]> git.ipfire.org Git - people/ms/u-boot.git/blob - arch/arm/cpu/arm926ejs/mxs/clock.c
Add GPL-2.0+ SPDX-License-Identifier to source files
[people/ms/u-boot.git] / arch / arm / cpu / arm926ejs / mxs / clock.c
1 /*
2 * Freescale i.MX23/i.MX28 clock setup code
3 *
4 * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
5 * on behalf of DENX Software Engineering GmbH
6 *
7 * Based on code from LTIB:
8 * Copyright (C) 2010 Freescale Semiconductor, Inc.
9 *
10 * SPDX-License-Identifier: GPL-2.0+
11 */
12
13 #include <common.h>
14 #include <asm/errno.h>
15 #include <asm/io.h>
16 #include <asm/arch/clock.h>
17 #include <asm/arch/imx-regs.h>
18
19 /*
20 * The PLL frequency is 480MHz and XTAL frequency is 24MHz
21 * iMX23: datasheet section 4.2
22 * iMX28: datasheet section 10.2
23 */
24 #define PLL_FREQ_KHZ 480000
25 #define PLL_FREQ_COEF 18
26 #define XTAL_FREQ_KHZ 24000
27
28 #define PLL_FREQ_MHZ (PLL_FREQ_KHZ / 1000)
29 #define XTAL_FREQ_MHZ (XTAL_FREQ_KHZ / 1000)
30
31 #if defined(CONFIG_MX23)
32 #define MXC_SSPCLK_MAX MXC_SSPCLK0
33 #elif defined(CONFIG_MX28)
34 #define MXC_SSPCLK_MAX MXC_SSPCLK3
35 #endif
36
37 static uint32_t mxs_get_pclk(void)
38 {
39 struct mxs_clkctrl_regs *clkctrl_regs =
40 (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
41
42 uint32_t clkctrl, clkseq, div;
43 uint8_t clkfrac, frac;
44
45 clkctrl = readl(&clkctrl_regs->hw_clkctrl_cpu);
46
47 /* No support of fractional divider calculation */
48 if (clkctrl &
49 (CLKCTRL_CPU_DIV_XTAL_FRAC_EN | CLKCTRL_CPU_DIV_CPU_FRAC_EN)) {
50 return 0;
51 }
52
53 clkseq = readl(&clkctrl_regs->hw_clkctrl_clkseq);
54
55 /* XTAL Path */
56 if (clkseq & CLKCTRL_CLKSEQ_BYPASS_CPU) {
57 div = (clkctrl & CLKCTRL_CPU_DIV_XTAL_MASK) >>
58 CLKCTRL_CPU_DIV_XTAL_OFFSET;
59 return XTAL_FREQ_MHZ / div;
60 }
61
62 /* REF Path */
63 clkfrac = readb(&clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_CPU]);
64 frac = clkfrac & CLKCTRL_FRAC_FRAC_MASK;
65 div = clkctrl & CLKCTRL_CPU_DIV_CPU_MASK;
66 return (PLL_FREQ_MHZ * PLL_FREQ_COEF / frac) / div;
67 }
68
69 static uint32_t mxs_get_hclk(void)
70 {
71 struct mxs_clkctrl_regs *clkctrl_regs =
72 (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
73
74 uint32_t div;
75 uint32_t clkctrl;
76
77 clkctrl = readl(&clkctrl_regs->hw_clkctrl_hbus);
78
79 /* No support of fractional divider calculation */
80 if (clkctrl & CLKCTRL_HBUS_DIV_FRAC_EN)
81 return 0;
82
83 div = clkctrl & CLKCTRL_HBUS_DIV_MASK;
84 return mxs_get_pclk() / div;
85 }
86
87 static uint32_t mxs_get_emiclk(void)
88 {
89 struct mxs_clkctrl_regs *clkctrl_regs =
90 (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
91
92 uint32_t clkctrl, clkseq, div;
93 uint8_t clkfrac, frac;
94
95 clkseq = readl(&clkctrl_regs->hw_clkctrl_clkseq);
96 clkctrl = readl(&clkctrl_regs->hw_clkctrl_emi);
97
98 /* XTAL Path */
99 if (clkseq & CLKCTRL_CLKSEQ_BYPASS_EMI) {
100 div = (clkctrl & CLKCTRL_EMI_DIV_XTAL_MASK) >>
101 CLKCTRL_EMI_DIV_XTAL_OFFSET;
102 return XTAL_FREQ_MHZ / div;
103 }
104
105 /* REF Path */
