]> git.ipfire.org Git - people/ms/u-boot.git/blob - arch/arm/mach-omap2/emif-common.c
mx35: adjust default environment for flea3 board
[people/ms/u-boot.git] / arch / arm / mach-omap2 / emif-common.c
1 /*
2 * EMIF programming
3 *
4 * (C) Copyright 2010
5 * Texas Instruments, <www.ti.com>
6 *
7 * Aneesh V <aneesh@ti.com>
8 *
9 * SPDX-License-Identifier: GPL-2.0+
10 */
11
12 #include <common.h>
13 #include <asm/emif.h>
14 #include <asm/arch/clock.h>
15 #include <asm/arch/sys_proto.h>
16 #include <asm/omap_common.h>
17 #include <asm/omap_sec_common.h>
18 #include <asm/utils.h>
19 #include <linux/compiler.h>
20
21 static int emif1_enabled = -1, emif2_enabled = -1;
22
23 void set_lpmode_selfrefresh(u32 base)
24 {
25 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
26 u32 reg;
27
28 reg = readl(&emif->emif_pwr_mgmt_ctrl);
29 reg &= ~EMIF_REG_LP_MODE_MASK;
30 reg |= LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT;
31 reg &= ~EMIF_REG_SR_TIM_MASK;
32 writel(reg, &emif->emif_pwr_mgmt_ctrl);
33
34 /* dummy read for the new SR_TIM to be loaded */
35 readl(&emif->emif_pwr_mgmt_ctrl);
36 }
37
38 void force_emif_self_refresh()
39 {
40 set_lpmode_selfrefresh(EMIF1_BASE);
41 if (!is_dra72x())
42 set_lpmode_selfrefresh(EMIF2_BASE);
43 }
44
45 inline u32 emif_num(u32 base)
46 {
47 if (base == EMIF1_BASE)
48 return 1;
49 else if (base == EMIF2_BASE)
50 return 2;
51 else
52 return 0;
53 }
54
55 static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr)
56 {
57 u32 mr;
58 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
59
60 mr_addr |= cs << EMIF_REG_CS_SHIFT;
61 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
62 if (omap_revision() == OMAP4430_ES2_0)
63 mr = readl(&emif->emif_lpddr2_mode_reg_data_es2);
64 else
65 mr = readl(&emif->emif_lpddr2_mode_reg_data);
66 debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base),
67 cs, mr_addr, mr);
68 if (((mr & 0x0000ff00) >> 8) == (mr & 0xff) &&
69 ((mr & 0x00ff0000) >> 16) == (mr & 0xff) &&
70 ((mr & 0xff000000) >> 24) == (mr & 0xff))
71 return mr & 0xff;
72 else
73 return mr;
74 }
75
76 static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val)
77 {
78 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
79
80 mr_addr |= cs << EMIF_REG_CS_SHIFT;
81 writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg);
82 writel(mr_val, &emif->emif_lpddr2_mode_reg_data);
83 }
84
85 void emif_reset_phy(u32 base)
86 {
87 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
88 u32 iodft;
89
90 iodft = readl(&emif->emif_iodft_tlgc);
91 iodft |= EMIF_REG_RESET_PHY_MASK;
92 writel(iodft, &emif->emif_iodft_tlgc);
93 }
94
95 static void do_lpddr2_init(u32 base, u32 cs)
96 {
97 u32 mr_addr;
98 const struct lpddr2_mr_regs *mr_regs;
99
100 get_lpddr2_mr_regs(&mr_regs);
101 /* Wait till device auto initialization is complete */
102 while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK)
103 ;
104 set_mr(base, cs, LPDDR2_MR10, mr_regs->mr10);
105 /*
106 * tZQINIT = 1 us
107 * Enough loops assuming a maximum of 2GHz
108 */
109
110 sdelay(2000);
111
112 set_mr(base, cs, LPDDR2_MR1, mr_regs->mr1);
113 set_mr(base, cs, LPDDR2_MR16, mr_regs->mr16);
114
115 /*
116 * Enable refresh along with writing MR2
117 * Encoding of RL in MR2 is (RL - 2)
118 */
119 mr_addr = LPDDR2_MR2 | EMIF_REG_REFRESH_EN_MASK;
120 set_mr(base, cs, mr_addr, mr_regs->mr2);
121
122 if (mr_regs->mr3 > 0)
123 set_mr(base, cs, LPDDR2_MR3, mr_regs->mr3);
124 }
125
126 static void lpddr2_init(u32 base, const struct emif_regs *regs)
127 {
128 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
129
130 /* Not NVM */
131 clrbits_le32(&emif->emif_lpddr2_nvm_config, EMIF_REG_CS1NVMEN_MASK);
132
133 /*
134 * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM
135 * when EMIF_SDRAM_CONFIG register is written
136 */
137 setbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
138
139 /*
140 * Set the SDRAM_CONFIG and PHY_CTRL for the
141 * un-locked frequency & default RL
142 */
143 writel(regs->sdram_config_init, &emif->emif_sdram_config);
144 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
145
146 do_ext_phy_settings(base, regs);
147
148 do_lpddr2_init(base, CS0);
149 if (regs->sdram_config & EMIF_REG_EBANK_MASK)
150 do_lpddr2_init(base, CS1);
151
152 writel(regs->sdram_config, &emif->emif_sdram_config);
153 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
154
155 /* Enable refresh now */
156 clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
157
158 }
159
160 __weak void do_ext_phy_settings(u32 base, const struct emif_regs *regs)
161 {
162 }
163
164 void emif_update_timings(u32 base, const struct emif_regs *regs)
165 {
166 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
167
168 if (!is_dra7xx())
169 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw);
170 else
171 writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl_shdw);
172
173 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw);
174 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw);
175 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw);
176 if (omap_revision() == OMAP4430_ES1_0) {
177 /* ES1 bug EMIF should be in force idle during freq_update */
178 writel(0, &emif->emif_pwr_mgmt_ctrl);
179 } else {
180 writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl);
181 writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw);
182 }
183 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw);
184 writel(regs->zq_config, &emif->emif_zq_config);
185 writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
186 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
187
188 if ((omap_revision() >= OMAP5430_ES1_0) || is_dra7xx()) {
189 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0,
190 &emif->emif_l3_config);
191 } else if (omap_revision() >= OMAP4460_ES1_0) {
192 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0,
193 &emif->emif_l3_config);
194 } else {
195 writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0,
196 &emif->emif_l3_config);
197 }
198 }
199
200 #ifndef CONFIG_OMAP44XX
201 static void omap5_ddr3_leveling(u32 base, const struct emif_regs *regs)
202 {
203 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
204
205 /* keep sdram in self-refresh */
206 writel(((LP_MODE_SELF_REFRESH << EMIF_REG_LP_MODE_SHIFT)
207 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
208 __udelay(130);
209
210 /*
211 * Set invert_clkout (if activated)--DDR_PHYCTRL_1
212 * Invert clock adds an additional half cycle delay on the
213 * command interface. The additional half cycle, is usually
214 * meant to enable leveling in the situation that DQS is later
215 * than CK on the board.It also helps provide some additional
216 * margin for leveling.
