSI ... boot
89 - create ARMBoot project (http://sourceforge.net/projects/armboot)
90 - add other CPU families (starting with ARM)
91 - create U-Boot project (http://sourceforge.net/projects/u-boot)
92 - current project page: see http://www.denx.de/wiki/U-Boot
93
94
95 Names and Spelling:
96 ===================
97
98 The "official" name of this project is "Das U-Boot". The spelling
99 "U-Boot" shall be used in all written text (documentation, comments
100 in source files etc.). Example:
101
102 This is the README file for the U-Boot project.
103
104 File names etc. shall be based on the string "u-boot". Examples:
105
106 include/asm-ppc/u-boot.h
107
108 #include <asm/u-boot.h>
109
110 Variable names, preprocessor constants etc. shall be either based on
111 the string "u_boot" or on "U_BOOT". Example:
112
113 U_BOOT_VERSION u_boot_logo
114 IH_OS_U_BOOT u_boot_hush_start
115
116
117 Versioning:
118 ===========
119
120 Starting with the release in October 2008, the names of the releases
121 were changed from numerical release numbers without deeper meaning
122 into a time stamp based numbering. Regular releases are identified by
123 names consisting of the calendar year and month of the release date.
124 Additional fields (if present) indicate release candidates or bug fix
125 releases in "stable" maintenance trees.
126
127 Examples:
128 U-Boot v2009.11 - Release November 2009
129 U-Boot v2009.11.1 - Release 1 in version November 2009 stable tree
130 U-Boot v2010.09-rc1 - Release candidate 1 for September 2010 release
131
132
133 Directory Hierarchy:
134 ====================
135
136 /arch Architecture specific files
137 /arc Files generic to ARC architecture
138 /arm Files generic to ARM architecture
139 /avr32 Files generic to AVR32 architecture
140 /m68k Files generic to m68k architecture
141 /microblaze Files generic to microblaze architecture
142 /mips Files generic to MIPS architecture
143 /nds32 Files generic to NDS32 architecture
144 /nios2 Files generic to Altera NIOS2 architecture
145 /openrisc Files generic to OpenRISC architecture
146 /powerpc Files generic to PowerPC architecture
147 /sandbox Files generic to HW-independent "sandbox"
148 /sh Files generic to SH architecture
149 /x86 Files generic to x86 architecture
150 /api Machine/arch independent API for external apps
151 /board Board dependent files
152 /cmd U-Boot commands functions
153 /common Misc architecture independent functions
154 /configs Board default configuration files
155 /disk Code for disk drive partition handling
156 /doc Documentation (don't expect too much)
157 /drivers Commonly used device drivers
158 /dts Contains Makefile for building internal U-Boot fdt.
159 /examples Example code for standalone applications, etc.
160 /fs Filesystem code (cramfs, ext2, jffs2, etc.)
161 /include Header Files
162 /lib Library routines generic to all architectures
163 /Licenses Various license files
164 /net Networking code
165 /post Power On Self Test
166 /scripts Various build scripts and Makefiles
167 /test Various unit test files
168 /tools Tools to build S-Record or U-Boot images, etc.
169
170 Software Configuration:
171 =======================
172
173 Configuration is usually done using C preprocessor defines; the
174 rationale behind that is to avoid dead code whenever possible.
175
176 There are two classes of configuration variables:
177
178 * Configuration _OPTIONS_:
179 These are selectable by the user and have names beginning with
180 "CONFIG_".
181
182 * Configuration _SETTINGS_:
183 These depend on the hardware etc. and should not be meddled with if
184 you don't know what you're doing; they have names beginning with
185 "CONFIG_SYS_".
186
187 Previously, all configuration was done by hand, which involved creating
188 symbolic links and editing configuration files manually. More recently,
189 U-Boot has added the Kbuild infrastructure used by the Linux kernel,
190 allowing you to use the "make menuconfig" command to configure your
191 build.
192
193
194 Selection of Processor Architecture and Board Type:
195 ---------------------------------------------------
196
197 For all supported boards there are ready-to-use default
198 configurations available; just type "make <board_name>_defconfig".
199
200 Example: For a TQM823L module type:
201
202 cd u-boot
203 make TQM823L_defconfig
204
205 Note: If you're looking for the default configuration file for a board
206 you're sure used to be there but is now missing, check the file
207 doc/README.scrapyard for a list of no longer supported boards.
208
209 Sandbox Environment:
210 --------------------
211
212 U-Boot can be built natively to run on a Linux host using the 'sandbox'
213 board. This allows feature development which is not board- or architecture-
214 specific to be undertaken on a native platform. The sandbox is also used to
215 run some of U-Boot's tests.
216
217 See board/sandbox/README.sandbox for more details.
218
219
220 Board Initialisation Flow:
221 --------------------------
222
223 This is the intended start-up flow for boards. This should apply for both
224 SPL and U-Boot proper (i.e. they both follow the same rules).
225
226 Note: "SPL" stands for "Secondary Program Loader," which is explained in
227 more detail later in this file.
228
229 At present, SPL mostly uses a separate code path, but the function names
230 and roles of each function are the same. Some boards or architectures
231 may not conform to this. At least most ARM boards which use
232 CONFIG_SPL_FRAMEWORK conform to this.
233
234 Execution typically starts with an architecture-specific (and possibly
235 CPU-specific) start.S file, such as:
236
237 - arch/arm/cpu/armv7/start.S
238 - arch/powerpc/cpu/mpc83xx/start.S
239 - arch/mips/cpu/start.S
240
241 and so on. From there, three functions are called; the purpose and
242 limitations of each of these functions are described below.
243
244 lowlevel_init():
245 - purpose: essential init to permit execution to reach board_init_f()
246 - no global_data or BSS
247 - there is no stack (ARMv7 may have one but it will soon be removed)
248 - must not set up SDRAM or use console
249 - must only do the bare minimum to allow execution to continue to
250 board_init_f()
251 - this is almost never needed
252 - return normally from this function
253
254 board_init_f():
255 - purpose: set up the machine ready for running board_init_r():
256 i.e. SDRAM and serial UART
257 - global_data is available
258 - stack is in SRAM
259 - BSS is not available, so you cannot use global/static variables,
260 only stack variables and global_data
261
262 Non-SPL-specific notes:
263 - dram_init() is called to set up DRAM. If already done in SPL this
264 can do nothing
265
266 SPL-specific notes:
267 - you can override the entire board_init_f() function with your own
268 version as needed.
269 - preloader_console_init() can be called here in extremis
270 - should set up SDRAM, and anything needed to make the UART work
271 - these is no need to clear BSS, it will be done by crt0.S
272 - must return normally from this function (don't call board_init_r()
273 directly)
274
275 Here the BSS is cleared. For SPL, if CONFIG_SPL_STACK_R is defined, then at
276 this point the stack and global_data are relocated to below
277 CONFIG_SPL_STACK_R_ADDR. For non-SPL, U-Boot is relocated to run at the top of
278 memory.
279
280 board_init_r():
281 - purpose: main execution, common code
282 - global_data is available
283 - SDRAM is available
284 - BSS is available, all static/global variables can be used
285 - execution eventually continues to main_loop()
286
287 Non-SPL-specific notes:
288 - U-Boot is relocated to the top of memory and is now running from
289 there.
290
291 SPL-specific notes:
292 - stack is optionally in SDRAM, if CONFIG_SPL_STACK_R is defined and
293 CONFIG_SPL_STACK_R_ADDR points into SDRAM
294 - preloader_console_init() can be called here - typically this is
295 done by defining CONFIG_SPL_BOARD_INIT and then supplying a
296 spl_board_init() function containing this call
297 - loads U-Boot or (in falcon mode) Linux
298
299
300
301 Configuration Options:
302 ----------------------
303
304 Configuration depends on the combination of board and CPU type; all
305 such information is kept in a configuration file
306 "include/configs/<board_name>.h".
307
308 Example: For a TQM823L module, all configuration settings are in
309 "include/configs/TQM823L.h".
310
311
312 Many of the options are named exactly as the corresponding Linux
313 kernel configuration options. The intention is to make it easier to
314 build a config tool - later.
315
316
317 The following options need to be configured:
318
319 - CPU Type: Define exactly one, e.g. CONFIG_MPC85XX.
320
321 - Board Type: Define exactly one, e.g. CONFIG_MPC8540ADS.
322
323 - CPU Daughterboard Type: (if CONFIG_ATSTK1000 is defined)
324 Define exactly one, e.g. CONFIG_ATSTK1002
325
326 - Marvell Family Member
327 CONFIG_SYS_MVFS - define it if you want to enable
328 multiple fs option at one time
329 for marvell soc family
330
331 - 8xx CPU Options: (if using an MPC8xx CPU)
332 CONFIG_8xx_GCLK_FREQ - deprecated: CPU clock if
333 get_gclk_freq() cannot work
334 e.g. if there is no 32KHz
335 reference PIT/RTC clock
336 CONFIG_8xx_OSCLK - PLL input clock (either EXTCLK
337 or XTAL/EXTAL)
338
339 - 859/866/885 CPU options: (if using a MPC859 or MPC866 or MPC885 CPU):
340 CONFIG_SYS_8xx_CPUCLK_MIN
341 CONFIG_SYS_8xx_CPUCLK_MAX
342 CONFIG_8xx_CPUCLK_DEFAULT
343 See doc/README.MPC866
344
345 CONFIG_SYS_MEASURE_CPUCLK
346
347 Define this to measure the actual CPU clock instead
348 of relying on the correctness of the configured
349 values. Mostly useful for board bringup to make sure
350 the PLL is locked at the intended frequency. Note
351 that this requires a (stable) reference clock (32 kHz
352 RTC clock or CONFIG_SYS_8XX_XIN)
353
354 CONFIG_SYS_DELAYED_ICACHE
355
356 Define this option if you want to enable the
357 ICache only when Code runs from RAM.
358
359 - 85xx CPU Options:
360 CONFIG_SYS_PPC64
361
362 Specifies that the core is a 64-bit PowerPC implementation (implements
363 the "64" category of the Power ISA). This is necessary for ePAPR
364 compliance, among other possible reasons.
365
366 CONFIG_SYS_FSL_TBCLK_DIV
367
368 Defines the core time base clock divider ratio compared to the
369 system clock. On most PQ3 devices this is 8, on newer QorIQ
370 devices it can be 16 or 32. The ratio varies from SoC to Soc.
371
372 CONFIG_SYS_FSL_PCIE_COMPAT
373
374 Defines the string to utilize when trying to match PCIe device
375 tree nodes for the given platform.
376
377 CONFIG_SYS_FSL_ERRATUM_A004510
378
379 Enables a workaround for erratum A004510. If set,
380 then CONFIG_SYS_FSL_ERRATUM_A004510_SVR_REV and
381 CONFIG_SYS_FSL_CORENET_SNOOPVEC_COREONLY must be set.
382
383 CONFIG_SYS_FSL_ERRATUM_A004510_SVR_REV
384 CONFIG_SYS_FSL_ERRATUM_A004510_SVR_REV2 (optional)
385
386 Defines one or two SoC revisions (low 8 bits of SVR)
387 for which the A004510 workaround should be applied.
388
389 The rest of SVR is either not relevant to the decision
390 of whether the erratum is present (e.g. p2040 versus
391 p2041) or is implied by the build target, which controls
392 whether CONFIG_SYS_FSL_ERRATUM_A004510 is set.
393
394 See Freescale App Note 4493 for more information about
395 this erratum.
396
397 CONFIG_A003399_NOR_WORKAROUND
398 Enables a workaround for IFC erratum A003399. It is only
399 required during NOR boot.
400
401 CONFIG_A008044_WORKAROUND
402 Enables a workaround for T1040/T1042 erratum A008044. It is only
403 required during NAND boot and valid for Rev 1.0 SoC revision
404
405 CONFIG_SYS_FSL_CORENET_SNOOPVEC_COREONLY
406
407 This is the value to write into CCSR offset 0x18600
408 according to the A004510 workaround.
409
410 CONFIG_SYS_FSL_DSP_DDR_ADDR
411 This value denotes start offset of DDR memory which is
412 connected exclusively to the DSP cores.
413
414 CONFIG_SYS_FSL_DSP_M2_RAM_ADDR
415 This value denotes start offset of M2 memory
416 which is directly connected to the DSP core.
417
418 CONFIG_SYS_FSL_DSP_M3_RAM_ADDR
419 This value denotes start offset of M3 memory which is directly
420 connected to the DSP core.
421
422 CONFIG_SYS_FSL_DSP_CCSRBAR_DEFAULT
423 This value denotes start offset of DSP CCSR space.
424
425 CONFIG_SYS_FSL_SINGLE_SOURCE_CLK
426 Single Source Clock is clocking mode present in some of FSL SoC's.
427 In this mode, a single differential clock is used to supply
428 clocks to the sysclock, ddrclock and usbclock.
429
430 CONFIG_SYS_CPC_REINIT_F
431 This CONFIG is defined when the CPC is configured as SRAM at the
432 time of U-Boot entry and is required to be re-initialized.
433
434 CONFIG_DEEP_SLEEP
435 Indicates this SoC supports deep sleep feature. If deep sleep is
436 supported, core will start to execute uboot when wakes up.
437
438 - Generic CPU options:
439 CONFIG_SYS_GENERIC_GLOBAL_DATA
440 Defines global data is initialized in generic board board_init_f().
441 If this macro is defined, global data is created and cleared in
442 generic board board_init_f(). Without this macro, architecture/board
443 should initialize global data before calling board_init_f().
444
445 CONFIG_SYS_BIG_ENDIAN, CONFIG_SYS_LITTLE_ENDIAN
446
447 Defines the endianess of the CPU. Implementation of those
448 values is arch specific.
449
450 CONFIG_SYS_FSL_DDR
451 Freescale DDR driver in use. This type of DDR controller is
452 found in mpc83xx, mpc85xx, mpc86xx as well as some ARM core
453 SoCs.
454
455 CONFIG_SYS_FSL_DDR_ADDR
456 Freescale DDR memory-mapped register base.
457
458 CONFIG_SYS_FSL_DDR_EMU
459 Specify emulator support for DDR. Some DDR features such as
460 deskew training are not available.
461
462 CONFIG_SYS_FSL_DDRC_GEN1
463 Freescale DDR1 controller.
464
465 CONFIG_SYS_FSL_DDRC_GEN2
466 Freescale DDR2 controller.
467
468 CONFIG_SYS_FSL_DDRC_GEN3
469 Freescale DDR3 controller.
470
471 CONFIG_SYS_FSL_DDRC_GEN4
472 Freescale DDR4 controller.
473
474 CONFIG_SYS_FSL_DDRC_ARM_GEN3
475 Freescale DDR3 controller for ARM-based SoCs.
476
477 CONFIG_SYS_FSL_DDR1
478 Board config to use DDR1. It can be enabled for SoCs with
479 Freescale DDR1 or DDR2 controllers, depending on the board
480 implemetation.
481
482 CONFIG_SYS_FSL_DDR2
483 Board config to use DDR2. It can be enabled for SoCs with
484 Freescale DDR2 or DDR3 controllers, depending on the board
485 implementation.
486
487 CONFIG_SYS_FSL_DDR3
488 Board config to use DDR3. It can be enabled for SoCs with
489 Freescale DDR3 or DDR3L controllers.
490
491 CONFIG_SYS_FSL_DDR3L
492 Board config to use DDR3L. It can be enabled for SoCs with
493 DDR3L controllers.
494
495 CONFIG_SYS_FSL_DDR4
496 Board config to use DDR4. It can be enabled for SoCs with
497 DDR4 controllers.
498
499 CONFIG_SYS_FSL_IFC_BE
500 Defines the IFC controller register space as Big Endian
501
502 CONFIG_SYS_FSL_IFC_LE
503 Defines the IFC controller register space as Little Endian
504
505 CONFIG_SYS_FSL_IFC_CLK_DIV
506 Defines divider of platform clock(clock input to IFC controller).
507
508 CONFIG_SYS_FSL_LBC_CLK_DIV
509 Defines divider of platform clock(clock input to eLBC controller).
510
511 CONFIG_SYS_FSL_PBL_PBI
512 It enables addition of RCW (Power on reset configuration) in built image.
513 Please refer doc/README.pblimage for more details
514
515 CONFIG_SYS_FSL_PBL_RCW
516 It adds PBI(pre-boot instructions) commands in u-boot build image.
517 PBI commands can be used to configure SoC before it starts the execution.
518 Please refer doc/README.pblimage for more details
519
520 CONFIG_SPL_FSL_PBL
521 It adds a target to create boot binary having SPL binary in PBI format
522 concatenated with u-boot binary.
523
524 CONFIG_SYS_FSL_DDR_BE
525 Defines the DDR controller register space as Big Endian
526
527 CONFIG_SYS_FSL_DDR_LE
528 Defines the DDR controller register space as Little Endian
529
530 CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY
531 Physical address from the view of DDR controllers. It is the
532 same as CONFIG_SYS_DDR_SDRAM_BASE for all Power SoCs. But
533 it could be different for ARM SoCs.
534
535 CONFIG_SYS_FSL_DDR_INTLV_256B
536 DDR controller interleaving on 256-byte. This is a special
537 interleaving mode, handled by Dickens for Freescale layerscape
538 SoCs with ARM core.
539
540 CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS
541 Number of controllers used as main memory.
542
543 CONFIG_SYS_FSL_OTHER_DDR_NUM_CTRLS
544 Number of controllers used for other than main memory.
545
546 CONFIG_SYS_FSL_HAS_DP_DDR
547 Defines the SoC has DP-DDR used for DPAA.
548
549 CONFIG_SYS_FSL_SEC_BE
550 Defines the SEC controller register space as Big Endian
551
552 CONFIG_SYS_FSL_SEC_LE
553 Defines the SEC controller register space as Little Endian
554
555 - MIPS CPU options:
556 CONFIG_SYS_INIT_SP_OFFSET
557
558 Offset relative to CONFIG_SYS_SDRAM_BASE for initial stack
559 pointer. This is needed for the temporary stack before
560 relocation.
561
562 CONFIG_SYS_MIPS_CACHE_MODE
563
564 Cache operation mode for the MIPS CPU.
565 See also arch/mips/include/asm/mipsregs.h.
566 Possible values are:
567 CONF_CM_CACHABLE_NO_WA
568 CONF_CM_CACHABLE_WA
569 CONF_CM_UNCACHED
570 CONF_CM_CACHABLE_NONCOHERENT
571 CONF_CM_CACHABLE_CE
572 CONF_CM_CACHABLE_COW
573 CONF_CM_CACHABLE_CUW
574 CONF_CM_CACHABLE_ACCELERATED
575
576 CONFIG_SYS_XWAY_EBU_BOOTCFG
577
578 Special option for Lantiq XWAY SoCs for booting from NOR flash.
579 See also arch/mips/cpu/mips32/start.S.
580
581 CONFIG_XWAY_SWAP_BYTES
582
583 Enable compilation of tools/xway-swap-bytes needed for Lantiq
584 XWAY SoCs for booting from NOR flash. The U-Boot image needs to
585 be swapped if a flash programmer is used.
586
587 - ARM options:
588 CONFIG_SYS_EXCEPTION_VECTORS_HIGH
589
590 Select high exception vectors of the ARM core, e.g., do not
591 clear the V bit of the c1 register of CP15.
592
593 COUNTER_FREQUENCY
594 Generic timer clock source frequency.
595
596 COUNTER_FREQUENCY_REAL
597 Generic timer clock source frequency if the real clock is
598 different from COUNTER_FREQUENCY, and can only be determined
599 at run time.
600
601 - Tegra SoC options:
602 CONFIG_TEGRA_SUPPORT_NON_SECURE
603
604 Support executing U-Boot in non-secure (NS) mode. Certain
605 impossible actions will be skipped if the CPU is in NS mode,
606 such as ARM architectural timer initialization.
607
608 - Linux Kernel Interface:
609 CONFIG_CLOCKS_IN_MHZ
610
611 U-Boot stores all clock information in Hz
612 internally. For binary compatibility with older Linux
613 kernels (which expect the clocks passed in the
614 bd_info data to be in MHz) the environment variable
615 "clocks_in_mhz" can be defined so that U-Boot
616 converts clock data to MHZ before passing it to the
617 Linux kernel.
618 When CONFIG_CLOCKS_IN_MHZ is defined, a definition of
619 "clocks_in_mhz=1" is automatically included in the
620 default environment.
621
622 CONFIG_MEMSIZE_IN_BYTES [relevant for MIPS only]
623
624 When transferring memsize parameter to Linux, some versions
625 expect it to be in bytes, others in MB.
626 Define CONFIG_MEMSIZE_IN_BYTES to make it in bytes.
627
628 CONFIG_OF_LIBFDT
629
630 New kernel versions are expecting firmware settings to be
631 passed using flattened device trees (based on open firmware
632 concepts).
633
634 CONFIG_OF_LIBFDT
635 * New libfdt-based support
636 * Adds the "fdt" command
637 * The bootm command automatically updates the fdt
638
639 OF_CPU - The proper name of the cpus node (only required for
640 MPC512X and MPC5xxx based boards).
641 OF_SOC - The proper name of the soc node (only required for
642 MPC512X and MPC5xxx based boards).
643 OF_TBCLK - The timebase frequency.
644 OF_STDOUT_PATH - The path to the console device
645
646 boards with QUICC Engines require OF_QE to set UCC MAC
647 addresses
648
649 CONFIG_OF_BOARD_SETUP
650
651 Board code has addition modification that it wants to make
652 to the flat device tree before handing it off to the kernel
653
654 CONFIG_OF_SYSTEM_SETUP
655
656 Other code has addition modification that it wants to make
657 to the flat device tree before handing it off to the kernel.
658 This causes ft_system_setup() to be called before booting
659 the kernel.
660
661 CONFIG_OF_IDE_FIXUP
662
663 U-Boot can detect if an IDE device is present or not.
664 If not, and this new config option is activated, U-Boot
665 removes the ATA node from the DTS before booting Linux,
666 so the Linux IDE driver does not probe the device and
667 crash. This is needed for buggy hardware (uc101) where
668 no pull down resistor is connected to the signal IDE5V_DD7.
669
670 CONFIG_MACH_TYPE [relevant for ARM only][mandatory]
671
672 This setting is mandatory for all boards that have only one
673 machine type and must be used to specify the machine type
674 number as it appears in the ARM machine registry
675 (see http://www.arm.linux.org.uk/developer/machines/).
676 Only boards that have multiple machine types supported
677 in a single configuration file and the machine type is
678 runtime discoverable, do not have to use this setting.
679
680 - vxWorks boot parameters:
681
682 bootvx constructs a valid bootline using the following
683 environments variables: bootdev, bootfile, ipaddr, netmask,
684 serverip, gatewayip, hostname, othbootargs.
685 It loads the vxWorks image pointed bootfile.
686
687 Note: If a "bootargs" environment is defined, it will overwride
688 the defaults discussed just above.
689
690 - Cache Configuration:
691 CONFIG_SYS_ICACHE_OFF - Do not enable instruction cache in U-Boot
692 CONFIG_SYS_DCACHE_OFF - Do not enable data cache in U-Boot
693 CONFIG_SYS_L2CACHE_OFF- Do not enable L2 cache in U-Boot
694
695 - Cache Configuration for ARM:
696 CONFIG_SYS_L2_PL310 - Enable support for ARM PL310 L2 cache
697 controller
698 CONFIG_SYS_PL310_BASE - Physical base address of PL310
699 controller register space
700
701 - Serial Ports:
702 CONFIG_PL010_SERIAL
703
704 Define this if you want support for Amba PrimeCell PL010 UARTs.
705
706 CONFIG_PL011_SERIAL
707
708 Define this if you want support for Amba PrimeCell PL011 UARTs.
709
710 CONFIG_PL011_CLOCK
711
712 If you have Amba PrimeCell PL011 UARTs, set this variable to
713 the clock speed of the UARTs.
714
715 CONFIG_PL01x_PORTS
716
717 If you have Amba PrimeCell PL010 or PL011 UARTs on your board,
718 define this to a list of base addresses for each (supported)
719 port. See e.g. include/configs/versatile.h
720
721 CONFIG_SERIAL_HW_FLOW_CONTROL
722
723 Define this variable to enable hw flow control in serial driver.
724 Current user of this option is drivers/serial/nsl16550.c driver
725
726 - Console Interface:
727 Depending on board, define exactly one serial port
728 (like CONFIG_8xx_CONS_SMC1, CONFIG_8xx_CONS_SMC2,
729 CONFIG_8xx_CONS_SCC1, ...), or switch off the serial
730 console by defining CONFIG_8xx_CONS_NONE
731
732 Note: if CONFIG_8xx_CONS_NONE is defined, the serial
733 port routines must be defined elsewhere
734 (i.e. serial_init(), serial_getc(), ...)
735
736 - Console Baudrate:
737 CONFIG_BAUDRATE - in bps
738 Select one of the baudrates listed in
739 CONFIG_SYS_BAUDRATE_TABLE, see below.
740 CONFIG_SYS_BRGCLK_PRESCALE, baudrate prescale
741
742 - Console Rx buffer length
743 With CONFIG_SYS_SMC_RXBUFLEN it is possible to define
744 the maximum receive buffer length for the SMC.
745 This option is actual only for 82xx and 8xx possible.
746 If using CONFIG_SYS_SMC_RXBUFLEN also CONFIG_SYS_MAXIDLE
747 must be defined, to setup the maximum idle timeout for
748 the SMC.
749
750 - Autoboot Command:
751 CONFIG_BOOTCOMMAND
752 Only needed when CONFIG_BOOTDELAY is enabled;
753 define a command string that is automatically executed
754 when no character is read on the console interface
755 within "Boot Delay" after reset.
756
757 CONFIG_BOOTARGS
758 This can be used to pass arguments to the bootm
759 command. The value of CONFIG_BOOTARGS goes into the
760 environment value "bootargs".
761
762 CONFIG_RAMBOOT and CONFIG_NFSBOOT
763 The value of these goes into the environment as
764 "ramboot" and "nfsboot" respectively, and can be used
765 as a convenience, when switching between booting from
766 RAM and NFS.
767
768 - Bootcount:
769 CONFIG_BOOTCOUNT_LIMIT
770 Implements a mechanism for detecting a repeating reboot
771 cycle, see:
772 http://www.denx.de/wiki/view/DULG/UBootBootCountLimit
773
774 CONFIG_BOOTCOUNT_ENV
775 If no softreset save registers are found on the hardware
776 "bootcount" is stored in the environment. To prevent a
777 saveenv on all reboots, the environment variable
778 "upgrade_available" is used. If "upgrade_available" is
779 0, "bootcount" is always 0, if "upgrade_available" is
780 1 "bootcount" is incremented in the environment.
781 So the Userspace Applikation must set the "upgrade_available"
782 and "bootcount" variable to 0, if a boot was successfully.
783
784 - Pre-Boot Commands:
785 CONFIG_PREBOOT
786
787 When this option is #defined, the existence of the
788 environment variable "preboot" will be checked
789 immediately before starting the CONFIG_BOOTDELAY
790 countdown and/or running the auto-boot command resp.
791 entering interactive mode.
792
793 This feature is especially useful when "preboot" is
794 automatically generated or modified. For an example
795 see the LWMON board specific code: here "preboot" is
796 modified when the user holds down a certain
797 combination of keys on the (special) keyboard when
798 booting the systems
799
800 - Serial Download Echo Mode:
801 CONFIG_LOADS_ECHO
802 If defined to 1, all characters received during a
803 serial download (using the "loads" command) are
804 echoed back. This might be needed by some terminal
805 emulations (like "cu"), but may as well just take
806 time on others. This setting #define's the initial
807 value of the "loads_echo" environment variable.
808
809 - Kgdb Serial Baudrate: (if CONFIG_CMD_KGDB is defined)
810 CONFIG_KGDB_BAUDRATE
811 Select one of the baudrates listed in
812 CONFIG_SYS_BAUDRATE_TABLE, see below.
813
814 - Monitor Functions:
815 Monitor commands can be included or excluded
816 from the build by using the #include files
817 <config_cmd_all.h> and #undef'ing unwanted
818 commands, or adding #define's for wanted commands.
819
820 The default command configuration includes all commands
821 except those marked below with a "*".
822
823 CONFIG_CMD_AES AES 128 CBC encrypt/decrypt
824 CONFIG_CMD_ASKENV * ask for env variable
825 CONFIG_CMD_BDI bdinfo
826 CONFIG_CMD_BOOTD bootd
827 CONFIG_CMD_BOOTI * ARM64 Linux kernel Image support
828 CONFIG_CMD_CACHE * icache, dcache
829 CONFIG_CMD_CLK * clock command support
830 CONFIG_CMD_CONSOLE coninfo
831 CONFIG_CMD_CRC32 * crc32
832 CONFIG_CMD_DATE * support for RTC, date/time...
833 CONFIG_CMD_DHCP * DHCP support
834 CONFIG_CMD_DIAG * Diagnostics
835 CONFIG_CMD_DS4510 * ds4510 I2C gpio commands
836 CONFIG_CMD_DS4510_INFO * ds4510 I2C info command
837 CONFIG_CMD_DS4510_MEM * ds4510 I2C eeprom/sram commansd
838 CONFIG_CMD_DS4510_RST * ds4510 I2C rst command
839 CONFIG_CMD_DTT * Digital Therm and Thermostat
840 CONFIG_CMD_ECHO echo arguments
841 CONFIG_CMD_EDITENV edit env variable
842 CONFIG_CMD_EEPROM * EEPROM read/write support
843 CONFIG_CMD_EEPROM_LAYOUT* EEPROM layout aware commands
844 CONFIG_CMD_ELF * bootelf, bootvx
845 CONFIG_CMD_ENV_CALLBACK * display details about env callbacks
846 CONFIG_CMD_ENV_FLAGS * display details about env flags
847 CONFIG_CMD_ENV_EXISTS * check existence of env variable
848 CONFIG_CMD_EXPORTENV * export the environment
849 CONFIG_CMD_EXT2 * ext2 command support
850 CONFIG_CMD_EXT4 * ext4 command support
851 CONFIG_CMD_FS_GENERIC * filesystem commands (e.g. load, ls)
852 that work for multiple fs types
853 CONFIG_CMD_FS_UUID * Look up a filesystem UUID
854 CONFIG_CMD_SAVEENV saveenv
855 CONFIG_CMD_FDC * Floppy Disk Support
856 CONFIG_CMD_FAT * FAT command support
857 CONFIG_CMD_FLASH flinfo, erase, protect
858 CONFIG_CMD_FPGA FPGA device initialization support
859 CONFIG_CMD_FUSE * Device fuse support
860 CONFIG_CMD_GETTIME * Get time since boot
861 CONFIG_CMD_GO * the 'go' command (exec code)
862 CONFIG_CMD_GREPENV * search environment
863 CONFIG_CMD_HASH * calculate hash / digest
864 CONFIG_CMD_I2C * I2C serial bus support
865 CONFIG_CMD_IDE * IDE harddisk support
866 CONFIG_CMD_IMI iminfo
867 CONFIG_CMD_IMLS List all images found in NOR flash
868 CONFIG_CMD_IMLS_NAND * List all images found in NAND flash
869 CONFIG_CMD_IMMAP * IMMR dump support
870 CONFIG_CMD_IOTRACE * I/O tracing for debugging
871 CONFIG_CMD_IMPORTENV * import an environment
872 CONFIG_CMD_INI * import data from an ini file into the env
873 CONFIG_CMD_IRQ * irqinfo
874 CONFIG_CMD_ITEST Integer/string test of 2 values
875 CONFIG_CMD_JFFS2 * JFFS2 Support
876 CONFIG_CMD_KGDB * kgdb
877 CONFIG_CMD_LDRINFO * ldrinfo (display Blackfin loader)
878 CONFIG_CMD_LINK_LOCAL * link-local IP address auto-configuration
879 (169.254.*.*)
880 CONFIG_CMD_LOADB loadb
881 CONFIG_CMD_LOADS loads
882 CONFIG_CMD_MD5SUM * print md5 message digest
883 (requires CONFIG_CMD_MEMORY and CONFIG_MD5)
884 CONFIG_CMD_MEMINFO * Display detailed memory information
885 CONFIG_CMD_MEMORY md, mm, nm, mw, cp, cmp, crc, base,
886 loop, loopw
887 CONFIG_CMD_MEMTEST * mtest
888 CONFIG_CMD_MISC Misc functions like sleep etc
889 CONFIG_CMD_MMC * MMC memory mapped support
890 CONFIG_CMD_MII * MII utility commands
891 CONFIG_CMD_MTDPARTS * MTD partition support
892 CONFIG_CMD_NAND * NAND support
893 CONFIG_CMD_NET bootp, tftpboot, rarpboot
894 CONFIG_CMD_NFS NFS support
895 CONFIG_CMD_PCA953X * PCA953x I2C gpio commands
896 CONFIG_CMD_PCA953X_INFO * PCA953x I2C gpio info command
897 CONFIG_CMD_PCI * pciinfo
898 CONFIG_CMD_PCMCIA * PCMCIA support
899 CONFIG_CMD_PING * send ICMP ECHO_REQUEST to network
900 host
901 CONFIG_CMD_PORTIO * Port I/O
902 CONFIG_CMD_READ * Read raw data from partition
903 CONFIG_CMD_REGINFO * Register dump
904 CONFIG_CMD_RUN run command in env variable
905 CONFIG_CMD_SANDBOX * sb command to access sandbox features
906 CONFIG_CMD_SAVES * save S record dump
907 CONFIG_SCSI * SCSI Support
908 CONFIG_CMD_SDRAM * print SDRAM configuration information
909 (requires CONFIG_CMD_I2C)
910 CONFIG_CMD_SETGETDCR Support for DCR Register access
911 (4xx only)
912 CONFIG_CMD_SF * Read/write/erase SPI NOR flash
913 CONFIG_CMD_SHA1SUM * print sha1 memory digest
914 (requires CONFIG_CMD_MEMORY)
915 CONFIG_CMD_SOFTSWITCH * Soft switch setting command for BF60x
916 CONFIG_CMD_SOURCE "source" command Support
917 CONFIG_CMD_SPI * SPI serial bus support
918 CONFIG_CMD_TFTPSRV * TFTP transfer in server mode
919 CONFIG_CMD_TFTPPUT * TFTP put command (upload)
920 CONFIG_CMD_TIME * run command and report execution time (ARM specific)
921 CONFIG_CMD_TIMER * access to the system tick timer
922 CONFIG_CMD_USB * USB support
923 CONFIG_CMD_CDP * Cisco Discover Protocol support
924 CONFIG_CMD_MFSL * Microblaze FSL support
925 CONFIG_CMD_XIMG Load part of Multi Image
926 CONFIG_CMD_UUID * Generate random UUID or GUID string
927
928 EXAMPLE: If you want all functions except of network
929 support you can write:
930
931 #include "config_cmd_all.h"
932 #undef CONFIG_CMD_NET
933
934 Other Commands:
935 fdt (flattened device tree) command: CONFIG_OF_LIBFDT
936
937 Note: Don't enable the "icache" and "dcache" commands
938 (configuration option CONFIG_CMD_CACHE) unless you know
939 what you (and your U-Boot users) are doing. Data
940 cache cannot be enabled on systems like the 8xx or
941 8260 (where accesses to the IMMR region must be
942 uncached), and it cannot be disabled on all other
943 systems where we (mis-) use the data cache to hold an
944 initial stack and some data.