106 clkfrac = readb(&clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_EMI]);
107 frac = clkfrac & CLKCTRL_FRAC_FRAC_MASK;
108 div = clkctrl & CLKCTRL_EMI_DIV_EMI_MASK;
109 return (PLL_FREQ_MHZ * PLL_FREQ_COEF / frac) / div;
110 }
111
112 static uint32_t mxs_get_gpmiclk(void)
113 {
114 struct mxs_clkctrl_regs *clkctrl_regs =
115 (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
116 #if defined(CONFIG_MX23)
117 uint8_t *reg =
118 &clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_CPU];
119 #elif defined(CONFIG_MX28)
120 uint8_t *reg =
121 &clkctrl_regs->hw_clkctrl_frac1[CLKCTRL_FRAC1_GPMI];
122 #endif
123 uint32_t clkctrl, clkseq, div;
124 uint8_t clkfrac, frac;
125
126 clkseq = readl(&clkctrl_regs->hw_clkctrl_clkseq);
127 clkctrl = readl(&clkctrl_regs->hw_clkctrl_gpmi);
128
129 /* XTAL Path */
130 if (clkseq & CLKCTRL_CLKSEQ_BYPASS_GPMI) {
131 div = clkctrl & CLKCTRL_GPMI_DIV_MASK;
132 return XTAL_FREQ_MHZ / div;
133 }
134
135 /* REF Path */
136 clkfrac = readb(reg);
137 frac = clkfrac & CLKCTRL_FRAC_FRAC_MASK;
138 div = clkctrl & CLKCTRL_GPMI_DIV_MASK;
139 return (PLL_FREQ_MHZ * PLL_FREQ_COEF / frac) / div;
140 }
141
142 /*
143 * Set IO clock frequency, in kHz
144 */
145 void mxs_set_ioclk(enum mxs_ioclock io, uint32_t freq)
146 {
147 struct mxs_clkctrl_regs *clkctrl_regs =
148 (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
149 uint32_t div;
150 int io_reg;
151
152 if (freq == 0)
153 return;
154
155 if ((io < MXC_IOCLK0) || (io > MXC_IOCLK1))
156 return;
157
158 div = (PLL_FREQ_KHZ * PLL_FREQ_COEF) / freq;
159
160 if (div < 18)
161 div = 18;
162
163 if (div > 35)
164 div = 35;
165
166 io_reg = CLKCTRL_FRAC0_IO0 - io; /* Register order is reversed */
167 writeb(CLKCTRL_FRAC_CLKGATE,
168 &clkctrl_regs->hw_clkctrl_frac0_set[io_reg]);
169 writeb(CLKCTRL_FRAC_CLKGATE | (div & CLKCTRL_FRAC_FRAC_MASK),
170 &clkctrl_regs->hw_clkctrl_frac0[io_reg]);
171 writeb(CLKCTRL_FRAC_CLKGATE,
172 &clkctrl_regs->hw_clkctrl_frac0_clr[io_reg]);
173 }
174
175 /*
176 * Get IO clock, returns IO clock in kHz
177 */
178 static uint32_t mxs_get_ioclk(enum mxs_ioclock io)
179 {
180 struct mxs_clkctrl_regs *clkctrl_regs =
181 (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
182 uint8_t ret;
183 int io_reg;
184
185 if ((io < MXC_IOCLK0) || (io > MXC_IOCLK1))
186 return 0;
187
188 io_reg = CLKCTRL_FRAC0_IO0 - io; /* Register order is reversed */
189
190 ret = readb(&clkctrl_regs->hw_clkctrl_frac0[io_reg]) &
191 CLKCTRL_FRAC_FRAC_MASK;
192
193 return (PLL_FREQ_KHZ * PLL_FREQ_COEF) / ret;
194 }
195
196 /*
197 * Configure SSP clock frequency, in kHz
198 */
199 void mxs_set_sspclk(enum mxs_sspclock ssp, uint32_t freq, int xtal)
200 {
201 struct mxs_clkctrl_regs *clkctrl_regs =
202 (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
203 uint32_t clk, clkreg;
204
205 if (ssp > MXC_SSPCLK_MAX)
206 return;
207
208 clkreg = (uint32_t)(&clkctrl_regs->hw_clkctrl_ssp0) +
209 (ssp * sizeof(struct mxs_register_32));
210
211 clrbits_le32(clkreg, CLKCTRL_SSP_CLKGATE);
