]> git.ipfire.org Git - people/ms/u-boot.git/blob - arch/arm/cpu/arm720t/tegra-common/cpu.c
Tegra114: Do not program CPCON field for PLLX
[people/ms/u-boot.git] / arch / arm / cpu / arm720t / tegra-common / cpu.c
1 /*
2 * Copyright (c) 2010-2012, NVIDIA CORPORATION. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 */
16
17 #include <common.h>
18 #include <asm/io.h>
19 #include <asm/arch/clock.h>
20 #include <asm/arch/gp_padctrl.h>
21 #include <asm/arch/pinmux.h>
22 #include <asm/arch/tegra.h>
23 #include <asm/arch-tegra/clk_rst.h>
24 #include <asm/arch-tegra/pmc.h>
25 #include <asm/arch-tegra/scu.h>
26 #include "cpu.h"
27
28 int get_num_cpus(void)
29 {
30 struct apb_misc_gp_ctlr *gp;
31 uint rev;
32
33 gp = (struct apb_misc_gp_ctlr *)NV_PA_APB_MISC_GP_BASE;
34 rev = (readl(&gp->hidrev) & HIDREV_CHIPID_MASK) >> HIDREV_CHIPID_SHIFT;
35
36 switch (rev) {
37 case CHIPID_TEGRA20:
38 return 2;
39 break;
40 case CHIPID_TEGRA30:
41 case CHIPID_TEGRA114:
42 default:
43 return 4;
44 break;
45 }
46 }
47
48 /*
49 * Timing tables for each SOC for all four oscillator options.
50 */
51 struct clk_pll_table tegra_pll_x_table[TEGRA_SOC_CNT][CLOCK_OSC_FREQ_COUNT] = {
52 /*
53 * T20: 1 GHz
54 *
55 * Register Field Bits Width
56 * ------------------------------
57 * PLLX_BASE p 22:20 3
58 * PLLX_BASE n 17: 8 10
59 * PLLX_BASE m 4: 0 5
60 * PLLX_MISC cpcon 11: 8 4
61 */
62 {
63 { .n = 1000, .m = 13, .p = 0, .cpcon = 12 }, /* OSC: 13.0 MHz */
64 { .n = 625, .m = 12, .p = 0, .cpcon = 8 }, /* OSC: 19.2 MHz */
65 { .n = 1000, .m = 12, .p = 0, .cpcon = 12 }, /* OSC: 12.0 MHz */
66 { .n = 1000, .m = 26, .p = 0, .cpcon = 12 }, /* OSC: 26.0 MHz */
67 },
68 /*
69 * T25: 1.2 GHz
70 *
71 * Register Field Bits Width
72 * ------------------------------
73 * PLLX_BASE p 22:20 3
74 * PLLX_BASE n 17: 8 10
75 * PLLX_BASE m 4: 0 5
76 * PLLX_MISC cpcon 11: 8 4
77 */
78 {
79 { .n = 923, .m = 10, .p = 0, .cpcon = 12 }, /* OSC: 13.0 MHz */
80 { .n = 750, .m = 12, .p = 0, .cpcon = 8 }, /* OSC: 19.2 MHz */
81 { .n = 600, .m = 6, .p = 0, .cpcon = 12 }, /* OSC: 12.0 MHz */
82 { .n = 600, .m = 13, .p = 0, .cpcon = 12 }, /* OSC: 26.0 MHz */
83 },
84 /*
85 * T30: 1.4 GHz
86 *
87 * Register Field Bits Width
88 * ------------------------------
89 * PLLX_BASE p 22:20 3
90 * PLLX_BASE n 17: 8 10
91 * PLLX_BASE m 4: 0 5
92 * PLLX_MISC cpcon 11: 8 4
93 */
94 {
95 { .n = 862, .m = 8, .p = 0, .cpcon = 8 }, /* OSC: 13.0 MHz */
96 { .n = 583, .m = 8, .p = 0, .cpcon = 4 }, /* OSC: 19.2 MHz */
97 { .n = 700, .m = 6, .p = 0, .cpcon = 8 }, /* OSC: 12.0 MHz */
98 { .n = 700, .m = 13, .p = 0, .cpcon = 8 }, /* OSC: 26.0 MHz */
99 },
100 /*
101 * T114: 700 MHz
102 *
103 * Register Field Bits Width
104 * ------------------------------
105 * PLLX_BASE p 23:20 4
106 * PLLX_BASE n 15: 8 8
107 * PLLX_BASE m 7: 0 8
108 */
109 {
110 { .n = 108, .m = 1, .p = 1 }, /* OSC: 13.0 MHz */
111 { .n = 73, .m = 1, .p = 1 }, /* OSC: 19.2 MHz */
112 { .n = 116, .m = 1, .p = 1 }, /* OSC: 12.0 MHz */
113 { .n = 108, .m = 2, .p = 1 }, /* OSC: 26.0 MHz */
114 },
115 };
116
117 void adjust_pllp_out_freqs(void)
118 {
119 struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
120 struct clk_pll *pll = &clkrst->crc_pll[CLOCK_ID_PERIPH];
121 u32 reg;
122
123 /* Set T30 PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */
124 reg = readl(&pll->pll_out[0]); /* OUTA, contains OUT2 / OUT1 */
125 reg |= (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO) | PLLP_OUT2_OVR