217 */
218 writel(regs->emif_ddr_phy_ctlr_1,
219 &emif->emif_ddr_phy_ctrl_1);
220
221 writel(regs->emif_ddr_phy_ctlr_1,
222 &emif->emif_ddr_phy_ctrl_1_shdw);
223 __udelay(130);
224
225 writel(((LP_MODE_DISABLE << EMIF_REG_LP_MODE_SHIFT)
226 & EMIF_REG_LP_MODE_MASK), &emif->emif_pwr_mgmt_ctrl);
227
228 /* Launch Full leveling */
229 writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
230
231 /* Wait till full leveling is complete */
232 readl(&emif->emif_rd_wr_lvl_ctl);
233 __udelay(130);
234
235 /* Read data eye leveling no of samples */
236 config_data_eye_leveling_samples(base);
237
238 /*
239 * Launch 8 incremental WR_LVL- to compensate for
240 * PHY limitation.
241 */
242 writel(0x2 << EMIF_REG_WRLVLINC_INT_SHIFT,
243 &emif->emif_rd_wr_lvl_ctl);
244
245 __udelay(130);
246
247 /* Launch Incremental leveling */
248 writel(DDR3_INC_LVL, &emif->emif_rd_wr_lvl_ctl);
249 __udelay(130);
250 }
251
252 static void update_hwleveling_output(u32 base, const struct emif_regs *regs)
253 {
254 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
255 u32 *emif_ext_phy_ctrl_reg, *emif_phy_status;
256 u32 reg, i, phy;
257
258 emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[7];
259 phy = readl(&emif->emif_ddr_phy_ctrl_1);
260
261 /* Update PHY_REG_RDDQS_RATIO */
262 emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_7;
263 if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVL_MASK_MASK))
264 for (i = 0; i < PHY_RDDQS_RATIO_REGS; i++) {
265 reg = readl(emif_phy_status++);
266 writel(reg, emif_ext_phy_ctrl_reg++);
267 writel(reg, emif_ext_phy_ctrl_reg++);
268 }
269
270 /* Update PHY_REG_FIFO_WE_SLAVE_RATIO */
271 emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_2;
272 emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[12];
273 if (!(phy & EMIF_DDR_PHY_CTRL_1_RDLVLGATE_MASK_MASK))
274 for (i = 0; i < PHY_FIFO_WE_SLAVE_RATIO_REGS; i++) {
275 reg = readl(emif_phy_status++);
276 writel(reg, emif_ext_phy_ctrl_reg++);
277 writel(reg, emif_ext_phy_ctrl_reg++);
278 }
279
280 /* Update PHY_REG_WR_DQ/DQS_SLAVE_RATIO */
281 emif_ext_phy_ctrl_reg = (u32 *)&emif->emif_ddr_ext_phy_ctrl_12;
282 emif_phy_status = (u32 *)&emif->emif_ddr_phy_status[17];
283 if (!(phy & EMIF_DDR_PHY_CTRL_1_WRLVL_MASK_MASK))
284 for (i = 0; i < PHY_REG_WR_DQ_SLAVE_RATIO_REGS; i++) {
285 reg = readl(emif_phy_status++);
286 writel(reg, emif_ext_phy_ctrl_reg++);
287 writel(reg, emif_ext_phy_ctrl_reg++);
288 }
289
290 /* Disable Leveling */
291 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1);
292 writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw);
293 writel(0x0, &emif->emif_rd_wr_lvl_rmp_ctl);
294 }
295
296 static void dra7_ddr3_leveling(u32 base, const struct emif_regs *regs)
297 {
298 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
299
300 /* Clear Error Status */
301 clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36,
302 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
303 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
304
305 clrsetbits_le32(&emif->emif_ddr_ext_phy_ctrl_36_shdw,
306 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR,
307 EMIF_REG_PHY_FIFO_WE_IN_MISALINED_CLR);
308
309 /* Disable refreshed before leveling */
310 clrsetbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK,
311 EMIF_REG_INITREF_DIS_MASK);
312
313 /* Start Full leveling */
314 writel(DDR3_FULL_LVL, &emif->emif_rd_wr_lvl_ctl);
315
316 __udelay(300);
317
318 /* Check for leveling timeout */
319 if (readl(&emif->emif_status) & EMIF_REG_LEVELING_TO_MASK) {
320 printf("Leveling timeout on EMIF%d\n", emif_num(base));
321 return;
322 }
323
324 /* Enable refreshes after leveling */
325 clrbits_le32(&emif->emif_sdram_ref_ctrl, EMIF_REG_INITREF_DIS_MASK);
326
327 debug("HW leveling success\n");
328 /*
329 * Update slave ratios in EXT_PHY_CTRLx registers
330 * as per HW leveling output
331 */
332 update_hwleveling_output(base, regs);
333 }
334
335 static void dra7_ddr3_init(u32 base, const struct emif_regs *regs)
336 {
337 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
338
339 if (warm_reset()) {
340 emif_reset_phy(base);
341 writel(0x0, &emif->emif_pwr_mgmt_ctrl);
342 }
343 do_ext_phy_settings(base, regs);
344
345 writel(regs->ref_ctrl | EMIF_REG_INITREF_DIS_MASK,
346 &emif->emif_sdram_ref_ctrl);
347 /* Update timing registers */
348 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
349 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
350 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
351
352 writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_5_LL_0, &emif->emif_l3_config);
353 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
354 writel(regs->zq_config, &emif->emif_zq_config);
355 writel(regs->temp_alert_config, &emif->emif_temp_alert_config);
356 writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
357 writel(regs->emif_rd_wr_lvl_ctl, &emif->emif_rd_wr_lvl_ctl);
358
359 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
360 writel(regs->emif_rd_wr_exec_thresh, &emif->emif_rd_wr_exec_thresh);
361
362 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
363
364 writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
365 writel(regs->sdram_config_init, &emif->emif_sdram_config);
366
367 __udelay(1000);
368
369 writel(regs->ref_ctrl_final, &emif->emif_sdram_ref_ctrl);
370
371 if (regs->emif_rd_wr_lvl_rmp_ctl & EMIF_REG_RDWRLVL_EN_MASK)
372 dra7_ddr3_leveling(base, regs);
373 }
374
375 static void omap5_ddr3_init(u32 base, const struct emif_regs *regs)
376 {
377 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
378
379 writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl);
380 writel(regs->sdram_config_init, &emif->emif_sdram_config);
381 /*
382 * Set SDRAM_CONFIG and PHY control registers to locked frequency
383 * and RL =7. As the default values of the Mode Registers are not
384 * defined, contents of mode Registers must be fully initialized.
