]> git.ipfire.org Git - people/ms/u-boot.git/blob - arch/arm/mach-imx/mx5/clock.c
imx: reorganize IMX code as other SOCs
[people/ms/u-boot.git] / arch / arm / mach-imx / mx5 / clock.c
1 /*
2 * (C) Copyright 2007
3 * Sascha Hauer, Pengutronix
4 *
5 * (C) Copyright 2009 Freescale Semiconductor, Inc.
6 *
7 * SPDX-License-Identifier: GPL-2.0+
8 */
9
10 #include <common.h>
11 #include <asm/io.h>
12 #include <linux/errno.h>
13 #include <asm/arch/imx-regs.h>
14 #include <asm/arch/crm_regs.h>
15 #include <asm/arch/clock.h>
16 #include <div64.h>
17 #include <asm/arch/sys_proto.h>
18
19 enum pll_clocks {
20 PLL1_CLOCK = 0,
21 PLL2_CLOCK,
22 PLL3_CLOCK,
23 #ifdef CONFIG_MX53
24 PLL4_CLOCK,
25 #endif
26 PLL_CLOCKS,
27 };
28
29 struct mxc_pll_reg *mxc_plls[PLL_CLOCKS] = {
30 [PLL1_CLOCK] = (struct mxc_pll_reg *)PLL1_BASE_ADDR,
31 [PLL2_CLOCK] = (struct mxc_pll_reg *)PLL2_BASE_ADDR,
32 [PLL3_CLOCK] = (struct mxc_pll_reg *)PLL3_BASE_ADDR,
33 #ifdef CONFIG_MX53
34 [PLL4_CLOCK] = (struct mxc_pll_reg *)PLL4_BASE_ADDR,
35 #endif
36 };
37
38 #define AHB_CLK_ROOT 133333333
39 #define SZ_DEC_1M 1000000
40 #define PLL_PD_MAX 16 /* Actual pd+1 */
41 #define PLL_MFI_MAX 15
42 #define PLL_MFI_MIN 5
43 #define ARM_DIV_MAX 8
44 #define IPG_DIV_MAX 4
45 #define AHB_DIV_MAX 8
46 #define EMI_DIV_MAX 8
47 #define NFC_DIV_MAX 8
48
49 #define MX5_CBCMR 0x00015154
50 #define MX5_CBCDR 0x02888945
51
52 struct fixed_pll_mfd {
53 u32 ref_clk_hz;
54 u32 mfd;
55 };
56
57 const struct fixed_pll_mfd fixed_mfd[] = {
58 {MXC_HCLK, 24 * 16},
59 };
60
61 struct pll_param {
62 u32 pd;
63 u32 mfi;
64 u32 mfn;
65 u32 mfd;
66 };
67
68 #define PLL_FREQ_MAX(ref_clk) (4 * (ref_clk) * PLL_MFI_MAX)
69 #define PLL_FREQ_MIN(ref_clk) \
70 ((2 * (ref_clk) * (PLL_MFI_MIN - 1)) / PLL_PD_MAX)
71 #define MAX_DDR_CLK 420000000
72 #define NFC_CLK_MAX 34000000
73
74 struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)MXC_CCM_BASE;
75
76 void set_usboh3_clk(void)
77 {
78 clrsetbits_le32(&mxc_ccm->cscmr1,
79 MXC_CCM_CSCMR1_USBOH3_CLK_SEL_MASK,
80 MXC_CCM_CSCMR1_USBOH3_CLK_SEL(1));
81 clrsetbits_le32(&mxc_ccm->cscdr1,
82 MXC_CCM_CSCDR1_USBOH3_CLK_PODF_MASK |
83 MXC_CCM_CSCDR1_USBOH3_CLK_PRED_MASK,
84 MXC_CCM_CSCDR1_USBOH3_CLK_PRED(4) |
85 MXC_CCM_CSCDR1_USBOH3_CLK_PODF(1));
86 }
87
88 void enable_usboh3_clk(bool enable)
89 {
90 unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
91
92 clrsetbits_le32(&mxc_ccm->CCGR2,
93 MXC_CCM_CCGR2_USBOH3_60M(MXC_CCM_CCGR_CG_MASK),
94 MXC_CCM_CCGR2_USBOH3_60M(cg));
95 }
96
97 #ifdef CONFIG_SYS_I2C_MXC
98 /* i2c_num can be from 0, to 1 for i.MX51 and 2 for i.MX53 */
99 int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
100 {
101 u32 mask;
102
103 #if defined(CONFIG_MX51)
104 if (i2c_num > 1)
105 #elif defined(CONFIG_MX53)
106 if (i2c_num > 2)
107 #endif