212 while (readl(clkreg) & CLKCTRL_SSP_CLKGATE)
213 ;
214
215 if (xtal)
216 clk = XTAL_FREQ_KHZ;
217 else
218 clk = mxs_get_ioclk(ssp >> 1);
219
220 if (freq > clk)
221 return;
222
223 /* Calculate the divider and cap it if necessary */
224 clk /= freq;
225 if (clk > CLKCTRL_SSP_DIV_MASK)
226 clk = CLKCTRL_SSP_DIV_MASK;
227
228 clrsetbits_le32(clkreg, CLKCTRL_SSP_DIV_MASK, clk);
229 while (readl(clkreg) & CLKCTRL_SSP_BUSY)
230 ;
231
232 if (xtal)
233 writel(CLKCTRL_CLKSEQ_BYPASS_SSP0 << ssp,
234 &clkctrl_regs->hw_clkctrl_clkseq_set);
235 else
236 writel(CLKCTRL_CLKSEQ_BYPASS_SSP0 << ssp,
237 &clkctrl_regs->hw_clkctrl_clkseq_clr);
238 }
239
240 /*
241 * Return SSP frequency, in kHz
242 */
243 static uint32_t mxs_get_sspclk(enum mxs_sspclock ssp)
244 {
245 struct mxs_clkctrl_regs *clkctrl_regs =
246 (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
247 uint32_t clkreg;
248 uint32_t clk, tmp;
249
250 if (ssp > MXC_SSPCLK_MAX)
251 return 0;
252
253 tmp = readl(&clkctrl_regs->hw_clkctrl_clkseq);
254 if (tmp & (CLKCTRL_CLKSEQ_BYPASS_SSP0 << ssp))
255 return XTAL_FREQ_KHZ;
256
257 clkreg = (uint32_t)(&clkctrl_regs->hw_clkctrl_ssp0) +
258 (ssp * sizeof(struct mxs_register_32));
259
260 tmp = readl(clkreg) & CLKCTRL_SSP_DIV_MASK;
261
262 if (tmp == 0)
263 return 0;
264
265 clk = mxs_get_ioclk(ssp >> 1);
266
267 return clk / tmp;
268 }
269
270 /*
271 * Set SSP/MMC bus frequency, in kHz)
272 */
273 void mxs_set_ssp_busclock(unsigned int bus, uint32_t freq)
274 {
275 struct mxs_ssp_regs *ssp_regs;
276 const enum mxs_sspclock clk = mxs_ssp_clock_by_bus(bus);
277 const uint32_t sspclk = mxs_get_sspclk(clk);
278 uint32_t reg;
279 uint32_t divide, rate, tgtclk;
280
281 ssp_regs = mxs_ssp_regs_by_bus(bus);
282
283 /*
284 * SSP bit rate = SSPCLK / (CLOCK_DIVIDE * (1 + CLOCK_RATE)),
285 * CLOCK_DIVIDE has to be an even value from 2 to 254, and
286 * CLOCK_RATE could be any integer from 0 to 255.
287 */
288 for (divide = 2; divide < 254; divide += 2) {
289 rate = sspclk / freq / divide;
290 if (rate <= 256)
291 break;
292 }
293
294 tgtclk = sspclk / divide / rate;
295 while (tgtclk > freq) {
296 rate++;
297 tgtclk = sspclk / divide / rate;
298 }
299 if (rate > 256)
300 rate = 256;
301
302 /* Always set timeout the maximum */
303 reg = SSP_TIMING_TIMEOUT_MASK |
304 (divide << SSP_TIMING_CLOCK_DIVIDE_OFFSET) |
305 ((rate - 1) << SSP_TIMING_CLOCK_RATE_OFFSET);
306 writel(reg, &ssp_regs->hw_ssp_timing);
307
308 debug("SPI%d: Set freq rate to %d KHz (requested %d KHz)\n",
309 bus, tgtclk, freq);
310 }
311
312 void mxs_set_lcdclk(uint32_t freq)
313 {
314 struct mxs_clkctrl_regs *clkctrl_regs =
315 (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;
316 uint32_t fp, x, k_rest, k_best, x_best, tk;
317 int32_t k_best_l = 999, k_best_t = 0, x_best_l = 0xff, x_best_t = 0xff;
318
319 if (freq == 0)
320 return;
321
322 #if defined(CONFIG_MX23)
323 writel(CLKCTRL_CLKSEQ_BYPASS_PIX, &clkctrl_regs->hw_clkctrl_clkseq_clr);
324 #elif defined(CONFIG_MX28)
