]> git.ipfire.org Git - people/ms/u-boot.git/blob - arch/arm/mach-tegra/tegra20/warmboot_avp.c
ARM: at91: collect SoC sources into mach-at91
[people/ms/u-boot.git] / arch / arm / mach-tegra / tegra20 / warmboot_avp.c
1 /*
2 * (C) Copyright 2010 - 2011
3 * NVIDIA Corporation <www.nvidia.com>
4 *
5 * SPDX-License-Identifier: GPL-2.0+
6 */
7
8 #include <common.h>
9 #include <asm/io.h>
10 #include <asm/arch/clock.h>
11 #include <asm/arch/flow.h>
12 #include <asm/arch/pinmux.h>
13 #include <asm/arch/tegra.h>
14 #include <asm/arch-tegra/ap.h>
15 #include <asm/arch-tegra/apb_misc.h>
16 #include <asm/arch-tegra/clk_rst.h>
17 #include <asm/arch-tegra/pmc.h>
18 #include <asm/arch-tegra/warmboot.h>
19 #include "warmboot_avp.h"
20
21 #define DEBUG_RESET_CORESIGHT
22
23 void wb_start(void)
24 {
25 struct apb_misc_pp_ctlr *apb_misc =
26 (struct apb_misc_pp_ctlr *)NV_PA_APB_MISC_BASE;
27 struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
28 struct flow_ctlr *flow = (struct flow_ctlr *)NV_PA_FLOW_BASE;
29 struct clk_rst_ctlr *clkrst =
30 (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
31 union osc_ctrl_reg osc_ctrl;
32 union pllx_base_reg pllx_base;
33 union pllx_misc_reg pllx_misc;
34 union scratch3_reg scratch3;
35 u32 reg;
36
37 /* enable JTAG & TBE */
38 writel(CONFIG_CTL_TBE | CONFIG_CTL_JTAG, &apb_misc->cfg_ctl);
39
40 /* Are we running where we're supposed to be? */
41 asm volatile (
42 "adr %0, wb_start;" /* reg: wb_start address */
43 : "=r"(reg) /* output */
44 /* no input, no clobber list */
45 );
46
47 if (reg != NV_WB_RUN_ADDRESS)
48 goto do_reset;
49
50 /* Are we running with AVP? */
51 if (readl(NV_PA_PG_UP_BASE + PG_UP_TAG_0) != PG_UP_TAG_AVP)
52 goto do_reset;
53
54 #ifdef DEBUG_RESET_CORESIGHT
55 /* Assert CoreSight reset */
56 reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_U]);
57 reg |= SWR_CSITE_RST;
58 writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_U]);
59 #endif
60
61 /* TODO: Set the drive strength - maybe make this a board parameter? */
62 osc_ctrl.word = readl(&clkrst->crc_osc_ctrl);
63 osc_ctrl.xofs = 4;
64 osc_ctrl.xoe = 1;
65 writel(osc_ctrl.word, &clkrst->crc_osc_ctrl);
66
67 /* Power up the CPU complex if necessary */
68 if (!(readl(&pmc->pmc_pwrgate_status) & PWRGATE_STATUS_CPU)) {
69 reg = PWRGATE_TOGGLE_PARTID_CPU | PWRGATE_TOGGLE_START;
70 writel(reg, &pmc->pmc_pwrgate_toggle);
71 while (!(readl(&pmc->pmc_pwrgate_status) & PWRGATE_STATUS_CPU))
72 ;
73 }
74
75 /* Remove the I/O clamps from the CPU power partition. */
76 reg = readl(&pmc->pmc_remove_clamping);
77 reg |= CPU_CLMP;
78 writel(reg, &pmc->pmc_remove_clamping);
79
80 reg = EVENT_ZERO_VAL_20 | EVENT_MSEC | EVENT_MODE_STOP;
81 writel(reg, &flow->halt_cop_events);
82
83 /* Assert CPU complex reset */
84 reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_L]);
85 reg |= CPU_RST;
86 writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_L]);
87
88 /* Hold both CPUs in reset */
89 reg = CPU_CMPLX_CPURESET0 | CPU_CMPLX_CPURESET1 | CPU_CMPLX_DERESET0 |
90 CPU_CMPLX_DERESET1 | CPU_CMPLX_DBGRESET0 | CPU_CMPLX_DBGRESET1;
91 writel(reg, &clkrst->crc_cpu_cmplx_set);
92
93 /* Halt CPU1 at the flow controller for uni-processor configurations */
94 writel(EVENT_MODE_STOP, &flow->halt_cpu1_events);
95
96 /*
97 * Set the CPU reset vector. SCRATCH41 contains the physical
98 * address of the CPU-side restoration code.
99 */
100 reg = readl(&pmc->pmc_scratch41);
101 writel(reg, EXCEP_VECTOR_CPU_RESET_VECTOR);
102
103 /* Select CPU complex clock source */
104 writel(CCLK_PLLP_BURST_POLICY, &clkrst->crc_cclk_brst_pol);
105
106 /* Start the CPU0 clock and stop the CPU1 clock */
107 reg = CPU_CMPLX_CPU_BRIDGE_CLKDIV_4 | CPU_CMPLX_CPU0_CLK_STP_RUN |
108 CPU_CMPLX_CPU1_CLK_STP_STOP;
109 writel(reg, &clkrst->crc_clk_cpu_cmplx);
110
111 /* Enable the CPU complex clock */
112 reg = readl(&clkrst->crc_clk_out_enb[TEGRA_DEV_L]);
113 reg |= CLK_ENB_CPU;
114 writel(reg, &clkrst->crc_clk_out_enb[TEGRA_DEV_L]);
115
116 /* Make sure the resets were held for at least 2 microseconds */
117 reg = readl(TIMER_USEC_CNTR);
118 while (readl(TIMER_USEC_CNTR) <= (reg + 2))
119 ;
120
121 #ifdef DEBUG_RESET_CORESIGHT
122 /*
123 * De-assert CoreSight reset.