108 return -EINVAL;
109 mask = MXC_CCM_CCGR_CG_MASK <<
110 (MXC_CCM_CCGR1_I2C1_OFFSET + (i2c_num << 1));
111 if (enable)
112 setbits_le32(&mxc_ccm->CCGR1, mask);
113 else
114 clrbits_le32(&mxc_ccm->CCGR1, mask);
115 return 0;
116 }
117 #endif
118
119 void set_usb_phy_clk(void)
120 {
121 clrbits_le32(&mxc_ccm->cscmr1, MXC_CCM_CSCMR1_USB_PHY_CLK_SEL);
122 }
123
124 #if defined(CONFIG_MX51)
125 void enable_usb_phy1_clk(bool enable)
126 {
127 unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
128
129 clrsetbits_le32(&mxc_ccm->CCGR2,
130 MXC_CCM_CCGR2_USB_PHY(MXC_CCM_CCGR_CG_MASK),
131 MXC_CCM_CCGR2_USB_PHY(cg));
132 }
133
134 void enable_usb_phy2_clk(bool enable)
135 {
136 /* i.MX51 has a single USB PHY clock, so do nothing here. */
137 }
138 #elif defined(CONFIG_MX53)
139 void enable_usb_phy1_clk(bool enable)
140 {
141 unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
142
143 clrsetbits_le32(&mxc_ccm->CCGR4,
144 MXC_CCM_CCGR4_USB_PHY1(MXC_CCM_CCGR_CG_MASK),
145 MXC_CCM_CCGR4_USB_PHY1(cg));
146 }
147
148 void enable_usb_phy2_clk(bool enable)
149 {
150 unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
151
152 clrsetbits_le32(&mxc_ccm->CCGR4,
153 MXC_CCM_CCGR4_USB_PHY2(MXC_CCM_CCGR_CG_MASK),
154 MXC_CCM_CCGR4_USB_PHY2(cg));
155 }
156 #endif
157
158 /*
159 * Calculate the frequency of PLLn.
160 */
161 static uint32_t decode_pll(struct mxc_pll_reg *pll, uint32_t infreq)
162 {
163 uint32_t ctrl, op, mfd, mfn, mfi, pdf, ret;
164 uint64_t refclk, temp;
165 int32_t mfn_abs;
166
167 ctrl = readl(&pll->ctrl);
168
169 if (ctrl & MXC_DPLLC_CTL_HFSM) {
170 mfn = readl(&pll->hfs_mfn);
171 mfd = readl(&pll->hfs_mfd);
172 op = readl(&pll->hfs_op);
173 } else {
174 mfn = readl(&pll->mfn);
175 mfd = readl(&pll->mfd);
176 op = readl(&pll->op);
177 }
178
179 mfd &= MXC_DPLLC_MFD_MFD_MASK;
180 mfn &= MXC_DPLLC_MFN_MFN_MASK;
181 pdf = op & MXC_DPLLC_OP_PDF_MASK;
182 mfi = MXC_DPLLC_OP_MFI_RD(op);
183
184 /* 21.2.3 */
185 if (mfi < 5)
186 mfi = 5;
187
188 /* Sign extend */
189 if (mfn >= 0x04000000) {
190 mfn |= 0xfc000000;
191 mfn_abs = -mfn;
192 } else
193 mfn_abs = mfn;
194
195 refclk = infreq * 2;
196 if (ctrl & MXC_DPLLC_CTL_DPDCK0_2_EN)
197 refclk *= 2;
198
199 do_div(refclk, pdf + 1);
200 temp = refclk * mfn_abs;
201 do_div(temp, mfd + 1);
202 ret = refclk * mfi;
203
204 if ((int)mfn < 0)
205 ret -= temp;
206 else
207 ret += temp;
208
209 return ret;
210 }
211
212 #ifdef CONFIG_MX51
213 /*
214 * This function returns the Frequency Pre-Multiplier clock.
215 */
216 static u32 get_fpm(void)
217 {
218 u32 mult;
219 u32 ccr = readl(&mxc_ccm->ccr);
220
221 if (ccr & MXC_CCM_CCR_FPM_MULT)
222 mult = 1024;
223 else
224 mult = 512;
225
226 return MXC_CLK32 * mult;
227 }
228 #endif
229
230 /*
231 * This function returns the low power audio clock.