945
946
947 XXX - this list needs to get updated!
948
949 - Removal of commands
950 If no commands are needed to boot, you can disable
951 CONFIG_CMDLINE to remove them. In this case, the command line
952 will not be available, and when U-Boot wants to execute the
953 boot command (on start-up) it will call board_run_command()
954 instead. This can reduce image size significantly for very
955 simple boot procedures.
956
957 - Regular expression support:
958 CONFIG_REGEX
959 If this variable is defined, U-Boot is linked against
960 the SLRE (Super Light Regular Expression) library,
961 which adds regex support to some commands, as for
962 example "env grep" and "setexpr".
963
964 - Device tree:
965 CONFIG_OF_CONTROL
966 If this variable is defined, U-Boot will use a device tree
967 to configure its devices, instead of relying on statically
968 compiled #defines in the board file. This option is
969 experimental and only available on a few boards. The device
970 tree is available in the global data as gd->fdt_blob.
971
972 U-Boot needs to get its device tree from somewhere. This can
973 be done using one of the two options below:
974
975 CONFIG_OF_EMBED
976 If this variable is defined, U-Boot will embed a device tree
977 binary in its image. This device tree file should be in the
978 board directory and called <soc>-<board>.dts. The binary file
979 is then picked up in board_init_f() and made available through
980 the global data structure as gd->blob.
981
982 CONFIG_OF_SEPARATE
983 If this variable is defined, U-Boot will build a device tree
984 binary. It will be called u-boot.dtb. Architecture-specific
985 code will locate it at run-time. Generally this works by:
986
987 cat u-boot.bin u-boot.dtb >image.bin
988
989 and in fact, U-Boot does this for you, creating a file called
990 u-boot-dtb.bin which is useful in the common case. You can
991 still use the individual files if you need something more
992 exotic.
993
994 - Watchdog:
995 CONFIG_WATCHDOG
996 If this variable is defined, it enables watchdog
997 support for the SoC. There must be support in the SoC
998 specific code for a watchdog. For the 8xx and 8260
999 CPUs, the SIU Watchdog feature is enabled in the SYPCR
1000 register. When supported for a specific SoC is
1001 available, then no further board specific code should
1002 be needed to use it.
1003
1004 CONFIG_HW_WATCHDOG
1005 When using a watchdog circuitry external to the used
1006 SoC, then define this variable and provide board
1007 specific code for the "hw_watchdog_reset" function.
1008
1009 CONFIG_AT91_HW_WDT_TIMEOUT
1010 specify the timeout in seconds. default 2 seconds.
1011
1012 - U-Boot Version:
1013 CONFIG_VERSION_VARIABLE
1014 If this variable is defined, an environment variable
1015 named "ver" is created by U-Boot showing the U-Boot
1016 version as printed by the "version" command.
1017 Any change to this variable will be reverted at the
1018 next reset.
1019
1020 - Real-Time Clock:
1021
1022 When CONFIG_CMD_DATE is selected, the type of the RTC
1023 has to be selected, too. Define exactly one of the
1024 following options:
1025
1026 CONFIG_RTC_MPC8xx - use internal RTC of MPC8xx
1027 CONFIG_RTC_PCF8563 - use Philips PCF8563 RTC
1028 CONFIG_RTC_MC13XXX - use MC13783 or MC13892 RTC
1029 CONFIG_RTC_MC146818 - use MC146818 RTC
1030 CONFIG_RTC_DS1307 - use Maxim, Inc. DS1307 RTC
1031 CONFIG_RTC_DS1337 - use Maxim, Inc. DS1337 RTC
1032 CONFIG_RTC_DS1338 - use Maxim, Inc. DS1338 RTC
1033 CONFIG_RTC_DS1339 - use Maxim, Inc. DS1339 RTC
1034 CONFIG_RTC_DS164x - use Dallas DS164x RTC
1035 CONFIG_RTC_ISL1208 - use Intersil ISL1208 RTC
1036 CONFIG_RTC_MAX6900 - use Maxim, Inc. MAX6900 RTC
1037 CONFIG_SYS_RTC_DS1337_NOOSC - Turn off the OSC output for DS1337
1038 CONFIG_SYS_RV3029_TCR - enable trickle charger on
1039 RV3029 RTC.
1040
1041 Note that if the RTC uses I2C, then the I2C interface
1042 must also be configured. See I2C Support, below.
1043
1044 - GPIO Support:
1045 CONFIG_PCA953X - use NXP's PCA953X series I2C GPIO
1046
1047 The CONFIG_SYS_I2C_PCA953X_WIDTH option specifies a list of
1048 chip-ngpio pairs that tell the PCA953X driver the number of
1049 pins supported by a particular chip.
1050
1051 Note that if the GPIO device uses I2C, then the I2C interface
1052 must also be configured. See I2C Support, below.
1053
1054 - I/O tracing:
1055 When CONFIG_IO_TRACE is selected, U-Boot intercepts all I/O
1056 accesses and can checksum them or write a list of them out
1057 to memory. See the 'iotrace' command for details. This is
1058 useful for testing device drivers since it can confirm that
1059 the driver behaves the same way before and after a code
1060 change. Currently this is supported on sandbox and arm. To
1061 add support for your architecture, add '#include <iotrace.h>'
1062 to the bottom of arch/<arch>/include/asm/io.h and test.
1063
1064 Example output from the 'iotrace stats' command is below.
1065 Note that if the trace buffer is exhausted, the checksum will
1066 still continue to operate.
1067
1068 iotrace is enabled
1069 Start: 10000000 (buffer start address)
1070 Size: 00010000 (buffer size)
1071 Offset: 00000120 (current buffer offset)
1072 Output: 10000120 (start + offset)
1073 Count: 00000018 (number of trace records)
1074 CRC32: 9526fb66 (CRC32 of all trace records)
1075
1076 - Timestamp Support:
1077
1078 When CONFIG_TIMESTAMP is selected, the timestamp
1079 (date and time) of an image is printed by image
1080 commands like bootm or iminfo. This option is
1081 automatically enabled when you select CONFIG_CMD_DATE .
1082
1083 - Partition Labels (disklabels) Supported:
1084 Zero or more of the following:
1085 CONFIG_MAC_PARTITION Apple's MacOS partition table.
1086 CONFIG_DOS_PARTITION MS Dos partition table, traditional on the
1087 Intel architecture, USB sticks, etc.
1088 CONFIG_ISO_PARTITION ISO partition table, used on CDROM etc.
1089 CONFIG_EFI_PARTITION GPT partition table, common when EFI is the
1090 bootloader. Note 2TB partition limit; see
1091 disk/part_efi.c
1092 CONFIG_MTD_PARTITIONS Memory Technology Device partition table.
1093
1094 If IDE or SCSI support is enabled (CONFIG_CMD_IDE or
1095 CONFIG_SCSI) you must configure support for at
1096 least one non-MTD partition type as well.
1097
1098 - IDE Reset method:
1099 CONFIG_IDE_RESET_ROUTINE - this is defined in several
1100 board configurations files but used nowhere!
1101
1102 CONFIG_IDE_RESET - is this is defined, IDE Reset will
1103 be performed by calling the function
1104 ide_set_reset(int reset)
1105 which has to be defined in a board specific file
1106
1107 - ATAPI Support:
1108 CONFIG_ATAPI
1109
1110 Set this to enable ATAPI support.
1111
1112 - LBA48 Support
1113 CONFIG_LBA48
1114
1115 Set this to enable support for disks larger than 137GB
1116 Also look at CONFIG_SYS_64BIT_LBA.
1117 Whithout these , LBA48 support uses 32bit variables and will 'only'
1118 support disks up to 2.1TB.
1119
1120 CONFIG_SYS_64BIT_LBA:
1121 When enabled, makes the IDE subsystem use 64bit sector addresses.
1122 Default is 32bit.
1123
1124 - SCSI Support:
1125 At the moment only there is only support for the
1126 SYM53C8XX SCSI controller; define
1127 CONFIG_SCSI_SYM53C8XX to enable it.
1128
1129 CONFIG_SYS_SCSI_MAX_LUN [8], CONFIG_SYS_SCSI_MAX_SCSI_ID [7] and
1130 CONFIG_SYS_SCSI_MAX_DEVICE [CONFIG_SYS_SCSI_MAX_SCSI_ID *
1131 CONFIG_SYS_SCSI_MAX_LUN] can be adjusted to define the
1132 maximum numbers of LUNs, SCSI ID's and target
1133 devices.
1134 CONFIG_SYS_SCSI_SYM53C8XX_CCF to fix clock timing (80Mhz)
1135
1136 The environment variable 'scsidevs' is set to the number of
1137 SCSI devices found during the last scan.
1138
1139 - NETWORK Support (PCI):
1140 CONFIG_E1000
1141 Support for Intel 8254x/8257x gigabit chips.
1142
1143 CONFIG_E1000_SPI
1144 Utility code for direct access to the SPI bus on Intel 8257x.
1145 This does not do anything useful unless you set at least one
1146 of CONFIG_CMD_E1000 or CONFIG_E1000_SPI_GENERIC.
1147
1148 CONFIG_E1000_SPI_GENERIC
1149 Allow generic access to the SPI bus on the Intel 8257x, for
1150 example with the "sspi" command.
1151
1152 CONFIG_CMD_E1000
1153 Management command for E1000 devices. When used on devices
1154 with SPI support you can reprogram the EEPROM from U-Boot.
1155
1156 CONFIG_EEPRO100
1157 Support for Intel 82557/82559/82559ER chips.
1158 Optional CONFIG_EEPRO100_SROM_WRITE enables EEPROM
1159 write routine for first time initialisation.
1160
1161 CONFIG_TULIP
1162 Support for Digital 2114x chips.
1163 Optional CONFIG_TULIP_SELECT_MEDIA for board specific
1164 modem chip initialisation (KS8761/QS6611).
1165
1166 CONFIG_NATSEMI
1167 Support for National dp83815 chips.
1168
1169 CONFIG_NS8382X
1170 Support for National dp8382[01] gigabit chips.
1171
1172 - NETWORK Support (other):
1173
1174 CONFIG_DRIVER_AT91EMAC
1175 Support for AT91RM9200 EMAC.
1176
1177 CONFIG_RMII
1178 Define this to use reduced MII inteface
1179
1180 CONFIG_DRIVER_AT91EMAC_QUIET
1181 If this defined, the driver is quiet.
1182 The driver doen't show link status messages.
1183
1184 CONFIG_CALXEDA_XGMAC
1185 Support for the Calxeda XGMAC device
1186
1187 CONFIG_LAN91C96
1188 Support for SMSC's LAN91C96 chips.
1189
1190 CONFIG_LAN91C96_USE_32_BIT
1191 Define this to enable 32 bit addressing
1192
1193 CONFIG_SMC91111
1194 Support for SMSC's LAN91C111 chip
1195
1196 CONFIG_SMC91111_BASE
1197 Define this to hold the physical address
1198 of the device (I/O space)
1199
1200 CONFIG_SMC_USE_32_BIT
1201 Define this if data bus is 32 bits
1202
1203 CONFIG_SMC_USE_IOFUNCS
1204 Define this to use i/o functions instead of macros
1205 (some hardware wont work with macros)
1206
1207 CONFIG_DRIVER_TI_EMAC
1208 Support for davinci emac
1209
1210 CONFIG_SYS_DAVINCI_EMAC_PHY_COUNT
1211 Define this if you have more then 3 PHYs.
1212
1213 CONFIG_FTGMAC100
1214 Support for Faraday's FTGMAC100 Gigabit SoC Ethernet
1215
1216 CONFIG_FTGMAC100_EGIGA
1217 Define this to use GE link update with gigabit PHY.
1218 Define this if FTGMAC100 is connected to gigabit PHY.
1219 If your system has 10/100 PHY only, it might not occur
1220 wrong behavior. Because PHY usually return timeout or
1221 useless data when polling gigabit status and gigabit
1222 control registers. This behavior won't affect the
1223 correctnessof 10/100 link speed update.
1224
1225 CONFIG_SMC911X
1226 Support for SMSC's LAN911x and LAN921x chips
1227
1228 CONFIG_SMC911X_BASE
1229 Define this to hold the physical address
1230 of the device (I/O space)
1231
1232 CONFIG_SMC911X_32_BIT
1233 Define this if data bus is 32 bits
1234
1235 CONFIG_SMC911X_16_BIT
1236 Define this if data bus is 16 bits. If your processor
1237 automatically converts one 32 bit word to two 16 bit
1238 words you may also try CONFIG_SMC911X_32_BIT.
1239
1240 CONFIG_SH_ETHER
1241 Support for Renesas on-chip Ethernet controller
1242
1243 CONFIG_SH_ETHER_USE_PORT
1244 Define the number of ports to be used
1245
1246 CONFIG_SH_ETHER_PHY_ADDR
1247 Define the ETH PHY's address
1248
1249 CONFIG_SH_ETHER_CACHE_WRITEBACK
1250 If this option is set, the driver enables cache flush.
1251
1252 - PWM Support:
1253 CONFIG_PWM_IMX
1254 Support for PWM module on the imx6.
1255
1256 - TPM Support:
1257 CONFIG_TPM
1258 Support TPM devices.
1259
1260 CONFIG_TPM_TIS_INFINEON
1261 Support for Infineon i2c bus TPM devices. Only one device
1262 per system is supported at this time.
1263
1264 CONFIG_TPM_TIS_I2C_BURST_LIMITATION
1265 Define the burst count bytes upper limit
1266
1267 CONFIG_TPM_ST33ZP24
1268 Support for STMicroelectronics TPM devices. Requires DM_TPM support.
1269
1270 CONFIG_TPM_ST33ZP24_I2C
1271 Support for STMicroelectronics ST33ZP24 I2C devices.
1272 Requires TPM_ST33ZP24 and I2C.
1273
1274 CONFIG_TPM_ST33ZP24_SPI
1275 Support for STMicroelectronics ST33ZP24 SPI devices.
1276 Requires TPM_ST33ZP24 and SPI.
1277
1278 CONFIG_TPM_ATMEL_TWI
1279 Support for Atmel TWI TPM device. Requires I2C support.
1280
1281 CONFIG_TPM_TIS_LPC
1282 Support for generic parallel port TPM devices. Only one device
1283 per system is supported at this time.
1284
1285 CONFIG_TPM_TIS_BASE_ADDRESS
1286 Base address where the generic TPM device is mapped
1287 to. Contemporary x86 systems usually map it at
1288 0xfed40000.
1289
1290 CONFIG_CMD_TPM
1291 Add tpm monitor functions.
1292 Requires CONFIG_TPM. If CONFIG_TPM_AUTH_SESSIONS is set, also
1293 provides monitor access to authorized functions.
1294
1295 CONFIG_TPM
1296 Define this to enable the TPM support library which provides
1297 functional interfaces to some TPM commands.
1298 Requires support for a TPM device.
1299
1300 CONFIG_TPM_AUTH_SESSIONS
1301 Define this to enable authorized functions in the TPM library.
1302 Requires CONFIG_TPM and CONFIG_SHA1.
1303
1304 - USB Support:
1305 At the moment only the UHCI host controller is
1306 supported (PIP405, MIP405, MPC5200); define
1307 CONFIG_USB_UHCI to enable it.
1308 define CONFIG_USB_KEYBOARD to enable the USB Keyboard
1309 and define CONFIG_USB_STORAGE to enable the USB
1310 storage devices.
1311 Note:
1312 Supported are USB Keyboards and USB Floppy drives
1313 (TEAC FD-05PUB).
1314 MPC5200 USB requires additional defines:
1315 CONFIG_USB_CLOCK
1316 for 528 MHz Clock: 0x0001bbbb
1317 CONFIG_PSC3_USB
1318 for USB on PSC3
1319 CONFIG_USB_CONFIG
1320 for differential drivers: 0x00001000
1321 for single ended drivers: 0x00005000
1322 for differential drivers on PSC3: 0x00000100
1323 for single ended drivers on PSC3: 0x00004100
1324 CONFIG_SYS_USB_EVENT_POLL
1325 May be defined to allow interrupt polling
1326 instead of using asynchronous interrupts
1327
1328 CONFIG_USB_EHCI_TXFIFO_THRESH enables setting of the
1329 txfilltuning field in the EHCI controller on reset.
1330
1331 CONFIG_USB_DWC2_REG_ADDR the physical CPU address of the DWC2
1332 HW module registers.
1333
1334 - USB Device:
1335 Define the below if you wish to use the USB console.
1336 Once firmware is rebuilt from a serial console issue the
1337 command "setenv stdin usbtty; setenv stdout usbtty" and
1338 attach your USB cable. The Unix command "dmesg" should print
1339 it has found a new device. The environment variable usbtty
1340 can be set to gserial or cdc_acm to enable your device to
1341 appear to a USB host as a Linux gserial device or a
1342 Common Device Class Abstract Control Model serial device.
1343 If you select usbtty = gserial you should be able to enumerate
1344 a Linux host by
1345 # modprobe usbserial vendor=0xVendorID product=0xProductID
1346 else if using cdc_acm, simply setting the environment
1347 variable usbtty to be cdc_acm should suffice. The following
1348 might be defined in YourBoardName.h
1349
1350 CONFIG_USB_DEVICE
1351 Define this to build a UDC device
1352
1353 CONFIG_USB_TTY
1354 Define this to have a tty type of device available to
1355 talk to the UDC device
1356
1357 CONFIG_USBD_HS
1358 Define this to enable the high speed support for usb
1359 device and usbtty. If this feature is enabled, a routine
1360 int is_usbd_high_speed(void)
1361 also needs to be defined by the driver to dynamically poll
1362 whether the enumeration has succeded at high speed or full
1363 speed.
1364
1365 CONFIG_SYS_CONSOLE_IS_IN_ENV
1366 Define this if you want stdin, stdout &/or stderr to
1367 be set to usbtty.
1368
1369 mpc8xx:
1370 CONFIG_SYS_USB_EXTC_CLK 0xBLAH
1371 Derive USB clock from external clock "blah"
1372 - CONFIG_SYS_USB_EXTC_CLK 0x02
1373
1374 If you have a USB-IF assigned VendorID then you may wish to
1375 define your own vendor specific values either in BoardName.h
1376 or directly in usbd_vendor_info.h. If you don't define
1377 CONFIG_USBD_MANUFACTURER, CONFIG_USBD_PRODUCT_NAME,
1378 CONFIG_USBD_VENDORID and CONFIG_USBD_PRODUCTID, then U-Boot
1379 should pretend to be a Linux device to it's target host.
1380
1381 CONFIG_USBD_MANUFACTURER
1382 Define this string as the name of your company for
1383 - CONFIG_USBD_MANUFACTURER "my company"
1384
1385 CONFIG_USBD_PRODUCT_NAME
1386 Define this string as the name of your product
1387 - CONFIG_USBD_PRODUCT_NAME "acme usb device"
1388
1389 CONFIG_USBD_VENDORID
1390 Define this as your assigned Vendor ID from the USB
1391 Implementors Forum. This *must* be a genuine Vendor ID
1392 to avoid polluting the USB namespace.
1393 - CONFIG_USBD_VENDORID 0xFFFF
1394
1395 CONFIG_USBD_PRODUCTID
1396 Define this as the unique Product ID
1397 for your device
1398 - CONFIG_USBD_PRODUCTID 0xFFFF
1399
1400 - ULPI Layer Support:
1401 The ULPI (UTMI Low Pin (count) Interface) PHYs are supported via
1402 the generic ULPI layer. The generic layer accesses the ULPI PHY
1403 via the platform viewport, so you need both the genric layer and
1404 the viewport enabled. Currently only Chipidea/ARC based
1405 viewport is supported.
1406 To enable the ULPI layer support, define CONFIG_USB_ULPI and
1407 CONFIG_USB_ULPI_VIEWPORT in your board configuration file.
1408 If your ULPI phy needs a different reference clock than the
1409 standard 24 MHz then you have to define CONFIG_ULPI_REF_CLK to
1410 the appropriate value in Hz.
1411
1412 - MMC Support:
1413 The MMC controller on the Intel PXA is supported. To
1414 enable this define CONFIG_MMC. The MMC can be
1415 accessed from the boot prompt by mapping the device
1416 to physical memory similar to flash. Command line is
1417 enabled with CONFIG_CMD_MMC. The MMC driver also works with
1418 the FAT fs. This is enabled with CONFIG_CMD_FAT.
1419
1420 CONFIG_SH_MMCIF
1421 Support for Renesas on-chip MMCIF controller
1422
1423 CONFIG_SH_MMCIF_ADDR
1424 Define the base address of MMCIF registers
1425
1426 CONFIG_SH_MMCIF_CLK
1427 Define the clock frequency for MMCIF
1428
1429 CONFIG_SUPPORT_EMMC_BOOT
1430 Enable some additional features of the eMMC boot partitions.
1431
1432 CONFIG_SUPPORT_EMMC_RPMB
1433 Enable the commands for reading, writing and programming the
1434 key for the Replay Protection Memory Block partition in eMMC.
1435
1436 - USB Device Firmware Update (DFU) class support:
1437 CONFIG_USB_FUNCTION_DFU
1438 This enables the USB portion of the DFU USB class
1439
1440 CONFIG_CMD_DFU
1441 This enables the command "dfu" which is used to have
1442 U-Boot create a DFU class device via USB. This command
1443 requires that the "dfu_alt_info" environment variable be
1444 set and define the alt settings to expose to the host.
1445
1446 CONFIG_DFU_MMC
1447 This enables support for exposing (e)MMC devices via DFU.
1448
1449 CONFIG_DFU_NAND
1450 This enables support for exposing NAND devices via DFU.
1451
1452 CONFIG_DFU_RAM
1453 This enables support for exposing RAM via DFU.
1454 Note: DFU spec refer to non-volatile memory usage, but
1455 allow usages beyond the scope of spec - here RAM usage,
1456 one that would help mostly the developer.
1457
1458 CONFIG_SYS_DFU_DATA_BUF_SIZE
1459 Dfu transfer uses a buffer before writing data to the
1460 raw storage device. Make the size (in bytes) of this buffer
1461 configurable. The size of this buffer is also configurable
1462 through the "dfu_bufsiz" environment variable.
1463
1464 CONFIG_SYS_DFU_MAX_FILE_SIZE
1465 When updating files rather than the raw storage device,
1466 we use a static buffer to copy the file into and then write
1467 the buffer once we've been given the whole file. Define
1468 this to the maximum filesize (in bytes) for the buffer.
1469 Default is 4 MiB if undefined.
1470
1471 DFU_DEFAULT_POLL_TIMEOUT
1472 Poll timeout [ms], is the timeout a device can send to the
1473 host. The host must wait for this timeout before sending
1474 a subsequent DFU_GET_STATUS request to the device.
1475
1476 DFU_MANIFEST_POLL_TIMEOUT
1477 Poll timeout [ms], which the device sends to the host when
1478 entering dfuMANIFEST state. Host waits this timeout, before
1479 sending again an USB request to the device.
1480
1481 - USB Device Android Fastboot support:
1482 CONFIG_USB_FUNCTION_FASTBOOT
1483 This enables the USB part of the fastboot gadget
1484
1485 CONFIG_CMD_FASTBOOT
1486 This enables the command "fastboot" which enables the Android
1487 fastboot mode for the platform's USB device. Fastboot is a USB
1488 protocol for downloading images, flashing and device control
1489 used on Android devices.
1490 See doc/README.android-fastboot for more information.
1491
1492 CONFIG_ANDROID_BOOT_IMAGE
1493 This enables support for booting images which use the Android
1494 image format header.
1495
1496 CONFIG_FASTBOOT_BUF_ADDR
1497 The fastboot protocol requires a large memory buffer for
1498 downloads. Define this to the starting RAM address to use for
1499 downloaded images.
1500
1501 CONFIG_FASTBOOT_BUF_SIZE
1502 The fastboot protocol requires a large memory buffer for
1503 downloads. This buffer should be as large as possible for a
1504 platform. Define this to the size available RAM for fastboot.
1505
1506 CONFIG_FASTBOOT_FLASH
1507 The fastboot protocol includes a "flash" command for writing
1508 the downloaded image to a non-volatile storage device. Define
1509 this to enable the "fastboot flash" command.
1510
1511 CONFIG_FASTBOOT_FLASH_MMC_DEV
1512 The fastboot "flash" command requires additional information
1513 regarding the non-volatile storage device. Define this to
1514 the eMMC device that fastboot should use to store the image.
1515
1516 CONFIG_FASTBOOT_GPT_NAME
1517 The fastboot "flash" command supports writing the downloaded
1518 image to the Protective MBR and the Primary GUID Partition
1519 Table. (Additionally, this downloaded image is post-processed
1520 to generate and write the Backup GUID Partition Table.)
1521 This occurs when the specified "partition name" on the
1522 "fastboot flash" command line matches this value.
1523 The default is "gpt" if undefined.
1524
1525 CONFIG_FASTBOOT_MBR_NAME
1526 The fastboot "flash" command supports writing the downloaded
1527 image to DOS MBR.
1528 This occurs when the "partition name" specified on the
1529 "fastboot flash" command line matches this value.
1530 If not defined the default value "mbr" is used.
1531
1532 - Journaling Flash filesystem support:
1533 CONFIG_JFFS2_NAND
1534 Define these for a default partition on a NAND device
1535
1536 CONFIG_SYS_JFFS2_FIRST_SECTOR,
1537 CONFIG_SYS_JFFS2_FIRST_BANK, CONFIG_SYS_JFFS2_NUM_BANKS
1538 Define these for a default partition on a NOR device
1539
1540 - FAT(File Allocation Table) filesystem write function support:
1541 CONFIG_FAT_WRITE
1542
1543 Define this to enable support for saving memory data as a
1544 file in FAT formatted partition.
1545
1546 This will also enable the command "fatwrite" enabling the
1547 user to write files to FAT.
1548
1549 - FAT(File Allocation Table) filesystem cluster size:
1550 CONFIG_FS_FAT_MAX_CLUSTSIZE
1551
1552 Define the max cluster size for fat operations else
1553 a default value of 65536 will be defined.
1554
1555 - Keyboard Support:
1556 See Kconfig help for available keyboard drivers.
1557
1558 CONFIG_KEYBOARD
1559
1560 Define this to enable a custom keyboard support.
1561 This simply calls drv_keyboard_init() which must be
1562 defined in your board-specific files. This option is deprecated
1563 and is only used by novena. For new boards, use driver model
1564 instead.
1565
1566 - Video support:
1567 CONFIG_FSL_DIU_FB
1568 Enable the Freescale DIU video driver. Reference boards for
1569 SOCs that have a DIU should define this macro to enable DIU
1570 support, and should also define these other macros:
1571
1572 CONFIG_SYS_DIU_ADDR
1573 CONFIG_VIDEO
1574 CONFIG_CFB_CONSOLE
1575 CONFIG_VIDEO_SW_CURSOR
1576 CONFIG_VGA_AS_SINGLE_DEVICE
1577 CONFIG_VIDEO_LOGO
1578 CONFIG_VIDEO_BMP_LOGO
1579
1580 The DIU driver will look for the 'video-mode' environment
1581 variable, and if defined, enable the DIU as a console during
1582 boot. See the documentation file doc/README.video for a
1583 description of this variable.
1584
1585 - LCD Support: CONFIG_LCD
1586
1587 Define this to enable LCD support (for output to LCD
1588 display); also select one of the supported displays
1589 by defining one of these:
1590
1591 CONFIG_ATMEL_LCD:
1592
1593 HITACHI TX09D70VM1CCA, 3.5", 240x320.
1594
1595 CONFIG_NEC_NL6448AC33:
1596
1597 NEC NL6448AC33-18. Active, color, single scan.
1598
1599 CONFIG_NEC_NL6448BC20
1600
1601 NEC NL6448BC20-08. 6.5", 640x480.
1602 Active, color, single scan.
1603
1604 CONFIG_NEC_NL6448BC33_54
1605
1606 NEC NL6448BC33-54. 10.4", 640x480.
1607 Active, color, single scan.
1608
1609 CONFIG_SHARP_16x9
1610
1611 Sharp 320x240. Active, color, single scan.
1612 It isn't 16x9, and I am not sure what it is.
1613
1614 CONFIG_SHARP_LQ64D341
1615
1616 Sharp LQ64D341 display, 640x480.
1617 Active, color, single scan.
1618
1619 CONFIG_HLD1045
1620
1621 HLD1045 display, 640x480.
1622 Active, color, single scan.
1623
1624 CONFIG_OPTREX_BW
1625
1626 Optrex CBL50840-2 NF-FW 99 22 M5
1627 or
1628 Hitachi LMG6912RPFC-00T
1629 or
1630 Hitachi SP14Q002
1631
1632 320x240. Black & white.
1633
1634 CONFIG_LCD_ALIGNMENT
1635
1636 Normally the LCD is page-aligned (typically 4KB). If this is
1637 defined then the LCD will be aligned to this value instead.
1638 For ARM it is sometimes useful to use MMU_SECTION_SIZE
1639 here, since it is cheaper to change data cache settings on
1640 a per-section basis.
1641
1642
1643 CONFIG_LCD_ROTATION
1644
1645 Sometimes, for example if the display is mounted in portrait
1646 mode or even if it's mounted landscape but rotated by 180degree,
1647 we need to rotate our content of the display relative to the
1648 framebuffer, so that user can read the messages which are
1649 printed out.
1650 Once CONFIG_LCD_ROTATION is defined, the lcd_console will be
1651 initialized with a given rotation from "vl_rot" out of
1652 "vidinfo_t" which is provided by the board specific code.