124 * NOTE: We're leaving the CoreSight clock on the oscillator for
125 * now. It will be restored to its original clock source
126 * when the CPU-side restoration code runs.
127 */
128 reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_U]);
129 reg &= ~SWR_CSITE_RST;
130 writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_U]);
131 #endif
132
133 /* Unlock the CPU CoreSight interfaces */
134 reg = 0xC5ACCE55;
135 writel(reg, CSITE_CPU_DBG0_LAR);
136 writel(reg, CSITE_CPU_DBG1_LAR);
137
138 /*
139 * Sample the microsecond timestamp again. This is the time we must
140 * use when returning from LP0 for PLL stabilization delays.
141 */
142 reg = readl(TIMER_USEC_CNTR);
143 writel(reg, &pmc->pmc_scratch1);
144
145 pllx_base.word = 0;
146 pllx_misc.word = 0;
147 scratch3.word = readl(&pmc->pmc_scratch3);
148
149 /* Get the OSC. For 19.2 MHz, use 19 to make the calculations easier */
150 reg = (readl(TIMER_USEC_CFG) & USEC_CFG_DIVISOR_MASK) + 1;
151
152 /*
153 * According to the TRM, for 19.2MHz OSC, the USEC_DIVISOR is 0x5f, and
154 * USEC_DIVIDEND is 0x04. So, if USEC_DIVISOR > 26, OSC is 19.2 MHz.
155 *
156 * reg is used to calculate the pllx freq, which is used to determine if
157 * to set dccon or not.
158 */
159 if (reg > 26)
160 reg = 19;
161
162 /* PLLX_BASE.PLLX_DIVM */
163 if (scratch3.pllx_base_divm == reg)
164 reg = 0;
165 else
166 reg = 1;
167
168 /* PLLX_BASE.PLLX_DIVN */
169 pllx_base.divn = scratch3.pllx_base_divn;
170 reg = scratch3.pllx_base_divn << reg;
171
172 /* PLLX_BASE.PLLX_DIVP */
173 pllx_base.divp = scratch3.pllx_base_divp;
174 reg = reg >> scratch3.pllx_base_divp;
175
176 pllx_base.bypass = 1;
177
178 /* PLLX_MISC_DCCON must be set for pllx frequency > 600 MHz. */
179 if (reg > 600)
180 pllx_misc.dccon = 1;
181
182 /* PLLX_MISC_LFCON */
183 pllx_misc.lfcon = scratch3.pllx_misc_lfcon;
184
185 /* PLLX_MISC_CPCON */
186 pllx_misc.cpcon = scratch3.pllx_misc_cpcon;
187
188 writel(pllx_misc.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_misc);
189 writel(pllx_base.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base);
190
191 pllx_base.enable = 1;
192 writel(pllx_base.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base);
193 pllx_base.bypass = 0;
194 writel(pllx_base.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base);
195
196 writel(0, flow->halt_cpu_events);
197
198 reg = CPU_CMPLX_CPURESET0 | CPU_CMPLX_DBGRESET0 | CPU_CMPLX_DERESET0;
199 writel(reg, &clkrst->crc_cpu_cmplx_clr);
200
201 reg = PLLM_OUT1_RSTN_RESET_DISABLE | PLLM_OUT1_CLKEN_ENABLE |
202 PLLM_OUT1_RATIO_VAL_8;
203 writel(reg, &clkrst->crc_pll[CLOCK_ID_MEMORY].pll_out[0]);
204
205 reg = SCLK_SWAKE_FIQ_SRC_PLLM_OUT1 | SCLK_SWAKE_IRQ_SRC_PLLM_OUT1 |
206 SCLK_SWAKE_RUN_SRC_PLLM_OUT1 | SCLK_SWAKE_IDLE_SRC_PLLM_OUT1 |
207 SCLK_SYS_STATE_IDLE;
208 writel(reg, &clkrst->crc_sclk_brst_pol);
209
210 /* avp_resume: no return after the write */
211 reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_L]);
212 reg &= ~CPU_RST;
213 writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_L]);
214
215 /* avp_halt: */
216 avp_halt:
217 reg = EVENT_MODE_STOP | EVENT_JTAG;
218 writel(reg, flow->halt_cop_events);
219 goto avp_halt;
220
221 do_reset:
222 /*
223 * Execution comes here if something goes wrong. The chip is reset and
224 * a cold boot is performed.
225 */
226 writel(SWR_TRIG_SYS_RST, &clkrst->crc_rst_dev[TEGRA_DEV_L]);
227 goto do_reset;
228 }
229
230 /*
231 * wb_end() is a dummy function, and must be directly following wb_start(),
232 * and is used to calculate the size of wb_start().
233 */
234 void wb_end(void)
235 {
236 }