232 */
233 static u32 get_lp_apm(void)
234 {
235 u32 ret_val = 0;
236 u32 ccsr = readl(&mxc_ccm->ccsr);
237
238 if (ccsr & MXC_CCM_CCSR_LP_APM)
239 #if defined(CONFIG_MX51)
240 ret_val = get_fpm();
241 #elif defined(CONFIG_MX53)
242 ret_val = decode_pll(mxc_plls[PLL4_CLOCK], MXC_HCLK);
243 #endif
244 else
245 ret_val = MXC_HCLK;
246
247 return ret_val;
248 }
249
250 /*
251 * Get mcu main rate
252 */
253 u32 get_mcu_main_clk(void)
254 {
255 u32 reg, freq;
256
257 reg = MXC_CCM_CACRR_ARM_PODF_RD(readl(&mxc_ccm->cacrr));
258 freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
259 return freq / (reg + 1);
260 }
261
262 /*
263 * Get the rate of peripheral's root clock.
264 */
265 u32 get_periph_clk(void)
266 {
267 u32 reg;
268
269 reg = readl(&mxc_ccm->cbcdr);
270 if (!(reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL))
271 return decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
272 reg = readl(&mxc_ccm->cbcmr);
273 switch (MXC_CCM_CBCMR_PERIPH_CLK_SEL_RD(reg)) {
274 case 0:
275 return decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
276 case 1:
277 return decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
278 case 2:
279 return get_lp_apm();
280 default:
281 return 0;
282 }
283 /* NOTREACHED */
284 }
285
286 /*
287 * Get the rate of ipg clock.
288 */
289 static u32 get_ipg_clk(void)
290 {
291 uint32_t freq, reg, div;
292
293 freq = get_ahb_clk();
294
295 reg = readl(&mxc_ccm->cbcdr);
296 div = MXC_CCM_CBCDR_IPG_PODF_RD(reg) + 1;
297
298 return freq / div;
299 }
300
301 /*
302 * Get the rate of ipg_per clock.
303 */
304 static u32 get_ipg_per_clk(void)
305 {
306 u32 freq, pred1, pred2, podf;
307
308 if (readl(&mxc_ccm->cbcmr) & MXC_CCM_CBCMR_PERCLK_IPG_CLK_SEL)
309 return get_ipg_clk();
310
311 if (readl(&mxc_ccm->cbcmr) & MXC_CCM_CBCMR_PERCLK_LP_APM_CLK_SEL)
312 freq = get_lp_apm();
313 else
314 freq = get_periph_clk();
315 podf = readl(&mxc_ccm->cbcdr);
316 pred1 = MXC_CCM_CBCDR_PERCLK_PRED1_RD(podf);
317 pred2 = MXC_CCM_CBCDR_PERCLK_PRED2_RD(podf);
318 podf = MXC_CCM_CBCDR_PERCLK_PODF_RD(podf);
319 return freq / ((pred1 + 1) * (pred2 + 1) * (podf + 1));
320 }
321
322 /* Get the output clock rate of a standard PLL MUX for peripherals. */
323 static u32 get_standard_pll_sel_clk(u32 clk_sel)
324 {
325 u32 freq = 0;
326
327 switch (clk_sel & 0x3) {
328 case 0:
329 freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
330 break;
331 case 1:
332 freq = decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
333 break;
334 case 2:
335 freq = decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
336 break;
337 case 3:
338 freq = get_lp_apm();
339 break;
340 }
341
342 return freq;
343 }
344
345 /*
346 * Get the rate of uart clk.
347 */
348 static u32 get_uart_clk(void)
349 {
350 unsigned int clk_sel, freq, reg, pred, podf;
351
352 reg = readl(&mxc_ccm->cscmr1);
353 clk_sel = MXC_CCM_CSCMR1_UART_CLK_SEL_RD(reg);
354 freq = get_standard_pll_sel_clk(clk_sel);
355
356 reg = readl(&mxc_ccm->cscdr1);
357 pred = MXC_CCM_CSCDR1_UART_CLK_PRED_RD(reg);
358 podf = MXC_CCM_CSCDR1_UART_CLK_PODF_RD(reg);
359 freq /= (pred + 1) * (podf + 1);
360
361 return freq;
362 }
363
364 /*
365 * get cspi clock rate.