1653 The value for vl_rot is coded as following (matching to
1654 fbcon=rotate:<n> linux-kernel commandline):
1655 0 = no rotation respectively 0 degree
1656 1 = 90 degree rotation
1657 2 = 180 degree rotation
1658 3 = 270 degree rotation
1659
1660 If CONFIG_LCD_ROTATION is not defined, the console will be
1661 initialized with 0degree rotation.
1662
1663 CONFIG_LCD_BMP_RLE8
1664
1665 Support drawing of RLE8-compressed bitmaps on the LCD.
1666
1667 CONFIG_I2C_EDID
1668
1669 Enables an 'i2c edid' command which can read EDID
1670 information over I2C from an attached LCD display.
1671
1672 - Splash Screen Support: CONFIG_SPLASH_SCREEN
1673
1674 If this option is set, the environment is checked for
1675 a variable "splashimage". If found, the usual display
1676 of logo, copyright and system information on the LCD
1677 is suppressed and the BMP image at the address
1678 specified in "splashimage" is loaded instead. The
1679 console is redirected to the "nulldev", too. This
1680 allows for a "silent" boot where a splash screen is
1681 loaded very quickly after power-on.
1682
1683 CONFIG_SPLASHIMAGE_GUARD
1684
1685 If this option is set, then U-Boot will prevent the environment
1686 variable "splashimage" from being set to a problematic address
1687 (see doc/README.displaying-bmps).
1688 This option is useful for targets where, due to alignment
1689 restrictions, an improperly aligned BMP image will cause a data
1690 abort. If you think you will not have problems with unaligned
1691 accesses (for example because your toolchain prevents them)
1692 there is no need to set this option.
1693
1694 CONFIG_SPLASH_SCREEN_ALIGN
1695
1696 If this option is set the splash image can be freely positioned
1697 on the screen. Environment variable "splashpos" specifies the
1698 position as "x,y". If a positive number is given it is used as
1699 number of pixel from left/top. If a negative number is given it
1700 is used as number of pixel from right/bottom. You can also
1701 specify 'm' for centering the image.
1702
1703 Example:
1704 setenv splashpos m,m
1705 => image at center of screen
1706
1707 setenv splashpos 30,20
1708 => image at x = 30 and y = 20
1709
1710 setenv splashpos -10,m
1711 => vertically centered image
1712 at x = dspWidth - bmpWidth - 9
1713
1714 - Gzip compressed BMP image support: CONFIG_VIDEO_BMP_GZIP
1715
1716 If this option is set, additionally to standard BMP
1717 images, gzipped BMP images can be displayed via the
1718 splashscreen support or the bmp command.
1719
1720 - Run length encoded BMP image (RLE8) support: CONFIG_VIDEO_BMP_RLE8
1721
1722 If this option is set, 8-bit RLE compressed BMP images
1723 can be displayed via the splashscreen support or the
1724 bmp command.
1725
1726 - Compression support:
1727 CONFIG_GZIP
1728
1729 Enabled by default to support gzip compressed images.
1730
1731 CONFIG_BZIP2
1732
1733 If this option is set, support for bzip2 compressed
1734 images is included. If not, only uncompressed and gzip
1735 compressed images are supported.
1736
1737 NOTE: the bzip2 algorithm requires a lot of RAM, so
1738 the malloc area (as defined by CONFIG_SYS_MALLOC_LEN) should
1739 be at least 4MB.
1740
1741 CONFIG_LZMA
1742
1743 If this option is set, support for lzma compressed
1744 images is included.
1745
1746 Note: The LZMA algorithm adds between 2 and 4KB of code and it
1747 requires an amount of dynamic memory that is given by the
1748 formula:
1749
1750 (1846 + 768 << (lc + lp)) * sizeof(uint16)
1751
1752 Where lc and lp stand for, respectively, Literal context bits
1753 and Literal pos bits.
1754
1755 This value is upper-bounded by 14MB in the worst case. Anyway,
1756 for a ~4MB large kernel image, we have lc=3 and lp=0 for a
1757 total amount of (1846 + 768 << (3 + 0)) * 2 = ~41KB... that is
1758 a very small buffer.
1759
1760 Use the lzmainfo tool to determinate the lc and lp values and
1761 then calculate the amount of needed dynamic memory (ensuring
1762 the appropriate CONFIG_SYS_MALLOC_LEN value).
1763
1764 CONFIG_LZO
1765
1766 If this option is set, support for LZO compressed images
1767 is included.
1768
1769 - MII/PHY support:
1770 CONFIG_PHY_ADDR
1771
1772 The address of PHY on MII bus.
1773
1774 CONFIG_PHY_CLOCK_FREQ (ppc4xx)
1775
1776 The clock frequency of the MII bus
1777
1778 CONFIG_PHY_GIGE
1779
1780 If this option is set, support for speed/duplex
1781 detection of gigabit PHY is included.
1782
1783 CONFIG_PHY_RESET_DELAY
1784
1785 Some PHY like Intel LXT971A need extra delay after
1786 reset before any MII register access is possible.
1787 For such PHY, set this option to the usec delay
1788 required. (minimum 300usec for LXT971A)
1789
1790 CONFIG_PHY_CMD_DELAY (ppc4xx)
1791
1792 Some PHY like Intel LXT971A need extra delay after
1793 command issued before MII status register can be read
1794
1795 - IP address:
1796 CONFIG_IPADDR
1797
1798 Define a default value for the IP address to use for
1799 the default Ethernet interface, in case this is not
1800 determined through e.g. bootp.
1801 (Environment variable "ipaddr")
1802
1803 - Server IP address:
1804 CONFIG_SERVERIP
1805
1806 Defines a default value for the IP address of a TFTP
1807 server to contact when using the "tftboot" command.
1808 (Environment variable "serverip")
1809
1810 CONFIG_KEEP_SERVERADDR
1811
1812 Keeps the server's MAC address, in the env 'serveraddr'
1813 for passing to bootargs (like Linux's netconsole option)
1814
1815 - Gateway IP address:
1816 CONFIG_GATEWAYIP
1817
1818 Defines a default value for the IP address of the
1819 default router where packets to other networks are
1820 sent to.
1821 (Environment variable "gatewayip")
1822
1823 - Subnet mask:
1824 CONFIG_NETMASK
1825
1826 Defines a default value for the subnet mask (or
1827 routing prefix) which is used to determine if an IP
1828 address belongs to the local subnet or needs to be
1829 forwarded through a router.
1830 (Environment variable "netmask")
1831
1832 - Multicast TFTP Mode:
1833 CONFIG_MCAST_TFTP
1834
1835 Defines whether you want to support multicast TFTP as per
1836 rfc-2090; for example to work with atftp. Lets lots of targets
1837 tftp down the same boot image concurrently. Note: the Ethernet
1838 driver in use must provide a function: mcast() to join/leave a
1839 multicast group.
1840
1841 - BOOTP Recovery Mode:
1842 CONFIG_BOOTP_RANDOM_DELAY
1843
1844 If you have many targets in a network that try to
1845 boot using BOOTP, you may want to avoid that all
1846 systems send out BOOTP requests at precisely the same
1847 moment (which would happen for instance at recovery
1848 from a power failure, when all systems will try to
1849 boot, thus flooding the BOOTP server. Defining
1850 CONFIG_BOOTP_RANDOM_DELAY causes a random delay to be
1851 inserted before sending out BOOTP requests. The
1852 following delays are inserted then:
1853
1854 1st BOOTP request: delay 0 ... 1 sec
1855 2nd BOOTP request: delay 0 ... 2 sec
1856 3rd BOOTP request: delay 0 ... 4 sec
1857 4th and following
1858 BOOTP requests: delay 0 ... 8 sec
1859
1860 CONFIG_BOOTP_ID_CACHE_SIZE
1861
1862 BOOTP packets are uniquely identified using a 32-bit ID. The
1863 server will copy the ID from client requests to responses and
1864 U-Boot will use this to determine if it is the destination of
1865 an incoming response. Some servers will check that addresses
1866 aren't in use before handing them out (usually using an ARP
1867 ping) and therefore take up to a few hundred milliseconds to
1868 respond. Network congestion may also influence the time it
1869 takes for a response to make it back to the client. If that
1870 time is too long, U-Boot will retransmit requests. In order
1871 to allow earlier responses to still be accepted after these
1872 retransmissions, U-Boot's BOOTP client keeps a small cache of
1873 IDs. The CONFIG_BOOTP_ID_CACHE_SIZE controls the size of this
1874 cache. The default is to keep IDs for up to four outstanding
1875 requests. Increasing this will allow U-Boot to accept offers
1876 from a BOOTP client in networks with unusually high latency.
1877
1878 - DHCP Advanced Options:
1879 You can fine tune the DHCP functionality by defining
1880 CONFIG_BOOTP_* symbols:
1881
1882 CONFIG_BOOTP_SUBNETMASK
1883 CONFIG_BOOTP_GATEWAY
1884 CONFIG_BOOTP_HOSTNAME
1885 CONFIG_BOOTP_NISDOMAIN
1886 CONFIG_BOOTP_BOOTPATH
1887 CONFIG_BOOTP_BOOTFILESIZE
1888 CONFIG_BOOTP_DNS
1889 CONFIG_BOOTP_DNS2
1890 CONFIG_BOOTP_SEND_HOSTNAME
1891 CONFIG_BOOTP_NTPSERVER
1892 CONFIG_BOOTP_TIMEOFFSET
1893 CONFIG_BOOTP_VENDOREX
1894 CONFIG_BOOTP_MAY_FAIL
1895
1896 CONFIG_BOOTP_SERVERIP - TFTP server will be the serverip
1897 environment variable, not the BOOTP server.
1898
1899 CONFIG_BOOTP_MAY_FAIL - If the DHCP server is not found
1900 after the configured retry count, the call will fail
1901 instead of starting over. This can be used to fail over
1902 to Link-local IP address configuration if the DHCP server
1903 is not available.
1904
1905 CONFIG_BOOTP_DNS2 - If a DHCP client requests the DNS
1906 serverip from a DHCP server, it is possible that more
1907 than one DNS serverip is offered to the client.
1908 If CONFIG_BOOTP_DNS2 is enabled, the secondary DNS
1909 serverip will be stored in the additional environment
1910 variable "dnsip2". The first DNS serverip is always
1911 stored in the variable "dnsip", when CONFIG_BOOTP_DNS
1912 is defined.
1913
1914 CONFIG_BOOTP_SEND_HOSTNAME - Some DHCP servers are capable
1915 to do a dynamic update of a DNS server. To do this, they
1916 need the hostname of the DHCP requester.
1917 If CONFIG_BOOTP_SEND_HOSTNAME is defined, the content
1918 of the "hostname" environment variable is passed as
1919 option 12 to the DHCP server.
1920
1921 CONFIG_BOOTP_DHCP_REQUEST_DELAY
1922
1923 A 32bit value in microseconds for a delay between
1924 receiving a "DHCP Offer" and sending the "DHCP Request".
1925 This fixes a problem with certain DHCP servers that don't
1926 respond 100% of the time to a "DHCP request". E.g. On an
1927 AT91RM9200 processor running at 180MHz, this delay needed
1928 to be *at least* 15,000 usec before a Windows Server 2003
1929 DHCP server would reply 100% of the time. I recommend at
1930 least 50,000 usec to be safe. The alternative is to hope
1931 that one of the retries will be successful but note that
1932 the DHCP timeout and retry process takes a longer than
1933 this delay.
1934
1935 - Link-local IP address negotiation:
1936 Negotiate with other link-local clients on the local network
1937 for an address that doesn't require explicit configuration.
1938 This is especially useful if a DHCP server cannot be guaranteed
1939 to exist in all environments that the device must operate.
1940
1941 See doc/README.link-local for more information.
1942
1943 - CDP Options:
1944 CONFIG_CDP_DEVICE_ID
1945
1946 The device id used in CDP trigger frames.
1947
1948 CONFIG_CDP_DEVICE_ID_PREFIX
1949
1950 A two character string which is prefixed to the MAC address
1951 of the device.
1952
1953 CONFIG_CDP_PORT_ID
1954
1955 A printf format string which contains the ascii name of
1956 the port. Normally is set to "eth%d" which sets
1957 eth0 for the first Ethernet, eth1 for the second etc.
1958
1959 CONFIG_CDP_CAPABILITIES
1960
1961 A 32bit integer which indicates the device capabilities;
1962 0x00000010 for a normal host which does not forwards.
1963
1964 CONFIG_CDP_VERSION
1965
1966 An ascii string containing the version of the software.
1967
1968 CONFIG_CDP_PLATFORM
1969
1970 An ascii string containing the name of the platform.
1971
1972 CONFIG_CDP_TRIGGER
1973
1974 A 32bit integer sent on the trigger.
1975
1976 CONFIG_CDP_POWER_CONSUMPTION
1977
1978 A 16bit integer containing the power consumption of the
1979 device in .1 of milliwatts.
1980
1981 CONFIG_CDP_APPLIANCE_VLAN_TYPE
1982
1983 A byte containing the id of the VLAN.
1984
1985 - Status LED: CONFIG_LED_STATUS
1986
1987 Several configurations allow to display the current
1988 status using a LED. For instance, the LED will blink
1989 fast while running U-Boot code, stop blinking as
1990 soon as a reply to a BOOTP request was received, and
1991 start blinking slow once the Linux kernel is running
1992 (supported by a status LED driver in the Linux
1993 kernel). Defining CONFIG_LED_STATUS enables this
1994 feature in U-Boot.
1995
1996 Additional options:
1997
1998 CONFIG_LED_STATUS_GPIO
1999 The status LED can be connected to a GPIO pin.
2000 In such cases, the gpio_led driver can be used as a
2001 status LED backend implementation. Define CONFIG_LED_STATUS_GPIO
2002 to include the gpio_led driver in the U-Boot binary.
2003
2004 CONFIG_GPIO_LED_INVERTED_TABLE
2005 Some GPIO connected LEDs may have inverted polarity in which
2006 case the GPIO high value corresponds to LED off state and
2007 GPIO low value corresponds to LED on state.
2008 In such cases CONFIG_GPIO_LED_INVERTED_TABLE may be defined
2009 with a list of GPIO LEDs that have inverted polarity.
2010
2011 - CAN Support: CONFIG_CAN_DRIVER
2012
2013 Defining CONFIG_CAN_DRIVER enables CAN driver support
2014 on those systems that support this (optional)
2015 feature, like the TQM8xxL modules.
2016
2017 - I2C Support: CONFIG_SYS_I2C
2018
2019 This enable the NEW i2c subsystem, and will allow you to use
2020 i2c commands at the u-boot command line (as long as you set
2021 CONFIG_CMD_I2C in CONFIG_COMMANDS) and communicate with i2c
2022 based realtime clock chips or other i2c devices. See
2023 common/cmd_i2c.c for a description of the command line
2024 interface.
2025
2026 ported i2c driver to the new framework:
2027 - drivers/i2c/soft_i2c.c:
2028 - activate first bus with CONFIG_SYS_I2C_SOFT define
2029 CONFIG_SYS_I2C_SOFT_SPEED and CONFIG_SYS_I2C_SOFT_SLAVE
2030 for defining speed and slave address
2031 - activate second bus with I2C_SOFT_DECLARATIONS2 define
2032 CONFIG_SYS_I2C_SOFT_SPEED_2 and CONFIG_SYS_I2C_SOFT_SLAVE_2
2033 for defining speed and slave address
2034 - activate third bus with I2C_SOFT_DECLARATIONS3 define
2035 CONFIG_SYS_I2C_SOFT_SPEED_3 and CONFIG_SYS_I2C_SOFT_SLAVE_3
2036 for defining speed and slave address
2037 - activate fourth bus with I2C_SOFT_DECLARATIONS4 define
2038 CONFIG_SYS_I2C_SOFT_SPEED_4 and CONFIG_SYS_I2C_SOFT_SLAVE_4
2039 for defining speed and slave address
2040
2041 - drivers/i2c/fsl_i2c.c:
2042 - activate i2c driver with CONFIG_SYS_I2C_FSL
2043 define CONFIG_SYS_FSL_I2C_OFFSET for setting the register
2044 offset CONFIG_SYS_FSL_I2C_SPEED for the i2c speed and
2045 CONFIG_SYS_FSL_I2C_SLAVE for the slave addr of the first
2046 bus.
2047 - If your board supports a second fsl i2c bus, define
2048 CONFIG_SYS_FSL_I2C2_OFFSET for the register offset
2049 CONFIG_SYS_FSL_I2C2_SPEED for the speed and
2050 CONFIG_SYS_FSL_I2C2_SLAVE for the slave address of the
2051 second bus.
2052
2053 - drivers/i2c/tegra_i2c.c:
2054 - activate this driver with CONFIG_SYS_I2C_TEGRA
2055 - This driver adds 4 i2c buses with a fix speed from
2056 100000 and the slave addr 0!
2057
2058 - drivers/i2c/ppc4xx_i2c.c
2059 - activate this driver with CONFIG_SYS_I2C_PPC4XX
2060 - CONFIG_SYS_I2C_PPC4XX_CH0 activate hardware channel 0
2061 - CONFIG_SYS_I2C_PPC4XX_CH1 activate hardware channel 1
2062
2063 - drivers/i2c/i2c_mxc.c
2064 - activate this driver with CONFIG_SYS_I2C_MXC
2065 - enable bus 1 with CONFIG_SYS_I2C_MXC_I2C1
2066 - enable bus 2 with CONFIG_SYS_I2C_MXC_I2C2
2067 - enable bus 3 with CONFIG_SYS_I2C_MXC_I2C3
2068 - enable bus 4 with CONFIG_SYS_I2C_MXC_I2C4
2069 - define speed for bus 1 with CONFIG_SYS_MXC_I2C1_SPEED
2070 - define slave for bus 1 with CONFIG_SYS_MXC_I2C1_SLAVE
2071 - define speed for bus 2 with CONFIG_SYS_MXC_I2C2_SPEED
2072 - define slave for bus 2 with CONFIG_SYS_MXC_I2C2_SLAVE
2073 - define speed for bus 3 with CONFIG_SYS_MXC_I2C3_SPEED
2074 - define slave for bus 3 with CONFIG_SYS_MXC_I2C3_SLAVE
2075 - define speed for bus 4 with CONFIG_SYS_MXC_I2C4_SPEED
2076 - define slave for bus 4 with CONFIG_SYS_MXC_I2C4_SLAVE
2077 If those defines are not set, default value is 100000
2078 for speed, and 0 for slave.
2079
2080 - drivers/i2c/rcar_i2c.c:
2081 - activate this driver with CONFIG_SYS_I2C_RCAR
2082 - This driver adds 4 i2c buses
2083
2084 - CONFIG_SYS_RCAR_I2C0_BASE for setting the register channel 0
2085 - CONFIG_SYS_RCAR_I2C0_SPEED for for the speed channel 0
2086 - CONFIG_SYS_RCAR_I2C1_BASE for setting the register channel 1
2087 - CONFIG_SYS_RCAR_I2C1_SPEED for for the speed channel 1
2088 - CONFIG_SYS_RCAR_I2C2_BASE for setting the register channel 2
2089 - CONFIG_SYS_RCAR_I2C2_SPEED for for the speed channel 2
2090 - CONFIG_SYS_RCAR_I2C3_BASE for setting the register channel 3
2091 - CONFIG_SYS_RCAR_I2C3_SPEED for for the speed channel 3
2092 - CONFIF_SYS_RCAR_I2C_NUM_CONTROLLERS for number of i2c buses
2093
2094 - drivers/i2c/sh_i2c.c:
2095 - activate this driver with CONFIG_SYS_I2C_SH
2096 - This driver adds from 2 to 5 i2c buses
2097
2098 - CONFIG_SYS_I2C_SH_BASE0 for setting the register channel 0
2099 - CONFIG_SYS_I2C_SH_SPEED0 for for the speed channel 0
2100 - CONFIG_SYS_I2C_SH_BASE1 for setting the register channel 1
2101 - CONFIG_SYS_I2C_SH_SPEED1 for for the speed channel 1
2102 - CONFIG_SYS_I2C_SH_BASE2 for setting the register channel 2
2103 - CONFIG_SYS_I2C_SH_SPEED2 for for the speed channel 2
2104 - CONFIG_SYS_I2C_SH_BASE3 for setting the register channel 3
2105 - CONFIG_SYS_I2C_SH_SPEED3 for for the speed channel 3
2106 - CONFIG_SYS_I2C_SH_BASE4 for setting the register channel 4
2107 - CONFIG_SYS_I2C_SH_SPEED4 for for the speed channel 4
2108 - CONFIG_SYS_I2C_SH_NUM_CONTROLLERS for number of i2c buses
2109
2110 - drivers/i2c/omap24xx_i2c.c
2111 - activate this driver with CONFIG_SYS_I2C_OMAP24XX
2112 - CONFIG_SYS_OMAP24_I2C_SPEED speed channel 0
2113 - CONFIG_SYS_OMAP24_I2C_SLAVE slave addr channel 0
2114 - CONFIG_SYS_OMAP24_I2C_SPEED1 speed channel 1
2115 - CONFIG_SYS_OMAP24_I2C_SLAVE1 slave addr channel 1
2116 - CONFIG_SYS_OMAP24_I2C_SPEED2 speed channel 2
2117 - CONFIG_SYS_OMAP24_I2C_SLAVE2 slave addr channel 2
2118 - CONFIG_SYS_OMAP24_I2C_SPEED3 speed channel 3
2119 - CONFIG_SYS_OMAP24_I2C_SLAVE3 slave addr channel 3
2120 - CONFIG_SYS_OMAP24_I2C_SPEED4 speed channel 4
2121 - CONFIG_SYS_OMAP24_I2C_SLAVE4 slave addr channel 4
2122
2123 - drivers/i2c/zynq_i2c.c
2124 - activate this driver with CONFIG_SYS_I2C_ZYNQ
2125 - set CONFIG_SYS_I2C_ZYNQ_SPEED for speed setting
2126 - set CONFIG_SYS_I2C_ZYNQ_SLAVE for slave addr
2127
2128 - drivers/i2c/s3c24x0_i2c.c:
2129 - activate this driver with CONFIG_SYS_I2C_S3C24X0
2130 - This driver adds i2c buses (11 for Exynos5250, Exynos5420
2131 9 i2c buses for Exynos4 and 1 for S3C24X0 SoCs from Samsung)
2132 with a fix speed from 100000 and the slave addr 0!
2133
2134 - drivers/i2c/ihs_i2c.c
2135 - activate this driver with CONFIG_SYS_I2C_IHS
2136 - CONFIG_SYS_I2C_IHS_CH0 activate hardware channel 0
2137 - CONFIG_SYS_I2C_IHS_SPEED_0 speed channel 0
2138 - CONFIG_SYS_I2C_IHS_SLAVE_0 slave addr channel 0
2139 - CONFIG_SYS_I2C_IHS_CH1 activate hardware channel 1
2140 - CONFIG_SYS_I2C_IHS_SPEED_1 speed channel 1
2141 - CONFIG_SYS_I2C_IHS_SLAVE_1 slave addr channel 1
2142 - CONFIG_SYS_I2C_IHS_CH2 activate hardware channel 2
2143 - CONFIG_SYS_I2C_IHS_SPEED_2 speed channel 2
2144 - CONFIG_SYS_I2C_IHS_SLAVE_2 slave addr channel 2
2145 - CONFIG_SYS_I2C_IHS_CH3 activate hardware channel 3
2146 - CONFIG_SYS_I2C_IHS_SPEED_3 speed channel 3
2147 - CONFIG_SYS_I2C_IHS_SLAVE_3 slave addr channel 3
2148 - activate dual channel with CONFIG_SYS_I2C_IHS_DUAL
2149 - CONFIG_SYS_I2C_IHS_SPEED_0_1 speed channel 0_1
2150 - CONFIG_SYS_I2C_IHS_SLAVE_0_1 slave addr channel 0_1
2151 - CONFIG_SYS_I2C_IHS_SPEED_1_1 speed channel 1_1
2152 - CONFIG_SYS_I2C_IHS_SLAVE_1_1 slave addr channel 1_1
2153 - CONFIG_SYS_I2C_IHS_SPEED_2_1 speed channel 2_1
2154 - CONFIG_SYS_I2C_IHS_SLAVE_2_1 slave addr channel 2_1
2155 - CONFIG_SYS_I2C_IHS_SPEED_3_1 speed channel 3_1
2156 - CONFIG_SYS_I2C_IHS_SLAVE_3_1 slave addr channel 3_1
2157
2158 additional defines:
2159
2160 CONFIG_SYS_NUM_I2C_BUSES
2161 Hold the number of i2c buses you want to use.
2162
2163 CONFIG_SYS_I2C_DIRECT_BUS
2164 define this, if you don't use i2c muxes on your hardware.
2165 if CONFIG_SYS_I2C_MAX_HOPS is not defined or == 0 you can
2166 omit this define.
2167
2168 CONFIG_SYS_I2C_MAX_HOPS
2169 define how many muxes are maximal consecutively connected
2170 on one i2c bus. If you not use i2c muxes, omit this
2171 define.
2172
2173 CONFIG_SYS_I2C_BUSES
2174 hold a list of buses you want to use, only used if
2175 CONFIG_SYS_I2C_DIRECT_BUS is not defined, for example
2176 a board with CONFIG_SYS_I2C_MAX_HOPS = 1 and
2177 CONFIG_SYS_NUM_I2C_BUSES = 9:
2178
2179 CONFIG_SYS_I2C_BUSES {{0, {I2C_NULL_HOP}}, \
2180 {0, {{I2C_MUX_PCA9547, 0x70, 1}}}, \
2181 {0, {{I2C_MUX_PCA9547, 0x70, 2}}}, \
2182 {0, {{I2C_MUX_PCA9547, 0x70, 3}}}, \
2183 {0, {{I2C_MUX_PCA9547, 0x70, 4}}}, \
2184 {0, {{I2C_MUX_PCA9547, 0x70, 5}}}, \
2185 {1, {I2C_NULL_HOP}}, \
2186 {1, {{I2C_MUX_PCA9544, 0x72, 1}}}, \
2187 {1, {{I2C_MUX_PCA9544, 0x72, 2}}}, \
2188 }
2189
2190 which defines
2191 bus 0 on adapter 0 without a mux
2192 bus 1 on adapter 0 with a PCA9547 on address 0x70 port 1
2193 bus 2 on adapter 0 with a PCA9547 on address 0x70 port 2
2194 bus 3 on adapter 0 with a PCA9547 on address 0x70 port 3
2195 bus 4 on adapter 0 with a PCA9547 on address 0x70 port 4
2196 bus 5 on adapter 0 with a PCA9547 on address 0x70 port 5
2197 bus 6 on adapter 1 without a mux
2198 bus 7 on adapter 1 with a PCA9544 on address 0x72 port 1
2199 bus 8 on adapter 1 with a PCA9544 on address 0x72 port 2
2200
2201 If you do not have i2c muxes on your board, omit this define.
2202
2203 - Legacy I2C Support: CONFIG_HARD_I2C
2204
2205 NOTE: It is intended to move drivers to CONFIG_SYS_I2C which
2206 provides the following compelling advantages:
2207
2208 - more than one i2c adapter is usable
2209 - approved multibus support
2210 - better i2c mux support
2211
2212 ** Please consider updating your I2C driver now. **
2213
2214 These enable legacy I2C serial bus commands. Defining
2215 CONFIG_HARD_I2C will include the appropriate I2C driver
2216 for the selected CPU.
2217
2218 This will allow you to use i2c commands at the u-boot
2219 command line (as long as you set CONFIG_CMD_I2C in
2220 CONFIG_COMMANDS) and communicate with i2c based realtime
2221 clock chips. See common/cmd_i2c.c for a description of the
2222 command line interface.
2223
2224 CONFIG_HARD_I2C selects a hardware I2C controller.
2225
2226 There are several other quantities that must also be
2227 defined when you define CONFIG_HARD_I2C.
2228
2229 In both cases you will need to define CONFIG_SYS_I2C_SPEED
2230 to be the frequency (in Hz) at which you wish your i2c bus
2231 to run and CONFIG_SYS_I2C_SLAVE to be the address of this node (ie
2232 the CPU's i2c node address).
2233
2234 Now, the u-boot i2c code for the mpc8xx
2235 (arch/powerpc/cpu/mpc8xx/i2c.c) sets the CPU up as a master node
2236 and so its address should therefore be cleared to 0 (See,
2237 eg, MPC823e User's Manual p.16-473). So, set
2238 CONFIG_SYS_I2C_SLAVE to 0.
2239
2240 CONFIG_SYS_I2C_INIT_MPC5XXX
2241
2242 When a board is reset during an i2c bus transfer
2243 chips might think that the current transfer is still
2244 in progress. Reset the slave devices by sending start
2245 commands until the slave device responds.
2246
2247 That's all that's required for CONFIG_HARD_I2C.
2248
2249 If you use the software i2c interface (CONFIG_SYS_I2C_SOFT)
2250 then the following macros need to be defined (examples are
2251 from include/configs/lwmon.h):
2252
2253 I2C_INIT
2254
2255 (Optional). Any commands necessary to enable the I2C
2256 controller or configure ports.
2257
2258 eg: #define I2C_INIT (immr->im_cpm.cp_pbdir |= PB_SCL)
2259
2260 I2C_PORT
2261
2262 (Only for MPC8260 CPU). The I/O port to use (the code
2263 assumes both bits are on the same port). Valid values
2264 are 0..3 for ports A..D.
2265
2266 I2C_ACTIVE
2267
2268 The code necessary to make the I2C data line active
2269 (driven). If the data line is open collector, this
2270 define can be null.
2271
2272 eg: #define I2C_ACTIVE (immr->im_cpm.cp_pbdir |= PB_SDA)
2273
2274 I2C_TRISTATE
2275
2276 The code necessary to make the I2C data line tri-stated
2277 (inactive). If the data line is open collector, this
2278 define can be null.
2279
2280 eg: #define I2C_TRISTATE (immr->im_cpm.cp_pbdir &= ~PB_SDA)
2281
2282 I2C_READ
2283
2284 Code that returns true if the I2C data line is high,
2285 false if it is low.
2286
2287 eg: #define I2C_READ ((immr->im_cpm.cp_pbdat & PB_SDA) != 0)
2288
2289 I2C_SDA(bit)
2290
2291 If <bit> is true, sets the I2C data line high. If it
2292 is false, it clears it (low).
2293
2294 eg: #define I2C_SDA(bit) \
2295 if(bit) immr->im_cpm.cp_pbdat |= PB_SDA; \
2296 else immr->im_cpm.cp_pbdat &= ~PB_SDA
2297
2298 I2C_SCL(bit)
2299
2300 If <bit> is true, sets the I2C clock line high. If it
2301 is false, it clears it (low).
2302
2303 eg: #define I2C_SCL(bit) \
2304 if(bit) immr->im_cpm.cp_pbdat |= PB_SCL; \
2305 else immr->im_cpm.cp_pbdat &= ~PB_SCL
2306
2307 I2C_DELAY
2308
2309 This delay is invoked four times per clock cycle so this
2310 controls the rate of data transfer. The data rate thus
2311 is 1 / (I2C_DELAY * 4). Often defined to be something
2312 like:
2313
2314 #define I2C_DELAY udelay(2)
2315
2316 CONFIG_SOFT_I2C_GPIO_SCL / CONFIG_SOFT_I2C_GPIO_SDA
2317
2318 If your arch supports the generic GPIO framework (asm/gpio.h),
2319 then you may alternatively define the two GPIOs that are to be
2320 used as SCL / SDA. Any of the previous I2C_xxx macros will
2321 have GPIO-based defaults assigned to them as appropriate.
2322
2323 You should define these to the GPIO value as given directly to
2324 the generic GPIO functions.
2325
2326 CONFIG_SYS_I2C_INIT_BOARD
2327
2328 When a board is reset during an i2c bus transfer
2329 chips might think that the current transfer is still
2330 in progress. On some boards it is possible to access
2331 the i2c SCLK line directly, either by using the
2332 processor pin as a GPIO or by having a second pin
2333 connected to the bus. If this option is defined a
2334 custom i2c_init_board() routine in boards/xxx/board.c
2335 is run early in the boot sequence.
