]> git.ipfire.org Git - people/ms/u-boot.git/blob - arch/arm/mach-omap2/am33xx/clock_am33xx.c
Merge branch 'master' of git://git.denx.de/u-boot-mips
[people/ms/u-boot.git] / arch / arm / mach-omap2 / am33xx / clock_am33xx.c
1 /*
2 * clock_am33xx.c
3 *
4 * clocks for AM33XX based boards
5 *
6 * Copyright (C) 2013, Texas Instruments, Incorporated - http://www.ti.com/
7 *
8 * SPDX-License-Identifier: GPL-2.0+
9 */
10
11 #include <common.h>
12 #include <asm/arch/cpu.h>
13 #include <asm/arch/sys_proto.h>
14 #include <asm/arch/clock.h>
15 #include <asm/arch/hardware.h>
16 #include <asm/io.h>
17
18 #define OSC (V_OSCK/1000000)
19
20 struct cm_perpll *const cmper = (struct cm_perpll *)CM_PER;
21 struct cm_wkuppll *const cmwkup = (struct cm_wkuppll *)CM_WKUP;
22 struct cm_dpll *const cmdpll = (struct cm_dpll *)CM_DPLL;
23 struct cm_rtc *const cmrtc = (struct cm_rtc *)CM_RTC;
24
25 const struct dpll_regs dpll_mpu_regs = {
26 .cm_clkmode_dpll = CM_WKUP + 0x88,
27 .cm_idlest_dpll = CM_WKUP + 0x20,
28 .cm_clksel_dpll = CM_WKUP + 0x2C,
29 .cm_div_m2_dpll = CM_WKUP + 0xA8,
30 };
31
32 const struct dpll_regs dpll_core_regs = {
33 .cm_clkmode_dpll = CM_WKUP + 0x90,
34 .cm_idlest_dpll = CM_WKUP + 0x5C,
35 .cm_clksel_dpll = CM_WKUP + 0x68,
36 .cm_div_m4_dpll = CM_WKUP + 0x80,
37 .cm_div_m5_dpll = CM_WKUP + 0x84,
38 .cm_div_m6_dpll = CM_WKUP + 0xD8,
39 };
40
41 const struct dpll_regs dpll_per_regs = {
42 .cm_clkmode_dpll = CM_WKUP + 0x8C,
43 .cm_idlest_dpll = CM_WKUP + 0x70,
44 .cm_clksel_dpll = CM_WKUP + 0x9C,
45 .cm_div_m2_dpll = CM_WKUP + 0xAC,
46 };
47
48 const struct dpll_regs dpll_ddr_regs = {
49 .cm_clkmode_dpll = CM_WKUP + 0x94,
50 .cm_idlest_dpll = CM_WKUP + 0x34,
51 .cm_clksel_dpll = CM_WKUP + 0x40,
52 .cm_div_m2_dpll = CM_WKUP + 0xA0,
53 };
54
55 struct dpll_params dpll_mpu_opp100 = {
56 CONFIG_SYS_MPUCLK, OSC-1, 1, -1, -1, -1, -1};
57 const struct dpll_params dpll_core_opp100 = {
58 1000, OSC-1, -1, -1, 10, 8, 4};
59
60 const struct dpll_params dpll_mpu_opp[NUM_CRYSTAL_FREQ][NUM_OPPS] = {
61 { /* 19.2 MHz */
62 {125, 3, 2, -1, -1, -1, -1}, /* OPP 50 */
63 {-1, -1, -1, -1, -1, -1, -1}, /* OPP RESERVED */
64 {125, 3, 1, -1, -1, -1, -1}, /* OPP 100 */
65 {150, 3, 1, -1, -1, -1, -1}, /* OPP 120 */
66 {125, 2, 1, -1, -1, -1, -1}, /* OPP TB */
67 {625, 11, 1, -1, -1, -1, -1} /* OPP NT */
68 },
69 { /* 24 MHz */
70 {25, 0, 2, -1, -1, -1, -1}, /* OPP 50 */
71 {-1, -1, -1, -1, -1, -1, -1}, /* OPP RESERVED */
72 {25, 0, 1, -1, -1, -1, -1}, /* OPP 100 */
73 {30, 0, 1, -1, -1, -1, -1}, /* OPP 120 */
74 {100, 3, 1, -1, -1, -1, -1}, /* OPP TB */
75 {125, 2, 1, -1, -1, -1, -1} /* OPP NT */
76 },
77 { /* 25 MHz */
78 {24, 0, 2, -1, -1, -1, -1}, /* OPP 50 */
79 {-1, -1, -1, -1, -1, -1, -1}, /* OPP RESERVED */
80 {24, 0, 1, -1, -1, -1, -1}, /* OPP 100 */
81 {144, 4, 1, -1, -1, -1, -1}, /* OPP 120 */
82 {32, 0, 1, -1, -1, -1, -1}, /* OPP TB */
83 {40, 0, 1, -1, -1, -1, -1} /* OPP NT */
84 },
85 { /* 26 MHz */
86 {300, 12, 2, -1, -1, -1, -1}, /* OPP 50 */
87 {-1, -1, -1, -1, -1, -1, -1}, /* OPP RESERVED */
88 {300, 12, 1, -1, -1, -1, -1}, /* OPP 100 */
89 {360, 12, 1, -1, -1, -1, -1}, /* OPP 120 */
90 {400, 12, 1, -1, -1, -1, -1}, /* OPP TB */
91 {500, 12, 1, -1, -1, -1, -1} /* OPP NT */
92 },
93 };
94