366 */
367 static u32 imx_get_cspiclk(void)
368 {
369 u32 ret_val = 0, pdf, pre_pdf, clk_sel, freq;
370 u32 cscmr1 = readl(&mxc_ccm->cscmr1);
371 u32 cscdr2 = readl(&mxc_ccm->cscdr2);
372
373 pre_pdf = MXC_CCM_CSCDR2_CSPI_CLK_PRED_RD(cscdr2);
374 pdf = MXC_CCM_CSCDR2_CSPI_CLK_PODF_RD(cscdr2);
375 clk_sel = MXC_CCM_CSCMR1_CSPI_CLK_SEL_RD(cscmr1);
376 freq = get_standard_pll_sel_clk(clk_sel);
377 ret_val = freq / ((pre_pdf + 1) * (pdf + 1));
378 return ret_val;
379 }
380
381 /*
382 * get esdhc clock rate.
383 */
384 static u32 get_esdhc_clk(u32 port)
385 {
386 u32 clk_sel = 0, pred = 0, podf = 0, freq = 0;
387 u32 cscmr1 = readl(&mxc_ccm->cscmr1);
388 u32 cscdr1 = readl(&mxc_ccm->cscdr1);
389
390 switch (port) {
391 case 0:
392 clk_sel = MXC_CCM_CSCMR1_ESDHC1_MSHC1_CLK_SEL_RD(cscmr1);
393 pred = MXC_CCM_CSCDR1_ESDHC1_MSHC1_CLK_PRED_RD(cscdr1);
394 podf = MXC_CCM_CSCDR1_ESDHC1_MSHC1_CLK_PODF_RD(cscdr1);
395 break;
396 case 1:
397 clk_sel = MXC_CCM_CSCMR1_ESDHC2_MSHC2_CLK_SEL_RD(cscmr1);
398 pred = MXC_CCM_CSCDR1_ESDHC2_MSHC2_CLK_PRED_RD(cscdr1);
399 podf = MXC_CCM_CSCDR1_ESDHC2_MSHC2_CLK_PODF_RD(cscdr1);
400 break;
401 case 2:
402 if (cscmr1 & MXC_CCM_CSCMR1_ESDHC3_CLK_SEL)
403 return get_esdhc_clk(1);
404 else
405 return get_esdhc_clk(0);
406 case 3:
407 if (cscmr1 & MXC_CCM_CSCMR1_ESDHC4_CLK_SEL)
408 return get_esdhc_clk(1);
409 else
410 return get_esdhc_clk(0);
411 default:
412 break;
413 }
414
415 freq = get_standard_pll_sel_clk(clk_sel) / ((pred + 1) * (podf + 1));
416 return freq;
417 }
418
419 static u32 get_axi_a_clk(void)
420 {
421 u32 cbcdr = readl(&mxc_ccm->cbcdr);
422 u32 pdf = MXC_CCM_CBCDR_AXI_A_PODF_RD(cbcdr);
423
424 return get_periph_clk() / (pdf + 1);
425 }
426
427 static u32 get_axi_b_clk(void)
428 {
429 u32 cbcdr = readl(&mxc_ccm->cbcdr);
430 u32 pdf = MXC_CCM_CBCDR_AXI_B_PODF_RD(cbcdr);
431
432 return get_periph_clk() / (pdf + 1);
433 }
434
435 static u32 get_emi_slow_clk(void)
436 {
437 u32 cbcdr = readl(&mxc_ccm->cbcdr);
438 u32 emi_clk_sel = cbcdr & MXC_CCM_CBCDR_EMI_CLK_SEL;
439 u32 pdf = MXC_CCM_CBCDR_EMI_PODF_RD(cbcdr);
440
441 if (emi_clk_sel)
442 return get_ahb_clk() / (pdf + 1);
443
444 return get_periph_clk() / (pdf + 1);
445 }
446
447 static u32 get_ddr_clk(void)
448 {
449 u32 ret_val = 0;
450 u32 cbcmr = readl(&mxc_ccm->cbcmr);
451 u32 ddr_clk_sel = MXC_CCM_CBCMR_DDR_CLK_SEL_RD(cbcmr);
452 #ifdef CONFIG_MX51
453 u32 cbcdr = readl(&mxc_ccm->cbcdr);
454 if (cbcdr & MXC_CCM_CBCDR_DDR_HIFREQ_SEL) {
455 u32 ddr_clk_podf = MXC_CCM_CBCDR_DDR_PODF_RD(cbcdr);
456
457 ret_val = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
458 ret_val /= ddr_clk_podf + 1;
459
460 return ret_val;
461 }
462 #endif
463 switch (ddr_clk_sel) {
464 case 0:
465 ret_val = get_axi_a_clk();
466 break;
467 case 1:
468 ret_val = get_axi_b_clk();
469 break;
470 case 2:
471 ret_val = get_emi_slow_clk();
472 break;
473 case 3:
474 ret_val = get_ahb_clk();
475 break;
476 default:
477 break;
478 }
479
480 return ret_val;
481 }
482
483 /*
484 * The API of get mxc clocks.