385 * H/W takes care of this initialization
386 */
387 writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1);
388
389 /* Update timing registers */
390 writel(regs->sdram_tim1, &emif->emif_sdram_tim_1);
391 writel(regs->sdram_tim2, &emif->emif_sdram_tim_2);
392 writel(regs->sdram_tim3, &emif->emif_sdram_tim_3);
393
394 writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl);
395
396 writel(regs->sdram_config2, &emif->emif_lpddr2_nvm_config);
397 writel(regs->sdram_config_init, &emif->emif_sdram_config);
398 do_ext_phy_settings(base, regs);
399
400 writel(regs->emif_rd_wr_lvl_rmp_ctl, &emif->emif_rd_wr_lvl_rmp_ctl);
401 omap5_ddr3_leveling(base, regs);
402 }
403
404 static void ddr3_init(u32 base, const struct emif_regs *regs)
405 {
406 if (is_omap54xx())
407 omap5_ddr3_init(base, regs);
408 else
409 dra7_ddr3_init(base, regs);
410 }
411 #endif
412
413 #ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
414 #define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
415
416 /*
417 * Organization and refresh requirements for LPDDR2 devices of different
418 * types and densities. Derived from JESD209-2 section 2.4
419 */
420 const struct lpddr2_addressing addressing_table[] = {
421 /* Banks tREFIx10 rowx32,rowx16 colx32,colx16 density */
422 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
423 {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
424 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
425 {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
426 {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
427 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
428 {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
429 {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
430 {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
431 {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
432 };
433
434 static const u32 lpddr2_density_2_size_in_mbytes[] = {
435 8, /* 64Mb */
436 16, /* 128Mb */
437 32, /* 256Mb */
438 64, /* 512Mb */
439 128, /* 1Gb */
440 256, /* 2Gb */
441 512, /* 4Gb */
442 1024, /* 8Gb */
443 2048, /* 16Gb */
444 4096 /* 32Gb */
445 };
446
447 /*
448 * Calculate the period of DDR clock from frequency value and set the
449 * denominator and numerator in global variables for easy access later
450 */
451 static void set_ddr_clk_period(u32 freq)
452 {
453 /*
454 * period = 1/freq
455 * period_in_ns = 10^9/freq
456 */
457 *T_num = 1000000000;
458 *T_den = freq;
459 cancel_out(T_num, T_den, 200);
460
461 }
462
463 /*
464 * Convert time in nano seconds to number of cycles of DDR clock
465 */
466 static inline u32 ns_2_cycles(u32 ns)
467 {
468 return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
469 }
470
471 /*
472 * ns_2_cycles with the difference that the time passed is 2 times the actual
473 * value(to avoid fractions). The cycles returned is for the original value of
474 * the timing parameter
475 */
476 static inline u32 ns_x2_2_cycles(u32 ns)
477 {
478 return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
479 }
480
481 /*
482 * Find addressing table index based on the device's type(S2 or S4) and
483 * density
484 */
485 s8 addressing_table_index(u8 type, u8 density, u8 width)
486 {
487 u8 index;
488 if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
489 return -1;
490
491 /*
492 * Look at the way ADDR_TABLE_INDEX* values have been defined
493 * in emif.h compared to LPDDR2_DENSITY_* values
494 * The table is layed out in the increasing order of density
495 * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
496 * at the end
497 */
498 if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
499 index = ADDR_TABLE_INDEX1GS2;
500 else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
501 index = ADDR_TABLE_INDEX2GS2;
502 else
503 index = density;
504
505 debug("emif: addressing table index %d\n", index);
506
507 return index;
508 }
509
510 /*
511 * Find the the right timing table from the array of timing
512 * tables of the device using DDR clock frequency
513 */
514 static const struct lpddr2_ac_timings *get_timings_table(const struct
515 lpddr2_ac_timings const *const *device_timings,
516 u32 freq)
517 {
518 u32 i, temp, freq_nearest;
519 const struct lpddr2_ac_timings *timings = 0;
520
521 emif_assert(freq <= MAX_LPDDR2_FREQ);
522 emif_assert(device_timings);
523
524 /*
525 * Start with the maximum allowed frequency - that is always safe
526 */
527 freq_nearest = MAX_LPDDR2_FREQ;
528 /*
529 * Find the timings table that has the max frequency value:
530 * i. Above or equal to the DDR frequency - safe
531 * ii. The lowest that satisfies condition (i) - optimal
532 */
533 for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
534 temp = device_timings[i]->max_freq;
535 if ((temp >= freq) && (temp <= freq_nearest)) {
536 freq_nearest = temp;
537 timings = device_timings[i];
538 }
539 }
540 debug("emif: timings table: %d\n", freq_nearest);
541 return timings;
542 }
543
544 /*
545 * Finds the value of emif_sdram_config_reg
546 * All parameters are programmed based on the device on CS0.
547 * If there is a device on CS1, it will be same as that on CS0 or
548 * it will be NVM. We don't support NVM yet.