95 const struct dpll_params dpll_core_1000MHz[NUM_CRYSTAL_FREQ] = {
96 {625, 11, -1, -1, 10, 8, 4}, /* 19.2 MHz */
97 {125, 2, -1, -1, 10, 8, 4}, /* 24 MHz */
98 {40, 0, -1, -1, 10, 8, 4}, /* 25 MHz */
99 {500, 12, -1, -1, 10, 8, 4} /* 26 MHz */
100 };
101
102 const struct dpll_params dpll_per_192MHz[NUM_CRYSTAL_FREQ] = {
103 {400, 7, 5, -1, -1, -1, -1}, /* 19.2 MHz */
104 {400, 9, 5, -1, -1, -1, -1}, /* 24 MHz */
105 {384, 9, 5, -1, -1, -1, -1}, /* 25 MHz */
106 {480, 12, 5, -1, -1, -1, -1} /* 26 MHz */
107 };
108
109 const struct dpll_params dpll_ddr3_303MHz[NUM_CRYSTAL_FREQ] = {
110 {505, 15, 2, -1, -1, -1, -1}, /*19.2*/
111 {101, 3, 2, -1, -1, -1, -1}, /* 24 MHz */
112 {303, 24, 1, -1, 4, -1, -1}, /* 25 MHz */
113 {303, 12, 2, -1, 4, -1, -1} /* 26 MHz */
114 };
115
116 const struct dpll_params dpll_ddr3_400MHz[NUM_CRYSTAL_FREQ] = {
117 {125, 5, 1, -1, -1, -1, -1}, /*19.2*/
118 {50, 2, 1, -1, -1, -1, -1}, /* 24 MHz */
119 {16, 0, 1, -1, 4, -1, -1}, /* 25 MHz */
120 {200, 12, 1, -1, 4, -1, -1} /* 26 MHz */
121 };
122
123 const struct dpll_params dpll_ddr2_266MHz[NUM_CRYSTAL_FREQ] = {
124 {665, 47, 1, -1, -1, -1, -1}, /*19.2*/
125 {133, 11, 1, -1, -1, -1, -1}, /* 24 MHz */
126 {266, 24, 1, -1, 4, -1, -1}, /* 25 MHz */
127 {133, 12, 1, -1, 4, -1, -1} /* 26 MHz */
128 };
129
130 __weak const struct dpll_params *get_dpll_mpu_params(void)
131 {
132 return &dpll_mpu_opp100;
133 }
134
135 const struct dpll_params *get_dpll_core_params(void)
136 {
137 int ind = get_sys_clk_index();
138
139 return &dpll_core_1000MHz[ind];
140 }
141
142 const struct dpll_params *get_dpll_per_params(void)
143 {
144 int ind = get_sys_clk_index();
145
146 return &dpll_per_192MHz[ind];
147 }
148
149 void setup_clocks_for_console(void)
150 {
151 clrsetbits_le32(&cmwkup->wkclkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK,
152 CD_CLKCTRL_CLKTRCTRL_SW_WKUP <<
153 CD_CLKCTRL_CLKTRCTRL_SHIFT);
154
155 clrsetbits_le32(&cmper->l4hsclkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK,
156 CD_CLKCTRL_CLKTRCTRL_SW_WKUP <<
157 CD_CLKCTRL_CLKTRCTRL_SHIFT);
158
159 clrsetbits_le32(&cmwkup->wkup_uart0ctrl,
160 MODULE_CLKCTRL_MODULEMODE_MASK,
161 MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
162 MODULE_CLKCTRL_MODULEMODE_SHIFT);
163 clrsetbits_le32(&cmper->uart1clkctrl,
164 MODULE_CLKCTRL_MODULEMODE_MASK,
165 MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
166 MODULE_CLKCTRL_MODULEMODE_SHIFT);
167 clrsetbits_le32(&cmper->uart2clkctrl,
168 MODULE_CLKCTRL_MODULEMODE_MASK,
169 MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
170 MODULE_CLKCTRL_MODULEMODE_SHIFT);
171 clrsetbits_le32(&cmper->uart3clkctrl,
172 MODULE_CLKCTRL_MODULEMODE_MASK,
173 MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
174 MODULE_CLKCTRL_MODULEMODE_SHIFT);
175 clrsetbits_le32(&cmper->uart4clkctrl,
176 MODULE_CLKCTRL_MODULEMODE_MASK,
177 MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
178 MODULE_CLKCTRL_MODULEMODE_SHIFT);
179 clrsetbits_le32(&cmper->uart5clkctrl,
180 MODULE_CLKCTRL_MODULEMODE_MASK,
181 MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
182 MODULE_CLKCTRL_MODULEMODE_SHIFT);
183 }
184
185 void enable_basic_clocks(void)
186 {
187 u32 *const clk_domains[] = {
188 &cmper->l3clkstctrl,
189 &cmper->l4fwclkstctrl,
190 &cmper->l3sclkstctrl,