485 */
486 unsigned int mxc_get_clock(enum mxc_clock clk)
487 {
488 switch (clk) {
489 case MXC_ARM_CLK:
490 return get_mcu_main_clk();
491 case MXC_AHB_CLK:
492 return get_ahb_clk();
493 case MXC_IPG_CLK:
494 return get_ipg_clk();
495 case MXC_IPG_PERCLK:
496 case MXC_I2C_CLK:
497 return get_ipg_per_clk();
498 case MXC_UART_CLK:
499 return get_uart_clk();
500 case MXC_CSPI_CLK:
501 return imx_get_cspiclk();
502 case MXC_ESDHC_CLK:
503 return get_esdhc_clk(0);
504 case MXC_ESDHC2_CLK:
505 return get_esdhc_clk(1);
506 case MXC_ESDHC3_CLK:
507 return get_esdhc_clk(2);
508 case MXC_ESDHC4_CLK:
509 return get_esdhc_clk(3);
510 case MXC_FEC_CLK:
511 return get_ipg_clk();
512 case MXC_SATA_CLK:
513 return get_ahb_clk();
514 case MXC_DDR_CLK:
515 return get_ddr_clk();
516 default:
517 break;
518 }
519 return -EINVAL;
520 }
521
522 u32 imx_get_uartclk(void)
523 {
524 return get_uart_clk();
525 }
526
527 u32 imx_get_fecclk(void)
528 {
529 return get_ipg_clk();
530 }
531
532 static int gcd(int m, int n)
533 {
534 int t;
535 while (m > 0) {
536 if (n > m) {
537 t = m;
538 m = n;
539 n = t;
540 } /* swap */
541 m -= n;
542 }
543 return n;
544 }
545
546 /*
547 * This is to calculate various parameters based on reference clock and
548 * targeted clock based on the equation:
549 * t_clk = 2*ref_freq*(mfi + mfn/(mfd+1))/(pd+1)
550 * This calculation is based on a fixed MFD value for simplicity.
551 */
552 static int calc_pll_params(u32 ref, u32 target, struct pll_param *pll)
553 {
554 u64 pd, mfi = 1, mfn, mfd, t1;
555 u32 n_target = target;
556 u32 n_ref = ref, i;
557
558 /*
559 * Make sure targeted freq is in the valid range.
560 * Otherwise the following calculation might be wrong!!!
561 */
562 if (n_target < PLL_FREQ_MIN(ref) ||
563 n_target > PLL_FREQ_MAX(ref)) {
564 printf("Targeted peripheral clock should be"
565 "within [%d - %d]\n",
566 PLL_FREQ_MIN(ref) / SZ_DEC_1M,
567 PLL_FREQ_MAX(ref) / SZ_DEC_1M);
568 return -EINVAL;
569 }
570
571 for (i = 0; i < ARRAY_SIZE(fixed_mfd); i++) {
572 if (fixed_mfd[i].ref_clk_hz == ref) {
573 mfd = fixed_mfd[i].mfd;
574 break;
575 }
576 }
577
578 if (i == ARRAY_SIZE(fixed_mfd))
579 return -EINVAL;
580
581 /* Use n_target and n_ref to avoid overflow */
582 for (pd = 1; pd <= PLL_PD_MAX; pd++) {
583 t1 = n_target * pd;
584 do_div(t1, (4 * n_ref));
585 mfi = t1;
586 if (mfi > PLL_MFI_MAX)
587 return -EINVAL;
588 else if (mfi < 5)
589 continue;
590 break;
591 }
592 /*
593 * Now got pd and mfi already
594 *
595 * mfn = (((n_target * pd) / 4 - n_ref * mfi) * mfd) / n_ref;
596 */
597 t1 = n_target * pd;
598 do_div(t1, 4);
599 t1 -= n_ref * mfi;
600 t1 *= mfd;
601 do_div(t1, n_ref);
602 mfn = t1;
603 debug("ref=%d, target=%d, pd=%d," "mfi=%d,mfn=%d, mfd=%d\n",
604 ref, n_target, (u32)pd, (u32)mfi, (u32)mfn, (u32)mfd);
605 i = 1;
606 if (mfn != 0)
607 i = gcd(mfd, mfn);
608 pll->pd = (u32)pd;
609 pll->mfi = (u32)mfi;
610 do_div(mfn, i);
611 pll->mfn = (u32)mfn;
612 do_div(mfd, i);