549 * If cs1_device pointer is NULL it is assumed that there is no device
550 * on CS1
551 */
552 static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
553 const struct lpddr2_device_details *cs1_device,
554 const struct lpddr2_addressing *addressing,
555 u8 RL)
556 {
557 u32 config_reg = 0;
558
559 config_reg |= (cs0_device->type + 4) << EMIF_REG_SDRAM_TYPE_SHIFT;
560 config_reg |= EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
561 EMIF_REG_IBANK_POS_SHIFT;
562
563 config_reg |= cs0_device->io_width << EMIF_REG_NARROW_MODE_SHIFT;
564
565 config_reg |= RL << EMIF_REG_CL_SHIFT;
566
567 config_reg |= addressing->row_sz[cs0_device->io_width] <<
568 EMIF_REG_ROWSIZE_SHIFT;
569
570 config_reg |= addressing->num_banks << EMIF_REG_IBANK_SHIFT;
571
572 config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
573 EMIF_REG_EBANK_SHIFT;
574
575 config_reg |= addressing->col_sz[cs0_device->io_width] <<
576 EMIF_REG_PAGESIZE_SHIFT;
577
578 return config_reg;
579 }
580
581 static u32 get_sdram_ref_ctrl(u32 freq,
582 const struct lpddr2_addressing *addressing)
583 {
584 u32 ref_ctrl = 0, val = 0, freq_khz;
585 freq_khz = freq / 1000;
586 /*
587 * refresh rate to be set is 'tREFI * freq in MHz
588 * division by 10000 to account for khz and x10 in t_REFI_us_x10
589 */
590 val = addressing->t_REFI_us_x10 * freq_khz / 10000;
591 ref_ctrl |= val << EMIF_REG_REFRESH_RATE_SHIFT;
592
593 return ref_ctrl;
594 }
595
596 static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
597 const struct lpddr2_min_tck *min_tck,
598 const struct lpddr2_addressing *addressing)
599 {
600 u32 tim1 = 0, val = 0;
601 val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
602 tim1 |= val << EMIF_REG_T_WTR_SHIFT;
603
604 if (addressing->num_banks == BANKS8)
605 val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
606 (4 * (*T_num)) - 1;
607 else
608 val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
609
610 tim1 |= val << EMIF_REG_T_RRD_SHIFT;
611
612 val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
613 tim1 |= val << EMIF_REG_T_RC_SHIFT;
614
615 val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
616 tim1 |= val << EMIF_REG_T_RAS_SHIFT;
617
618 val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
619 tim1 |= val << EMIF_REG_T_WR_SHIFT;
620
621 val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
622 tim1 |= val << EMIF_REG_T_RCD_SHIFT;
623
624 val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
625 tim1 |= val << EMIF_REG_T_RP_SHIFT;
626
627 return tim1;
628 }
629
630 static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
631 const struct lpddr2_min_tck *min_tck)
632 {
633 u32 tim2 = 0, val = 0;
634 val = max(min_tck->tCKE, timings->tCKE) - 1;
635 tim2 |= val << EMIF_REG_T_CKE_SHIFT;
636
637 val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
638 tim2 |= val << EMIF_REG_T_RTP_SHIFT;
639
640 /*
641 * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
642 * same value
643 */
644 val = ns_2_cycles(timings->tXSR) - 1;
645 tim2 |= val << EMIF_REG_T_XSRD_SHIFT;
646 tim2 |= val << EMIF_REG_T_XSNR_SHIFT;
647
648 val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
649 tim2 |= val << EMIF_REG_T_XP_SHIFT;
650
651 return tim2;
652 }
653
654 static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
655 const struct lpddr2_min_tck *min_tck,
656 const struct lpddr2_addressing *addressing)
657 {
658 u32 tim3 = 0, val = 0;
659 val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
660 tim3 |= val << EMIF_REG_T_RAS_MAX_SHIFT;
661
662 val = ns_2_cycles(timings->tRFCab) - 1;
663 tim3 |= val << EMIF_REG_T_RFC_SHIFT;
664
665 val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
666 tim3 |= val << EMIF_REG_T_TDQSCKMAX_SHIFT;
667
668 val = ns_2_cycles(timings->tZQCS) - 1;
669 tim3 |= val << EMIF_REG_ZQ_ZQCS_SHIFT;
670
671 val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
672 tim3 |= val << EMIF_REG_T_CKESR_SHIFT;
673
674 return tim3;
675 }
676
677 static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
678 const struct lpddr2_addressing *addressing,
679 u8 volt_ramp)
680 {
681 u32 zq = 0, val = 0;
682 if (volt_ramp)
683 val =
684 EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
685 addressing->t_REFI_us_x10;
686 else
687 val =
688 EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
689 addressing->t_REFI_us_x10;
690 zq |= val << EMIF_REG_ZQ_REFINTERVAL_SHIFT;
691
692 zq |= (REG_ZQ_ZQCL_MULT - 1) << EMIF_REG_ZQ_ZQCL_MULT_SHIFT;
693
694 zq |= (REG_ZQ_ZQINIT_MULT - 1) << EMIF_REG_ZQ_ZQINIT_MULT_SHIFT;
695
696 zq |= REG_ZQ_SFEXITEN_ENABLE << EMIF_REG_ZQ_SFEXITEN_SHIFT;
697
698 /*
699 * Assuming that two chipselects have a single calibration resistor
700 * If there are indeed two calibration resistors, then this flag should
701 * be enabled to take advantage of dual calibration feature.
702 * This data should ideally come from board files. But considering
703 * that none of the boards today have calibration resistors per CS,
704 * it would be an unnecessary overhead.
705 */
706 zq |= REG_ZQ_DUALCALEN_DISABLE << EMIF_REG_ZQ_DUALCALEN_SHIFT;
707
708 zq |= REG_ZQ_CS0EN_ENABLE << EMIF_REG_ZQ_CS0EN_SHIFT;
709
710 zq |= (cs1_device ? 1 : 0) << EMIF_REG_ZQ_CS1EN_SHIFT;
711
712 return zq;
713 }
714
715 static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
716 const struct lpddr2_addressing *addressing,
717 u8 is_derated)
718 {
719 u32 alert = 0, interval;
720 interval =
721 TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
722 if (is_derated)
723 interval *= 4;
724 alert |= interval << EMIF_REG_TA_REFINTERVAL_SHIFT;
725
726 alert |= TEMP_ALERT_CONFIG_DEVCT_1 << EMIF_REG_TA_DEVCNT_SHIFT;
727
728 alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << EMIF_REG_TA_DEVWDT_SHIFT;
729
730 alert |= 1 << EMIF_REG_TA_SFEXITEN_SHIFT;
731
732 alert |= 1 << EMIF_REG_TA_CS0EN_SHIFT;
733
734 alert |= (cs1_device ? 1 : 0) << EMIF_REG_TA_CS1EN_SHIFT;
735
736 return alert;
737 }
738
739 static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
740 {
741 u32 idle = 0, val = 0;
742 if (volt_ramp)
743 val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1;
744 else
745 /*Maximum value in normal conditions - suggested by hw team */
746 val = 0x1FF;
747 idle |= val << EMIF_REG_READ_IDLE_INTERVAL_SHIFT;
748
749 idle |= EMIF_REG_READ_IDLE_LEN_VAL << EMIF_REG_READ_IDLE_LEN_SHIFT;