191 &cmper->l4lsclkstctrl,
192 &cmwkup->wkclkstctrl,
193 &cmper->emiffwclkctrl,
194 &cmrtc->clkstctrl,
195 0
196 };
197
198 u32 *const clk_modules_explicit_en[] = {
199 &cmper->l3clkctrl,
200 &cmper->l4lsclkctrl,
201 &cmper->l4fwclkctrl,
202 &cmwkup->wkl4wkclkctrl,
203 &cmper->l3instrclkctrl,
204 &cmper->l4hsclkctrl,
205 &cmwkup->wkgpio0clkctrl,
206 &cmwkup->wkctrlclkctrl,
207 &cmper->timer2clkctrl,
208 &cmper->gpmcclkctrl,
209 &cmper->elmclkctrl,
210 &cmper->mmc0clkctrl,
211 &cmper->mmc1clkctrl,
212 &cmwkup->wkup_i2c0ctrl,
213 &cmper->gpio1clkctrl,
214 &cmper->gpio2clkctrl,
215 &cmper->gpio3clkctrl,
216 &cmper->i2c1clkctrl,
217 &cmper->cpgmac0clkctrl,
218 &cmper->spi0clkctrl,
219 &cmrtc->rtcclkctrl,
220 &cmper->usb0clkctrl,
221 &cmper->emiffwclkctrl,
222 &cmper->emifclkctrl,
223 0
224 };
225
226 do_enable_clocks(clk_domains, clk_modules_explicit_en, 1);
227
228 /* Select the Master osc 24 MHZ as Timer2 clock source */
229 writel(0x1, &cmdpll->clktimer2clk);
230 }
231
232 /*
233 * Enable Spread Spectrum for the MPU by calculating the required
234 * values and setting the registers accordingly.
235 * @param permille The spreading in permille (10th of a percent)
236 */
237 void set_mpu_spreadspectrum(int permille)
238 {
239 u32 multiplier_m;
240 u32 predivider_n;
241 u32 cm_clksel_dpll_mpu;
242 u32 cm_clkmode_dpll_mpu;
243 u32 ref_clock;
244 u32 pll_bandwidth;
245 u32 mod_freq_divider;
246 u32 exponent;
247 u32 mantissa;
248 u32 delta_m_step;
249
250 printf("Enabling Spread Spectrum of %d permille for MPU\n",
251 permille);
252
253 /* Read PLL parameter m and n */
254 cm_clksel_dpll_mpu = readl(&cmwkup->clkseldpllmpu);
255 multiplier_m = (cm_clksel_dpll_mpu >> 8) & 0x3FF;
256 predivider_n = cm_clksel_dpll_mpu & 0x7F;
257
258 /*
259 * Calculate reference clock (clock after pre-divider),
260 * its max. PLL bandwidth,
261 * and resulting mod_freq_divider
262 */
263 ref_clock = V_OSCK / (predivider_n + 1);
264 pll_bandwidth = ref_clock / 70;
265 mod_freq_divider = ref_clock / (4 * pll_bandwidth);
266
267 /* Calculate Mantissa/Exponent */
268 exponent = 0;
269 mantissa = mod_freq_divider;
270 while ((mantissa > 127) && (exponent < 7)) {
271 exponent++;
272 mantissa /= 2;
273 }
274 if (mantissa > 127)
275 mantissa = 127;
276
277 mod_freq_divider = mantissa << exponent;
278
279 /*
280 * Calculate Modulation steps
281 * As we use Downspread only, the spread is twice the value of
282 * permille, so Div2!
283 * As it takes the value in percent, divide by ten!
284 */
285 delta_m_step = ((u32)((multiplier_m * permille) / 10 / 2)) << 18;
286 delta_m_step /= 100;
287 delta_m_step /= mod_freq_divider;
288 if (delta_m_step > 0xFFFFF)
289 delta_m_step = 0xFFFFF;
290
291 /* Setup Spread Spectrum */
292 writel(delta_m_step, &cmwkup->sscdeltamstepdllmpu);
293 writel((exponent << 8) | mantissa, &cmwkup->sscmodfreqdivdpllmpu);
294 cm_clkmode_dpll_mpu = readl(&cmwkup->clkmoddpllmpu);
295 /* clear all SSC flags */
296 cm_clkmode_dpll_mpu &= ~(0xF << CM_CLKMODE_DPLL_SSC_EN_SHIFT);
297 /* enable SSC with Downspread only */
298 cm_clkmode_dpll_mpu |= CM_CLKMODE_DPLL_SSC_EN_MASK |
299 CM_CLKMODE_DPLL_SSC_DOWNSPREAD_MASK;
300 writel(cm_clkmode_dpll_mpu, &cmwkup->clkmoddpllmpu);
301 while (!(readl(&cmwkup->clkmoddpllmpu) & 0x2000))
302 ;
303 }