2336
2337 CONFIG_SYS_I2C_BOARD_LATE_INIT
2338
2339 An alternative to CONFIG_SYS_I2C_INIT_BOARD. If this option is
2340 defined a custom i2c_board_late_init() routine in
2341 boards/xxx/board.c is run AFTER the operations in i2c_init()
2342 is completed. This callpoint can be used to unreset i2c bus
2343 using CPU i2c controller register accesses for CPUs whose i2c
2344 controller provide such a method. It is called at the end of
2345 i2c_init() to allow i2c_init operations to setup the i2c bus
2346 controller on the CPU (e.g. setting bus speed & slave address).
2347
2348 CONFIG_I2CFAST (PPC405GP|PPC405EP only)
2349
2350 This option enables configuration of bi_iic_fast[] flags
2351 in u-boot bd_info structure based on u-boot environment
2352 variable "i2cfast". (see also i2cfast)
2353
2354 CONFIG_I2C_MULTI_BUS
2355
2356 This option allows the use of multiple I2C buses, each of which
2357 must have a controller. At any point in time, only one bus is
2358 active. To switch to a different bus, use the 'i2c dev' command.
2359 Note that bus numbering is zero-based.
2360
2361 CONFIG_SYS_I2C_NOPROBES
2362
2363 This option specifies a list of I2C devices that will be skipped
2364 when the 'i2c probe' command is issued. If CONFIG_I2C_MULTI_BUS
2365 is set, specify a list of bus-device pairs. Otherwise, specify
2366 a 1D array of device addresses
2367
2368 e.g.
2369 #undef CONFIG_I2C_MULTI_BUS
2370 #define CONFIG_SYS_I2C_NOPROBES {0x50,0x68}
2371
2372 will skip addresses 0x50 and 0x68 on a board with one I2C bus
2373
2374 #define CONFIG_I2C_MULTI_BUS
2375 #define CONFIG_SYS_I2C_NOPROBES {{0,0x50},{0,0x68},{1,0x54}}
2376
2377 will skip addresses 0x50 and 0x68 on bus 0 and address 0x54 on bus 1
2378
2379 CONFIG_SYS_SPD_BUS_NUM
2380
2381 If defined, then this indicates the I2C bus number for DDR SPD.
2382 If not defined, then U-Boot assumes that SPD is on I2C bus 0.
2383
2384 CONFIG_SYS_RTC_BUS_NUM
2385
2386 If defined, then this indicates the I2C bus number for the RTC.
2387 If not defined, then U-Boot assumes that RTC is on I2C bus 0.
2388
2389 CONFIG_SYS_DTT_BUS_NUM
2390
2391 If defined, then this indicates the I2C bus number for the DTT.
2392 If not defined, then U-Boot assumes that DTT is on I2C bus 0.
2393
2394 CONFIG_SYS_I2C_DTT_ADDR:
2395
2396 If defined, specifies the I2C address of the DTT device.
2397 If not defined, then U-Boot uses predefined value for
2398 specified DTT device.
2399
2400 CONFIG_SOFT_I2C_READ_REPEATED_START
2401
2402 defining this will force the i2c_read() function in
2403 the soft_i2c driver to perform an I2C repeated start
2404 between writing the address pointer and reading the
2405 data. If this define is omitted the default behaviour
2406 of doing a stop-start sequence will be used. Most I2C
2407 devices can use either method, but some require one or
2408 the other.
2409
2410 - SPI Support: CONFIG_SPI
2411
2412 Enables SPI driver (so far only tested with
2413 SPI EEPROM, also an instance works with Crystal A/D and
2414 D/As on the SACSng board)
2415
2416 CONFIG_SH_SPI
2417
2418 Enables the driver for SPI controller on SuperH. Currently
2419 only SH7757 is supported.
2420
2421 CONFIG_SOFT_SPI
2422
2423 Enables a software (bit-bang) SPI driver rather than
2424 using hardware support. This is a general purpose
2425 driver that only requires three general I/O port pins
2426 (two outputs, one input) to function. If this is
2427 defined, the board configuration must define several
2428 SPI configuration items (port pins to use, etc). For
2429 an example, see include/configs/sacsng.h.
2430
2431 CONFIG_HARD_SPI
2432
2433 Enables a hardware SPI driver for general-purpose reads
2434 and writes. As with CONFIG_SOFT_SPI, the board configuration
2435 must define a list of chip-select function pointers.
2436 Currently supported on some MPC8xxx processors. For an
2437 example, see include/configs/mpc8349emds.h.
2438
2439 CONFIG_MXC_SPI
2440
2441 Enables the driver for the SPI controllers on i.MX and MXC
2442 SoCs. Currently i.MX31/35/51 are supported.
2443
2444 CONFIG_SYS_SPI_MXC_WAIT
2445 Timeout for waiting until spi transfer completed.
2446 default: (CONFIG_SYS_HZ/100) /* 10 ms */
2447
2448 - FPGA Support: CONFIG_FPGA
2449
2450 Enables FPGA subsystem.
2451
2452 CONFIG_FPGA_<vendor>
2453
2454 Enables support for specific chip vendors.
2455 (ALTERA, XILINX)
2456
2457 CONFIG_FPGA_<family>
2458
2459 Enables support for FPGA family.
2460 (SPARTAN2, SPARTAN3, VIRTEX2, CYCLONE2, ACEX1K, ACEX)
2461
2462 CONFIG_FPGA_COUNT
2463
2464 Specify the number of FPGA devices to support.
2465
2466 CONFIG_CMD_FPGA_LOADMK
2467
2468 Enable support for fpga loadmk command
2469
2470 CONFIG_CMD_FPGA_LOADP
2471
2472 Enable support for fpga loadp command - load partial bitstream
2473
2474 CONFIG_CMD_FPGA_LOADBP
2475
2476 Enable support for fpga loadbp command - load partial bitstream
2477 (Xilinx only)
2478
2479 CONFIG_SYS_FPGA_PROG_FEEDBACK
2480
2481 Enable printing of hash marks during FPGA configuration.
2482
2483 CONFIG_SYS_FPGA_CHECK_BUSY
2484
2485 Enable checks on FPGA configuration interface busy
2486 status by the configuration function. This option
2487 will require a board or device specific function to
2488 be written.
2489
2490 CONFIG_FPGA_DELAY
2491
2492 If defined, a function that provides delays in the FPGA
2493 configuration driver.
2494
2495 CONFIG_SYS_FPGA_CHECK_CTRLC
2496 Allow Control-C to interrupt FPGA configuration
2497
2498 CONFIG_SYS_FPGA_CHECK_ERROR
2499
2500 Check for configuration errors during FPGA bitfile
2501 loading. For example, abort during Virtex II
2502 configuration if the INIT_B line goes low (which
2503 indicated a CRC error).
2504
2505 CONFIG_SYS_FPGA_WAIT_INIT
2506
2507 Maximum time to wait for the INIT_B line to de-assert
2508 after PROB_B has been de-asserted during a Virtex II
2509 FPGA configuration sequence. The default time is 500
2510 ms.
2511
2512 CONFIG_SYS_FPGA_WAIT_BUSY
2513
2514 Maximum time to wait for BUSY to de-assert during
2515 Virtex II FPGA configuration. The default is 5 ms.
2516
2517 CONFIG_SYS_FPGA_WAIT_CONFIG
2518
2519 Time to wait after FPGA configuration. The default is
2520 200 ms.
2521
2522 - Configuration Management:
2523 CONFIG_BUILD_TARGET
2524
2525 Some SoCs need special image types (e.g. U-Boot binary
2526 with a special header) as build targets. By defining
2527 CONFIG_BUILD_TARGET in the SoC / board header, this
2528 special image will be automatically built upon calling
2529 make / buildman.
2530
2531 CONFIG_IDENT_STRING
2532
2533 If defined, this string will be added to the U-Boot
2534 version information (U_BOOT_VERSION)
2535
2536 - Vendor Parameter Protection:
2537
2538 U-Boot considers the values of the environment
2539 variables "serial#" (Board Serial Number) and
2540 "ethaddr" (Ethernet Address) to be parameters that
2541 are set once by the board vendor / manufacturer, and
2542 protects these variables from casual modification by
2543 the user. Once set, these variables are read-only,
2544 and write or delete attempts are rejected. You can
2545 change this behaviour:
2546
2547 If CONFIG_ENV_OVERWRITE is #defined in your config
2548 file, the write protection for vendor parameters is
2549 completely disabled. Anybody can change or delete
2550 these parameters.
2551
2552 Alternatively, if you define _both_ an ethaddr in the
2553 default env _and_ CONFIG_OVERWRITE_ETHADDR_ONCE, a default
2554 Ethernet address is installed in the environment,
2555 which can be changed exactly ONCE by the user. [The
2556 serial# is unaffected by this, i. e. it remains
2557 read-only.]
2558
2559 The same can be accomplished in a more flexible way
2560 for any variable by configuring the type of access
2561 to allow for those variables in the ".flags" variable
2562 or define CONFIG_ENV_FLAGS_LIST_STATIC.
2563
2564 - Protected RAM:
2565 CONFIG_PRAM
2566
2567 Define this variable to enable the reservation of
2568 "protected RAM", i. e. RAM which is not overwritten
2569 by U-Boot. Define CONFIG_PRAM to hold the number of
2570 kB you want to reserve for pRAM. You can overwrite
2571 this default value by defining an environment
2572 variable "pram" to the number of kB you want to
2573 reserve. Note that the board info structure will
2574 still show the full amount of RAM. If pRAM is
2575 reserved, a new environment variable "mem" will
2576 automatically be defined to hold the amount of
2577 remaining RAM in a form that can be passed as boot
2578 argument to Linux, for instance like that:
2579
2580 setenv bootargs ... mem=\${mem}
2581 saveenv
2582
2583 This way you can tell Linux not to use this memory,
2584 either, which results in a memory region that will
2585 not be affected by reboots.
2586
2587 *WARNING* If your board configuration uses automatic
2588 detection of the RAM size, you must make sure that
2589 this memory test is non-destructive. So far, the
2590 following board configurations are known to be
2591 "pRAM-clean":
2592
2593 IVMS8, IVML24, SPD8xx, TQM8xxL,
2594 HERMES, IP860, RPXlite, LWMON,
2595 FLAGADM, TQM8260
2596
2597 - Access to physical memory region (> 4GB)
2598 Some basic support is provided for operations on memory not
2599 normally accessible to U-Boot - e.g. some architectures
2600 support access to more than 4GB of memory on 32-bit
2601 machines using physical address extension or similar.
2602 Define CONFIG_PHYSMEM to access this basic support, which
2603 currently only supports clearing the memory.
2604
2605 - Error Recovery:
2606 CONFIG_PANIC_HANG
2607
2608 Define this variable to stop the system in case of a
2609 fatal error, so that you have to reset it manually.
2610 This is probably NOT a good idea for an embedded
2611 system where you want the system to reboot
2612 automatically as fast as possible, but it may be
2613 useful during development since you can try to debug
2614 the conditions that lead to the situation.
2615
2616 CONFIG_NET_RETRY_COUNT
2617
2618 This variable defines the number of retries for
2619 network operations like ARP, RARP, TFTP, or BOOTP
2620 before giving up the operation. If not defined, a
2621 default value of 5 is used.
2622
2623 CONFIG_ARP_TIMEOUT
2624
2625 Timeout waiting for an ARP reply in milliseconds.
2626
2627 CONFIG_NFS_TIMEOUT
2628
2629 Timeout in milliseconds used in NFS protocol.
2630 If you encounter "ERROR: Cannot umount" in nfs command,
2631 try longer timeout such as
2632 #define CONFIG_NFS_TIMEOUT 10000UL
2633
2634 - Command Interpreter:
2635 CONFIG_AUTO_COMPLETE
2636
2637 Enable auto completion of commands using TAB.
2638
2639 CONFIG_SYS_PROMPT_HUSH_PS2
2640
2641 This defines the secondary prompt string, which is
2642 printed when the command interpreter needs more input
2643 to complete a command. Usually "> ".
2644
2645 Note:
2646
2647 In the current implementation, the local variables
2648 space and global environment variables space are
2649 separated. Local variables are those you define by
2650 simply typing `name=value'. To access a local
2651 variable later on, you have write `$name' or
2652 `${name}'; to execute the contents of a variable
2653 directly type `$name' at the command prompt.
2654
2655 Global environment variables are those you use
2656 setenv/printenv to work with. To run a command stored
2657 in such a variable, you need to use the run command,
2658 and you must not use the '$' sign to access them.
2659
2660 To store commands and special characters in a
2661 variable, please use double quotation marks
2662 surrounding the whole text of the variable, instead
2663 of the backslashes before semicolons and special
2664 symbols.
2665
2666 - Command Line Editing and History:
2667 CONFIG_CMDLINE_EDITING
2668
2669 Enable editing and History functions for interactive
2670 command line input operations
2671
2672 - Command Line PS1/PS2 support:
2673 CONFIG_CMDLINE_PS_SUPPORT
2674
2675 Enable support for changing the command prompt string
2676 at run-time. Only static string is supported so far.
2677 The string is obtained from environment variables PS1
2678 and PS2.
2679
2680 - Default Environment:
2681 CONFIG_EXTRA_ENV_SETTINGS
2682
2683 Define this to contain any number of null terminated
2684 strings (variable = value pairs) that will be part of
2685 the default environment compiled into the boot image.
2686
2687 For example, place something like this in your
2688 board's config file:
2689
2690 #define CONFIG_EXTRA_ENV_SETTINGS \
2691 "myvar1=value1\0" \
2692 "myvar2=value2\0"
2693
2694 Warning: This method is based on knowledge about the
2695 internal format how the environment is stored by the
2696 U-Boot code. This is NOT an official, exported
2697 interface! Although it is unlikely that this format
2698 will change soon, there is no guarantee either.
2699 You better know what you are doing here.
2700
2701 Note: overly (ab)use of the default environment is
2702 discouraged. Make sure to check other ways to preset
2703 the environment like the "source" command or the
2704 boot command first.
2705
2706 CONFIG_ENV_VARS_UBOOT_CONFIG
2707
2708 Define this in order to add variables describing the
2709 U-Boot build configuration to the default environment.
2710 These will be named arch, cpu, board, vendor, and soc.
2711
2712 Enabling this option will cause the following to be defined:
2713
2714 - CONFIG_SYS_ARCH
2715 - CONFIG_SYS_CPU
2716 - CONFIG_SYS_BOARD
2717 - CONFIG_SYS_VENDOR
2718 - CONFIG_SYS_SOC
2719
2720 CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
2721
2722 Define this in order to add variables describing certain
2723 run-time determined information about the hardware to the
2724 environment. These will be named board_name, board_rev.
2725
2726 CONFIG_DELAY_ENVIRONMENT
2727
2728 Normally the environment is loaded when the board is
2729 initialised so that it is available to U-Boot. This inhibits
2730 that so that the environment is not available until
2731 explicitly loaded later by U-Boot code. With CONFIG_OF_CONTROL
2732 this is instead controlled by the value of
2733 /config/load-environment.
2734
2735 - DataFlash Support:
2736 CONFIG_HAS_DATAFLASH
2737
2738 Defining this option enables DataFlash features and
2739 allows to read/write in Dataflash via the standard
2740 commands cp, md...
2741
2742 - Serial Flash support
2743 CONFIG_CMD_SF
2744
2745 Defining this option enables SPI flash commands
2746 'sf probe/read/write/erase/update'.
2747
2748 Usage requires an initial 'probe' to define the serial
2749 flash parameters, followed by read/write/erase/update
2750 commands.
2751
2752 The following defaults may be provided by the platform
2753 to handle the common case when only a single serial
2754 flash is present on the system.
2755
2756 CONFIG_SF_DEFAULT_BUS Bus identifier
2757 CONFIG_SF_DEFAULT_CS Chip-select
2758 CONFIG_SF_DEFAULT_MODE (see include/spi.h)
2759 CONFIG_SF_DEFAULT_SPEED in Hz
2760
2761 CONFIG_CMD_SF_TEST
2762
2763 Define this option to include a destructive SPI flash
2764 test ('sf test').
2765
2766 CONFIG_SF_DUAL_FLASH Dual flash memories
2767
2768 Define this option to use dual flash support where two flash
2769 memories can be connected with a given cs line.
2770 Currently Xilinx Zynq qspi supports these type of connections.
2771
2772 - SystemACE Support:
2773 CONFIG_SYSTEMACE
2774
2775 Adding this option adds support for Xilinx SystemACE
2776 chips attached via some sort of local bus. The address
2777 of the chip must also be defined in the
2778 CONFIG_SYS_SYSTEMACE_BASE macro. For example:
2779
2780 #define CONFIG_SYSTEMACE
2781 #define CONFIG_SYS_SYSTEMACE_BASE 0xf0000000
2782
2783 When SystemACE support is added, the "ace" device type
2784 becomes available to the fat commands, i.e. fatls.
2785
2786 - TFTP Fixed UDP Port:
2787 CONFIG_TFTP_PORT
2788
2789 If this is defined, the environment variable tftpsrcp
2790 is used to supply the TFTP UDP source port value.
2791 If tftpsrcp isn't defined, the normal pseudo-random port
2792 number generator is used.
2793
2794 Also, the environment variable tftpdstp is used to supply
2795 the TFTP UDP destination port value. If tftpdstp isn't
2796 defined, the normal port 69 is used.
2797
2798 The purpose for tftpsrcp is to allow a TFTP server to
2799 blindly start the TFTP transfer using the pre-configured
2800 target IP address and UDP port. This has the effect of
2801 "punching through" the (Windows XP) firewall, allowing
2802 the remainder of the TFTP transfer to proceed normally.
2803 A better solution is to properly configure the firewall,
2804 but sometimes that is not allowed.
2805
2806 - Hashing support:
2807 CONFIG_CMD_HASH
2808
2809 This enables a generic 'hash' command which can produce
2810 hashes / digests from a few algorithms (e.g. SHA1, SHA256).
2811
2812 CONFIG_HASH_VERIFY
2813
2814 Enable the hash verify command (hash -v). This adds to code
2815 size a little.
2816
2817 CONFIG_SHA1 - This option enables support of hashing using SHA1
2818 algorithm. The hash is calculated in software.
2819 CONFIG_SHA256 - This option enables support of hashing using
2820 SHA256 algorithm. The hash is calculated in software.
2821 CONFIG_SHA_HW_ACCEL - This option enables hardware acceleration
2822 for SHA1/SHA256 hashing.
2823 This affects the 'hash' command and also the
2824 hash_lookup_algo() function.
2825 CONFIG_SHA_PROG_HW_ACCEL - This option enables
2826 hardware-acceleration for SHA1/SHA256 progressive hashing.
2827 Data can be streamed in a block at a time and the hashing
2828 is performed in hardware.
2829
2830 Note: There is also a sha1sum command, which should perhaps
2831 be deprecated in favour of 'hash sha1'.
2832
2833 - Freescale i.MX specific commands:
2834 CONFIG_CMD_HDMIDETECT
2835 This enables 'hdmidet' command which returns true if an
2836 HDMI monitor is detected. This command is i.MX 6 specific.
2837
2838 - bootcount support:
2839 CONFIG_BOOTCOUNT_LIMIT
2840
2841 This enables the bootcounter support, see:
2842 http://www.denx.de/wiki/DULG/UBootBootCountLimit
2843
2844 CONFIG_AT91SAM9XE
2845 enable special bootcounter support on at91sam9xe based boards.
2846 CONFIG_SOC_DA8XX
2847 enable special bootcounter support on da850 based boards.
2848 CONFIG_BOOTCOUNT_RAM
2849 enable support for the bootcounter in RAM
2850 CONFIG_BOOTCOUNT_I2C
2851 enable support for the bootcounter on an i2c (like RTC) device.
2852 CONFIG_SYS_I2C_RTC_ADDR = i2c chip address
2853 CONFIG_SYS_BOOTCOUNT_ADDR = i2c addr which is used for
2854 the bootcounter.
2855 CONFIG_BOOTCOUNT_ALEN = address len
2856
2857 - Show boot progress:
2858 CONFIG_SHOW_BOOT_PROGRESS
2859
2860 Defining this option allows to add some board-
2861 specific code (calling a user-provided function
2862 "show_boot_progress(int)") that enables you to show
2863 the system's boot progress on some display (for
2864 example, some LED's) on your board. At the moment,
2865 the following checkpoints are implemented:
2866
2867
2868 Legacy uImage format:
2869
2870 Arg Where When
2871 1 common/cmd_bootm.c before attempting to boot an image
2872 -1 common/cmd_bootm.c Image header has bad magic number
2873 2 common/cmd_bootm.c Image header has correct magic number
2874 -2 common/cmd_bootm.c Image header has bad checksum
2875 3 common/cmd_bootm.c Image header has correct checksum
2876 -3 common/cmd_bootm.c Image data has bad checksum
2877 4 common/cmd_bootm.c Image data has correct checksum
2878 -4 common/cmd_bootm.c Image is for unsupported architecture
2879 5 common/cmd_bootm.c Architecture check OK
2880 -5 common/cmd_bootm.c Wrong Image Type (not kernel, multi)
2881 6 common/cmd_bootm.c Image Type check OK
2882 -6 common/cmd_bootm.c gunzip uncompression error
2883 -7 common/cmd_bootm.c Unimplemented compression type
2884 7 common/cmd_bootm.c Uncompression OK
2885 8 common/cmd_bootm.c No uncompress/copy overwrite error
2886 -9 common/cmd_bootm.c Unsupported OS (not Linux, BSD, VxWorks, QNX)
2887
2888 9 common/image.c Start initial ramdisk verification
2889 -10 common/image.c Ramdisk header has bad magic number
2890 -11 common/image.c Ramdisk header has bad checksum
2891 10 common/image.c Ramdisk header is OK
2892 -12 common/image.c Ramdisk data has bad checksum
2893 11 common/image.c Ramdisk data has correct checksum
2894 12 common/image.c Ramdisk verification complete, start loading
2895 -13 common/image.c Wrong Image Type (not PPC Linux ramdisk)
2896 13 common/image.c Start multifile image verification
2897 14 common/image.c No initial ramdisk, no multifile, continue.
2898
2899 15 arch/<arch>/lib/bootm.c All preparation done, transferring control to OS
2900
2901 -30 arch/powerpc/lib/board.c Fatal error, hang the system
2902 -31 post/post.c POST test failed, detected by post_output_backlog()
2903 -32 post/post.c POST test failed, detected by post_run_single()
2904
2905 34 common/cmd_doc.c before loading a Image from a DOC device
2906 -35 common/cmd_doc.c Bad usage of "doc" command
2907 35 common/cmd_doc.c correct usage of "doc" command
2908 -36 common/cmd_doc.c No boot device
2909 36 common/cmd_doc.c correct boot device
2910 -37 common/cmd_doc.c Unknown Chip ID on boot device
2911 37 common/cmd_doc.c correct chip ID found, device available
2912 -38 common/cmd_doc.c Read Error on boot device
2913 38 common/cmd_doc.c reading Image header from DOC device OK
2914 -39 common/cmd_doc.c Image header has bad magic number
2915 39 common/cmd_doc.c Image header has correct magic number
2916 -40 common/cmd_doc.c Error reading Image from DOC device
2917 40 common/cmd_doc.c Image header has correct magic number
2918 41 common/cmd_ide.c before loading a Image from a IDE device
2919 -42 common/cmd_ide.c Bad usage of "ide" command
2920 42 common/cmd_ide.c correct usage of "ide" command
2921 -43 common/cmd_ide.c No boot device
2922 43 common/cmd_ide.c boot device found
2923 -44 common/cmd_ide.c Device not available
2924 44 common/cmd_ide.c Device available
2925 -45 common/cmd_ide.c wrong partition selected
2926 45 common/cmd_ide.c partition selected
2927 -46 common/cmd_ide.c Unknown partition table
2928 46 common/cmd_ide.c valid partition table found
2929 -47 common/cmd_ide.c Invalid partition type
2930 47 common/cmd_ide.c correct partition type
2931 -48 common/cmd_ide.c Error reading Image Header on boot device
2932 48 common/cmd_ide.c reading Image Header from IDE device OK
2933 -49 common/cmd_ide.c Image header has bad magic number
2934 49 common/cmd_ide.c Image header has correct magic number
2935 -50 common/cmd_ide.c Image header has bad checksum
2936 50 common/cmd_ide.c Image header has correct checksum
2937 -51 common/cmd_ide.c Error reading Image from IDE device
2938 51 common/cmd_ide.c reading Image from IDE device OK
2939 52 common/cmd_nand.c before loading a Image from a NAND device
2940 -53 common/cmd_nand.c Bad usage of "nand" command
2941 53 common/cmd_nand.c correct usage of "nand" command
2942 -54 common/cmd_nand.c No boot device
2943 54 common/cmd_nand.c boot device found
2944 -55 common/cmd_nand.c Unknown Chip ID on boot device
2945 55 common/cmd_nand.c correct chip ID found, device available
2946 -56 common/cmd_nand.c Error reading Image Header on boot device
2947 56 common/cmd_nand.c reading Image Header from NAND device OK
2948 -57 common/cmd_nand.c Image header has bad magic number
2949 57 common/cmd_nand.c Image header has correct magic number
2950 -58 common/cmd_nand.c Error reading Image from NAND device
2951 58 common/cmd_nand.c reading Image from NAND device OK
2952
2953 -60 common/env_common.c Environment has a bad CRC, using default
2954
2955 64 net/eth.c starting with Ethernet configuration.
2956 -64 net/eth.c no Ethernet found.
2957 65 net/eth.c Ethernet found.
2958
2959 -80 common/cmd_net.c usage wrong
2960 80 common/cmd_net.c before calling net_loop()
2961 -81 common/cmd_net.c some error in net_loop() occurred
2962 81 common/cmd_net.c net_loop() back without error
2963 -82 common/cmd_net.c size == 0 (File with size 0 loaded)
2964 82 common/cmd_net.c trying automatic boot
2965 83 common/cmd_net.c running "source" command
2966 -83 common/cmd_net.c some error in automatic boot or "source" command
2967 84 common/cmd_net.c end without errors
2968
2969 FIT uImage format:
2970
2971 Arg Where When
2972 100 common/cmd_bootm.c Kernel FIT Image has correct format
2973 -100 common/cmd_bootm.c Kernel FIT Image has incorrect format
2974 101 common/cmd_bootm.c No Kernel subimage unit name, using configuration
2975 -101 common/cmd_bootm.c Can't get configuration for kernel subimage
2976 102 common/cmd_bootm.c Kernel unit name specified
2977 -103 common/cmd_bootm.c Can't get kernel subimage node offset
2978 103 common/cmd_bootm.c Found configuration node
2979 104 common/cmd_bootm.c Got kernel subimage node offset
2980 -104 common/cmd_bootm.c Kernel subimage hash verification failed
2981 105 common/cmd_bootm.c Kernel subimage hash verification OK
2982 -105 common/cmd_bootm.c Kernel subimage is for unsupported architecture
2983 106 common/cmd_bootm.c Architecture check OK
2984 -106 common/cmd_bootm.c Kernel subimage has wrong type
2985 107 common/cmd_bootm.c Kernel subimage type OK
2986 -107 common/cmd_bootm.c Can't get kernel subimage data/size
2987 108 common/cmd_bootm.c Got kernel subimage data/size
2988 -108 common/cmd_bootm.c Wrong image type (not legacy, FIT)
2989 -109 common/cmd_bootm.c Can't get kernel subimage type
2990 -110 common/cmd_bootm.c Can't get kernel subimage comp
2991 -111 common/cmd_bootm.c Can't get kernel subimage os
2992 -112 common/cmd_bootm.c Can't get kernel subimage load address
2993 -113 common/cmd_bootm.c Image uncompress/copy overwrite error
2994
2995 120 common/image.c Start initial ramdisk verification
2996 -120 common/image.c Ramdisk FIT image has incorrect format
2997 121 common/image.c Ramdisk FIT image has correct format
2998 122 common/image.c No ramdisk subimage unit name, using configuration
2999 -122 common/image.c Can't get configuration for ramdisk subimage
3000 123 common/image.c Ramdisk unit name specified
3001 -124 common/image.c Can't get ramdisk subimage node offset
3002 125 common/image.c Got ramdisk subimage node offset
3003 -125 common/image.c Ramdisk subimage hash verification failed
3004 126 common/image.c Ramdisk subimage hash verification OK
3005 -126 common/image.c Ramdisk subimage for unsupported architecture
3006 127 common/image.c Architecture check OK
3007 -127 common/image.c Can't get ramdisk subimage data/size
3008 128 common/image.c Got ramdisk subimage data/size
3009 129 common/image.c Can't get ramdisk load address
3010 -129 common/image.c Got ramdisk load address
3011
3012 -130 common/cmd_doc.c Incorrect FIT image format
3013 131 common/cmd_doc.c FIT image format OK
3014
3015 -140 common/cmd_ide.c Incorrect FIT image format
3016 141 common/cmd_ide.c FIT image format OK
3017
3018 -150 common/cmd_nand.c Incorrect FIT image format
3019 151 common/cmd_nand.c FIT image format OK
3020
3021 - legacy image format:
3022 CONFIG_IMAGE_FORMAT_LEGACY
3023 enables the legacy image format support in U-Boot.
3024
3025 Default:
3026 enabled if CONFIG_FIT_SIGNATURE is not defined.
3027
3028 CONFIG_DISABLE_IMAGE_LEGACY
3029 disable the legacy image format
3030
3031 This define is introduced, as the legacy image format is
3032 enabled per default for backward compatibility.
3033
3034 - FIT image support:
3035 CONFIG_FIT_DISABLE_SHA256
3036 Supporting SHA256 hashes has quite an impact on binary size.
3037 For constrained systems sha256 hash support can be disabled
3038 with this option.
3039
3040 TODO(sjg@chromium.org): Adjust this option to be positive,
3041 and move it to Kconfig
3042
3043 - Standalone program support:
3044 CONFIG_STANDALONE_LOAD_ADDR
3045
3046 This option defines a board specific value for the
3047 address where standalone program gets loaded, thus
3048 overwriting the architecture dependent default
3049 settings.
3050
3051 - Frame Buffer Address:
3052 CONFIG_FB_ADDR
3053
3054 Define CONFIG_FB_ADDR if you want to use specific
3055 address for frame buffer. This is typically the case
3056 when using a graphics controller has separate video
3057 memory. U-Boot will then place the frame buffer at
3058 the given address instead of dynamically reserving it
3059 in system RAM by calling lcd_setmem(), which grabs
3060 the memory for the frame buffer depending on the
3061 configured panel size.
3062
3063 Please see board_init_f function.
3064
3065 - Automatic software updates via TFTP server
3066 CONFIG_UPDATE_TFTP
3067 CONFIG_UPDATE_TFTP_CNT_MAX
3068 CONFIG_UPDATE_TFTP_MSEC_MAX
3069
3070 These options enable and control the auto-update feature;
3071 for a more detailed description refer to doc/README.update.
3072
3073 - MTD Support (mtdparts command, UBI support)
3074 CONFIG_MTD_DEVICE
3075
3076 Adds the MTD device infrastructure from the Linux kernel.
3077 Needed for mtdparts command support.
3078
3079 CONFIG_MTD_PARTITIONS
3080
3081 Adds the MTD partitioning infrastructure from the Linux
3082 kernel. Needed for UBI support.
3083
3084 - UBI support
3085 CONFIG_CMD_UBI
3086
3087 Adds commands for interacting with MTD partitions formatted
3088 with the UBI flash translation layer
3089
3090 Requires also defining CONFIG_RBTREE
3091
3092 CONFIG_UBI_SILENCE_MSG
3093
3094 Make the verbose messages from UBI stop printing. This leaves
3095 warnings and errors enabled.
3096
3097
3098 CONFIG_MTD_UBI_WL_THRESHOLD
3099 This parameter defines the maximum difference between the highest
3100 erase counter value and the lowest erase counter value of eraseblocks
3101 of UBI devices. When this threshold is exceeded, UBI starts performing
3102 wear leveling by means of moving data from eraseblock with low erase
3103 counter to eraseblocks with high erase counter.
3104
3105 The default value should be OK for SLC NAND flashes, NOR flashes and
3106 other flashes which have eraseblock life-cycle 100000 or more.
3107 However, in case of MLC NAND flashes which typically have eraseblock
3108 life-cycle less than 10000, the threshold should be lessened (e.g.,
3109 to 128 or 256, although it does not have to be power of 2).
3110
3111 default: 4096
3112
3113 CONFIG_MTD_UBI_BEB_LIMIT
3114 This option specifies the maximum bad physical eraseblocks UBI
3115 expects on the MTD device (per 1024 eraseblocks). If the
3116 underlying flash does not admit of bad eraseblocks (e.g. NOR
3117 flash), this value is ignored.