613 pll->mfd = (u32)mfd;
614
615 return 0;
616 }
617
618 #define calc_div(tgt_clk, src_clk, limit) ({ \
619 u32 v = 0; \
620 if (((src_clk) % (tgt_clk)) <= 100) \
621 v = (src_clk) / (tgt_clk); \
622 else \
623 v = ((src_clk) / (tgt_clk)) + 1;\
624 if (v > limit) \
625 v = limit; \
626 (v - 1); \
627 })
628
629 #define CHANGE_PLL_SETTINGS(pll, pd, fi, fn, fd) \
630 { \
631 writel(0x1232, &pll->ctrl); \
632 writel(0x2, &pll->config); \
633 writel((((pd) - 1) << 0) | ((fi) << 4), \
634 &pll->op); \
635 writel(fn, &(pll->mfn)); \
636 writel((fd) - 1, &pll->mfd); \
637 writel((((pd) - 1) << 0) | ((fi) << 4), \
638 &pll->hfs_op); \
639 writel(fn, &pll->hfs_mfn); \
640 writel((fd) - 1, &pll->hfs_mfd); \
641 writel(0x1232, &pll->ctrl); \
642 while (!readl(&pll->ctrl) & 0x1) \
643 ;\
644 }
645
646 static int config_pll_clk(enum pll_clocks index, struct pll_param *pll_param)
647 {
648 u32 ccsr = readl(&mxc_ccm->ccsr);
649 struct mxc_pll_reg *pll = mxc_plls[index];
650
651 switch (index) {
652 case PLL1_CLOCK:
653 /* Switch ARM to PLL2 clock */
654 writel(ccsr | MXC_CCM_CCSR_PLL1_SW_CLK_SEL,
655 &mxc_ccm->ccsr);
656 CHANGE_PLL_SETTINGS(pll, pll_param->pd,
657 pll_param->mfi, pll_param->mfn,
658 pll_param->mfd);
659 /* Switch back */
660 writel(ccsr & ~MXC_CCM_CCSR_PLL1_SW_CLK_SEL,
661 &mxc_ccm->ccsr);
662 break;
663 case PLL2_CLOCK:
664 /* Switch to pll2 bypass clock */
665 writel(ccsr | MXC_CCM_CCSR_PLL2_SW_CLK_SEL,
666 &mxc_ccm->ccsr);
667 CHANGE_PLL_SETTINGS(pll, pll_param->pd,
668 pll_param->mfi, pll_param->mfn,
669 pll_param->mfd);
670 /* Switch back */
671 writel(ccsr & ~MXC_CCM_CCSR_PLL2_SW_CLK_SEL,
672 &mxc_ccm->ccsr);
673 break;
674 case PLL3_CLOCK:
675 /* Switch to pll3 bypass clock */
676 writel(ccsr | MXC_CCM_CCSR_PLL3_SW_CLK_SEL,
677 &mxc_ccm->ccsr);
678 CHANGE_PLL_SETTINGS(pll, pll_param->pd,
679 pll_param->mfi, pll_param->mfn,
680 pll_param->mfd);
681 /* Switch back */
682 writel(ccsr & ~MXC_CCM_CCSR_PLL3_SW_CLK_SEL,
683 &mxc_ccm->ccsr);
684 break;
685 #ifdef CONFIG_MX53
686 case PLL4_CLOCK:
687 /* Switch to pll4 bypass clock */
688 writel(ccsr | MXC_CCM_CCSR_PLL4_SW_CLK_SEL,
689 &mxc_ccm->ccsr);
690 CHANGE_PLL_SETTINGS(pll, pll_param->pd,
691 pll_param->mfi, pll_param->mfn,
692 pll_param->mfd);
693 /* Switch back */
694 writel(ccsr & ~MXC_CCM_CCSR_PLL4_SW_CLK_SEL,
695 &mxc_ccm->ccsr);
696 break;
697 #endif
698 default:
699 return -EINVAL;
700 }
701
702 return 0;
703 }
704
705 /* Config CPU clock */
706 static int config_core_clk(u32 ref, u32 freq)
707 {
708 int ret = 0;
709 struct pll_param pll_param;
710
711 memset(&pll_param, 0, sizeof(struct pll_param));
712
713 /* The case that periph uses PLL1 is not considered here */
714 ret = calc_pll_params(ref, freq, &pll_param);
715 if (ret != 0) {
716 printf("Error:Can't find pll parameters: %d\n", ret);
717 return ret;
718 }
719
720 return config_pll_clk(PLL1_CLOCK, &pll_param);
721 }
722
723 static int config_nfc_clk(u32 nfc_clk)