750
751 return idle;
752 }
753
754 static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
755 {
756 u32 phy = 0, val = 0;
757
758 phy |= (RL + 2) << EMIF_REG_READ_LATENCY_SHIFT;
759
760 if (freq <= 100000000)
761 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
762 else if (freq <= 200000000)
763 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
764 else
765 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
766 phy |= val << EMIF_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
767
768 /* Other fields are constant magic values. Hardcode them together */
769 phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
770 EMIF_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
771
772 return phy;
773 }
774
775 static u32 get_emif_mem_size(u32 base)
776 {
777 u32 size_mbytes = 0, temp;
778 struct emif_device_details dev_details;
779 struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
780 u32 emif_nr = emif_num(base);
781
782 emif_reset_phy(base);
783 dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
784 &cs0_dev_details);
785 dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
786 &cs1_dev_details);
787 emif_reset_phy(base);
788
789 if (dev_details.cs0_device_details) {
790 temp = dev_details.cs0_device_details->density;
791 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
792 }
793
794 if (dev_details.cs1_device_details) {
795 temp = dev_details.cs1_device_details->density;
796 size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
797 }
798 /* convert to bytes */
799 return size_mbytes << 20;
800 }
801
802 /* Gets the encoding corresponding to a given DMM section size */
803 u32 get_dmm_section_size_map(u32 section_size)
804 {
805 /*
806 * Section size mapping:
807 * 0x0: 16-MiB section
808 * 0x1: 32-MiB section
809 * 0x2: 64-MiB section
810 * 0x3: 128-MiB section
811 * 0x4: 256-MiB section
812 * 0x5: 512-MiB section
813 * 0x6: 1-GiB section
814 * 0x7: 2-GiB section
815 */
816 section_size >>= 24; /* divide by 16 MB */
817 return log_2_n_round_down(section_size);
818 }
819
820 static void emif_calculate_regs(
821 const struct emif_device_details *emif_dev_details,
822 u32 freq, struct emif_regs *regs)
823 {
824 u32 temp, sys_freq;
825 const struct lpddr2_addressing *addressing;
826 const struct lpddr2_ac_timings *timings;
827 const struct lpddr2_min_tck *min_tck;
828 const struct lpddr2_device_details *cs0_dev_details =
829 emif_dev_details->cs0_device_details;
830 const struct lpddr2_device_details *cs1_dev_details =
831 emif_dev_details->cs1_device_details;
832 const struct lpddr2_device_timings *cs0_dev_timings =
833 emif_dev_details->cs0_device_timings;
834
835 emif_assert(emif_dev_details);
836 emif_assert(regs);
837 /*
838 * You can not have a device on CS1 without one on CS0
839 * So configuring EMIF without a device on CS0 doesn't
840 * make sense
841 */
842 emif_assert(cs0_dev_details);
843 emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
844 /*
845 * If there is a device on CS1 it should be same type as CS0
846 * (or NVM. But NVM is not supported in this driver yet)
847 */
848 emif_assert((cs1_dev_details == NULL) ||
849 (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
850 (cs0_dev_details->type == cs1_dev_details->type));
851 emif_assert(freq <= MAX_LPDDR2_FREQ);
852
853 set_ddr_clk_period(freq);
854
855 /*
856 * The device on CS0 is used for all timing calculations
857 * There is only one set of registers for timings per EMIF. So, if the
858 * second CS(CS1) has a device, it should have the same timings as the
859 * device on CS0
860 */
861 timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
862 emif_assert(timings);
863 min_tck = cs0_dev_timings->min_tck;
864
865 temp = addressing_table_index(cs0_dev_details->type,
866 cs0_dev_details->density,
867 cs0_dev_details->io_width);
868
869 emif_assert((temp >= 0));
870 addressing = &(addressing_table[temp]);
871 emif_assert(addressing);
872
873 sys_freq = get_sys_clk_freq();
874
875 regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
876 cs1_dev_details,
877 addressing, RL_BOOT);
878
879 regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
880 cs1_dev_details,
881 addressing, RL_FINAL);
882
883 regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
884
885 regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
886
887 regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
888
889 regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
890
891 regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
892
893 regs->temp_alert_config =
894 get_temp_alert_config(cs1_dev_details, addressing, 0);
895
896 regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
897 LPDDR2_VOLTAGE_STABLE);
898
899 regs->emif_ddr_phy_ctlr_1_init =
900 get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
901
902 regs->emif_ddr_phy_ctlr_1 =
903 get_ddr_phy_ctrl_1(freq, RL_FINAL);
904
905 regs->freq = freq;
906
907 print_timing_reg(regs->sdram_config_init);
908 print_timing_reg(regs->sdram_config);
909 print_timing_reg(regs->ref_ctrl);
910 print_timing_reg(regs->sdram_tim1);
911 print_timing_reg(regs->sdram_tim2);
912 print_timing_reg(regs->sdram_tim3);
913 print_timing_reg(regs->read_idle_ctrl);
914 print_timing_reg(regs->temp_alert_config);
915 print_timing_reg(regs->zq_config);
916 print_timing_reg(regs->emif_ddr_phy_ctlr_1);
917 print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
918 }
919 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
920
921 #ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION
922 const char *get_lpddr2_type(u8 type_id)
923 {
924 switch (type_id) {
925 case LPDDR2_TYPE_S4:
926 return "LPDDR2-S4";
927 case LPDDR2_TYPE_S2:
928 return "LPDDR2-S2";
929 default:
930 return NULL;
931 }
932 }
933
934 const char *get_lpddr2_io_width(u8 width_id)
935 {
936 switch (width_id) {
937 case LPDDR2_IO_WIDTH_8:
938 return "x8";
939 case LPDDR2_IO_WIDTH_16:
940 return "x16";
941 case LPDDR2_IO_WIDTH_32:
942 return "x32";
943 default:
944 return NULL;
945 }
946 }
947
948 const char *get_lpddr2_manufacturer(u32 manufacturer)
949 {
950 switch (manufacturer) {
951 case LPDDR2_MANUFACTURER_SAMSUNG:
952 return "Samsung";
953 case LPDDR2_MANUFACTURER_QIMONDA:
954 return "Qimonda";
955 case LPDDR2_MANUFACTURER_ELPIDA:
956 return "Elpida";
957 case LPDDR2_MANUFACTURER_ETRON:
958 return "Etron";
959 case LPDDR2_MANUFACTURER_NANYA:
960 return "Nanya";
961 case LPDDR2_MANUFACTURER_HYNIX:
962 return "Hynix";
963 case LPDDR2_MANUFACTURER_MOSEL:
964 return "Mosel";
965 case LPDDR2_MANUFACTURER_WINBOND:
966 return "Winbond";
967 case LPDDR2_MANUFACTURER_ESMT:
968 return "ESMT";
969 case LPDDR2_MANUFACTURER_SPANSION:
970 return "Spansion";
971 case LPDDR2_MANUFACTURER_SST:
972 return "SST";
973 case LPDDR2_MANUFACTURER_ZMOS:
974 return "ZMOS";
975 case LPDDR2_MANUFACTURER_INTEL:
976 return "Intel";
977 case LPDDR2_MANUFACTURER_NUMONYX:
978 return "Numonyx";
979 case LPDDR2_MANUFACTURER_MICRON:
980 return "Micron";
981 default:
982 return NULL;
983 }
984 }
985
986 static void display_sdram_details(u32 emif_nr, u32 cs,
987 struct lpddr2_device_details *device)
988 {
989 const char *mfg_str;
990 const char *type_str;
991 char density_str[10];
992 u32 density;
993
994 debug("EMIF%d CS%d\t", emif_nr, cs);
995
996 if (!device) {
997 debug("None\n");
998 return;
999 }
1000
1001 mfg_str = get_lpddr2_manufacturer(device->manufacturer);
1002 type_str = get_lpddr2_type(device->type);
1003
1004 density = lpddr2_density_2_size_in_mbytes[device->density];
1005 if ((density / 1024 * 1024) == density) {
1006 density /= 1024;
1007 sprintf(density_str, "%d GB", density);
1008 } else
1009 sprintf(density_str, "%d MB", density);
1010 if (mfg_str && type_str)
1011 debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str);
1012 }
1013
1014 static u8 is_lpddr2_sdram_present(u32 base, u32 cs,
1015 struct lpddr2_device_details *lpddr2_device)
1016 {
1017 u32 mr = 0, temp;
1018
1019 mr = get_mr(base, cs, LPDDR2_MR0);
1020 if (mr > 0xFF) {
1021 /* Mode register value bigger than 8 bit */
1022 return 0;
1023 }
1024
1025 temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT;
1026 if (temp) {
1027 /* Not SDRAM */
1028 return 0;
1029 }
1030 temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT;
1031
1032 if (temp) {
1033 /* DNV supported - But DNV is only supported for NVM */
1034 return 0;
1035 }
1036
1037 mr = get_mr(base, cs, LPDDR2_MR4);
1038 if (mr > 0xFF) {
1039 /* Mode register value bigger than 8 bit */
1040 return 0;
1041 }
1042
1043 mr = get_mr(base, cs, LPDDR2_MR5);
1044 if (mr > 0xFF) {
1045 /* Mode register value bigger than 8 bit */
1046 return 0;
1047 }
1048
1049 if (!get_lpddr2_manufacturer(mr)) {
1050 /* Manufacturer not identified */
1051 return 0;
1052 }
1053 lpddr2_device->manufacturer = mr;
1054
1055 mr = get_mr(base, cs, LPDDR2_MR6);
1056 if (mr >= 0xFF) {
1057 /* Mode register value bigger than 8 bit */
1058 return 0;
1059 }
1060
1061 mr = get_mr(base, cs, LPDDR2_MR7);
1062 if (mr >= 0xFF) {
1063 /* Mode register value bigger than 8 bit */
1064 return 0;
1065 }
1066
1067 mr = get_mr(base, cs, LPDDR2_MR8);
1068 if (mr >= 0xFF) {
1069 /* Mode register value bigger than 8 bit */
1070 return 0;
1071 }
1072
1073 temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT;
1074 if (!get_lpddr2_type(temp)) {
1075 /* Not SDRAM */
1076 return 0;
1077 }
1078 lpddr2_device->type = temp;
1079
1080 temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT;
1081 if (temp > LPDDR2_DENSITY_32Gb) {
1082 /* Density not supported */
1083 return 0;
1084 }
1085 lpddr2_device->density = temp;
1086
1087 temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT;
1088 if (!get_lpddr2_io_width(temp)) {
1089 /* IO width unsupported value */
1090 return 0;
1091 }
1092 lpddr2_device->io_width = temp;
1093
1094 /*
1095 * If all the above tests pass we should
1096 * have a device on this chip-select
1097 */
1098 return 1;
1099 }
1100
1101 struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs,
1102 struct lpddr2_device_details *lpddr2_dev_details)
1103 {
1104 u32 phy;
1105 u32 base = (emif_nr == 1) ? EMIF1_BASE : EMIF2_BASE;
1106
1107 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1108
1109 if (!lpddr2_dev_details)
1110 return NULL;
1111
1112 /* Do the minimum init for mode register accesses */
1113 if (!(running_from_sdram() || warm_reset())) {
1114 phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT);
1115 writel(phy, &emif->emif_ddr_phy_ctrl_1);
1116 }
1117
1118 if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details)))
1119 return NULL;
1120
1121 display_sdram_details(emif_num(base), cs, lpddr2_dev_details);
1122
1123 return lpddr2_dev_details;
1124 }
1125 #endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */
1126
1127 static void do_sdram_init(u32 base)
1128 {
1129 const struct emif_regs *regs;
1130 u32 in_sdram, emif_nr;
1131
1132 debug(">>do_sdram_init() %x\n", base);
1133
1134 in_sdram = running_from_sdram();
1135 emif_nr = (base == EMIF1_BASE) ? 1 : 2;
1136
1137 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1138 emif_get_reg_dump(emif_nr, &regs);
1139 if (!regs) {
1140 debug("EMIF: reg dump not provided\n");
1141 return;
1142 }
1143 #else
1144 /*
1145 * The user has not provided the register values. We need to
1146 * calculate it based on the timings and the DDR frequency
1147 */
1148 struct emif_device_details dev_details;
1149 struct emif_regs calculated_regs;
1150
1151 /*
1152 * Get device details:
1153 * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
1154 * - Obtained from user otherwise
1155 */
1156 struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
1157 emif_reset_phy(base);
1158 dev_details.cs0_device_details = emif_get_device_details(emif_nr, CS0,
1159 &cs0_dev_details);
1160 dev_details.cs1_device_details = emif_get_device_details(emif_nr, CS1,
1161 &cs1_dev_details);
1162 emif_reset_phy(base);
1163
1164 /* Return if no devices on this EMIF */
1165 if (!dev_details.cs0_device_details &&
1166 !dev_details.cs1_device_details) {
1167 return;
1168 }
1169
1170 /*
1171 * Get device timings:
1172 * - Default timings specified by JESD209-2 if
1173 * CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
1174 * - Obtained from user otherwise
1175 */
1176 emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
1177 &dev_details.cs1_device_timings);
1178
1179 /* Calculate the register values */
1180 emif_calculate_regs(&dev_details, omap_ddr_clk(), &calculated_regs);
1181 regs = &calculated_regs;
1182 #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
1183
1184 /*
1185 * Initializing the DDR device can not happen from SDRAM.