3118
3119 NAND datasheets often specify the minimum and maximum NVM
3120 (Number of Valid Blocks) for the flashes' endurance lifetime.
3121 The maximum expected bad eraseblocks per 1024 eraseblocks
3122 then can be calculated as "1024 * (1 - MinNVB / MaxNVB)",
3123 which gives 20 for most NANDs (MaxNVB is basically the total
3124 count of eraseblocks on the chip).
3125
3126 To put it differently, if this value is 20, UBI will try to
3127 reserve about 1.9% of physical eraseblocks for bad blocks
3128 handling. And that will be 1.9% of eraseblocks on the entire
3129 NAND chip, not just the MTD partition UBI attaches. This means
3130 that if you have, say, a NAND flash chip admits maximum 40 bad
3131 eraseblocks, and it is split on two MTD partitions of the same
3132 size, UBI will reserve 40 eraseblocks when attaching a
3133 partition.
3134
3135 default: 20
3136
3137 CONFIG_MTD_UBI_FASTMAP
3138 Fastmap is a mechanism which allows attaching an UBI device
3139 in nearly constant time. Instead of scanning the whole MTD device it
3140 only has to locate a checkpoint (called fastmap) on the device.
3141 The on-flash fastmap contains all information needed to attach
3142 the device. Using fastmap makes only sense on large devices where
3143 attaching by scanning takes long. UBI will not automatically install
3144 a fastmap on old images, but you can set the UBI parameter
3145 CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT to 1 if you want so. Please note
3146 that fastmap-enabled images are still usable with UBI implementations
3147 without fastmap support. On typical flash devices the whole fastmap
3148 fits into one PEB. UBI will reserve PEBs to hold two fastmaps.
3149
3150 CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT
3151 Set this parameter to enable fastmap automatically on images
3152 without a fastmap.
3153 default: 0
3154
3155 CONFIG_MTD_UBI_FM_DEBUG
3156 Enable UBI fastmap debug
3157 default: 0
3158
3159 - UBIFS support
3160 CONFIG_CMD_UBIFS
3161
3162 Adds commands for interacting with UBI volumes formatted as
3163 UBIFS. UBIFS is read-only in u-boot.
3164
3165 Requires UBI support as well as CONFIG_LZO
3166
3167 CONFIG_UBIFS_SILENCE_MSG
3168
3169 Make the verbose messages from UBIFS stop printing. This leaves
3170 warnings and errors enabled.
3171
3172 - SPL framework
3173 CONFIG_SPL
3174 Enable building of SPL globally.
3175
3176 CONFIG_SPL_LDSCRIPT
3177 LDSCRIPT for linking the SPL binary.
3178
3179 CONFIG_SPL_MAX_FOOTPRINT
3180 Maximum size in memory allocated to the SPL, BSS included.
3181 When defined, the linker checks that the actual memory
3182 used by SPL from _start to __bss_end does not exceed it.
3183 CONFIG_SPL_MAX_FOOTPRINT and CONFIG_SPL_BSS_MAX_SIZE
3184 must not be both defined at the same time.
3185
3186 CONFIG_SPL_MAX_SIZE
3187 Maximum size of the SPL image (text, data, rodata, and
3188 linker lists sections), BSS excluded.
3189 When defined, the linker checks that the actual size does
3190 not exceed it.
3191
3192 CONFIG_SPL_TEXT_BASE
3193 TEXT_BASE for linking the SPL binary.
3194
3195 CONFIG_SPL_RELOC_TEXT_BASE
3196 Address to relocate to. If unspecified, this is equal to
3197 CONFIG_SPL_TEXT_BASE (i.e. no relocation is done).
3198
3199 CONFIG_SPL_BSS_START_ADDR
3200 Link address for the BSS within the SPL binary.
3201
3202 CONFIG_SPL_BSS_MAX_SIZE
3203 Maximum size in memory allocated to the SPL BSS.
3204 When defined, the linker checks that the actual memory used
3205 by SPL from __bss_start to __bss_end does not exceed it.
3206 CONFIG_SPL_MAX_FOOTPRINT and CONFIG_SPL_BSS_MAX_SIZE
3207 must not be both defined at the same time.
3208
3209 CONFIG_SPL_STACK
3210 Adress of the start of the stack SPL will use
3211
3212 CONFIG_SPL_PANIC_ON_RAW_IMAGE
3213 When defined, SPL will panic() if the image it has
3214 loaded does not have a signature.
3215 Defining this is useful when code which loads images
3216 in SPL cannot guarantee that absolutely all read errors
3217 will be caught.
3218 An example is the LPC32XX MLC NAND driver, which will
3219 consider that a completely unreadable NAND block is bad,
3220 and thus should be skipped silently.
3221
3222 CONFIG_SPL_RELOC_STACK
3223 Adress of the start of the stack SPL will use after
3224 relocation. If unspecified, this is equal to
3225 CONFIG_SPL_STACK.
3226
3227 CONFIG_SYS_SPL_MALLOC_START
3228 Starting address of the malloc pool used in SPL.
3229 When this option is set the full malloc is used in SPL and
3230 it is set up by spl_init() and before that, the simple malloc()
3231 can be used if CONFIG_SYS_MALLOC_F is defined.
3232
3233 CONFIG_SYS_SPL_MALLOC_SIZE
3234 The size of the malloc pool used in SPL.
3235
3236 CONFIG_SPL_FRAMEWORK
3237 Enable the SPL framework under common/. This framework
3238 supports MMC, NAND and YMODEM loading of U-Boot and NAND
3239 NAND loading of the Linux Kernel.
3240
3241 CONFIG_SPL_OS_BOOT
3242 Enable booting directly to an OS from SPL.
3243 See also: doc/README.falcon
3244
3245 CONFIG_SPL_DISPLAY_PRINT
3246 For ARM, enable an optional function to print more information
3247 about the running system.
3248
3249 CONFIG_SPL_INIT_MINIMAL
3250 Arch init code should be built for a very small image
3251
3252 CONFIG_SYS_MMCSD_RAW_MODE_U_BOOT_PARTITION
3253 Partition on the MMC to load U-Boot from when the MMC is being
3254 used in raw mode
3255
3256 CONFIG_SYS_MMCSD_RAW_MODE_KERNEL_SECTOR
3257 Sector to load kernel uImage from when MMC is being
3258 used in raw mode (for Falcon mode)
3259
3260 CONFIG_SYS_MMCSD_RAW_MODE_ARGS_SECTOR,
3261 CONFIG_SYS_MMCSD_RAW_MODE_ARGS_SECTORS
3262 Sector and number of sectors to load kernel argument
3263 parameters from when MMC is being used in raw mode
3264 (for falcon mode)
3265
3266 CONFIG_SYS_MMCSD_FS_BOOT_PARTITION
3267 Partition on the MMC to load U-Boot from when the MMC is being
3268 used in fs mode
3269
3270 CONFIG_SPL_FS_LOAD_PAYLOAD_NAME
3271 Filename to read to load U-Boot when reading from filesystem
3272
3273 CONFIG_SPL_FS_LOAD_KERNEL_NAME
3274 Filename to read to load kernel uImage when reading
3275 from filesystem (for Falcon mode)
3276
3277 CONFIG_SPL_FS_LOAD_ARGS_NAME
3278 Filename to read to load kernel argument parameters
3279 when reading from filesystem (for Falcon mode)
3280
3281 CONFIG_SPL_MPC83XX_WAIT_FOR_NAND
3282 Set this for NAND SPL on PPC mpc83xx targets, so that
3283 start.S waits for the rest of the SPL to load before
3284 continuing (the hardware starts execution after just
3285 loading the first page rather than the full 4K).
3286
3287 CONFIG_SPL_SKIP_RELOCATE
3288 Avoid SPL relocation
3289
3290 CONFIG_SPL_NAND_BASE
3291 Include nand_base.c in the SPL. Requires
3292 CONFIG_SPL_NAND_DRIVERS.
3293
3294 CONFIG_SPL_NAND_DRIVERS
3295 SPL uses normal NAND drivers, not minimal drivers.
3296
3297 CONFIG_SPL_NAND_ECC
3298 Include standard software ECC in the SPL
3299
3300 CONFIG_SPL_NAND_SIMPLE
3301 Support for NAND boot using simple NAND drivers that
3302 expose the cmd_ctrl() interface.
3303
3304 CONFIG_SPL_UBI
3305 Support for a lightweight UBI (fastmap) scanner and
3306 loader
3307
3308 CONFIG_SPL_NAND_RAW_ONLY
3309 Support to boot only raw u-boot.bin images. Use this only
3310 if you need to save space.
3311
3312 CONFIG_SPL_COMMON_INIT_DDR
3313 Set for common ddr init with serial presence detect in
3314 SPL binary.
3315
3316 CONFIG_SYS_NAND_5_ADDR_CYCLE, CONFIG_SYS_NAND_PAGE_COUNT,
3317 CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE,
3318 CONFIG_SYS_NAND_BLOCK_SIZE, CONFIG_SYS_NAND_BAD_BLOCK_POS,
3319 CONFIG_SYS_NAND_ECCPOS, CONFIG_SYS_NAND_ECCSIZE,
3320 CONFIG_SYS_NAND_ECCBYTES
3321 Defines the size and behavior of the NAND that SPL uses
3322 to read U-Boot
3323
3324 CONFIG_SPL_NAND_BOOT
3325 Add support NAND boot
3326
3327 CONFIG_SYS_NAND_U_BOOT_OFFS
3328 Location in NAND to read U-Boot from
3329
3330 CONFIG_SYS_NAND_U_BOOT_DST
3331 Location in memory to load U-Boot to
3332
3333 CONFIG_SYS_NAND_U_BOOT_SIZE
3334 Size of image to load
3335
3336 CONFIG_SYS_NAND_U_BOOT_START
3337 Entry point in loaded image to jump to
3338
3339 CONFIG_SYS_NAND_HW_ECC_OOBFIRST
3340 Define this if you need to first read the OOB and then the
3341 data. This is used, for example, on davinci platforms.
3342
3343 CONFIG_SPL_OMAP3_ID_NAND
3344 Support for an OMAP3-specific set of functions to return the
3345 ID and MFR of the first attached NAND chip, if present.
3346
3347 CONFIG_SPL_RAM_DEVICE
3348 Support for running image already present in ram, in SPL binary
3349
3350 CONFIG_SPL_PAD_TO
3351 Image offset to which the SPL should be padded before appending
3352 the SPL payload. By default, this is defined as
3353 CONFIG_SPL_MAX_SIZE, or 0 if CONFIG_SPL_MAX_SIZE is undefined.
3354 CONFIG_SPL_PAD_TO must be either 0, meaning to append the SPL
3355 payload without any padding, or >= CONFIG_SPL_MAX_SIZE.
3356
3357 CONFIG_SPL_TARGET
3358 Final target image containing SPL and payload. Some SPLs
3359 use an arch-specific makefile fragment instead, for
3360 example if more than one image needs to be produced.
3361
3362 CONFIG_FIT_SPL_PRINT
3363 Printing information about a FIT image adds quite a bit of
3364 code to SPL. So this is normally disabled in SPL. Use this
3365 option to re-enable it. This will affect the output of the
3366 bootm command when booting a FIT image.
3367
3368 - TPL framework
3369 CONFIG_TPL
3370 Enable building of TPL globally.
3371
3372 CONFIG_TPL_PAD_TO
3373 Image offset to which the TPL should be padded before appending
3374 the TPL payload. By default, this is defined as
3375 CONFIG_SPL_MAX_SIZE, or 0 if CONFIG_SPL_MAX_SIZE is undefined.
3376 CONFIG_SPL_PAD_TO must be either 0, meaning to append the SPL
3377 payload without any padding, or >= CONFIG_SPL_MAX_SIZE.
3378
3379 - Interrupt support (PPC):
3380
3381 There are common interrupt_init() and timer_interrupt()
3382 for all PPC archs. interrupt_init() calls interrupt_init_cpu()
3383 for CPU specific initialization. interrupt_init_cpu()
3384 should set decrementer_count to appropriate value. If
3385 CPU resets decrementer automatically after interrupt
3386 (ppc4xx) it should set decrementer_count to zero.
3387 timer_interrupt() calls timer_interrupt_cpu() for CPU
3388 specific handling. If board has watchdog / status_led
3389 / other_activity_monitor it works automatically from
3390 general timer_interrupt().
3391
3392
3393 Board initialization settings:
3394 ------------------------------
3395
3396 During Initialization u-boot calls a number of board specific functions
3397 to allow the preparation of board specific prerequisites, e.g. pin setup
3398 before drivers are initialized. To enable these callbacks the
3399 following configuration macros have to be defined. Currently this is
3400 architecture specific, so please check arch/your_architecture/lib/board.c
3401 typically in board_init_f() and board_init_r().
3402
3403 - CONFIG_BOARD_EARLY_INIT_F: Call board_early_init_f()
3404 - CONFIG_BOARD_EARLY_INIT_R: Call board_early_init_r()
3405 - CONFIG_BOARD_LATE_INIT: Call board_late_init()
3406 - CONFIG_BOARD_POSTCLK_INIT: Call board_postclk_init()
3407
3408 Configuration Settings:
3409 -----------------------
3410
3411 - CONFIG_SYS_SUPPORT_64BIT_DATA: Defined automatically if compiled as 64-bit.
3412 Optionally it can be defined to support 64-bit memory commands.
3413
3414 - CONFIG_SYS_LONGHELP: Defined when you want long help messages included;
3415 undefine this when you're short of memory.
3416
3417 - CONFIG_SYS_HELP_CMD_WIDTH: Defined when you want to override the default
3418 width of the commands listed in the 'help' command output.
3419
3420 - CONFIG_SYS_PROMPT: This is what U-Boot prints on the console to
3421 prompt for user input.
3422
3423 - CONFIG_SYS_CBSIZE: Buffer size for input from the Console
3424
3425 - CONFIG_SYS_PBSIZE: Buffer size for Console output
3426
3427 - CONFIG_SYS_MAXARGS: max. Number of arguments accepted for monitor commands
3428
3429 - CONFIG_SYS_BARGSIZE: Buffer size for Boot Arguments which are passed to
3430 the application (usually a Linux kernel) when it is
3431 booted
3432
3433 - CONFIG_SYS_BAUDRATE_TABLE:
3434 List of legal baudrate settings for this board.
3435
3436 - CONFIG_SYS_MEMTEST_START, CONFIG_SYS_MEMTEST_END:
3437 Begin and End addresses of the area used by the
3438 simple memory test.
3439
3440 - CONFIG_SYS_ALT_MEMTEST:
3441 Enable an alternate, more extensive memory test.
3442
3443 - CONFIG_SYS_MEMTEST_SCRATCH:
3444 Scratch address used by the alternate memory test
3445 You only need to set this if address zero isn't writeable
3446
3447 - CONFIG_SYS_MEM_RESERVE_SECURE
3448 Only implemented for ARMv8 for now.
3449 If defined, the size of CONFIG_SYS_MEM_RESERVE_SECURE memory
3450 is substracted from total RAM and won't be reported to OS.
3451 This memory can be used as secure memory. A variable
3452 gd->arch.secure_ram is used to track the location. In systems
3453 the RAM base is not zero, or RAM is divided into banks,
3454 this variable needs to be recalcuated to get the address.
3455
3456 - CONFIG_SYS_MEM_TOP_HIDE:
3457 If CONFIG_SYS_MEM_TOP_HIDE is defined in the board config header,
3458 this specified memory area will get subtracted from the top
3459 (end) of RAM and won't get "touched" at all by U-Boot. By
3460 fixing up gd->ram_size the Linux kernel should gets passed
3461 the now "corrected" memory size and won't touch it either.
3462 This should work for arch/ppc and arch/powerpc. Only Linux
3463 board ports in arch/powerpc with bootwrapper support that
3464 recalculate the memory size from the SDRAM controller setup
3465 will have to get fixed in Linux additionally.
3466
3467 This option can be used as a workaround for the 440EPx/GRx
3468 CHIP 11 errata where the last 256 bytes in SDRAM shouldn't
3469 be touched.
3470
3471 WARNING: Please make sure that this value is a multiple of
3472 the Linux page size (normally 4k). If this is not the case,
3473 then the end address of the Linux memory will be located at a
3474 non page size aligned address and this could cause major
3475 problems.
3476
3477 - CONFIG_SYS_LOADS_BAUD_CHANGE:
3478 Enable temporary baudrate change while serial download
3479
3480 - CONFIG_SYS_SDRAM_BASE:
3481 Physical start address of SDRAM. _Must_ be 0 here.
3482
3483 - CONFIG_SYS_FLASH_BASE:
3484 Physical start address of Flash memory.
3485
3486 - CONFIG_SYS_MONITOR_BASE:
3487 Physical start address of boot monitor code (set by
3488 make config files to be same as the text base address
3489 (CONFIG_SYS_TEXT_BASE) used when linking) - same as
3490 CONFIG_SYS_FLASH_BASE when booting from flash.
3491
3492 - CONFIG_SYS_MONITOR_LEN:
3493 Size of memory reserved for monitor code, used to
3494 determine _at_compile_time_ (!) if the environment is
3495 embedded within the U-Boot image, or in a separate
3496 flash sector.
3497
3498 - CONFIG_SYS_MALLOC_LEN:
3499 Size of DRAM reserved for malloc() use.
3500
3501 - CONFIG_SYS_MALLOC_F_LEN
3502 Size of the malloc() pool for use before relocation. If
3503 this is defined, then a very simple malloc() implementation
3504 will become available before relocation. The address is just
3505 below the global data, and the stack is moved down to make
3506 space.
3507
3508 This feature allocates regions with increasing addresses
3509 within the region. calloc() is supported, but realloc()
3510 is not available. free() is supported but does nothing.
3511 The memory will be freed (or in fact just forgotten) when
3512 U-Boot relocates itself.
3513
3514 - CONFIG_SYS_MALLOC_SIMPLE
3515 Provides a simple and small malloc() and calloc() for those
3516 boards which do not use the full malloc in SPL (which is
3517 enabled with CONFIG_SYS_SPL_MALLOC_START).
3518
3519 - CONFIG_SYS_NONCACHED_MEMORY:
3520 Size of non-cached memory area. This area of memory will be
3521 typically located right below the malloc() area and mapped
3522 uncached in the MMU. This is useful for drivers that would
3523 otherwise require a lot of explicit cache maintenance. For
3524 some drivers it's also impossible to properly maintain the
3525 cache. For example if the regions that need to be flushed
3526 are not a multiple of the cache-line size, *and* padding
3527 cannot be allocated between the regions to align them (i.e.
3528 if the HW requires a contiguous array of regions, and the
3529 size of each region is not cache-aligned), then a flush of
3530 one region may result in overwriting data that hardware has
3531 written to another region in the same cache-line. This can
3532 happen for example in network drivers where descriptors for
3533 buffers are typically smaller than the CPU cache-line (e.g.
3534 16 bytes vs. 32 or 64 bytes).
3535
3536 Non-cached memory is only supported on 32-bit ARM at present.
3537
3538 - CONFIG_SYS_BOOTM_LEN:
3539 Normally compressed uImages are limited to an
3540 uncompressed size of 8 MBytes. If this is not enough,
3541 you can define CONFIG_SYS_BOOTM_LEN in your board config file
3542 to adjust this setting to your needs.
3543
3544 - CONFIG_SYS_BOOTMAPSZ:
3545 Maximum size of memory mapped by the startup code of
3546 the Linux kernel; all data that must be processed by
3547 the Linux kernel (bd_info, boot arguments, FDT blob if
3548 used) must be put below this limit, unless "bootm_low"
3549 environment variable is defined and non-zero. In such case
3550 all data for the Linux kernel must be between "bootm_low"
3551 and "bootm_low" + CONFIG_SYS_BOOTMAPSZ. The environment
3552 variable "bootm_mapsize" will override the value of
3553 CONFIG_SYS_BOOTMAPSZ. If CONFIG_SYS_BOOTMAPSZ is undefined,
3554 then the value in "bootm_size" will be used instead.
3555
3556 - CONFIG_SYS_BOOT_RAMDISK_HIGH:
3557 Enable initrd_high functionality. If defined then the
3558 initrd_high feature is enabled and the bootm ramdisk subcommand
3559 is enabled.
3560
3561 - CONFIG_SYS_BOOT_GET_CMDLINE:
3562 Enables allocating and saving kernel cmdline in space between
3563 "bootm_low" and "bootm_low" + BOOTMAPSZ.
3564
3565 - CONFIG_SYS_BOOT_GET_KBD:
3566 Enables allocating and saving a kernel copy of the bd_info in
3567 space between "bootm_low" and "bootm_low" + BOOTMAPSZ.
3568
3569 - CONFIG_SYS_MAX_FLASH_BANKS:
3570 Max number of Flash memory banks
3571
3572 - CONFIG_SYS_MAX_FLASH_SECT:
3573 Max number of sectors on a Flash chip
3574
3575 - CONFIG_SYS_FLASH_ERASE_TOUT:
3576 Timeout for Flash erase operations (in ms)
3577
3578 - CONFIG_SYS_FLASH_WRITE_TOUT:
3579 Timeout for Flash write operations (in ms)
3580
3581 - CONFIG_SYS_FLASH_LOCK_TOUT
3582 Timeout for Flash set sector lock bit operation (in ms)
3583
3584 - CONFIG_SYS_FLASH_UNLOCK_TOUT
3585 Timeout for Flash clear lock bits operation (in ms)
3586
3587 - CONFIG_SYS_FLASH_PROTECTION
3588 If defined, hardware flash sectors protection is used
3589 instead of U-Boot software protection.
3590
3591 - CONFIG_SYS_DIRECT_FLASH_TFTP:
3592
3593 Enable TFTP transfers directly to flash memory;
3594 without this option such a download has to be
3595 performed in two steps: (1) download to RAM, and (2)
3596 copy from RAM to flash.
3597
3598 The two-step approach is usually more reliable, since
3599 you can check if the download worked before you erase
3600 the flash, but in some situations (when system RAM is
3601 too limited to allow for a temporary copy of the
3602 downloaded image) this option may be very useful.
3603
3604 - CONFIG_SYS_FLASH_CFI:
3605 Define if the flash driver uses extra elements in the
3606 common flash structure for storing flash geometry.
3607
3608 - CONFIG_FLASH_CFI_DRIVER
3609 This option also enables the building of the cfi_flash driver
3610 in the drivers directory
3611
3612 - CONFIG_FLASH_CFI_MTD
3613 This option enables the building of the cfi_mtd driver
3614 in the drivers directory. The driver exports CFI flash
3615 to the MTD layer.
3616
3617 - CONFIG_SYS_FLASH_USE_BUFFER_WRITE
3618 Use buffered writes to flash.
3619
3620 - CONFIG_FLASH_SPANSION_S29WS_N
3621 s29ws-n MirrorBit flash has non-standard addresses for buffered
3622 write commands.
3623
3624 - CONFIG_SYS_FLASH_QUIET_TEST
3625 If this option is defined, the common CFI flash doesn't
3626 print it's warning upon not recognized FLASH banks. This
3627 is useful, if some of the configured banks are only
3628 optionally available.
3629
3630 - CONFIG_FLASH_SHOW_PROGRESS
3631 If defined (must be an integer), print out countdown
3632 digits and dots. Recommended value: 45 (9..1) for 80
3633 column displays, 15 (3..1) for 40 column displays.
3634
3635 - CONFIG_FLASH_VERIFY
3636 If defined, the content of the flash (destination) is compared
3637 against the source after the write operation. An error message
3638 will be printed when the contents are not identical.
3639 Please note that this option is useless in nearly all cases,
3640 since such flash programming errors usually are detected earlier
3641 while unprotecting/erasing/programming. Please only enable
3642 this option if you really know what you are doing.
3643
3644 - CONFIG_SYS_RX_ETH_BUFFER:
3645 Defines the number of Ethernet receive buffers. On some
3646 Ethernet controllers it is recommended to set this value
3647 to 8 or even higher (EEPRO100 or 405 EMAC), since all
3648 buffers can be full shortly after enabling the interface
3649 on high Ethernet traffic.
3650 Defaults to 4 if not defined.
3651
3652 - CONFIG_ENV_MAX_ENTRIES
3653
3654 Maximum number of entries in the hash table that is used
3655 internally to store the environment settings. The default
3656 setting is supposed to be generous and should work in most
3657 cases. This setting can be used to tune behaviour; see
3658 lib/hashtable.c for details.
3659
3660 - CONFIG_ENV_FLAGS_LIST_DEFAULT
3661 - CONFIG_ENV_FLAGS_LIST_STATIC
3662 Enable validation of the values given to environment variables when
3663 calling env set. Variables can be restricted to only decimal,
3664 hexadecimal, or boolean. If CONFIG_CMD_NET is also defined,
3665 the variables can also be restricted to IP address or MAC address.
3666
3667 The format of the list is:
3668 type_attribute = [s|d|x|b|i|m]
3669 access_attribute = [a|r|o|c]
3670 attributes = type_attribute[access_attribute]
3671 entry = variable_name[:attributes]
3672 list = entry[,list]
3673
3674 The type attributes are:
3675 s - String (default)
3676 d - Decimal
3677 x - Hexadecimal
3678 b - Boolean ([1yYtT|0nNfF])
3679 i - IP address
3680 m - MAC address
3681
3682 The access attributes are:
3683 a - Any (default)
3684 r - Read-only
3685 o - Write-once
3686 c - Change-default
3687
3688 - CONFIG_ENV_FLAGS_LIST_DEFAULT
3689 Define this to a list (string) to define the ".flags"
3690 environment variable in the default or embedded environment.
3691
3692 - CONFIG_ENV_FLAGS_LIST_STATIC
3693 Define this to a list (string) to define validation that
3694 should be done if an entry is not found in the ".flags"
3695 environment variable. To override a setting in the static
3696 list, simply add an entry for the same variable name to the
3697 ".flags" variable.
3698
3699 If CONFIG_REGEX is defined, the variable_name above is evaluated as a
3700 regular expression. This allows multiple variables to define the same
3701 flags without explicitly listing them for each variable.
3702
3703 - CONFIG_ENV_ACCESS_IGNORE_FORCE
3704 If defined, don't allow the -f switch to env set override variable
3705 access flags.
3706
3707 - CONFIG_OMAP_PLATFORM_RESET_TIME_MAX_USEC (OMAP only)
3708 This is set by OMAP boards for the max time that reset should
3709 be asserted. See doc/README.omap-reset-time for details on how
3710 the value can be calculated on a given board.
3711
3712 - CONFIG_USE_STDINT
3713 If stdint.h is available with your toolchain you can define this
3714 option to enable it. You can provide option 'USE_STDINT=1' when
3715 building U-Boot to enable this.
3716
3717 The following definitions that deal with the placement and management
3718 of environment data (variable area); in general, we support the
3719 following configurations:
3720
3721 - CONFIG_BUILD_ENVCRC:
3722
3723 Builds up envcrc with the target environment so that external utils
3724 may easily extract it and embed it in final U-Boot images.
3725
3726 - CONFIG_ENV_IS_IN_FLASH:
3727
3728 Define this if the environment is in flash memory.
3729
3730 a) The environment occupies one whole flash sector, which is
3731 "embedded" in the text segment with the U-Boot code. This
3732 happens usually with "bottom boot sector" or "top boot
3733 sector" type flash chips, which have several smaller
3734 sectors at the start or the end. For instance, such a
3735 layout can have sector sizes of 8, 2x4, 16, Nx32 kB. In
3736 such a case you would place the environment in one of the
3737 4 kB sectors - with U-Boot code before and after it. With
3738 "top boot sector" type flash chips, you would put the
3739 environment in one of the last sectors, leaving a gap
3740 between U-Boot and the environment.
3741
3742 - CONFIG_ENV_OFFSET:
3743
3744 Offset of environment data (variable area) to the
3745 beginning of flash memory; for instance, with bottom boot
3746 type flash chips the second sector can be used: the offset
3747 for this sector is given here.
3748
3749 CONFIG_ENV_OFFSET is used relative to CONFIG_SYS_FLASH_BASE.
3750
3751 - CONFIG_ENV_ADDR:
3752
3753 This is just another way to specify the start address of
3754 the flash sector containing the environment (instead of
3755 CONFIG_ENV_OFFSET).
3756
3757 - CONFIG_ENV_SECT_SIZE:
3758
3759 Size of the sector containing the environment.
3760
3761
3762 b) Sometimes flash chips have few, equal sized, BIG sectors.
3763 In such a case you don't want to spend a whole sector for
3764 the environment.
3765
3766 - CONFIG_ENV_SIZE:
3767
3768 If you use this in combination with CONFIG_ENV_IS_IN_FLASH
3769 and CONFIG_ENV_SECT_SIZE, you can specify to use only a part
3770 of this flash sector for the environment. This saves
3771 memory for the RAM copy of the environment.
3772
3773 It may also save flash memory if you decide to use this
3774 when your environment is "embedded" within U-Boot code,
3775 since then the remainder of the flash sector could be used
3776 for U-Boot code. It should be pointed out that this is
3777 STRONGLY DISCOURAGED from a robustness point of view:
3778 updating the environment in flash makes it always
3779 necessary to erase the WHOLE sector. If something goes
3780 wrong before the contents has been restored from a copy in
3781 RAM, your target system will be dead.
3782
3783 - CONFIG_ENV_ADDR_REDUND
3784 CONFIG_ENV_SIZE_REDUND
3785
3786 These settings describe a second storage area used to hold
3787 a redundant copy of the environment data, so that there is
3788 a valid backup copy in case there is a power failure during
3789 a "saveenv" operation.
3790
3791 BE CAREFUL! Any changes to the flash layout, and some changes to the
3792 source code will make it necessary to adapt <board>/u-boot.lds*
3793 accordingly!
3794
3795
3796 - CONFIG_ENV_IS_IN_NVRAM:
3797
3798 Define this if you have some non-volatile memory device
3799 (NVRAM, battery buffered SRAM) which you want to use for the
3800 environment.
3801
3802 - CONFIG_ENV_ADDR:
3803 - CONFIG_ENV_SIZE:
3804
3805 These two #defines are used to determine the memory area you
3806 want to use for environment. It is assumed that this memory
3807 can just be read and written to, without any special
3808 provision.
3809
3810 BE CAREFUL! The first access to the environment happens quite early
3811 in U-Boot initialization (when we try to get the setting of for the
3812 console baudrate). You *MUST* have mapped your NVRAM area then, or
3813 U-Boot will hang.
3814
3815 Please note that even with NVRAM we still use a copy of the
3816 environment in RAM: we could work on NVRAM directly, but we want to
3817 keep settings there always unmodified except somebody uses "saveenv"
3818 to save the current settings.
3819
3820
3821 - CONFIG_ENV_IS_IN_EEPROM:
3822
3823 Use this if you have an EEPROM or similar serial access
3824 device and a driver for it.
3825
3826 - CONFIG_ENV_OFFSET:
3827 - CONFIG_ENV_SIZE:
3828
3829 These two #defines specify the offset and size of the
3830 environment area within the total memory of your EEPROM.
3831
3832 - CONFIG_SYS_I2C_EEPROM_ADDR:
3833 If defined, specified the chip address of the EEPROM device.
3834 The default address is zero.
3835
3836 - CONFIG_SYS_I2C_EEPROM_BUS:
3837 If defined, specified the i2c bus of the EEPROM device.
3838
3839 - CONFIG_SYS_EEPROM_PAGE_WRITE_BITS:
3840 If defined, the number of bits used to address bytes in a
3841 single page in the EEPROM device. A 64 byte page, for example
3842 would require six bits.
3843
3844 - CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS:
3845 If defined, the number of milliseconds to delay between
3846 page writes. The default is zero milliseconds.
3847
3848 - CONFIG_SYS_I2C_EEPROM_ADDR_LEN:
3849 The length in bytes of the EEPROM memory array address. Note
3850 that this is NOT the chip address length!
3851
3852 - CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW:
3853 EEPROM chips that implement "address overflow" are ones
3854 like Catalyst 24WC04/08/16 which has 9/10/11 bits of
3855 address and the extra bits end up in the "chip address" bit
3856 slots. This makes a 24WC08 (1Kbyte) chip look like four 256
3857 byte chips.
3858
3859 Note that we consider the length of the address field to
3860 still be one byte because the extra address bits are hidden
3861 in the chip address.