724 {
725 u32 parent_rate = get_emi_slow_clk();
726 u32 div;
727
728 if (nfc_clk == 0)
729 return -EINVAL;
730 div = parent_rate / nfc_clk;
731 if (div == 0)
732 div++;
733 if (parent_rate / div > NFC_CLK_MAX)
734 div++;
735 clrsetbits_le32(&mxc_ccm->cbcdr,
736 MXC_CCM_CBCDR_NFC_PODF_MASK,
737 MXC_CCM_CBCDR_NFC_PODF(div - 1));
738 while (readl(&mxc_ccm->cdhipr) != 0)
739 ;
740 return 0;
741 }
742
743 void enable_nfc_clk(unsigned char enable)
744 {
745 unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
746
747 clrsetbits_le32(&mxc_ccm->CCGR5,
748 MXC_CCM_CCGR5_EMI_ENFC(MXC_CCM_CCGR_CG_MASK),
749 MXC_CCM_CCGR5_EMI_ENFC(cg));
750 }
751
752 #ifdef CONFIG_FSL_IIM
753 void enable_efuse_prog_supply(bool enable)
754 {
755 if (enable)
756 setbits_le32(&mxc_ccm->cgpr,
757 MXC_CCM_CGPR_EFUSE_PROG_SUPPLY_GATE);
758 else
759 clrbits_le32(&mxc_ccm->cgpr,
760 MXC_CCM_CGPR_EFUSE_PROG_SUPPLY_GATE);
761 }
762 #endif
763
764 /* Config main_bus_clock for periphs */
765 static int config_periph_clk(u32 ref, u32 freq)
766 {
767 int ret = 0;
768 struct pll_param pll_param;
769
770 memset(&pll_param, 0, sizeof(struct pll_param));
771
772 if (readl(&mxc_ccm->cbcdr) & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
773 ret = calc_pll_params(ref, freq, &pll_param);
774 if (ret != 0) {
775 printf("Error:Can't find pll parameters: %d\n",
776 ret);
777 return ret;
778 }
779 switch (MXC_CCM_CBCMR_PERIPH_CLK_SEL_RD(
780 readl(&mxc_ccm->cbcmr))) {
781 case 0:
782 return config_pll_clk(PLL1_CLOCK, &pll_param);
783 break;
784 case 1:
785 return config_pll_clk(PLL3_CLOCK, &pll_param);
786 break;
787 default:
788 return -EINVAL;
789 }
790 }
791
792 return 0;
793 }
794
795 static int config_ddr_clk(u32 emi_clk)
796 {
797 u32 clk_src;
798 s32 shift = 0, clk_sel, div = 1;
799 u32 cbcmr = readl(&mxc_ccm->cbcmr);
800
801 if (emi_clk > MAX_DDR_CLK) {
802 printf("Warning:DDR clock should not exceed %d MHz\n",
803 MAX_DDR_CLK / SZ_DEC_1M);
804 emi_clk = MAX_DDR_CLK;
805 }
806
807 clk_src = get_periph_clk();
808 /* Find DDR clock input */
809 clk_sel = MXC_CCM_CBCMR_DDR_CLK_SEL_RD(cbcmr);
810 switch (clk_sel) {
811 case 0:
812 shift = 16;
813 break;
814 case 1:
815 shift = 19;
816 break;
817 case 2:
818 shift = 22;
819 break;
820 case 3:
821 shift = 10;
822 break;
823 default:
824 return -EINVAL;
825 }
826
827 if ((clk_src % emi_clk) < 10000000)
828 div = clk_src / emi_clk;
829 else
830 div = (clk_src / emi_clk) + 1;
831 if (div > 8)
832 div = 8;
833
834 clrsetbits_le32(&mxc_ccm->cbcdr, 0x7 << shift, (div - 1) << shift);
835 while (readl(&mxc_ccm->cdhipr) != 0)
836 ;
837 writel(0x0, &mxc_ccm->ccdr);
838
839 return 0;
840 }
841
842 /*
843 * This function assumes the expected core clock has to be changed by
844 * modifying the PLL. This is NOT true always but for most of the times,
845 * it is. So it assumes the PLL output freq is the same as the expected
846 * core clock (presc=1) unless the core clock is less than PLL_FREQ_MIN.