126 | (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO) | PLLP_OUT1_OVR;
127 writel(reg, &pll->pll_out[0]);
128
129 reg = readl(&pll->pll_out[1]); /* OUTB, contains OUT4 / OUT3 */
130 reg |= (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO) | PLLP_OUT4_OVR
131 | (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO) | PLLP_OUT3_OVR;
132 writel(reg, &pll->pll_out[1]);
133 }
134
135 int pllx_set_rate(struct clk_pll_simple *pll , u32 divn, u32 divm,
136 u32 divp, u32 cpcon)
137 {
138 int chip = tegra_get_chip();
139 u32 reg;
140
141 /* If PLLX is already enabled, just return */
142 if (readl(&pll->pll_base) & PLL_ENABLE_MASK) {
143 debug("pllx_set_rate: PLLX already enabled, returning\n");
144 return 0;
145 }
146
147 debug(" pllx_set_rate entry\n");
148
149 /* Set BYPASS, m, n and p to PLLX_BASE */
150 reg = PLL_BYPASS_MASK | (divm << PLL_DIVM_SHIFT);
151 reg |= ((divn << PLL_DIVN_SHIFT) | (divp << PLL_DIVP_SHIFT));
152 writel(reg, &pll->pll_base);
153
154 /* Set cpcon to PLLX_MISC */
155 if (chip == CHIPID_TEGRA20 || chip == CHIPID_TEGRA30)
156 reg = (cpcon << PLL_CPCON_SHIFT);
157 else
158 reg = 0;
159
160 /* Set dccon to PLLX_MISC if freq > 600MHz */
161 if (divn > 600)
162 reg |= (1 << PLL_DCCON_SHIFT);
163 writel(reg, &pll->pll_misc);
164
165 /* Enable PLLX */
166 reg = readl(&pll->pll_base);
167 reg |= PLL_ENABLE_MASK;
168
169 /* Disable BYPASS */
170 reg &= ~PLL_BYPASS_MASK;
171 writel(reg, &pll->pll_base);
172
173 /* Set lock_enable to PLLX_MISC */
174 reg = readl(&pll->pll_misc);
175 reg |= PLL_LOCK_ENABLE_MASK;
176 writel(reg, &pll->pll_misc);
177
178 return 0;
179 }
180
181 void init_pllx(void)
182 {
183 struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
184 struct clk_pll_simple *pll = &clkrst->crc_pll_simple[SIMPLE_PLLX];
185 int soc_type, sku_info, chip_sku;
186 enum clock_osc_freq osc;
187 struct clk_pll_table *sel;
188
189 debug("init_pllx entry\n");
190
191 /* get SOC (chip) type */
192 soc_type = tegra_get_chip();
193 debug(" init_pllx: SoC = 0x%02X\n", soc_type);
194
195 /* get SKU info */
196 sku_info = tegra_get_sku_info();
197 debug(" init_pllx: SKU info byte = 0x%02X\n", sku_info);
198
199 /* get chip SKU, combo of the above info */
200 chip_sku = tegra_get_chip_sku();
201 debug(" init_pllx: Chip SKU = %d\n", chip_sku);
202
203 /* get osc freq */
204 osc = clock_get_osc_freq();
205 debug(" init_pllx: osc = %d\n", osc);
206
207 /* set pllx */
208 sel = &tegra_pll_x_table[chip_sku][osc];
209 pllx_set_rate(pll, sel->n, sel->m, sel->p, sel->cpcon);
210
211 /* adjust PLLP_out1-4 on T3x/T114 */
212 if (soc_type >= CHIPID_TEGRA30) {
213 debug(" init_pllx: adjusting PLLP out freqs\n");
214 adjust_pllp_out_freqs();
215 }
216 }
217
218 void enable_cpu_clock(int enable)
219 {
220 struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
221 u32 clk;
222
223 /*
224 * NOTE:
225 * Regardless of whether the request is to enable or disable the CPU
226 * clock, every processor in the CPU complex except the master (CPU 0)
227 * will have it's clock stopped because the AVP only talks to the
228 * master.
229 */
230
231 if (enable) {
232 /* Initialize PLLX */
233 init_pllx();
234
235 /* Wait until all clocks are stable */
236 udelay(PLL_STABILIZATION_DELAY);
237
238 writel(CCLK_BURST_POLICY, &clkrst->crc_cclk_brst_pol);
239 writel(SUPER_CCLK_DIVIDER, &clkrst->crc_super_cclk_div);
240 }
241
242 /*
243 * Read the register containing the individual CPU clock enables and
244 * always stop the clocks to CPUs > 0.