1186 * Changing the timing registers in EMIF can happen(going from one
1187 * OPP to another)
1188 */
1189 if (!in_sdram && (!warm_reset() || is_dra7xx())) {
1190 if (emif_sdram_type(regs->sdram_config) ==
1191 EMIF_SDRAM_TYPE_LPDDR2)
1192 lpddr2_init(base, regs);
1193 #ifndef CONFIG_OMAP44XX
1194 else
1195 ddr3_init(base, regs);
1196 #endif
1197 }
1198 #ifdef CONFIG_OMAP54X
1199 if (warm_reset() && (emif_sdram_type(regs->sdram_config) ==
1200 EMIF_SDRAM_TYPE_DDR3) && !is_dra7xx()) {
1201 set_lpmode_selfrefresh(base);
1202 emif_reset_phy(base);
1203 omap5_ddr3_leveling(base, regs);
1204 }
1205 #endif
1206
1207 /* Write to the shadow registers */
1208 emif_update_timings(base, regs);
1209
1210 debug("<<do_sdram_init() %x\n", base);
1211 }
1212
1213 void emif_post_init_config(u32 base)
1214 {
1215 struct emif_reg_struct *emif = (struct emif_reg_struct *)base;
1216 u32 omap_rev = omap_revision();
1217
1218 /* reset phy on ES2.0 */
1219 if (omap_rev == OMAP4430_ES2_0)
1220 emif_reset_phy(base);
1221
1222 /* Put EMIF back in smart idle on ES1.0 */
1223 if (omap_rev == OMAP4430_ES1_0)
1224 writel(0x80000000, &emif->emif_pwr_mgmt_ctrl);
1225 }
1226
1227 void dmm_init(u32 base)
1228 {
1229 const struct dmm_lisa_map_regs *lisa_map_regs;
1230 u32 i, section, valid;
1231
1232 #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
1233 emif_get_dmm_regs(&lisa_map_regs);
1234 #else
1235 u32 emif1_size, emif2_size, mapped_size, section_map = 0;
1236 u32 section_cnt, sys_addr;
1237 struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
1238
1239 mapped_size = 0;
1240 section_cnt = 3;
1241 sys_addr = CONFIG_SYS_SDRAM_BASE;
1242 emif1_size = get_emif_mem_size(EMIF1_BASE);
1243 emif2_size = get_emif_mem_size(EMIF2_BASE);
1244 debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
1245
1246 if (!emif1_size && !emif2_size)
1247 return;
1248
1249 /* symmetric interleaved section */
1250 if (emif1_size && emif2_size) {
1251 mapped_size = min(emif1_size, emif2_size);
1252 section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
1253 section_map |= 0 << EMIF_SDRC_ADDR_SHIFT;
1254 /* only MSB */
1255 section_map |= (sys_addr >> 24) <<
1256 EMIF_SYS_ADDR_SHIFT;
1257 section_map |= get_dmm_section_size_map(mapped_size * 2)
1258 << EMIF_SYS_SIZE_SHIFT;
1259 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1260 emif1_size -= mapped_size;
1261 emif2_size -= mapped_size;
1262 sys_addr += (mapped_size * 2);
1263 section_cnt--;
1264 }
1265
1266 /*
1267 * Single EMIF section(we can have a maximum of 1 single EMIF
1268 * section- either EMIF1 or EMIF2 or none, but not both)
1269 */
1270 if (emif1_size) {
1271 section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
1272 section_map |= get_dmm_section_size_map(emif1_size)
1273 << EMIF_SYS_SIZE_SHIFT;
1274 /* only MSB */
1275 section_map |= (mapped_size >> 24) <<
1276 EMIF_SDRC_ADDR_SHIFT;
1277 /* only MSB */
1278 section_map |= (sys_addr >> 24) << EMIF_SYS_ADDR_SHIFT;
1279 section_cnt--;
1280 }
1281 if (emif2_size) {
1282 section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
1283 section_map |= get_dmm_section_size_map(emif2_size) <<
1284 EMIF_SYS_SIZE_SHIFT;
1285 /* only MSB */
1286 section_map |= mapped_size >> 24 << EMIF_SDRC_ADDR_SHIFT;
1287 /* only MSB */
1288 section_map |= sys_addr >> 24 << EMIF_SYS_ADDR_SHIFT;
1289 section_cnt--;
1290 }
1291
1292 if (section_cnt == 2) {
1293 /* Only 1 section - either symmetric or single EMIF */
1294 lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
1295 lis_map_regs_calculated.dmm_lisa_map_2 = 0;
1296 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1297 } else {
1298 /* 2 sections - 1 symmetric, 1 single EMIF */
1299 lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
1300 lis_map_regs_calculated.dmm_lisa_map_1 = 0;
1301 }
1302
1303 /* TRAP for invalid TILER mappings in section 0 */
1304 lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
1305
1306 if (omap_revision() >= OMAP4460_ES1_0)
1307 lis_map_regs_calculated.is_ma_present = 1;
1308
1309 lisa_map_regs = &lis_map_regs_calculated;
1310 #endif
1311 struct dmm_lisa_map_regs *hw_lisa_map_regs =
1312 (struct dmm_lisa_map_regs *)base;
1313
1314 writel(0, &hw_lisa_map_regs->dmm_lisa_map_3);
1315 writel(0, &hw_lisa_map_regs->dmm_lisa_map_2);
1316 writel(0, &hw_lisa_map_regs->dmm_lisa_map_1);
1317 writel(0, &hw_lisa_map_regs->dmm_lisa_map_0);
1318
1319 writel(lisa_map_regs->dmm_lisa_map_3,
1320 &hw_lisa_map_regs->dmm_lisa_map_3);
1321 writel(lisa_map_regs->dmm_lisa_map_2,
1322 &hw_lisa_map_regs->dmm_lisa_map_2);
1323 writel(lisa_map_regs->dmm_lisa_map_1,
1324 &hw_lisa_map_regs->dmm_lisa_map_1);
1325 writel(lisa_map_regs->dmm_lisa_map_0,
1326 &hw_lisa_map_regs->dmm_lisa_map_0);
1327
1328 if (lisa_map_regs->is_ma_present) {
1329 hw_lisa_map_regs =
1330 (struct dmm_lisa_map_regs *)MA_BASE;
1331
1332 writel(lisa_map_regs->dmm_lisa_map_3,
1333 &hw_lisa_map_regs->dmm_lisa_map_3);
1334 writel(lisa_map_regs->dmm_lisa_map_2,
1335 &hw_lisa_map_regs->dmm_lisa_map_2);
1336 writel(lisa_map_regs->dmm_lisa_map_1,
1337 &hw_lisa_map_regs->dmm_lisa_map_1);
1338 writel(lisa_map_regs->dmm_lisa_map_0,
1339 &hw_lisa_map_regs->dmm_lisa_map_0);
1340
1341 setbits_le32(MA_PRIORITY, MA_HIMEM_INTERLEAVE_UN_MASK);
1342 }
1343
1344 /*
1345 * EMIF should be configured only when
1346 * memory is mapped on it. Using emif1_enabled
1347 * and emif2_enabled variables for this.