847 * In the latter case, it will try to increase the presc value until
848 * (presc*core_clk) is greater than PLL_FREQ_MIN. It then makes call to
849 * calc_pll_params() and obtains the values of PD, MFI,MFN, MFD based
850 * on the targeted PLL and reference input clock to the PLL. Lastly,
851 * it sets the register based on these values along with the dividers.
852 * Note 1) There is no value checking for the passed-in divider values
853 * so the caller has to make sure those values are sensible.
854 * 2) Also adjust the NFC divider such that the NFC clock doesn't
855 * exceed NFC_CLK_MAX.
856 * 3) IPU HSP clock is independent of AHB clock. Even it can go up to
857 * 177MHz for higher voltage, this function fixes the max to 133MHz.
858 * 4) This function should not have allowed diag_printf() calls since
859 * the serial driver has been stoped. But leave then here to allow
860 * easy debugging by NOT calling the cyg_hal_plf_serial_stop().
861 */
862 int mxc_set_clock(u32 ref, u32 freq, enum mxc_clock clk)
863 {
864 freq *= SZ_DEC_1M;
865
866 switch (clk) {
867 case MXC_ARM_CLK:
868 if (config_core_clk(ref, freq))
869 return -EINVAL;
870 break;
871 case MXC_PERIPH_CLK:
872 if (config_periph_clk(ref, freq))
873 return -EINVAL;
874 break;
875 case MXC_DDR_CLK:
876 if (config_ddr_clk(freq))
877 return -EINVAL;
878 break;
879 case MXC_NFC_CLK:
880 if (config_nfc_clk(freq))
881 return -EINVAL;
882 break;
883 default:
884 printf("Warning:Unsupported or invalid clock type\n");
885 }
886
887 return 0;
888 }
889
890 #ifdef CONFIG_MX53
891 /*
892 * The clock for the external interface can be set to use internal clock
893 * if fuse bank 4, row 3, bit 2 is set.
894 * This is an undocumented feature and it was confirmed by Freescale's support:
895 * Fuses (but not pins) may be used to configure SATA clocks.
896 * Particularly the i.MX53 Fuse_Map contains the next information
897 * about configuring SATA clocks : SATA_ALT_REF_CLK[1:0] (offset 0x180C)
898 * '00' - 100MHz (External)
899 * '01' - 50MHz (External)
900 * '10' - 120MHz, internal (USB PHY)
901 * '11' - Reserved
902 */
903 void mxc_set_sata_internal_clock(void)
904 {
905 u32 *tmp_base =
906 (u32 *)(IIM_BASE_ADDR + 0x180c);
907
908 set_usb_phy_clk();
909
910 clrsetbits_le32(tmp_base, 0x6, 0x4);
911 }
912 #endif
913
914 /*
915 * Dump some core clockes.
916 */
917 int do_mx5_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
918 {
919 u32 freq;
920
921 freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
922 printf("PLL1 %8d MHz\n", freq / 1000000);
923 freq = decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
924 printf("PLL2 %8d MHz\n", freq / 1000000);
925 freq = decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
926 printf("PLL3 %8d MHz\n", freq / 1000000);
927 #ifdef CONFIG_MX53
928 freq = decode_pll(mxc_plls[PLL4_CLOCK], MXC_HCLK);
929 printf("PLL4 %8d MHz\n", freq / 1000000);
930 #endif
931
932 printf("\n");
933 printf("AHB %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
934 printf("IPG %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
935 printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
936 printf("DDR %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
937 #ifdef CONFIG_MXC_SPI
938 printf("CSPI %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
939 #endif
940 return 0;
941 }
942
943 /***************************************************/
944
945 U_BOOT_CMD(
946 clocks, CONFIG_SYS_MAXARGS, 1, do_mx5_showclocks,
947 "display clocks",
948 ""
949 );