245 */
246 clk = readl(&clkrst->crc_clk_cpu_cmplx);
247 clk |= 1 << CPU1_CLK_STP_SHIFT;
248 if (get_num_cpus() == 4)
249 clk |= (1 << CPU2_CLK_STP_SHIFT) + (1 << CPU3_CLK_STP_SHIFT);
250
251 /* Stop/Unstop the CPU clock */
252 clk &= ~CPU0_CLK_STP_MASK;
253 clk |= !enable << CPU0_CLK_STP_SHIFT;
254 writel(clk, &clkrst->crc_clk_cpu_cmplx);
255
256 clock_enable(PERIPH_ID_CPU);
257 }
258
259 static int is_cpu_powered(void)
260 {
261 struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
262
263 return (readl(&pmc->pmc_pwrgate_status) & CPU_PWRED) ? 1 : 0;
264 }
265
266 static void remove_cpu_io_clamps(void)
267 {
268 struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
269 u32 reg;
270
271 /* Remove the clamps on the CPU I/O signals */
272 reg = readl(&pmc->pmc_remove_clamping);
273 reg |= CPU_CLMP;
274 writel(reg, &pmc->pmc_remove_clamping);
275
276 /* Give I/O signals time to stabilize */
277 udelay(IO_STABILIZATION_DELAY);
278 }
279
280 void powerup_cpu(void)
281 {
282 struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
283 u32 reg;
284 int timeout = IO_STABILIZATION_DELAY;
285
286 if (!is_cpu_powered()) {
287 /* Toggle the CPU power state (OFF -> ON) */
288 reg = readl(&pmc->pmc_pwrgate_toggle);
289 reg &= PARTID_CP;
290 reg |= START_CP;
291 writel(reg, &pmc->pmc_pwrgate_toggle);
292
293 /* Wait for the power to come up */
294 while (!is_cpu_powered()) {
295 if (timeout-- == 0)
296 printf("CPU failed to power up!\n");
297 else
298 udelay(10);
299 }
300
301 /*
302 * Remove the I/O clamps from CPU power partition.
303 * Recommended only on a Warm boot, if the CPU partition gets
304 * power gated. Shouldn't cause any harm when called after a
305 * cold boot according to HW, probably just redundant.
306 */
307 remove_cpu_io_clamps();
308 }
309 }
310
311 void reset_A9_cpu(int reset)
312 {
313 /*
314 * NOTE: Regardless of whether the request is to hold the CPU in reset
315 * or take it out of reset, every processor in the CPU complex
316 * except the master (CPU 0) will be held in reset because the
317 * AVP only talks to the master. The AVP does not know that there
318 * are multiple processors in the CPU complex.
319 */
320 int mask = crc_rst_cpu | crc_rst_de | crc_rst_debug;
321 int num_cpus = get_num_cpus();
322 int cpu;
323
324 debug("reset_a9_cpu entry\n");
325 /* Hold CPUs 1 onwards in reset, and CPU 0 if asked */
326 for (cpu = 1; cpu < num_cpus; cpu++)
327 reset_cmplx_set_enable(cpu, mask, 1);
328 reset_cmplx_set_enable(0, mask, reset);
329
330 /* Enable/Disable master CPU reset */
331 reset_set_enable(PERIPH_ID_CPU, reset);
332 }
333
334 void clock_enable_coresight(int enable)
335 {
336 u32 rst, src = 2;
337 int soc_type;
338
339 debug("clock_enable_coresight entry\n");
340 clock_set_enable(PERIPH_ID_CORESIGHT, enable);
341 reset_set_enable(PERIPH_ID_CORESIGHT, !enable);
342
343 if (enable) {
344 /*
345 * Put CoreSight on PLLP_OUT0 and divide it down as per
346 * PLLP base frequency based on SoC type (T20/T30/T114).
347 * Clock divider request would setup CSITE clock as 144MHz
348 * for PLLP base 216MHz and 204MHz for PLLP base 408MHz
349 */
350
351 soc_type = tegra_get_chip();
352 if (soc_type == CHIPID_TEGRA30 || soc_type == CHIPID_TEGRA114)
353 src = CLK_DIVIDER(NVBL_PLLP_KHZ, 204000);
354 else if (soc_type == CHIPID_TEGRA20)
355 src = CLK_DIVIDER(NVBL_PLLP_KHZ, 144000);
356 else
357 printf("%s: Unknown SoC type %X!\n",
358 __func__, soc_type);
359
360 clock_ll_set_source_divisor(PERIPH_ID_CSI, 0, src);
361
362 /* Unlock the CPU CoreSight interfaces */
363 rst = CORESIGHT_UNLOCK;
364 writel(rst, CSITE_CPU_DBG0_LAR);
365 writel(rst, CSITE_CPU_DBG1_LAR);
366 if (get_num_cpus() == 4) {
367 writel(rst, CSITE_CPU_DBG2_LAR);
368 writel(rst, CSITE_CPU_DBG3_LAR);
369 }
370 }
371 }
372
373 void halt_avp(void)
374 {
375 for (;;) {
376 writel((HALT_COP_EVENT_JTAG | HALT_COP_EVENT_IRQ_1 \
377 | HALT_COP_EVENT_FIQ_1 | (FLOW_MODE_STOP<<29)),
378 FLOW_CTLR_HALT_COP_EVENTS);
379 }
380 }