325 writel(CLKCTRL_CLKSEQ_BYPASS_DIS_LCDIF, &clkctrl_regs->hw_clkctrl_clkseq_clr);
326 #endif
327
328 /*
329 * / 18 \ 1 1
330 * freq kHz = | 480000000 Hz * -- | * --- * ------
331 * \ x / k 1000
332 *
333 * 480000000 Hz 18
334 * ------------ * --
335 * freq kHz x
336 * k = -------------------
337 * 1000
338 */
339
340 fp = ((PLL_FREQ_KHZ * 1000) / freq) * 18;
341
342 for (x = 18; x <= 35; x++) {
343 tk = fp / x;
344 if ((tk / 1000 == 0) || (tk / 1000 > 255))
345 continue;
346
347 k_rest = tk % 1000;
348
349 if (k_rest < (k_best_l % 1000)) {
350 k_best_l = tk;
351 x_best_l = x;
352 }
353
354 if (k_rest > (k_best_t % 1000)) {
355 k_best_t = tk;
356 x_best_t = x;
357 }
358 }
359
360 if (1000 - (k_best_t % 1000) > (k_best_l % 1000)) {
361 k_best = k_best_l;
362 x_best = x_best_l;
363 } else {
364 k_best = k_best_t;
365 x_best = x_best_t;
366 }
367
368 k_best /= 1000;
369
370 #if defined(CONFIG_MX23)
371 writeb(CLKCTRL_FRAC_CLKGATE,
372 &clkctrl_regs->hw_clkctrl_frac0_set[CLKCTRL_FRAC0_PIX]);
373 writeb(CLKCTRL_FRAC_CLKGATE | (x_best & CLKCTRL_FRAC_FRAC_MASK),
374 &clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_PIX]);
375 writeb(CLKCTRL_FRAC_CLKGATE,
376 &clkctrl_regs->hw_clkctrl_frac0_clr[CLKCTRL_FRAC0_PIX]);
377
378 writel(CLKCTRL_PIX_CLKGATE,
379 &clkctrl_regs->hw_clkctrl_pix_set);
380 clrsetbits_le32(&clkctrl_regs->hw_clkctrl_pix,
381 CLKCTRL_PIX_DIV_MASK | CLKCTRL_PIX_CLKGATE,
382 k_best << CLKCTRL_PIX_DIV_OFFSET);
383
384 while (readl(&clkctrl_regs->hw_clkctrl_pix) & CLKCTRL_PIX_BUSY)
385 ;
386 #elif defined(CONFIG_MX28)
387 writeb(CLKCTRL_FRAC_CLKGATE,
388 &clkctrl_regs->hw_clkctrl_frac1_set[CLKCTRL_FRAC1_PIX]);
389 writeb(CLKCTRL_FRAC_CLKGATE | (x_best & CLKCTRL_FRAC_FRAC_MASK),
390 &clkctrl_regs->hw_clkctrl_frac1[CLKCTRL_FRAC1_PIX]);
391 writeb(CLKCTRL_FRAC_CLKGATE,
392 &clkctrl_regs->hw_clkctrl_frac1_clr[CLKCTRL_FRAC1_PIX]);
393
394 writel(CLKCTRL_DIS_LCDIF_CLKGATE,
395 &clkctrl_regs->hw_clkctrl_lcdif_set);
396 clrsetbits_le32(&clkctrl_regs->hw_clkctrl_lcdif,
397 CLKCTRL_DIS_LCDIF_DIV_MASK | CLKCTRL_DIS_LCDIF_CLKGATE,
398 k_best << CLKCTRL_DIS_LCDIF_DIV_OFFSET);
399
400 while (readl(&clkctrl_regs->hw_clkctrl_lcdif) & CLKCTRL_DIS_LCDIF_BUSY)
401 ;
402 #endif
403 }
404
405 uint32_t mxc_get_clock(enum mxc_clock clk)
406 {
407 switch (clk) {
408 case MXC_ARM_CLK:
409 return mxs_get_pclk() * 1000000;
410 case MXC_GPMI_CLK:
411 return mxs_get_gpmiclk() * 1000000;
412 case MXC_AHB_CLK:
413 case MXC_IPG_CLK:
414 return mxs_get_hclk() * 1000000;
415 case MXC_EMI_CLK:
416 return mxs_get_emiclk();
417 case MXC_IO0_CLK:
418 return mxs_get_ioclk(MXC_IOCLK0);
419 case MXC_IO1_CLK:
420 return mxs_get_ioclk(MXC_IOCLK1);
421 case MXC_XTAL_CLK:
422 return XTAL_FREQ_KHZ * 1000;
423 case MXC_SSP0_CLK:
424 return mxs_get_sspclk(MXC_SSPCLK0);
425 #ifdef CONFIG_MX28
426 case MXC_SSP1_CLK:
427 return mxs_get_sspclk(MXC_SSPCLK1);
428 case MXC_SSP2_CLK:
429 return mxs_get_sspclk(MXC_SSPCLK2);
430 case MXC_SSP3_CLK:
431 return mxs_get_sspclk(MXC_SSPCLK3);
432 #endif
433 }
434
435 return 0;
436 }