3862
3863 - CONFIG_SYS_EEPROM_SIZE:
3864 The size in bytes of the EEPROM device.
3865
3866 - CONFIG_ENV_EEPROM_IS_ON_I2C
3867 define this, if you have I2C and SPI activated, and your
3868 EEPROM, which holds the environment, is on the I2C bus.
3869
3870 - CONFIG_I2C_ENV_EEPROM_BUS
3871 if you have an Environment on an EEPROM reached over
3872 I2C muxes, you can define here, how to reach this
3873 EEPROM. For example:
3874
3875 #define CONFIG_I2C_ENV_EEPROM_BUS 1
3876
3877 EEPROM which holds the environment, is reached over
3878 a pca9547 i2c mux with address 0x70, channel 3.
3879
3880 - CONFIG_ENV_IS_IN_DATAFLASH:
3881
3882 Define this if you have a DataFlash memory device which you
3883 want to use for the environment.
3884
3885 - CONFIG_ENV_OFFSET:
3886 - CONFIG_ENV_ADDR:
3887 - CONFIG_ENV_SIZE:
3888
3889 These three #defines specify the offset and size of the
3890 environment area within the total memory of your DataFlash placed
3891 at the specified address.
3892
3893 - CONFIG_ENV_IS_IN_SPI_FLASH:
3894
3895 Define this if you have a SPI Flash memory device which you
3896 want to use for the environment.
3897
3898 - CONFIG_ENV_OFFSET:
3899 - CONFIG_ENV_SIZE:
3900
3901 These two #defines specify the offset and size of the
3902 environment area within the SPI Flash. CONFIG_ENV_OFFSET must be
3903 aligned to an erase sector boundary.
3904
3905 - CONFIG_ENV_SECT_SIZE:
3906
3907 Define the SPI flash's sector size.
3908
3909 - CONFIG_ENV_OFFSET_REDUND (optional):
3910
3911 This setting describes a second storage area of CONFIG_ENV_SIZE
3912 size used to hold a redundant copy of the environment data, so
3913 that there is a valid backup copy in case there is a power failure
3914 during a "saveenv" operation. CONFIG_ENV_OFFSET_REDUND must be
3915 aligned to an erase sector boundary.
3916
3917 - CONFIG_ENV_SPI_BUS (optional):
3918 - CONFIG_ENV_SPI_CS (optional):
3919
3920 Define the SPI bus and chip select. If not defined they will be 0.
3921
3922 - CONFIG_ENV_SPI_MAX_HZ (optional):
3923
3924 Define the SPI max work clock. If not defined then use 1MHz.
3925
3926 - CONFIG_ENV_SPI_MODE (optional):
3927
3928 Define the SPI work mode. If not defined then use SPI_MODE_3.
3929
3930 - CONFIG_ENV_IS_IN_REMOTE:
3931
3932 Define this if you have a remote memory space which you
3933 want to use for the local device's environment.
3934
3935 - CONFIG_ENV_ADDR:
3936 - CONFIG_ENV_SIZE:
3937
3938 These two #defines specify the address and size of the
3939 environment area within the remote memory space. The
3940 local device can get the environment from remote memory
3941 space by SRIO or PCIE links.
3942
3943 BE CAREFUL! For some special cases, the local device can not use
3944 "saveenv" command. For example, the local device will get the
3945 environment stored in a remote NOR flash by SRIO or PCIE link,
3946 but it can not erase, write this NOR flash by SRIO or PCIE interface.
3947
3948 - CONFIG_ENV_IS_IN_NAND:
3949
3950 Define this if you have a NAND device which you want to use
3951 for the environment.
3952
3953 - CONFIG_ENV_OFFSET:
3954 - CONFIG_ENV_SIZE:
3955
3956 These two #defines specify the offset and size of the environment
3957 area within the first NAND device. CONFIG_ENV_OFFSET must be
3958 aligned to an erase block boundary.
3959
3960 - CONFIG_ENV_OFFSET_REDUND (optional):
3961
3962 This setting describes a second storage area of CONFIG_ENV_SIZE
3963 size used to hold a redundant copy of the environment data, so
3964 that there is a valid backup copy in case there is a power failure
3965 during a "saveenv" operation. CONFIG_ENV_OFFSET_REDUND must be
3966 aligned to an erase block boundary.
3967
3968 - CONFIG_ENV_RANGE (optional):
3969
3970 Specifies the length of the region in which the environment
3971 can be written. This should be a multiple of the NAND device's
3972 block size. Specifying a range with more erase blocks than
3973 are needed to hold CONFIG_ENV_SIZE allows bad blocks within
3974 the range to be avoided.
3975
3976 - CONFIG_ENV_OFFSET_OOB (optional):
3977
3978 Enables support for dynamically retrieving the offset of the
3979 environment from block zero's out-of-band data. The
3980 "nand env.oob" command can be used to record this offset.
3981 Currently, CONFIG_ENV_OFFSET_REDUND is not supported when
3982 using CONFIG_ENV_OFFSET_OOB.
3983
3984 - CONFIG_NAND_ENV_DST
3985
3986 Defines address in RAM to which the nand_spl code should copy the
3987 environment. If redundant environment is used, it will be copied to
3988 CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE.
3989
3990 - CONFIG_ENV_IS_IN_UBI:
3991
3992 Define this if you have an UBI volume that you want to use for the
3993 environment. This has the benefit of wear-leveling the environment
3994 accesses, which is important on NAND.
3995
3996 - CONFIG_ENV_UBI_PART:
3997
3998 Define this to a string that is the mtd partition containing the UBI.
3999
4000 - CONFIG_ENV_UBI_VOLUME:
4001
4002 Define this to the name of the volume that you want to store the
4003 environment in.
4004
4005 - CONFIG_ENV_UBI_VOLUME_REDUND:
4006
4007 Define this to the name of another volume to store a second copy of
4008 the environment in. This will enable redundant environments in UBI.
4009 It is assumed that both volumes are in the same MTD partition.
4010
4011 - CONFIG_UBI_SILENCE_MSG
4012 - CONFIG_UBIFS_SILENCE_MSG
4013
4014 You will probably want to define these to avoid a really noisy system
4015 when storing the env in UBI.
4016
4017 - CONFIG_ENV_IS_IN_FAT:
4018 Define this if you want to use the FAT file system for the environment.
4019
4020 - FAT_ENV_INTERFACE:
4021
4022 Define this to a string that is the name of the block device.
4023
4024 - FAT_ENV_DEVICE_AND_PART:
4025
4026 Define this to a string to specify the partition of the device. It can
4027 be as following:
4028
4029 "D:P", "D:0", "D", "D:" or "D:auto" (D, P are integers. And P >= 1)
4030 - "D:P": device D partition P. Error occurs if device D has no
4031 partition table.
4032 - "D:0": device D.
4033 - "D" or "D:": device D partition 1 if device D has partition
4034 table, or the whole device D if has no partition
4035 table.
4036 - "D:auto": first partition in device D with bootable flag set.
4037 If none, first valid partition in device D. If no
4038 partition table then means device D.
4039
4040 - FAT_ENV_FILE:
4041
4042 It's a string of the FAT file name. This file use to store the
4043 environment.
4044
4045 - CONFIG_FAT_WRITE:
4046 This should be defined. Otherwise it cannot save the environment file.
4047
4048 - CONFIG_ENV_IS_IN_MMC:
4049
4050 Define this if you have an MMC device which you want to use for the
4051 environment.
4052
4053 - CONFIG_SYS_MMC_ENV_DEV:
4054
4055 Specifies which MMC device the environment is stored in.
4056
4057 - CONFIG_SYS_MMC_ENV_PART (optional):
4058
4059 Specifies which MMC partition the environment is stored in. If not
4060 set, defaults to partition 0, the user area. Common values might be
4061 1 (first MMC boot partition), 2 (second MMC boot partition).
4062
4063 - CONFIG_ENV_OFFSET:
4064 - CONFIG_ENV_SIZE:
4065
4066 These two #defines specify the offset and size of the environment
4067 area within the specified MMC device.
4068
4069 If offset is positive (the usual case), it is treated as relative to
4070 the start of the MMC partition. If offset is negative, it is treated
4071 as relative to the end of the MMC partition. This can be useful if
4072 your board may be fitted with different MMC devices, which have
4073 different sizes for the MMC partitions, and you always want the
4074 environment placed at the very end of the partition, to leave the
4075 maximum possible space before it, to store other data.
4076
4077 These two values are in units of bytes, but must be aligned to an
4078 MMC sector boundary.
4079
4080 - CONFIG_ENV_OFFSET_REDUND (optional):
4081
4082 Specifies a second storage area, of CONFIG_ENV_SIZE size, used to
4083 hold a redundant copy of the environment data. This provides a
4084 valid backup copy in case the other copy is corrupted, e.g. due
4085 to a power failure during a "saveenv" operation.
4086
4087 This value may also be positive or negative; this is handled in the
4088 same way as CONFIG_ENV_OFFSET.
4089
4090 This value is also in units of bytes, but must also be aligned to
4091 an MMC sector boundary.
4092
4093 - CONFIG_ENV_SIZE_REDUND (optional):
4094
4095 This value need not be set, even when CONFIG_ENV_OFFSET_REDUND is
4096 set. If this value is set, it must be set to the same value as
4097 CONFIG_ENV_SIZE.
4098
4099 - CONFIG_SYS_SPI_INIT_OFFSET
4100
4101 Defines offset to the initial SPI buffer area in DPRAM. The
4102 area is used at an early stage (ROM part) if the environment
4103 is configured to reside in the SPI EEPROM: We need a 520 byte
4104 scratch DPRAM area. It is used between the two initialization
4105 calls (spi_init_f() and spi_init_r()). A value of 0xB00 seems
4106 to be a good choice since it makes it far enough from the
4107 start of the data area as well as from the stack pointer.
4108
4109 Please note that the environment is read-only until the monitor
4110 has been relocated to RAM and a RAM copy of the environment has been
4111 created; also, when using EEPROM you will have to use getenv_f()
4112 until then to read environment variables.
4113
4114 The environment is protected by a CRC32 checksum. Before the monitor
4115 is relocated into RAM, as a result of a bad CRC you will be working
4116 with the compiled-in default environment - *silently*!!! [This is
4117 necessary, because the first environment variable we need is the
4118 "baudrate" setting for the console - if we have a bad CRC, we don't
4119 have any device yet where we could complain.]
4120
4121 Note: once the monitor has been relocated, then it will complain if
4122 the default environment is used; a new CRC is computed as soon as you
4123 use the "saveenv" command to store a valid environment.
4124
4125 - CONFIG_SYS_FAULT_ECHO_LINK_DOWN:
4126 Echo the inverted Ethernet link state to the fault LED.
4127
4128 Note: If this option is active, then CONFIG_SYS_FAULT_MII_ADDR
4129 also needs to be defined.
4130
4131 - CONFIG_SYS_FAULT_MII_ADDR:
4132 MII address of the PHY to check for the Ethernet link state.
4133
4134 - CONFIG_NS16550_MIN_FUNCTIONS:
4135 Define this if you desire to only have use of the NS16550_init
4136 and NS16550_putc functions for the serial driver located at
4137 drivers/serial/ns16550.c. This option is useful for saving
4138 space for already greatly restricted images, including but not
4139 limited to NAND_SPL configurations.
4140
4141 - CONFIG_DISPLAY_BOARDINFO
4142 Display information about the board that U-Boot is running on
4143 when U-Boot starts up. The board function checkboard() is called
4144 to do this.
4145
4146 - CONFIG_DISPLAY_BOARDINFO_LATE
4147 Similar to the previous option, but display this information
4148 later, once stdio is running and output goes to the LCD, if
4149 present.
4150
4151 - CONFIG_BOARD_SIZE_LIMIT:
4152 Maximum size of the U-Boot image. When defined, the
4153 build system checks that the actual size does not
4154 exceed it.
4155
4156 Low Level (hardware related) configuration options:
4157 ---------------------------------------------------
4158
4159 - CONFIG_SYS_CACHELINE_SIZE:
4160 Cache Line Size of the CPU.
4161
4162 - CONFIG_SYS_DEFAULT_IMMR:
4163 Default address of the IMMR after system reset.
4164
4165 Needed on some 8260 systems (MPC8260ADS, PQ2FADS-ZU,
4166 and RPXsuper) to be able to adjust the position of
4167 the IMMR register after a reset.
4168
4169 - CONFIG_SYS_CCSRBAR_DEFAULT:
4170 Default (power-on reset) physical address of CCSR on Freescale
4171 PowerPC SOCs.
4172
4173 - CONFIG_SYS_CCSRBAR:
4174 Virtual address of CCSR. On a 32-bit build, this is typically
4175 the same value as CONFIG_SYS_CCSRBAR_DEFAULT.
4176
4177 CONFIG_SYS_DEFAULT_IMMR must also be set to this value,
4178 for cross-platform code that uses that macro instead.
4179
4180 - CONFIG_SYS_CCSRBAR_PHYS:
4181 Physical address of CCSR. CCSR can be relocated to a new
4182 physical address, if desired. In this case, this macro should
4183 be set to that address. Otherwise, it should be set to the
4184 same value as CONFIG_SYS_CCSRBAR_DEFAULT. For example, CCSR
4185 is typically relocated on 36-bit builds. It is recommended
4186 that this macro be defined via the _HIGH and _LOW macros:
4187
4188 #define CONFIG_SYS_CCSRBAR_PHYS ((CONFIG_SYS_CCSRBAR_PHYS_HIGH
4189 * 1ull) << 32 | CONFIG_SYS_CCSRBAR_PHYS_LOW)
4190
4191 - CONFIG_SYS_CCSRBAR_PHYS_HIGH:
4192 Bits 33-36 of CONFIG_SYS_CCSRBAR_PHYS. This value is typically
4193 either 0 (32-bit build) or 0xF (36-bit build). This macro is
4194 used in assembly code, so it must not contain typecasts or
4195 integer size suffixes (e.g. "ULL").
4196
4197 - CONFIG_SYS_CCSRBAR_PHYS_LOW:
4198 Lower 32-bits of CONFIG_SYS_CCSRBAR_PHYS. This macro is
4199 used in assembly code, so it must not contain typecasts or
4200 integer size suffixes (e.g. "ULL").
4201
4202 - CONFIG_SYS_CCSR_DO_NOT_RELOCATE:
4203 If this macro is defined, then CONFIG_SYS_CCSRBAR_PHYS will be
4204 forced to a value that ensures that CCSR is not relocated.
4205
4206 - Floppy Disk Support:
4207 CONFIG_SYS_FDC_DRIVE_NUMBER
4208
4209 the default drive number (default value 0)
4210
4211 CONFIG_SYS_ISA_IO_STRIDE
4212
4213 defines the spacing between FDC chipset registers
4214 (default value 1)
4215
4216 CONFIG_SYS_ISA_IO_OFFSET
4217
4218 defines the offset of register from address. It
4219 depends on which part of the data bus is connected to
4220 the FDC chipset. (default value 0)
4221
4222 If CONFIG_SYS_ISA_IO_STRIDE CONFIG_SYS_ISA_IO_OFFSET and
4223 CONFIG_SYS_FDC_DRIVE_NUMBER are undefined, they take their
4224 default value.
4225
4226 if CONFIG_SYS_FDC_HW_INIT is defined, then the function
4227 fdc_hw_init() is called at the beginning of the FDC
4228 setup. fdc_hw_init() must be provided by the board
4229 source code. It is used to make hardware-dependent
4230 initializations.
4231
4232 - CONFIG_IDE_AHB:
4233 Most IDE controllers were designed to be connected with PCI
4234 interface. Only few of them were designed for AHB interface.
4235 When software is doing ATA command and data transfer to
4236 IDE devices through IDE-AHB controller, some additional
4237 registers accessing to these kind of IDE-AHB controller
4238 is required.
4239
4240 - CONFIG_SYS_IMMR: Physical address of the Internal Memory.
4241 DO NOT CHANGE unless you know exactly what you're
4242 doing! (11-4) [MPC8xx/82xx systems only]
4243
4244 - CONFIG_SYS_INIT_RAM_ADDR:
4245
4246 Start address of memory area that can be used for
4247 initial data and stack; please note that this must be
4248 writable memory that is working WITHOUT special
4249 initialization, i. e. you CANNOT use normal RAM which
4250 will become available only after programming the
4251 memory controller and running certain initialization
4252 sequences.
4253
4254 U-Boot uses the following memory types:
4255 - MPC8xx and MPC8260: IMMR (internal memory of the CPU)
4256 - MPC824X: data cache
4257 - PPC4xx: data cache
4258
4259 - CONFIG_SYS_GBL_DATA_OFFSET:
4260
4261 Offset of the initial data structure in the memory
4262 area defined by CONFIG_SYS_INIT_RAM_ADDR. Usually
4263 CONFIG_SYS_GBL_DATA_OFFSET is chosen such that the initial
4264 data is located at the end of the available space
4265 (sometimes written as (CONFIG_SYS_INIT_RAM_SIZE -
4266 GENERATED_GBL_DATA_SIZE), and the initial stack is just
4267 below that area (growing from (CONFIG_SYS_INIT_RAM_ADDR +
4268 CONFIG_SYS_GBL_DATA_OFFSET) downward.
4269
4270 Note:
4271 On the MPC824X (or other systems that use the data
4272 cache for initial memory) the address chosen for
4273 CONFIG_SYS_INIT_RAM_ADDR is basically arbitrary - it must
4274 point to an otherwise UNUSED address space between
4275 the top of RAM and the start of the PCI space.
4276
4277 - CONFIG_SYS_SIUMCR: SIU Module Configuration (11-6)
4278
4279 - CONFIG_SYS_SYPCR: System Protection Control (11-9)
4280
4281 - CONFIG_SYS_TBSCR: Time Base Status and Control (11-26)
4282
4283 - CONFIG_SYS_PISCR: Periodic Interrupt Status and Control (11-31)
4284
4285 - CONFIG_SYS_PLPRCR: PLL, Low-Power, and Reset Control Register (15-30)
4286
4287 - CONFIG_SYS_SCCR: System Clock and reset Control Register (15-27)
4288
4289 - CONFIG_SYS_OR_TIMING_SDRAM:
4290 SDRAM timing
4291
4292 - CONFIG_SYS_MAMR_PTA:
4293 periodic timer for refresh
4294
4295 - CONFIG_SYS_DER: Debug Event Register (37-47)
4296
4297 - FLASH_BASE0_PRELIM, FLASH_BASE1_PRELIM, CONFIG_SYS_REMAP_OR_AM,
4298 CONFIG_SYS_PRELIM_OR_AM, CONFIG_SYS_OR_TIMING_FLASH, CONFIG_SYS_OR0_REMAP,
4299 CONFIG_SYS_OR0_PRELIM, CONFIG_SYS_BR0_PRELIM, CONFIG_SYS_OR1_REMAP, CONFIG_SYS_OR1_PRELIM,
4300 CONFIG_SYS_BR1_PRELIM:
4301 Memory Controller Definitions: BR0/1 and OR0/1 (FLASH)
4302
4303 - SDRAM_BASE2_PRELIM, SDRAM_BASE3_PRELIM, SDRAM_MAX_SIZE,
4304 CONFIG_SYS_OR_TIMING_SDRAM, CONFIG_SYS_OR2_PRELIM, CONFIG_SYS_BR2_PRELIM,
4305 CONFIG_SYS_OR3_PRELIM, CONFIG_SYS_BR3_PRELIM:
4306 Memory Controller Definitions: BR2/3 and OR2/3 (SDRAM)
4307
4308 - CONFIG_SYS_MAMR_PTA, CONFIG_SYS_MPTPR_2BK_4K, CONFIG_SYS_MPTPR_1BK_4K, CONFIG_SYS_MPTPR_2BK_8K,
4309 CONFIG_SYS_MPTPR_1BK_8K, CONFIG_SYS_MAMR_8COL, CONFIG_SYS_MAMR_9COL:
4310 Machine Mode Register and Memory Periodic Timer
4311 Prescaler definitions (SDRAM timing)
4312
4313 - CONFIG_SYS_I2C_UCODE_PATCH, CONFIG_SYS_I2C_DPMEM_OFFSET [0x1FC0]:
4314 enable I2C microcode relocation patch (MPC8xx);
4315 define relocation offset in DPRAM [DSP2]
4316
4317 - CONFIG_SYS_SMC_UCODE_PATCH, CONFIG_SYS_SMC_DPMEM_OFFSET [0x1FC0]:
4318 enable SMC microcode relocation patch (MPC8xx);
4319 define relocation offset in DPRAM [SMC1]
4320
4321 - CONFIG_SYS_SPI_UCODE_PATCH, CONFIG_SYS_SPI_DPMEM_OFFSET [0x1FC0]:
4322 enable SPI microcode relocation patch (MPC8xx);
4323 define relocation offset in DPRAM [SCC4]
4324
4325 - CONFIG_SYS_CPM_POST_WORD_ADDR: (MPC8xx, MPC8260 only)
4326 Offset of the bootmode word in DPRAM used by post
4327 (Power On Self Tests). This definition overrides
4328 #define'd default value in commproc.h resp.
4329 cpm_8260.h.
4330
4331 - CONFIG_SYS_PCI_SLV_MEM_LOCAL, CONFIG_SYS_PCI_SLV_MEM_BUS, CONFIG_SYS_PICMR0_MASK_ATTRIB,
4332 CONFIG_SYS_PCI_MSTR0_LOCAL, CONFIG_SYS_PCIMSK0_MASK, CONFIG_SYS_PCI_MSTR1_LOCAL,
4333 CONFIG_SYS_PCIMSK1_MASK, CONFIG_SYS_PCI_MSTR_MEM_LOCAL, CONFIG_SYS_PCI_MSTR_MEM_BUS,
4334 CONFIG_SYS_CPU_PCI_MEM_START, CONFIG_SYS_PCI_MSTR_MEM_SIZE, CONFIG_SYS_POCMR0_MASK_ATTRIB,
4335 CONFIG_SYS_PCI_MSTR_MEMIO_LOCAL, CONFIG_SYS_PCI_MSTR_MEMIO_BUS, CPU_PCI_MEMIO_START,
4336 CONFIG_SYS_PCI_MSTR_MEMIO_SIZE, CONFIG_SYS_POCMR1_MASK_ATTRIB, CONFIG_SYS_PCI_MSTR_IO_LOCAL,
4337 CONFIG_SYS_PCI_MSTR_IO_BUS, CONFIG_SYS_CPU_PCI_IO_START, CONFIG_SYS_PCI_MSTR_IO_SIZE,
4338 CONFIG_SYS_POCMR2_MASK_ATTRIB: (MPC826x only)
4339 Overrides the default PCI memory map in arch/powerpc/cpu/mpc8260/pci.c if set.
4340
4341 - CONFIG_PCI_DISABLE_PCIE:
4342 Disable PCI-Express on systems where it is supported but not
4343 required.
4344
4345 - CONFIG_PCI_ENUM_ONLY
4346 Only scan through and get the devices on the buses.
4347 Don't do any setup work, presumably because someone or
4348 something has already done it, and we don't need to do it
4349 a second time. Useful for platforms that are pre-booted
4350 by coreboot or similar.
4351
4352 - CONFIG_PCI_INDIRECT_BRIDGE:
4353 Enable support for indirect PCI bridges.
4354
4355 - CONFIG_SYS_SRIO:
4356 Chip has SRIO or not
4357
4358 - CONFIG_SRIO1:
4359 Board has SRIO 1 port available
4360
4361 - CONFIG_SRIO2:
4362 Board has SRIO 2 port available
4363
4364 - CONFIG_SRIO_PCIE_BOOT_MASTER
4365 Board can support master function for Boot from SRIO and PCIE
4366
4367 - CONFIG_SYS_SRIOn_MEM_VIRT:
4368 Virtual Address of SRIO port 'n' memory region
4369
4370 - CONFIG_SYS_SRIOn_MEM_PHYS:
4371 Physical Address of SRIO port 'n' memory region
4372
4373 - CONFIG_SYS_SRIOn_MEM_SIZE:
4374 Size of SRIO port 'n' memory region
4375
4376 - CONFIG_SYS_NAND_BUSWIDTH_16BIT
4377 Defined to tell the NAND controller that the NAND chip is using
4378 a 16 bit bus.
4379 Not all NAND drivers use this symbol.
4380 Example of drivers that use it:
4381 - drivers/mtd/nand/ndfc.c
4382 - drivers/mtd/nand/mxc_nand.c
4383
4384 - CONFIG_SYS_NDFC_EBC0_CFG
4385 Sets the EBC0_CFG register for the NDFC. If not defined
4386 a default value will be used.
4387
4388 - CONFIG_SPD_EEPROM
4389 Get DDR timing information from an I2C EEPROM. Common
4390 with pluggable memory modules such as SODIMMs
4391
4392 SPD_EEPROM_ADDRESS
4393 I2C address of the SPD EEPROM
4394
4395 - CONFIG_SYS_SPD_BUS_NUM
4396 If SPD EEPROM is on an I2C bus other than the first
4397 one, specify here. Note that the value must resolve
4398 to something your driver can deal with.
4399
4400 - CONFIG_SYS_DDR_RAW_TIMING
4401 Get DDR timing information from other than SPD. Common with
4402 soldered DDR chips onboard without SPD. DDR raw timing
4403 parameters are extracted from datasheet and hard-coded into
4404 header files or board specific files.
4405
4406 - CONFIG_FSL_DDR_INTERACTIVE
4407 Enable interactive DDR debugging. See doc/README.fsl-ddr.
4408
4409 - CONFIG_FSL_DDR_SYNC_REFRESH
4410 Enable sync of refresh for multiple controllers.
4411
4412 - CONFIG_FSL_DDR_BIST
4413 Enable built-in memory test for Freescale DDR controllers.
4414
4415 - CONFIG_SYS_83XX_DDR_USES_CS0
4416 Only for 83xx systems. If specified, then DDR should
4417 be configured using CS0 and CS1 instead of CS2 and CS3.
4418
4419 - CONFIG_ETHER_ON_FEC[12]
4420 Define to enable FEC[12] on a 8xx series processor.
4421
4422 - CONFIG_FEC[12]_PHY
4423 Define to the hardcoded PHY address which corresponds
4424 to the given FEC; i. e.
4425 #define CONFIG_FEC1_PHY 4
4426 means that the PHY with address 4 is connected to FEC1
4427
4428 When set to -1, means to probe for first available.
4429
4430 - CONFIG_FEC[12]_PHY_NORXERR
4431 The PHY does not have a RXERR line (RMII only).
4432 (so program the FEC to ignore it).
4433
4434 - CONFIG_RMII
4435 Enable RMII mode for all FECs.
4436 Note that this is a global option, we can't
4437 have one FEC in standard MII mode and another in RMII mode.
4438
4439 - CONFIG_CRC32_VERIFY
4440 Add a verify option to the crc32 command.
4441 The syntax is:
4442
4443 => crc32 -v <address> <count> <crc32>
4444
4445 Where address/count indicate a memory area
4446 and crc32 is the correct crc32 which the
4447 area should have.
4448
4449 - CONFIG_LOOPW
4450 Add the "loopw" memory command. This only takes effect if
4451 the memory commands are activated globally (CONFIG_CMD_MEM).
4452
4453 - CONFIG_MX_CYCLIC
4454 Add the "mdc" and "mwc" memory commands. These are cyclic
4455 "md/mw" commands.
4456 Examples:
4457
4458 => mdc.b 10 4 500
4459 This command will print 4 bytes (10,11,12,13) each 500 ms.
4460
4461 => mwc.l 100 12345678 10
4462 This command will write 12345678 to address 100 all 10 ms.
4463
4464 This only takes effect if the memory commands are activated
4465 globally (CONFIG_CMD_MEM).
4466
4467 - CONFIG_SKIP_LOWLEVEL_INIT
4468 [ARM, NDS32, MIPS only] If this variable is defined, then certain
4469 low level initializations (like setting up the memory
4470 controller) are omitted and/or U-Boot does not
4471 relocate itself into RAM.
4472
4473 Normally this variable MUST NOT be defined. The only
4474 exception is when U-Boot is loaded (to RAM) by some
4475 other boot loader or by a debugger which performs
4476 these initializations itself.
4477
4478 - CONFIG_SKIP_LOWLEVEL_INIT_ONLY
4479 [ARM926EJ-S only] This allows just the call to lowlevel_init()
4480 to be skipped. The normal CP15 init (such as enabling the
4481 instruction cache) is still performed.
4482
4483 - CONFIG_SPL_BUILD
4484 Modifies the behaviour of start.S when compiling a loader
4485 that is executed before the actual U-Boot. E.g. when
4486 compiling a NAND SPL.
4487
4488 - CONFIG_TPL_BUILD
4489 Modifies the behaviour of start.S when compiling a loader
4490 that is executed after the SPL and before the actual U-Boot.
4491 It is loaded by the SPL.
4492
4493 - CONFIG_SYS_MPC85XX_NO_RESETVEC
4494 Only for 85xx systems. If this variable is specified, the section
4495 .resetvec is not kept and the section .bootpg is placed in the
4496 previous 4k of the .text section.
4497
4498 - CONFIG_ARCH_MAP_SYSMEM
4499 Generally U-Boot (and in particular the md command) uses
4500 effective address. It is therefore not necessary to regard
4501 U-Boot address as virtual addresses that need to be translated
4502 to physical addresses. However, sandbox requires this, since
4503 it maintains its own little RAM buffer which contains all
4504 addressable memory. This option causes some memory accesses
4505 to be mapped through map_sysmem() / unmap_sysmem().
4506
4507 - CONFIG_X86_RESET_VECTOR
4508 If defined, the x86 reset vector code is included. This is not
4509 needed when U-Boot is running from Coreboot.
4510
4511 - CONFIG_SYS_MPUCLK
4512 Defines the MPU clock speed (in MHz).
4513
4514 NOTE : currently only supported on AM335x platforms.
4515
4516 - CONFIG_SPL_AM33XX_ENABLE_RTC32K_OSC:
4517 Enables the RTC32K OSC on AM33xx based plattforms
4518
4519 - CONFIG_SYS_NAND_NO_SUBPAGE_WRITE
4520 Option to disable subpage write in NAND driver
4521 driver that uses this:
4522 drivers/mtd/nand/davinci_nand.c
4523
4524 Freescale QE/FMAN Firmware Support:
4525 -----------------------------------
4526
4527 The Freescale QUICCEngine (QE) and Frame Manager (FMAN) both support the
4528 loading of "firmware", which is encoded in the QE firmware binary format.
4529 This firmware often needs to be loaded during U-Boot booting, so macros
4530 are used to identify the storage device (NOR flash, SPI, etc) and the address
4531 within that device.
4532
4533 - CONFIG_SYS_FMAN_FW_ADDR
4534 The address in the storage device where the FMAN microcode is located. The
4535 meaning of this address depends on which CONFIG_SYS_QE_FW_IN_xxx macro
4536 is also specified.
4537
4538 - CONFIG_SYS_QE_FW_ADDR
4539 The address in the storage device where the QE microcode is located. The
4540 meaning of this address depends on which CONFIG_SYS_QE_FW_IN_xxx macro
4541 is also specified.
4542
4543 - CONFIG_SYS_QE_FMAN_FW_LENGTH
4544 The maximum possible size of the firmware. The firmware binary format
4545 has a field that specifies the actual size of the firmware, but it
4546 might not be possible to read any part of the firmware unless some
4547 local storage is allocated to hold the entire firmware first.
4548
4549 - CONFIG_SYS_QE_FMAN_FW_IN_NOR
4550 Specifies that QE/FMAN firmware is located in NOR flash, mapped as
4551 normal addressable memory via the LBC. CONFIG_SYS_FMAN_FW_ADDR is the
4552 virtual address in NOR flash.
4553
4554 - CONFIG_SYS_QE_FMAN_FW_IN_NAND
4555 Specifies that QE/FMAN firmware is located in NAND flash.
4556 CONFIG_SYS_FMAN_FW_ADDR is the offset within NAND flash.
4557
4558 - CONFIG_SYS_QE_FMAN_FW_IN_MMC
4559 Specifies that QE/FMAN firmware is located on the primary SD/MMC
4560 device. CONFIG_SYS_FMAN_FW_ADDR is the byte offset on that device.
4561
4562 - CONFIG_SYS_QE_FMAN_FW_IN_REMOTE
4563 Specifies that QE/FMAN firmware is located in the remote (master)
4564 memory space. CONFIG_SYS_FMAN_FW_ADDR is a virtual address which
4565 can be mapped from slave TLB->slave LAW->slave SRIO or PCIE outbound
4566 window->master inbound window->master LAW->the ucode address in
4567 master's memory space.