1348 */
1349 emif1_enabled = 0;
1350 emif2_enabled = 0;
1351 for (i = 0; i < 4; i++) {
1352 section = __raw_readl(DMM_BASE + i*4);
1353 valid = (section & EMIF_SDRC_MAP_MASK) >>
1354 (EMIF_SDRC_MAP_SHIFT);
1355 if (valid == 3) {
1356 emif1_enabled = 1;
1357 emif2_enabled = 1;
1358 break;
1359 }
1360
1361 if (valid == 1)
1362 emif1_enabled = 1;
1363
1364 if (valid == 2)
1365 emif2_enabled = 1;
1366 }
1367 }
1368
1369 static void do_bug0039_workaround(u32 base)
1370 {
1371 u32 val, i, clkctrl;
1372 struct emif_reg_struct *emif_base = (struct emif_reg_struct *)base;
1373 const struct read_write_regs *bug_00339_regs;
1374 u32 iterations;
1375 u32 *phy_status_base = &emif_base->emif_ddr_phy_status[0];
1376 u32 *phy_ctrl_base = &emif_base->emif_ddr_ext_phy_ctrl_1;
1377
1378 if (is_dra7xx())
1379 phy_status_base++;
1380
1381 bug_00339_regs = get_bug_regs(&iterations);
1382
1383 /* Put EMIF in to idle */
1384 clkctrl = __raw_readl((*prcm)->cm_memif_clkstctrl);
1385 __raw_writel(0x0, (*prcm)->cm_memif_clkstctrl);
1386
1387 /* Copy the phy status registers in to phy ctrl shadow registers */
1388 for (i = 0; i < iterations; i++) {
1389 val = __raw_readl(phy_status_base +
1390 bug_00339_regs[i].read_reg - 1);
1391
1392 __raw_writel(val, phy_ctrl_base +
1393 ((bug_00339_regs[i].write_reg - 1) << 1));
1394
1395 __raw_writel(val, phy_ctrl_base +
1396 (bug_00339_regs[i].write_reg << 1) - 1);
1397 }
1398
1399 /* Disable leveling */
1400 writel(0x0, &emif_base->emif_rd_wr_lvl_rmp_ctl);
1401
1402 __raw_writel(clkctrl, (*prcm)->cm_memif_clkstctrl);
1403 }
1404
1405 /*
1406 * SDRAM initialization:
1407 * SDRAM initialization has two parts:
1408 * 1. Configuring the SDRAM device
1409 * 2. Update the AC timings related parameters in the EMIF module
1410 * (1) should be done only once and should not be done while we are
1411 * running from SDRAM.
1412 * (2) can and should be done more than once if OPP changes.
1413 * Particularly, this may be needed when we boot without SPL and
1414 * and using Configuration Header(CH). ROM code supports only at 50% OPP
1415 * at boot (low power boot). So u-boot has to switch to OPP100 and update
1416 * the frequency. So,
1417 * Doing (1) and (2) makes sense - first time initialization
1418 * Doing (2) and not (1) makes sense - OPP change (when using CH)
1419 * Doing (1) and not (2) doen't make sense
1420 * See do_sdram_init() for the details
1421 */
1422 void sdram_init(void)
1423 {
1424 u32 in_sdram, size_prog, size_detect;
1425 struct emif_reg_struct *emif = (struct emif_reg_struct *)EMIF1_BASE;
1426 u32 sdram_type = emif_sdram_type(emif->emif_sdram_config);
1427
1428 debug(">>sdram_init()\n");
1429
1430 if (omap_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL)
1431 return;
1432
1433 in_sdram = running_from_sdram();
1434 debug("in_sdram = %d\n", in_sdram);
1435
1436 if (!in_sdram) {
1437 if ((sdram_type == EMIF_SDRAM_TYPE_LPDDR2) && !warm_reset())
1438 bypass_dpll((*prcm)->cm_clkmode_dpll_core);
1439 else if (sdram_type == EMIF_SDRAM_TYPE_DDR3)
1440 writel(CM_DLL_CTRL_NO_OVERRIDE, (*prcm)->cm_dll_ctrl);
1441 }
1442
1443 if (!in_sdram)
1444 dmm_init(DMM_BASE);
1445
1446 if (emif1_enabled)
1447 do_sdram_init(EMIF1_BASE);
1448
1449 if (emif2_enabled)
1450 do_sdram_init(EMIF2_BASE);
1451
1452 if (!(in_sdram || warm_reset())) {
1453 if (emif1_enabled)
1454 emif_post_init_config(EMIF1_BASE);
1455 if (emif2_enabled)
1456 emif_post_init_config(EMIF2_BASE);
1457 }
1458
1459 /* for the shadow registers to take effect */
1460 if (sdram_type == EMIF_SDRAM_TYPE_LPDDR2)
1461 freq_update_core();
1462
1463 /* Do some testing after the init */
1464 if (!in_sdram) {
1465 size_prog = omap_sdram_size();
1466 size_prog = log_2_n_round_down(size_prog);
1467 size_prog = (1 << size_prog);
1468
1469 size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE,
1470 size_prog);
1471 /* Compare with the size programmed */
1472 if (size_detect != size_prog) {
1473 printf("SDRAM: identified size not same as expected"
1474 " size identified: %x expected: %x\n",
1475 size_detect,
1476 size_prog);
1477 } else
1478 debug("get_ram_size() successful");
1479 }
1480
1481 #if defined(CONFIG_TI_SECURE_DEVICE)
1482 /*
1483 * On HS devices, do static EMIF firewall configuration
1484 * but only do it if not already running in SDRAM
1485 */
1486 if (!in_sdram)
1487 if (0 != secure_emif_reserve())
1488 hang();
1489
1490 /* On HS devices, ensure static EMIF firewall APIs are locked */
1491 if (0 != secure_emif_firewall_lock())
1492 hang();
1493 #endif
1494
1495 if (sdram_type == EMIF_SDRAM_TYPE_DDR3 &&
1496 (!in_sdram && !warm_reset()) && (!is_dra7xx())) {
1497 if (emif1_enabled)
1498 do_bug0039_workaround(EMIF1_BASE);
1499 if (emif2_enabled)
1500 do_bug0039_workaround(EMIF2_BASE);
1501 }
1502
1503 debug("<<sdram_init()\n");
1504 }