4568
4569 Freescale Layerscape Management Complex Firmware Support:
4570 ---------------------------------------------------------
4571 The Freescale Layerscape Management Complex (MC) supports the loading of
4572 "firmware".
4573 This firmware often needs to be loaded during U-Boot booting, so macros
4574 are used to identify the storage device (NOR flash, SPI, etc) and the address
4575 within that device.
4576
4577 - CONFIG_FSL_MC_ENET
4578 Enable the MC driver for Layerscape SoCs.
4579
4580 Freescale Layerscape Debug Server Support:
4581 -------------------------------------------
4582 The Freescale Layerscape Debug Server Support supports the loading of
4583 "Debug Server firmware" and triggering SP boot-rom.
4584 This firmware often needs to be loaded during U-Boot booting.
4585
4586 - CONFIG_SYS_MC_RSV_MEM_ALIGN
4587 Define alignment of reserved memory MC requires
4588
4589 Reproducible builds
4590 -------------------
4591
4592 In order to achieve reproducible builds, timestamps used in the U-Boot build
4593 process have to be set to a fixed value.
4594
4595 This is done using the SOURCE_DATE_EPOCH environment variable.
4596 SOURCE_DATE_EPOCH is to be set on the build host's shell, not as a configuration
4597 option for U-Boot or an environment variable in U-Boot.
4598
4599 SOURCE_DATE_EPOCH should be set to a number of seconds since the epoch, in UTC.
4600
4601 Building the Software:
4602 ======================
4603
4604 Building U-Boot has been tested in several native build environments
4605 and in many different cross environments. Of course we cannot support
4606 all possibly existing versions of cross development tools in all
4607 (potentially obsolete) versions. In case of tool chain problems we
4608 recommend to use the ELDK (see http://www.denx.de/wiki/DULG/ELDK)
4609 which is extensively used to build and test U-Boot.
4610
4611 If you are not using a native environment, it is assumed that you
4612 have GNU cross compiling tools available in your path. In this case,
4613 you must set the environment variable CROSS_COMPILE in your shell.
4614 Note that no changes to the Makefile or any other source files are
4615 necessary. For example using the ELDK on a 4xx CPU, please enter:
4616
4617 $ CROSS_COMPILE=ppc_4xx-
4618 $ export CROSS_COMPILE
4619
4620 Note: If you wish to generate Windows versions of the utilities in
4621 the tools directory you can use the MinGW toolchain
4622 (http://www.mingw.org). Set your HOST tools to the MinGW
4623 toolchain and execute 'make tools'. For example:
4624
4625 $ make HOSTCC=i586-mingw32msvc-gcc HOSTSTRIP=i586-mingw32msvc-strip tools
4626
4627 Binaries such as tools/mkimage.exe will be created which can
4628 be executed on computers running Windows.
4629
4630 U-Boot is intended to be simple to build. After installing the
4631 sources you must configure U-Boot for one specific board type. This
4632 is done by typing:
4633
4634 make NAME_defconfig
4635
4636 where "NAME_defconfig" is the name of one of the existing configu-
4637 rations; see boards.cfg for supported names.
4638
4639 Note: for some board special configuration names may exist; check if
4640 additional information is available from the board vendor; for
4641 instance, the TQM823L systems are available without (standard)
4642 or with LCD support. You can select such additional "features"
4643 when choosing the configuration, i. e.
4644
4645 make TQM823L_defconfig
4646 - will configure for a plain TQM823L, i. e. no LCD support
4647
4648 make TQM823L_LCD_defconfig
4649 - will configure for a TQM823L with U-Boot console on LCD
4650
4651 etc.
4652
4653
4654 Finally, type "make all", and you should get some working U-Boot
4655 images ready for download to / installation on your system:
4656
4657 - "u-boot.bin" is a raw binary image
4658 - "u-boot" is an image in ELF binary format
4659 - "u-boot.srec" is in Motorola S-Record format
4660
4661 By default the build is performed locally and the objects are saved
4662 in the source directory. One of the two methods can be used to change
4663 this behavior and build U-Boot to some external directory:
4664
4665 1. Add O= to the make command line invocations:
4666
4667 make O=/tmp/build distclean
4668 make O=/tmp/build NAME_defconfig
4669 make O=/tmp/build all
4670
4671 2. Set environment variable KBUILD_OUTPUT to point to the desired location:
4672
4673 export KBUILD_OUTPUT=/tmp/build
4674 make distclean
4675 make NAME_defconfig
4676 make all
4677
4678 Note that the command line "O=" setting overrides the KBUILD_OUTPUT environment
4679 variable.
4680
4681
4682 Please be aware that the Makefiles assume you are using GNU make, so
4683 for instance on NetBSD you might need to use "gmake" instead of
4684 native "make".
4685
4686
4687 If the system board that you have is not listed, then you will need
4688 to port U-Boot to your hardware platform. To do this, follow these
4689 steps:
4690
4691 1. Create a new directory to hold your board specific code. Add any
4692 files you need. In your board directory, you will need at least
4693 the "Makefile" and a "<board>.c".
4694 2. Create a new configuration file "include/configs/<board>.h" for
4695 your board.
4696 3. If you're porting U-Boot to a new CPU, then also create a new
4697 directory to hold your CPU specific code. Add any files you need.
4698 4. Run "make <board>_defconfig" with your new name.
4699 5. Type "make", and you should get a working "u-boot.srec" file
4700 to be installed on your target system.
4701 6. Debug and solve any problems that might arise.
4702 [Of course, this last step is much harder than it sounds.]
4703
4704
4705 Testing of U-Boot Modifications, Ports to New Hardware, etc.:
4706 ==============================================================
4707
4708 If you have modified U-Boot sources (for instance added a new board
4709 or support for new devices, a new CPU, etc.) you are expected to
4710 provide feedback to the other developers. The feedback normally takes
4711 the form of a "patch", i. e. a context diff against a certain (latest
4712 official or latest in the git repository) version of U-Boot sources.
4713
4714 But before you submit such a patch, please verify that your modifi-
4715 cation did not break existing code. At least make sure that *ALL* of
4716 the supported boards compile WITHOUT ANY compiler warnings. To do so,
4717 just run the buildman script (tools/buildman/buildman), which will
4718 configure and build U-Boot for ALL supported system. Be warned, this
4719 will take a while. Please see the buildman README, or run 'buildman -H'
4720 for documentation.
4721
4722
4723 See also "U-Boot Porting Guide" below.
4724
4725
4726 Monitor Commands - Overview:
4727 ============================
4728
4729 go - start application at address 'addr'
4730 run - run commands in an environment variable
4731 bootm - boot application image from memory
4732 bootp - boot image via network using BootP/TFTP protocol
4733 bootz - boot zImage from memory
4734 tftpboot- boot image via network using TFTP protocol
4735 and env variables "ipaddr" and "serverip"
4736 (and eventually "gatewayip")
4737 tftpput - upload a file via network using TFTP protocol
4738 rarpboot- boot image via network using RARP/TFTP protocol
4739 diskboot- boot from IDE devicebootd - boot default, i.e., run 'bootcmd'
4740 loads - load S-Record file over serial line
4741 loadb - load binary file over serial line (kermit mode)
4742 md - memory display
4743 mm - memory modify (auto-incrementing)
4744 nm - memory modify (constant address)
4745 mw - memory write (fill)
4746 cp - memory copy
4747 cmp - memory compare
4748 crc32 - checksum calculation
4749 i2c - I2C sub-system
4750 sspi - SPI utility commands
4751 base - print or set address offset
4752 printenv- print environment variables
4753 setenv - set environment variables
4754 saveenv - save environment variables to persistent storage
4755 protect - enable or disable FLASH write protection
4756 erase - erase FLASH memory
4757 flinfo - print FLASH memory information
4758 nand - NAND memory operations (see doc/README.nand)
4759 bdinfo - print Board Info structure
4760 iminfo - print header information for application image
4761 coninfo - print console devices and informations
4762 ide - IDE sub-system
4763 loop - infinite loop on address range
4764 loopw - infinite write loop on address range
4765 mtest - simple RAM test
4766 icache - enable or disable instruction cache
4767 dcache - enable or disable data cache
4768 reset - Perform RESET of the CPU
4769 echo - echo args to console
4770 version - print monitor version
4771 help - print online help
4772 ? - alias for 'help'
4773
4774
4775 Monitor Commands - Detailed Description:
4776 ========================================
4777
4778 TODO.
4779
4780 For now: just type "help <command>".
4781
4782
4783 Environment Variables:
4784 ======================
4785
4786 U-Boot supports user configuration using Environment Variables which
4787 can be made persistent by saving to Flash memory.
4788
4789 Environment Variables are set using "setenv", printed using
4790 "printenv", and saved to Flash using "saveenv". Using "setenv"
4791 without a value can be used to delete a variable from the
4792 environment. As long as you don't save the environment you are
4793 working with an in-memory copy. In case the Flash area containing the
4794 environment is erased by accident, a default environment is provided.
4795
4796 Some configuration options can be set using Environment Variables.
4797
4798 List of environment variables (most likely not complete):
4799
4800 baudrate - see CONFIG_BAUDRATE
4801
4802 bootdelay - see CONFIG_BOOTDELAY
4803
4804 bootcmd - see CONFIG_BOOTCOMMAND
4805
4806 bootargs - Boot arguments when booting an RTOS image
4807
4808 bootfile - Name of the image to load with TFTP
4809
4810 bootm_low - Memory range available for image processing in the bootm
4811 command can be restricted. This variable is given as
4812 a hexadecimal number and defines lowest address allowed
4813 for use by the bootm command. See also "bootm_size"
4814 environment variable. Address defined by "bootm_low" is
4815 also the base of the initial memory mapping for the Linux
4816 kernel -- see the description of CONFIG_SYS_BOOTMAPSZ and
4817 bootm_mapsize.
4818
4819 bootm_mapsize - Size of the initial memory mapping for the Linux kernel.
4820 This variable is given as a hexadecimal number and it
4821 defines the size of the memory region starting at base
4822 address bootm_low that is accessible by the Linux kernel
4823 during early boot. If unset, CONFIG_SYS_BOOTMAPSZ is used
4824 as the default value if it is defined, and bootm_size is
4825 used otherwise.
4826
4827 bootm_size - Memory range available for image processing in the bootm
4828 command can be restricted. This variable is given as
4829 a hexadecimal number and defines the size of the region
4830 allowed for use by the bootm command. See also "bootm_low"
4831 environment variable.
4832
4833 updatefile - Location of the software update file on a TFTP server, used
4834 by the automatic software update feature. Please refer to
4835 documentation in doc/README.update for more details.
4836
4837 autoload - if set to "no" (any string beginning with 'n'),
4838 "bootp" will just load perform a lookup of the
4839 configuration from the BOOTP server, but not try to
4840 load any image using TFTP
4841
4842 autostart - if set to "yes", an image loaded using the "bootp",
4843 "rarpboot", "tftpboot" or "diskboot" commands will
4844 be automatically started (by internally calling
4845 "bootm")
4846
4847 If set to "no", a standalone image passed to the
4848 "bootm" command will be copied to the load address
4849 (and eventually uncompressed), but NOT be started.
4850 This can be used to load and uncompress arbitrary
4851 data.
4852
4853 fdt_high - if set this restricts the maximum address that the
4854 flattened device tree will be copied into upon boot.
4855 For example, if you have a system with 1 GB memory
4856 at physical address 0x10000000, while Linux kernel
4857 only recognizes the first 704 MB as low memory, you
4858 may need to set fdt_high as 0x3C000000 to have the
4859 device tree blob be copied to the maximum address
4860 of the 704 MB low memory, so that Linux kernel can
4861 access it during the boot procedure.
4862
4863 If this is set to the special value 0xFFFFFFFF then
4864 the fdt will not be copied at all on boot. For this
4865 to work it must reside in writable memory, have
4866 sufficient padding on the end of it for u-boot to
4867 add the information it needs into it, and the memory
4868 must be accessible by the kernel.
4869
4870 fdtcontroladdr- if set this is the address of the control flattened
4871 device tree used by U-Boot when CONFIG_OF_CONTROL is
4872 defined.
4873
4874 i2cfast - (PPC405GP|PPC405EP only)
4875 if set to 'y' configures Linux I2C driver for fast
4876 mode (400kHZ). This environment variable is used in
4877 initialization code. So, for changes to be effective
4878 it must be saved and board must be reset.
4879
4880 initrd_high - restrict positioning of initrd images:
4881 If this variable is not set, initrd images will be
4882 copied to the highest possible address in RAM; this
4883 is usually what you want since it allows for
4884 maximum initrd size. If for some reason you want to
4885 make sure that the initrd image is loaded below the
4886 CONFIG_SYS_BOOTMAPSZ limit, you can set this environment
4887 variable to a value of "no" or "off" or "0".
4888 Alternatively, you can set it to a maximum upper
4889 address to use (U-Boot will still check that it
4890 does not overwrite the U-Boot stack and data).
4891
4892 For instance, when you have a system with 16 MB
4893 RAM, and want to reserve 4 MB from use by Linux,
4894 you can do this by adding "mem=12M" to the value of
4895 the "bootargs" variable. However, now you must make
4896 sure that the initrd image is placed in the first
4897 12 MB as well - this can be done with
4898
4899 setenv initrd_high 00c00000
4900
4901 If you set initrd_high to 0xFFFFFFFF, this is an
4902 indication to U-Boot that all addresses are legal
4903 for the Linux kernel, including addresses in flash
4904 memory. In this case U-Boot will NOT COPY the
4905 ramdisk at all. This may be useful to reduce the
4906 boot time on your system, but requires that this
4907 feature is supported by your Linux kernel.
4908
4909 ipaddr - IP address; needed for tftpboot command
4910
4911 loadaddr - Default load address for commands like "bootp",
4912 "rarpboot", "tftpboot", "loadb" or "diskboot"
4913
4914 loads_echo - see CONFIG_LOADS_ECHO
4915
4916 serverip - TFTP server IP address; needed for tftpboot command
4917
4918 bootretry - see CONFIG_BOOT_RETRY_TIME
4919
4920 bootdelaykey - see CONFIG_AUTOBOOT_DELAY_STR
4921
4922 bootstopkey - see CONFIG_AUTOBOOT_STOP_STR
4923
4924 ethprime - controls which interface is used first.
4925
4926 ethact - controls which interface is currently active.
4927 For example you can do the following
4928
4929 => setenv ethact FEC
4930 => ping 192.168.0.1 # traffic sent on FEC
4931 => setenv ethact SCC
4932 => ping 10.0.0.1 # traffic sent on SCC
4933
4934 ethrotate - When set to "no" U-Boot does not go through all
4935 available network interfaces.
4936 It just stays at the currently selected interface.
4937
4938 netretry - When set to "no" each network operation will
4939 either succeed or fail without retrying.
4940 When set to "once" the network operation will
4941 fail when all the available network interfaces
4942 are tried once without success.
4943 Useful on scripts which control the retry operation
4944 themselves.
4945
4946 npe_ucode - set load address for the NPE microcode
4947
4948 silent_linux - If set then Linux will be told to boot silently, by
4949 changing the console to be empty. If "yes" it will be
4950 made silent. If "no" it will not be made silent. If
4951 unset, then it will be made silent if the U-Boot console
4952 is silent.
4953
4954 tftpsrcp - If this is set, the value is used for TFTP's
4955 UDP source port.
4956
4957 tftpdstp - If this is set, the value is used for TFTP's UDP
4958 destination port instead of the Well Know Port 69.
4959
4960 tftpblocksize - Block size to use for TFTP transfers; if not set,
4961 we use the TFTP server's default block size
4962
4963 tftptimeout - Retransmission timeout for TFTP packets (in milli-
4964 seconds, minimum value is 1000 = 1 second). Defines
4965 when a packet is considered to be lost so it has to
4966 be retransmitted. The default is 5000 = 5 seconds.
4967 Lowering this value may make downloads succeed
4968 faster in networks with high packet loss rates or
4969 with unreliable TFTP servers.
4970
4971 tftptimeoutcountmax - maximum count of TFTP timeouts (no
4972 unit, minimum value = 0). Defines how many timeouts
4973 can happen during a single file transfer before that
4974 transfer is aborted. The default is 10, and 0 means
4975 'no timeouts allowed'. Increasing this value may help
4976 downloads succeed with high packet loss rates, or with
4977 unreliable TFTP servers or client hardware.
4978
4979 vlan - When set to a value < 4095 the traffic over
4980 Ethernet is encapsulated/received over 802.1q
4981 VLAN tagged frames.
4982
4983 bootpretryperiod - Period during which BOOTP/DHCP sends retries.
4984 Unsigned value, in milliseconds. If not set, the period will
4985 be either the default (28000), or a value based on
4986 CONFIG_NET_RETRY_COUNT, if defined. This value has
4987 precedence over the valu based on CONFIG_NET_RETRY_COUNT.
4988
4989 The following image location variables contain the location of images
4990 used in booting. The "Image" column gives the role of the image and is
4991 not an environment variable name. The other columns are environment
4992 variable names. "File Name" gives the name of the file on a TFTP
4993 server, "RAM Address" gives the location in RAM the image will be
4994 loaded to, and "Flash Location" gives the image's address in NOR
4995 flash or offset in NAND flash.
4996
4997 *Note* - these variables don't have to be defined for all boards, some
4998 boards currently use other variables for these purposes, and some
4999 boards use these variables for other purposes.
5000
5001 Image File Name RAM Address Flash Location
5002 ----- --------- ----------- --------------
5003 u-boot u-boot u-boot_addr_r u-boot_addr
5004 Linux kernel bootfile kernel_addr_r kernel_addr
5005 device tree blob fdtfile fdt_addr_r fdt_addr
5006 ramdisk ramdiskfile ramdisk_addr_r ramdisk_addr
5007
5008 The following environment variables may be used and automatically
5009 updated by the network boot commands ("bootp" and "rarpboot"),
5010 depending the information provided by your boot server:
5011
5012 bootfile - see above
5013 dnsip - IP address of your Domain Name Server
5014 dnsip2 - IP address of your secondary Domain Name Server
5015 gatewayip - IP address of the Gateway (Router) to use
5016 hostname - Target hostname
5017 ipaddr - see above
5018 netmask - Subnet Mask
5019 rootpath - Pathname of the root filesystem on the NFS server
5020 serverip - see above
5021
5022
5023 There are two special Environment Variables:
5024
5025 serial# - contains hardware identification information such
5026 as type string and/or serial number
5027 ethaddr - Ethernet address
5028
5029 These variables can be set only once (usually during manufacturing of
5030 the board). U-Boot refuses to delete or overwrite these variables
5031 once they have been set once.
5032
5033
5034 Further special Environment Variables:
5035
5036 ver - Contains the U-Boot version string as printed
5037 with the "version" command. This variable is
5038 readonly (see CONFIG_VERSION_VARIABLE).
5039
5040
5041 Please note that changes to some configuration parameters may take
5042 only effect after the next boot (yes, that's just like Windoze :-).
5043
5044
5045 Callback functions for environment variables:
5046 ---------------------------------------------
5047
5048 For some environment variables, the behavior of u-boot needs to change
5049 when their values are changed. This functionality allows functions to
5050 be associated with arbitrary variables. On creation, overwrite, or
5051 deletion, the callback will provide the opportunity for some side
5052 effect to happen or for the change to be rejected.
5053
5054 The callbacks are named and associated with a function using the
5055 U_BOOT_ENV_CALLBACK macro in your board or driver code.
5056
5057 These callbacks are associated with variables in one of two ways. The
5058 static list can be added to by defining CONFIG_ENV_CALLBACK_LIST_STATIC
5059 in the board configuration to a string that defines a list of
5060 associations. The list must be in the following format:
5061
5062 entry = variable_name[:callback_name]
5063 list = entry[,list]
5064
5065 If the callback name is not specified, then the callback is deleted.
5066 Spaces are also allowed anywhere in the list.
5067
5068 Callbacks can also be associated by defining the ".callbacks" variable
5069 with the same list format above. Any association in ".callbacks" will
5070 override any association in the static list. You can define
5071 CONFIG_ENV_CALLBACK_LIST_DEFAULT to a list (string) to define the
5072 ".callbacks" environment variable in the default or embedded environment.
5073
5074 If CONFIG_REGEX is defined, the variable_name above is evaluated as a
5075 regular expression. This allows multiple variables to be connected to
5076 the same callback without explicitly listing them all out.
5077
5078
5079 Command Line Parsing:
5080 =====================
5081
5082 There are two different command line parsers available with U-Boot:
5083 the old "simple" one, and the much more powerful "hush" shell:
5084
5085 Old, simple command line parser:
5086 --------------------------------
5087
5088 - supports environment variables (through setenv / saveenv commands)
5089 - several commands on one line, separated by ';'
5090 - variable substitution using "... ${name} ..." syntax
5091 - special characters ('$', ';') can be escaped by prefixing with '\',
5092 for example:
5093 setenv bootcmd bootm \${address}
5094 - You can also escape text by enclosing in single apostrophes, for example:
5095 setenv addip 'setenv bootargs $bootargs ip=$ipaddr:$serverip:$gatewayip:$netmask:$hostname::off'
5096
5097 Hush shell:
5098 -----------
5099
5100 - similar to Bourne shell, with control structures like
5101 if...then...else...fi, for...do...done; while...do...done,
5102 until...do...done, ...
5103 - supports environment ("global") variables (through setenv / saveenv
5104 commands) and local shell variables (through standard shell syntax
5105 "name=value"); only environment variables can be used with "run"
5106 command
5107
5108 General rules:
5109 --------------
5110
5111 (1) If a command line (or an environment variable executed by a "run"
5112 command) contains several commands separated by semicolon, and
5113 one of these commands fails, then the remaining commands will be
5114 executed anyway.
5115
5116 (2) If you execute several variables with one call to run (i. e.
5117 calling run with a list of variables as arguments), any failing
5118 command will cause "run" to terminate, i. e. the remaining
5119 variables are not executed.
5120
5121 Note for Redundant Ethernet Interfaces:
5122 =======================================
5123
5124 Some boards come with redundant Ethernet interfaces; U-Boot supports
5125 such configurations and is capable of automatic selection of a
5126 "working" interface when needed. MAC assignment works as follows:
5127
5128 Network interfaces are numbered eth0, eth1, eth2, ... Corresponding
5129 MAC addresses can be stored in the environment as "ethaddr" (=>eth0),
5130 "eth1addr" (=>eth1), "eth2addr", ...
5131
5132 If the network interface stores some valid MAC address (for instance
5133 in SROM), this is used as default address if there is NO correspon-
5134 ding setting in the environment; if the corresponding environment
5135 variable is set, this overrides the settings in the card; that means:
5136
5137 o If the SROM has a valid MAC address, and there is no address in the
5138 environment, the SROM's address is used.
5139
5140 o If there is no valid address in the SROM, and a definition in the
5141 environment exists, then the value from the environment variable is
5142 used.
5143
5144 o If both the SROM and the environment contain a MAC address, and
5145 both addresses are the same, this MAC address is used.
5146
5147 o If both the SROM and the environment contain a MAC address, and the
5148 addresses differ, the value from the environment is used and a
5149 warning is printed.
5150
5151 o If neither SROM nor the environment contain a MAC address, an error
5152 is raised. If CONFIG_NET_RANDOM_ETHADDR is defined, then in this case
5153 a random, locally-assigned MAC is used.
5154
5155 If Ethernet drivers implement the 'write_hwaddr' function, valid MAC addresses
5156 will be programmed into hardware as part of the initialization process. This
5157 may be skipped by setting the appropriate 'ethmacskip' environment variable.
5158 The naming convention is as follows:
5159 "ethmacskip" (=>eth0), "eth1macskip" (=>eth1) etc.
5160
5161 Image Formats:
5162 ==============
5163
5164 U-Boot is capable of booting (and performing other auxiliary operations on)
5165 images in two formats:
5166
5167 New uImage format (FIT)
5168 -----------------------
5169
5170 Flexible and powerful format based on Flattened Image Tree -- FIT (similar
5171 to Flattened Device Tree). It allows the use of images with multiple
5172 components (several kernels, ramdisks, etc.), with contents protected by
5173 SHA1, MD5 or CRC32. More details are found in the doc/uImage.FIT directory.
5174
5175
5176 Old uImage format
5177 -----------------
5178
5179 Old image format is based on binary files which can be basically anything,
5180 preceded by a special header; see the definitions in include/image.h for
5181 details; basically, the header defines the following image properties:
5182
5183 * Target Operating System (Provisions for OpenBSD, NetBSD, FreeBSD,
5184 4.4BSD, Linux, SVR4, Esix, Solaris, Irix, SCO, Dell, NCR, VxWorks,
5185 LynxOS, pSOS, QNX, RTEMS, INTEGRITY;
5186 Currently supported: Linux, NetBSD, VxWorks, QNX, RTEMS, LynxOS,
5187 INTEGRITY).
5188 * Target CPU Architecture (Provisions for Alpha, ARM, AVR32, Intel x86,
5189 IA64, MIPS, NDS32, Nios II, PowerPC, IBM S390, SuperH, Sparc, Sparc 64 Bit;
5190 Currently supported: ARM, AVR32, Intel x86, MIPS, NDS32, Nios II, PowerPC).
5191 * Compression Type (uncompressed, gzip, bzip2)
5192 * Load Address
5193 * Entry Point
5194 * Image Name
5195 * Image Timestamp
5196
5197 The header is marked by a special Magic Number, and both the header
5198 and the data portions of the image are secured against corruption by
5199 CRC32 checksums.
5200
5201
5202 Linux Support:
5203 ==============
5204
5205 Although U-Boot should support any OS or standalone application
5206 easily, the main focus has always been on Linux during the design of
5207 U-Boot.
5208
5209 U-Boot includes many features that so far have been part of some
5210 special "boot loader" code within the Linux kernel. Also, any
5211 "initrd" images to be used are no longer part of one big Linux image;
5212 instead, kernel and "initrd" are separate images. This implementation
5213 serves several purposes:
5214
5215 - the same features can be used for other OS or standalone
5216 applications (for instance: using compressed images to reduce the
5217 Flash memory footprint)
5218
5219 - it becomes much easier to port new Linux kernel versions because
5220 lots of low-level, hardware dependent stuff are done by U-Boot
5221
5222 - the same Linux kernel image can now be used with different "initrd"
5223 images; of course this also means that different kernel images can
5224 be run with the same "initrd". This makes testing easier (you don't
5225 have to build a new "zImage.initrd" Linux image when you just
5226 change a file in your "initrd"). Also, a field-upgrade of the
5227 software is easier now.
5228
5229
5230 Linux HOWTO:
5231 ============
5232
5233 Porting Linux to U-Boot based systems:
5234 ---------------------------------------
5235
5236 U-Boot cannot save you from doing all the necessary modifications to
5237 configure the Linux device drivers for use with your target hardware
5238 (no, we don't intend to provide a full virtual machine interface to
5239 Linux :-).
5240
5241 But now you can ignore ALL boot loader code (in arch/powerpc/mbxboot).
5242
5243 Just make sure your machine specific header file (for instance
5244 include/asm-ppc/tqm8xx.h) includes the same definition of the Board
5245 Information structure as we define in include/asm-<arch>/u-boot.h,
5246 and make sure that your definition of IMAP_ADDR uses the same value
5247 as your U-Boot configuration in CONFIG_SYS_IMMR.
5248
5249 Note that U-Boot now has a driver model, a unified model for drivers.
5250 If you are adding a new driver, plumb it into driver model. If there
5251 is no uclass available, you are encouraged to create one. See
5252 doc/driver-model.
5253
5254
5255 Configuring the Linux kernel:
5256 -----------------------------
5257
5258 No specific requirements for U-Boot. Make sure you have some root
5259 device (initial ramdisk, NFS) for your target system.
5260
5261
5262 Building a Linux Image:
5263 -----------------------
5264
5265 With U-Boot, "normal" build targets like "zImage" or "bzImage" are
5266 not used. If you use recent kernel source, a new build target
5267 "uImage" will exist which automatically builds an image usable by
5268 U-Boot. Most older kernels also have support for a "pImage" target,
5269 which was introduced for our predecessor project PPCBoot and uses a
5270 100% compatible format.
5271
5272 Example:
5273
5274 make TQM850L_defconfig
5275 make oldconfig
5276 make dep
5277 make uImage
5278
5279 The "uImage" build target uses a special tool (in 'tools/mkimage') to
5280 encapsulate a compressed Linux kernel image with header information,
5281 CRC32 checksum etc. for use with U-Boot. This is what we are doing:
5282
5283 * build a standard "vmlinux" kernel image (in ELF binary format):
5284
5285 * convert the kernel into a raw binary image:
5286
5287 ${CROSS_COMPILE}-objcopy -O binary \
5288 -R .note -R .comment \
5289 -S vmlinux linux.bin
5290
5291 * compress the binary image:
5292
5293 gzip -9 linux.bin
5294
5295 * package compressed binary image for U-Boot:
5296
5297 mkimage -A ppc -O linux -T kernel -C gzip \
5298 -a 0 -e 0 -n "Linux Kernel Image" \
5299 -d linux.bin.gz uImage
5300
5301
5302 The "mkimage" tool can also be used to create ramdisk images for use
5303 with U-Boot, either separated from the Linux kernel image, or
5304 combined into one file. "mkimage" encapsulates the images with a 64
5305 byte header containing information about target architecture,
5306 operating system, image type, compression method, entry points, time
5307 stamp, CRC32 checksums, etc.
5308
5309 "mkimage" can be called in two ways: to verify existing images and
5310 print the header information, or to build new images.
5311
5312 In the first form (with "-l" option) mkimage lists the information
5313 contained in the header of an existing U-Boot image; this includes
5314 checksum verification:
5315
5316 tools/mkimage -l image
5317 -l ==> list image header information
5318
5319 The second form (with "-d" option) is used to build a U-Boot image
5320 from a "data file" which is used as image payload:
5321
5322 tools/mkimage -A arch -O os -T type -C comp -a addr -e ep \
5323 -n name -d data_file image
5324 -A ==> set architecture to 'arch'
5325 -O ==> set operating system to 'os'
5326 -T ==> set image type to 'type'
5327 -C ==> set compression type 'comp'
5328 -a ==> set load address to 'addr' (hex)
5329 -e ==> set entry point to 'ep' (hex)
5330 -n ==> set image name to 'name'
5331 -d ==> use image data from 'datafile'
5332
5333 Right now, all Linux kernels for PowerPC systems use the same load
5334 address (0x00000000), but the entry point address depends on the
5335 kernel version:
5336
5337 - 2.2.x kernels have the entry point at 0x0000000C,
5338 - 2.3.x and later kernels have the entry point at 0x00000000.
5339
5340 So a typical call to build a U-Boot image would read:
5341
5342 -> tools/mkimage -n '2.4.4 kernel for TQM850L' \
5343 > -A ppc -O linux -T kernel -C gzip -a 0 -e 0 \
5344 > -d /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/powerpc/coffboot/vmlinux.gz \
5345 > examples/uImage.TQM850L
5346 Image Name: 2.4.4 kernel for TQM850L
5347 Created: Wed Jul 19 02:34:59 2000
5348 Image Type: PowerPC Linux Kernel Image (gzip compressed)
5349 Data Size: 335725 Bytes = 327.86 kB = 0.32 MB
5350 Load Address: 0x00000000
5351 Entry Point: 0x00000000
5352
5353 To verify the contents of the image (or check for corruption):
5354
5355 -> tools/mkimage -l examples/uImage.TQM850L
5356 Image Name: 2.4.4 kernel for TQM850L
5357 Created: Wed Jul 19 02:34:59 2000
5358 Image Type: PowerPC Linux Kernel Image (gzip compressed)
5359 Data Size: 335725 Bytes = 327.86 kB = 0.32 MB
5360 Load Address: 0x00000000
5361 Entry Point: 0x00000000
5362
5363 NOTE: for embedded systems where boot time is critical you can trade
5364 speed for memory and install an UNCOMPRESSED image instead: this
5365 needs more space in Flash, but boots much faster since it does not
5366 need to be uncompressed:
5367
5368 -> gunzip /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/powerpc/coffboot/vmlinux.gz
5369 -> tools/mkimage -n '2.4.4 kernel for TQM850L' \
5370 > -A ppc -O linux -T kernel -C none -a 0 -e 0 \
5371 > -d /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/powerpc/coffboot/vmlinux \
5372 > examples/uImage.TQM850L-uncompressed
5373 Image Name: 2.4.4 kernel for TQM850L
5374 Created: Wed Jul 19 02:34:59 2000
5375 Image Type: PowerPC Linux Kernel Image (uncompressed)
5376 Data Size: 792160 Bytes = 773.59 kB = 0.76 MB
5377 Load Address: 0x00000000
5378 Entry Point: 0x00000000
5379
5380
5381 Similar you can build U-Boot images from a 'ramdisk.image.gz' file
5382 when your kernel is intended to use an initial ramdisk:
5383
5384 -> tools/mkimage -n 'Simple Ramdisk Image' \
5385 > -A ppc -O linux -T ramdisk -C gzip \
5386 > -d /LinuxPPC/images/SIMPLE-ramdisk.image.gz examples/simple-initrd
5387 Image Name: Simple Ramdisk Image
5388 Created: Wed Jan 12 14:01:50 2000
5389 Image Type: PowerPC Linux RAMDisk Image (gzip compressed)
5390 Data Size: 566530 Bytes = 553.25 kB = 0.54 MB
5391 Load Address: 0x00000000
5392 Entry Point: 0x00000000
5393
5394 The "dumpimage" is a tool to disassemble images built by mkimage. Its "-i"
5395 option performs the converse operation of the mkimage's second form (the "-d"
5396 option). Given an image built by mkimage, the dumpimage extracts a "data file"
5397 from the image:
5398
5399 tools/dumpimage -i image -T type -p position data_file
5400 -i ==> extract from the 'image' a specific 'data_file'
5401 -T ==> set image type to 'type'
5402 -p ==> 'position' (starting at 0) of the 'data_file' inside the 'image'
5403
5404
5405 Installing a Linux Image:
5406 -------------------------
5407
5408 To downloading a U-Boot image over the serial (console) interface,
5409 you must convert the image to S-Record format:
5410
5411 objcopy -I binary -O srec examples/image examples/image.srec
5412
5413 The 'objcopy' does not understand the information in the U-Boot
5414 image header, so the resulting S-Record file will be relative to
5415 address 0x00000000. To load it to a given address, you need to
5416 specify the target address as 'offset' parameter with the 'loads'
5417 command.
5418
5419 Example: install the image to address 0x40100000 (which on the
5420 TQM8xxL is in the first Flash bank):
5421
5422 => erase 40100000 401FFFFF
5423
5424 .......... done
5425 Erased 8 sectors
5426
5427 => loads 40100000
5428 ## Ready for S-Record download ...
5429 ~>examples/image.srec
5430 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
5431 ...
5432 15989 15990 15991 15992
5433 [file transfer complete]
5434 [connected]
5435 ## Start Addr = 0x00000000
5436
5437
5438 You can check the success of the download using the 'iminfo' command;
5439 this includes a checksum verification so you can be sure no data
5440 corruption happened:
5441
5442 => imi 40100000
5443
5444 ## Checking Image at 40100000 ...
5445 Image Name: 2.2.13 for initrd on TQM850L
5446 Image Type: PowerPC Linux Kernel Image (gzip compressed)
5447 Data Size: 335725 Bytes = 327 kB = 0 MB
5448 Load Address: 00000000
5449 Entry Point: 0000000c
5450 Verifying Checksum ... OK
5451
5452
5453 Boot Linux:
5454 -----------
5455
5456 The "bootm" command is used to boot an application that is stored in
5457 memory (RAM or Flash). In case of a Linux kernel image, the contents
5458 of the "bootargs" environment variable is passed to the kernel as
5459 parameters. You can check and modify this variable using the
5460 "printenv" and "setenv" commands:
5461
5462
5463 => printenv bootargs
5464 bootargs=root=/dev/ram
5465
5466 => setenv bootargs root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2
5467
5468 => printenv bootargs
5469 bootargs=root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2
5470
5471 => bootm 40020000
5472 ## Booting Linux kernel at 40020000 ...
5473 Image Name: 2.2.13 for NFS on TQM850L
5474 Image Type: PowerPC Linux Kernel Image (gzip compressed)
5475 Data Size: 381681 Bytes = 372 kB = 0 MB
5476 Load Address: 00000000
5477 Entry Point: 0000000c
5478 Verifying Checksum ... OK
5479 Uncompressing Kernel Image ... OK
5480 Linux version 2.2.13 (wd@denx.local.net) (gcc version 2.95.2 19991024 (release)) #1 Wed Jul 19 02:35:17 MEST 2000
5481 Boot arguments: root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2
5482 time_init: decrementer frequency = 187500000/60
5483 Calibrating delay loop... 49.77 BogoMIPS
5484 Memory: 15208k available (700k kernel code, 444k data, 32k init) [c0000000,c1000000]
5485 ...
5486
5487 If you want to boot a Linux kernel with initial RAM disk, you pass
5488 the memory addresses of both the kernel and the initrd image (PPBCOOT
5489 format!) to the "bootm" command:
5490
5491 => imi 40100000 40200000
5492
5493 ## Checking Image at 40100000 ...
5494 Image Name: 2.2.13 for initrd on TQM850L
5495 Image Type: PowerPC Linux Kernel Image (gzip compressed)
5496 Data Size: 335725 Bytes = 327 kB = 0 MB
5497 Load Address: 00000000
5498 Entry Point: 0000000c
5499 Verifying Checksum ... OK
5500
5501 ## Checking Image at 40200000 ...
5502 Image Name: Simple Ramdisk Image
5503 Image Type: PowerPC Linux RAMDisk Image (gzip compressed)
5504 Data Size: 566530 Bytes = 553 kB = 0 MB
5505 Load Address: 00000000
5506 Entry Point: 00000000
5507 Verifying Checksum ... OK
5508
5509 => bootm 40100000 40200000
5510 ## Booting Linux kernel at 40100000 ...
5511 Image Name: 2.2.13 for initrd on TQM850L
5512 Image Type: PowerPC Linux Kernel Image (gzip compressed)
5513 Data Size: 335725 Bytes = 327 kB = 0 MB
5514 Load Address: 00000000
5515 Entry Point: 0000000c
5516 Verifying Checksum ... OK
5517 Uncompressing Kernel Image ... OK
5518 ## Loading RAMDisk Image at 40200000 ...
5519 Image Name: Simple Ramdisk Image
5520 Image Type: PowerPC Linux RAMDisk Image (gzip compressed)
5521 Data Size: 566530 Bytes = 553 kB = 0 MB
5522 Load Address: 00000000
5523 Entry Point: 00000000
5524 Verifying Checksum ... OK
5525 Loading Ramdisk ... OK
5526 Linux version 2.2.13 (wd@denx.local.net) (gcc version 2.95.2 19991024 (release)) #1 Wed Jul 19 02:32:08 MEST 2000
5527 Boot arguments: root=/dev/ram
5528 time_init: decrementer frequency = 187500000/60
5529 Calibrating delay loop... 49.77 BogoMIPS
5530 ...
5531 RAMDISK: Compressed image found at block 0
5532 VFS: Mounted root (ext2 filesystem).
5533
5534 bash#
5535
5536 Boot Linux and pass a flat device tree:
5537 -----------
5538
5539 First, U-Boot must be compiled with the appropriate defines. See the section
5540 titled "Linux Kernel Interface" above for a more in depth explanation. The
5541 following is an example of how to start a kernel and pass an updated
5542 flat device tree:
5543
5544 => print oftaddr
5545 oftaddr=0x300000
5546 => print oft
5547 oft=oftrees/mpc8540ads.dtb
5548 => tftp $oftaddr $oft
5549 Speed: 1000, full duplex
5550 Using TSEC0 device
5551 TFTP from server 192.168.1.1; our IP address is 192.168.1.101
5552 Filename 'oftrees/mpc8540ads.dtb'.
5553 Load address: 0x300000
5554 Loading: #
5555 done
5556 Bytes transferred = 4106 (100a hex)
5557 => tftp $loadaddr $bootfile
5558 Speed: 1000, full duplex
5559 Using TSEC0 device
5560 TFTP from server 192.168.1.1; our IP address is 192.168.1.2
5561 Filename 'uImage'.
5562 Load address: 0x200000
5563 Loading:############
5564 done
5565 Bytes transferred = 1029407 (fb51f hex)
5566 => print loadaddr
5567 loadaddr=200000
5568 => print oftaddr
5569 oftaddr=0x300000
5570 => bootm $loadaddr - $oftaddr
5571 ## Booting image at 00200000 ...
5572 Image Name: Linux-2.6.17-dirty
5573 Image Type: PowerPC Linux Kernel Image (gzip compressed)
5574 Data Size: 1029343 Bytes = 1005.2 kB
5575 Load Address: 00000000
5576 Entry Point: 00000000
5577 Verifying Checksum ... OK
5578 Uncompressing Kernel Image ... OK
5579 Booting using flat device tree at 0x300000
5580 Using MPC85xx ADS machine description
5581 Memory CAM mapping: CAM0=256Mb, CAM1=256Mb, CAM2=0Mb residual: 0Mb
5582 [snip]
5583
5584
5585 More About U-Boot Image Types:
5586 ------------------------------
5587
5588 U-Boot supports the following image types:
5589
5590 "Standalone Programs" are directly runnable in the environment
5591 provided by U-Boot; it is expected that (if they behave
5592 well) you can continue to work in U-Boot after return from
5593 the Standalone Program.
5594 "OS Kernel Images" are usually images of some Embedded OS which
5595 will take over control completely. Usually these programs
5596 will install their own set of exception handlers, device
5597 drivers, set up the MMU, etc. - this means, that you cannot
5598 expect to re-enter U-Boot except by resetting the CPU.
5599 "RAMDisk Images" are more or less just data blocks, and their
5600 parameters (address, size) are passed to an OS kernel that is
5601 being started.
5602 "Multi-File Images" contain several images, typically an OS
5603 (Linux) kernel image and one or more data images like
5604 RAMDisks. This construct is useful for instance when you want
5605 to boot over the network using BOOTP etc., where the boot
5606 server provides just a single image file, but you want to get
5607 for instance an OS kernel and a RAMDisk image.
5608
5609 "Multi-File Images" start with a list of image sizes, each
5610 image size (in bytes) specified by an "uint32_t" in network
5611 byte order. This list is terminated by an "(uint32_t)0".
5612 Immediately after the terminating 0 follow the images, one by
5613 one, all aligned on "uint32_t" boundaries (size rounded up to
5614 a multiple of 4 bytes).
5615
5616 "Firmware Images" are binary images containing firmware (like
5617 U-Boot or FPGA images) which usually will be programmed to
5618 flash memory.
5619
5620 "Script files" are command sequences that will be executed by
5621 U-Boot's command interpreter; this feature is especially
5622 useful when you configure U-Boot to use a real shell (hush)
5623 as command interpreter.
5624
5625 Booting the Linux zImage:
5626 -------------------------
5627
5628 On some platforms, it's possible to boot Linux zImage. This is done
5629 using the "bootz" command. The syntax of "bootz" command is the same
5630 as the syntax of "bootm" command.
5631
5632 Note, defining the CONFIG_SUPPORT_RAW_INITRD allows user to supply
5633 kernel with raw initrd images. The syntax is slightly different, the
5634 address of the initrd must be augmented by it's size, in the following
5635 format: "<initrd addres>:<initrd size>".
5636
5637
5638 Standalone HOWTO:
5639 =================
5640
5641 One of the features of U-Boot is that you can dynamically load and
5642 run "standalone" applications, which can use some resources of
5643 U-Boot like console I/O functions or interrupt services.
5644
5645 Two simple examples are included with the sources:
5646
5647 "Hello World" Demo:
5648 -------------------
5649
5650 'examples/hello_world.c' contains a small "Hello World" Demo
5651 application; it is automatically compiled when you build U-Boot.
5652 It's configured to run at address 0x00040004, so you can play with it
5653 like that:
5654
5655 => loads
5656 ## Ready for S-Record download ...
5657 ~>examples/hello_world.srec
5658 1 2 3 4 5 6 7 8 9 10 11 ...
5659 [file transfer complete]
5660 [connected]
5661 ## Start Addr = 0x00040004
5662
5663 => go 40004 Hello World! This is a test.
5664 ## Starting application at 0x00040004 ...
5665 Hello World
5666 argc = 7
5667 argv[0] = "40004"
5668 argv[1] = "Hello"
5669 argv[2] = "World!"
5670 argv[3] = "This"
5671 argv[4] = "is"
5672 argv[5] = "a"
5673 argv[6] = "test."
5674 argv[7] = "<NULL>"
5675 Hit any key to exit ...
5676
5677 ## Application terminated, rc = 0x0
5678
5679 Another example, which demonstrates how to register a CPM interrupt
5680 handler with the U-Boot code, can be found in 'examples/timer.c'.
5681 Here, a CPM timer is set up to generate an interrupt every second.
5682 The interrupt service routine is trivial, just printing a '.'
5683 character, but this is just a demo program. The application can be
5684 controlled by the following keys:
5685
5686 ? - print current values og the CPM Timer registers
5687 b - enable interrupts and start timer
5688 e - stop timer and disable interrupts
5689 q - quit application
5690
5691 => loads
5692 ## Ready for S-Record download ...
5693 ~>examples/timer.srec
5694 1 2 3 4 5 6 7 8 9 10 11 ...
5695 [file transfer complete]
5696 [connected]
5697 ## Start Addr = 0x00040004
5698
5699 => go 40004
5700 ## Starting application at 0x00040004 ...
5701 TIMERS=0xfff00980
5702 Using timer 1
5703 tgcr @ 0xfff00980, tmr @ 0xfff00990, trr @ 0xfff00994, tcr @ 0xfff00998, tcn @ 0xfff0099c, ter @ 0xfff009b0
5704
5705 Hit 'b':
5706 [q, b, e, ?] Set interval 1000000 us
5707 Enabling timer
5708 Hit '?':
5709 [q, b, e, ?] ........
5710 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0xef6, ter=0x0
5711 Hit '?':
5712 [q, b, e, ?] .
5713 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x2ad4, ter=0x0
5714 Hit '?':
5715 [q, b, e, ?] .
5716 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x1efc, ter=0x0
5717 Hit '?':
5718 [q, b, e, ?] .
5719 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x169d, ter=0x0
5720 Hit 'e':
5721 [q, b, e, ?] ...Stopping timer
5722 Hit 'q':
5723 [q, b, e, ?] ## Application terminated, rc = 0x0
5724
5725
5726 Minicom warning:
5727 ================
5728
5729 Over time, many people have reported problems when trying to use the
5730 "minicom" terminal emulation program for serial download. I (wd)
5731 consider minicom to be broken, and recommend not to use it. Under
5732 Unix, I recommend to use C-Kermit for general purpose use (and
5733 especially for kermit binary protocol download ("loadb" command), and
5734 use "cu" for S-Record download ("loads" command). See
5735 http://www.denx.de/wiki/view/DULG/SystemSetup#Section_4.3.
5736 for help with kermit.
5737
5738
5739 Nevertheless, if you absolutely want to use it try adding this
5740 configuration to your "File transfer protocols" section:
5741
5742 Name Program Name U/D FullScr IO-Red. Multi
5743 X kermit /usr/bin/kermit -i -l %l -s Y U Y N N
5744 Y kermit /usr/bin/kermit -i -l %l -r N D Y N N
5745
5746
5747 NetBSD Notes:
5748 =============
5749
5750 Starting at version 0.9.2, U-Boot supports NetBSD both as host
5751 (build U-Boot) and target system (boots NetBSD/mpc8xx).
5752
5753 Building requires a cross environment; it is known to work on
5754 NetBSD/i386 with the cross-powerpc-netbsd-1.3 package (you will also
5755 need gmake since the Makefiles are not compatible with BSD make).
5756 Note that the cross-powerpc package does not install include files;
5757 attempting to build U-Boot will fail because <machine/ansi.h> is
5758 missing. This file has to be installed and patched manually:
5759
5760 # cd /usr/pkg/cross/powerpc-netbsd/include
5761 # mkdir powerpc
5762 # ln -s powerpc machine
5763 # cp /usr/src/sys/arch/powerpc/include/ansi.h powerpc/ansi.h
5764 # ${EDIT} powerpc/ansi.h ## must remove __va_list, _BSD_VA_LIST
5765
5766 Native builds *don't* work due to incompatibilities between native
5767 and U-Boot include files.
5768
5769 Booting assumes that (the first part of) the image booted is a
5770 stage-2 loader which in turn loads and then invokes the kernel
5771 proper. Loader sources will eventually appear in the NetBSD source
5772 tree (probably in sys/arc/mpc8xx/stand/u-boot_stage2/); in the
5773 meantime, see ftp://ftp.denx.de/pub/u-boot/ppcboot_stage2.tar.gz
5774
5775
5776 Implementation Internals:
5777 =========================
5778
5779 The following is not intended to be a complete description of every
5780 implementation detail. However, it should help to understand the
5781 inner workings of U-Boot and make it easier to port it to custom
5782 hardware.
5783
5784
5785 Initial Stack, Global Data:
5786 ---------------------------
5787
5788 The implementation of U-Boot is complicated by the fact that U-Boot
5789 starts running out of ROM (flash memory), usually without access to
5790 system RAM (because the memory controller is not initialized yet).
5791 This means that we don't have writable Data or BSS segments, and BSS
5792 is not initialized as zero. To be able to get a C environment working
5793 at all, we have to allocate at least a minimal stack. Implementation
5794 options for this are defined and restricted by the CPU used: Some CPU
5795 models provide on-chip memory (like the IMMR area on MPC8xx and
5796 MPC826x processors), on others (parts of) the data cache can be
5797 locked as (mis-) used as memory, etc.
5798
5799 Chris Hallinan posted a good summary of these issues to the
5800 U-Boot mailing list:
5801
5802 Subject: RE: [U-Boot-Users] RE: More On Memory Bank x (nothingness)?
5803 From: "Chris Hallinan" <clh@net1plus.com>
5804 Date: Mon, 10 Feb 2003 16:43:46 -0500 (22:43 MET)
5805 ...
5806
5807 Correct me if I'm wrong, folks, but the way I understand it
5808 is this: Using DCACHE as initial RAM for Stack, etc, does not
5809 require any physical RAM backing up the cache. The cleverness
5810 is that the cache is being used as a temporary supply of
5811 necessary storage before the SDRAM controller is setup. It's
5812 beyond the scope of this list to explain the details, but you
5813 can see how this works by studying the cache architecture and
5814 operation in the architecture and processor-specific manuals.
5815
5816 OCM is On Chip Memory, which I believe the 405GP has 4K. It
5817 is another option for the system designer to use as an
5818 initial stack/RAM area prior to SDRAM being available. Either
5819 option should work for you. Using CS 4 should be fine if your
5820 board designers haven't used it for something that would
5821 cause you grief during the initial boot! It is frequently not
5822 used.
5823
5824 CONFIG_SYS_INIT_RAM_ADDR should be somewhere that won't interfere
5825 with your processor/board/system design. The default value
5826 you will find in any recent u-boot distribution in
5827 walnut.h should work for you. I'd set it to a value larger
5828 than your SDRAM module. If you have a 64MB SDRAM module, set
5829 it above 400_0000. Just make sure your board has no resources
5830 that are supposed to respond to that address! That code in
5831 start.S has been around a while and should work as is when
5832 you get the config right.
5833
5834 -Chris Hallinan
5835 DS4.COM, Inc.
5836
5837 It is essential to remember this, since it has some impact on the C
5838 code for the initialization procedures:
5839
5840 * Initialized global data (data segment) is read-only. Do not attempt
5841 to write it.
5842
5843 * Do not use any uninitialized global data (or implicitly initialized
5844 as zero data - BSS segment) at all - this is undefined, initiali-
5845 zation is performed later (when relocating to RAM).
5846
5847 * Stack space is very limited. Avoid big data buffers or things like
5848 that.
5849
5850 Having only the stack as writable memory limits means we cannot use
5851 normal global data to share information between the code. But it
5852 turned out that the implementation of U-Boot can be greatly
5853 simplified by making a global data structure (gd_t) available to all
5854 functions. We could pass a pointer to this data as argument to _all_
5855 functions, but this would bloat the code. Instead we use a feature of
5856 the GCC compiler (Global Register Variables) to share the data: we
5857 place a pointer (gd) to the global data into a register which we
5858 reserve for this purpose.
5859
5860 When choosing a register for such a purpose we are restricted by the
5861 relevant (E)ABI specifications for the current architecture, and by
5862 GCC's implementation.
5863
5864 For PowerPC, the following registers have specific use:
5865 R1: stack pointer
5866 R2: reserved for system use
5867 R3-R4: parameter passing and return values
5868 R5-R10: parameter passing
5869 R13: small data area pointer
5870 R30: GOT pointer
5871 R31: frame pointer
5872
5873 (U-Boot also uses R12 as internal GOT pointer. r12
5874 is a volatile register so r12 needs to be reset when
5875 going back and forth between asm and C)
5876
5877 ==> U-Boot will use R2 to hold a pointer to the global data
5878
5879 Note: on PPC, we could use a static initializer (since the
5880 address of the global data structure is known at compile time),
5881 but it turned out that reserving a register results in somewhat
5882 smaller code - although the code savings are not that big (on
5883 average for all boards 752 bytes for the whole U-Boot image,
5884 624 text + 127 data).
5885
5886 On ARM, the following registers are used:
5887
5888 R0: function argument word/integer result
5889 R1-R3: function argument word
5890 R9: platform specific
5891 R10: stack limit (used only if stack checking is enabled)
5892 R11: argument (frame) pointer
5893 R12: temporary workspace
5894 R13: stack pointer
5895 R14: link register
5896 R15: program counter
5897
5898 ==> U-Boot will use R9 to hold a pointer to the global data
5899
5900 Note: on ARM, only R_ARM_RELATIVE relocations are supported.
5901
5902 On Nios II, the ABI is documented here:
5903 http://www.altera.com/literature/hb/nios2/n2cpu_nii51016.pdf
5904
5905 ==> U-Boot will use gp to hold a pointer to the global data
5906
5907 Note: on Nios II, we give "-G0" option to gcc and don't use gp
5908 to access small data sections, so gp is free.
5909
5910 On NDS32, the following registers are used:
5911
5912 R0-R1: argument/return
5913 R2-R5: argument
5914 R15: temporary register for assembler
5915 R16: trampoline register
5916 R28: frame pointer (FP)
5917 R29: global pointer (GP)
5918 R30: link register (LP)
5919 R31: stack pointer (SP)
5920 PC: program counter (PC)
5921
5922 ==> U-Boot will use R10 to hold a pointer to the global data
5923
5924 NOTE: DECLARE_GLOBAL_DATA_PTR must be used with file-global scope,
5925 or current versions of GCC may "optimize" the code too much.
5926
5927 Memory Management:
5928 ------------------
5929
5930 U-Boot runs in system state and uses physical addresses, i.e. the
5931 MMU is not used either for address mapping nor for memory protection.
5932
5933 The available memory is mapped to fixed addresses using the memory
5934 controller. In this process, a contiguous block is formed for each
5935 memory type (Flash, SDRAM, SRAM), even when it consists of several
5936 physical memory banks.
5937
5938 U-Boot is installed in the first 128 kB of the first Flash bank (on
5939 TQM8xxL modules this is the range 0x40000000 ... 0x4001FFFF). After
5940 booting and sizing and initializing DRAM, the code relocates itself
5941 to the upper end of DRAM. Immediately below the U-Boot code some
5942 memory is reserved for use by malloc() [see CONFIG_SYS_MALLOC_LEN
5943 configuration setting]. Below that, a structure with global Board
5944 Info data is placed, followed by the stack (growing downward).
5945
5946 Additionally, some exception handler code is copied to the low 8 kB
5947 of DRAM (0x00000000 ... 0x00001FFF).
5948
5949 So a typical memory configuration with 16 MB of DRAM could look like
5950 this:
5951
5952 0x0000 0000 Exception Vector code
5953 :
5954 0x0000 1FFF
5955 0x0000 2000 Free for Application Use
5956 :
5957 :
5958
5959 :
5960 :
5961 0x00FB FF20 Monitor Stack (Growing downward)
5962 0x00FB FFAC Board Info Data and permanent copy of global data
5963 0x00FC 0000 Malloc Arena
5964 :
5965 0x00FD FFFF
5966 0x00FE 0000 RAM Copy of Monitor Code
5967 ... eventually: LCD or video framebuffer
5968 ... eventually: pRAM (Protected RAM - unchanged by reset)
5969 0x00FF FFFF [End of RAM]
5970
5971
5972 System Initialization:
5973 ----------------------
5974
5975 In the reset configuration, U-Boot starts at the reset entry point
5976 (on most PowerPC systems at address 0x00000100). Because of the reset
5977 configuration for CS0# this is a mirror of the on board Flash memory.
5978 To be able to re-map memory U-Boot then jumps to its link address.
5979 To be able to implement the initialization code in C, a (small!)
5980 initial stack is set up in the internal Dual Ported RAM (in case CPUs
5981 which provide such a feature like MPC8xx or MPC8260), or in a locked
5982 part of the data cache. After that, U-Boot initializes the CPU core,
5983 the caches and the SIU.
5984
5985 Next, all (potentially) available memory banks are mapped using a
5986 preliminary mapping. For example, we put them on 512 MB boundaries
5987 (multiples of 0x20000000: SDRAM on 0x00000000 and 0x20000000, Flash
5988 on 0x40000000 and 0x60000000, SRAM on 0x80000000). Then UPM A is
5989 programmed for SDRAM access. Using the temporary configuration, a
5990 simple memory test is run that determines the size of the SDRAM
5991 banks.
5992
5993 When there is more than one SDRAM bank, and the banks are of
5994 different size, the largest is mapped first. For equal size, the first
5995 bank (CS2#) is mapped first. The first mapping is always for address
5996 0x00000000, with any additional banks following immediately to create
5997 contiguous memory starting from 0.
5998
5999 Then, the monitor installs itself at the upper end of the SDRAM area
6000 and allocates memory for use by malloc() and for the global Board
6001 Info data; also, the exception vector code is copied to the low RAM
6002 pages, and the final stack is set up.
6003
6004 Only after this relocation will you have a "normal" C environment;
6005 until that you are restricted in several ways, mostly because you are
6006 running from ROM, and because the code will have to be relocated to a
6007 new address in RAM.
6008
6009
6010 U-Boot Porting Guide:
6011 ----------------------
6012
6013 [Based on messages by Jerry Van Baren in the U-Boot-Users mailing
6014 list, October 2002]
6015
6016
6017 int main(int argc, char *argv[])
6018 {
6019 sighandler_t no_more_time;
6020
6021 signal(SIGALRM, no_more_time);
6022 alarm(PROJECT_DEADLINE - toSec (3 * WEEK));
6023
6024 if (available_money > available_manpower) {
6025 Pay consultant to port U-Boot;
6026 return 0;
6027 }
6028
6029 Download latest U-Boot source;
6030
6031 Subscribe to u-boot mailing list;
6032
6033 if (clueless)
6034 email("Hi, I am new to U-Boot, how do I get started?");
6035
6036 while (learning) {
6037 Read the README file in the top level directory;
6038 Read http://www.denx.de/twiki/bin/view/DULG/Manual;
6039 Read applicable doc/*.README;
6040 Read the source, Luke;
6041 /* find . -name "*.[chS]" | xargs grep -i <keyword> */
6042 }
6043
6044 if (available_money > toLocalCurrency ($2500))
6045 Buy a BDI3000;
6046 else
6047 Add a lot of aggravation and time;
6048
6049 if (a similar board exists) { /* hopefully... */
6050 cp -a board/<similar> board/<myboard>
6051 cp include/configs/<similar>.h include/configs/<myboard>.h
6052 } else {
6053 Create your own board support subdirectory;
6054 Create your own board include/configs/<myboard>.h file;
6055 }
6056 Edit new board/<myboard> files
6057 Edit new include/configs/<myboard>.h
6058
6059 while (!accepted) {
6060 while (!running) {
6061 do {
6062 Add / modify source code;
6063 } until (compiles);
6064 Debug;
6065 if (clueless)
6066 email("Hi, I am having problems...");
6067 }
6068 Send patch file to the U-Boot email list;
6069 if (reasonable critiques)
6070 Incorporate improvements from email list code review;
6071 else
6072 Defend code as written;
6073 }
6074
6075 return 0;
6076 }
6077
6078 void no_more_time (int sig)
6079 {
6080 hire_a_guru();
6081 }
6082
6083
6084 Coding Standards:
6085 -----------------
6086
6087 All contributions to U-Boot should conform to the Linux kernel
6088 coding style; see the file "Documentation/CodingStyle" and the script
6089 "scripts/Lindent" in your Linux kernel source directory.
6090
6091 Source files originating from a different project (for example the
6092 MTD subsystem) are generally exempt from these guidelines and are not
6093 reformatted to ease subsequent migration to newer versions of those
6094 sources.
6095
6096 Please note that U-Boot is implemented in C (and to some small parts in
6097 Assembler); no C++ is used, so please do not use C++ style comments (//)
6098 in your code.
6099
6100 Please also stick to the following formatting rules:
6101 - remove any trailing white space
6102 - use TAB characters for indentation and vertical alignment, not spaces
6103 - make sure NOT to use DOS '\r\n' line feeds
6104 - do not add more than 2 consecutive empty lines to source files
6105 - do not add trailing empty lines to source files
6106
6107 Submissions which do not conform to the standards may be returned
6108 with a request to reformat the changes.
6109
6110
6111 Submitting Patches:
6112 -------------------
6113
6114 Since the number of patches for U-Boot is growing, we need to
6115 establish some rules. Submissions which do not conform to these rules
6116 may be rejected, even when they contain important and valuable stuff.
6117
6118 Please see http://www.denx.de/wiki/U-Boot/Patches for details.
6119
6120 Patches shall be sent to the u-boot mailing list <u-boot@lists.denx.de>;
6121 see http://lists.denx.de/mailman/listinfo/u-boot
6122
6123 When you send a patch, please include the following information with
6124 it:
6125
6126 * For bug fixes: a description of the bug and how your patch fixes
6127 this bug. Please try to include a way of demonstrating that the
6128 patch actually fixes something.
6129
6130 * For new features: a description of the feature and your
6131 implementation.
6132
6133 * A CHANGELOG entry as plaintext (separate from the patch)
6134
6135 * For major contributions, add a MAINTAINERS file with your
6136 information and associated file and directory references.
6137
6138 * When you add support for a new board, don't forget to add a
6139 maintainer e-mail address to the boards.cfg file, too.
6140
6141 * If your patch adds new configuration options, don't forget to
6142 document these in the README file.
6143
6144 * The patch itself. If you are using git (which is *strongly*
6145 recommended) you can easily generate the patch using the
6146 "git format-patch". If you then use "git send-email" to send it to
6147 the U-Boot mailing list, you will avoid most of the common problems
6148 with some other mail clients.
6149
6150 If you cannot use git, use "diff -purN OLD NEW". If your version of
6151 diff does not support these options, then get the latest version of
6152 GNU diff.
6153
6154 The current directory when running this command shall be the parent
6155 directory of the U-Boot source tree (i. e. please make sure that
6156 your patch includes sufficient directory information for the
6157 affected files).
6158
6159 We prefer patches as plain text. MIME attachments are discouraged,
6160 and compressed attachments must not be used.
6161
6162 * If one logical set of modifications affects or creates several
6163 files, all these changes shall be submitted in a SINGLE patch file.
6164
6165 * Changesets that contain different, unrelated modifications shall be
6166 submitted as SEPARATE patches, one patch per changeset.
6167
6168
6169 Notes:
6170
6171 * Before sending the patch, run the buildman script on your patched
6172 source tree and make sure that no errors or warnings are reported
6173 for any of the boards.
6174
6175 * Keep your modifications to the necessary minimum: A patch
6176 containing several unrelated changes or arbitrary reformats will be
6177 returned with a request to re-formatting / split it.
6178
6179 * If you modify existing code, make sure that your new code does not
6180 add to the memory footprint of the code ;-) Small is beautiful!
6181 When adding new features, these should compile conditionally only
6182 (using #ifdef), and the resulting code with the new feature
6183 disabled must not need more memory than the old code without your
6184 modification.
6185
6186 * Remember that there is a size limit of 100 kB per message on the
6187 u-boot mailing list. Bigger patches will be moderated. If they are
6188 reasonable and not too big, they will be acknowledged. But patches
6189 bigger than the size limit should be avoided.