]> git.ipfire.org Git - people/ms/u-boot.git/blob - arch/arm/mach-uniphier/dram/umc-pxs2.c
ARM: uniphier: fix various sparse warnings
[people/ms/u-boot.git] / arch / arm / mach-uniphier / dram / umc-pxs2.c
1 /*
2 * Copyright (C) 2015-2017 Socionext Inc.
3 * Author: Masahiro Yamada <yamada.masahiro@socionext.com>
4 *
5 * based on commit 21b6e480f92ccc38fe0502e3116411d6509d3bf2 of Diag by:
6 * Copyright (C) 2015 Socionext Inc.
7 *
8 * SPDX-License-Identifier: GPL-2.0+
9 */
10
11 #include <common.h>
12 #include <linux/errno.h>
13 #include <linux/io.h>
14 #include <linux/sizes.h>
15 #include <asm/processor.h>
16
17 #include "../init.h"
18 #include "../soc-info.h"
19 #include "ddrmphy-regs.h"
20 #include "umc-regs.h"
21
22 #define DRAM_CH_NR 3
23
24 enum dram_freq {
25 DRAM_FREQ_1866M,
26 DRAM_FREQ_2133M,
27 DRAM_FREQ_NR,
28 };
29
30 enum dram_size {
31 DRAM_SZ_256M,
32 DRAM_SZ_512M,
33 DRAM_SZ_NR,
34 };
35
36 /* PHY */
37 static u32 ddrphy_pgcr2[DRAM_FREQ_NR] = {0x00FC7E5D, 0x00FC90AB};
38 static u32 ddrphy_ptr0[DRAM_FREQ_NR] = {0x0EA09205, 0x10C0A6C6};
39 static u32 ddrphy_ptr1[DRAM_FREQ_NR] = {0x0DAC041B, 0x0FA104B1};
40 static u32 ddrphy_ptr3[DRAM_FREQ_NR] = {0x15171e45, 0x18182357};
41 static u32 ddrphy_ptr4[DRAM_FREQ_NR] = {0x0e9ad8e9, 0x10b34157};
42 static u32 ddrphy_dtpr0[DRAM_FREQ_NR] = {0x35a00d88, 0x39e40e88};
43 static u32 ddrphy_dtpr1[DRAM_FREQ_NR] = {0x2288cc2c, 0x228a04d0};
44 static u32 ddrphy_dtpr2[DRAM_FREQ_NR] = {0x50005e00, 0x50006a00};
45 static u32 ddrphy_dtpr3[DRAM_FREQ_NR] = {0x0010cb49, 0x0010ec89};
46 static u32 ddrphy_mr0[DRAM_FREQ_NR] = {0x00000115, 0x00000125};
47 static u32 ddrphy_mr2[DRAM_FREQ_NR] = {0x000002a0, 0x000002a8};
48
49 /* dependent on package and board design */
50 static u32 ddrphy_acbdlr0[DRAM_CH_NR] = {0x0000000c, 0x0000000c, 0x00000009};
51
52 /* DDR multiPHY */
53 static inline int ddrphy_get_rank(int dx)
54 {
55 return dx / 2;
56 }
57
58 static void ddrphy_fifo_reset(void __iomem *phy_base)
59 {
60 u32 tmp;
61
62 tmp = readl(phy_base + MPHY_PGCR0);
63 tmp &= ~MPHY_PGCR0_PHYFRST;
64 writel(tmp, phy_base + MPHY_PGCR0);
65
66 udelay(1);
67
68 tmp |= MPHY_PGCR0_PHYFRST;
69 writel(tmp, phy_base + MPHY_PGCR0);
70
71 udelay(1);
72 }
73
74 static void ddrphy_vt_ctrl(void __iomem *phy_base, int enable)
75 {
76 u32 tmp;
77
78 tmp = readl(phy_base + MPHY_PGCR1);
79
80 if (enable)
81 tmp &= ~MPHY_PGCR1_INHVT;
82 else
83 tmp |= MPHY_PGCR1_INHVT;
84
85 writel(tmp, phy_base + MPHY_PGCR1);
86
87 if (!enable) {
88 while (!(readl(phy_base + MPHY_PGSR1) & MPHY_PGSR1_VTSTOP))
89 cpu_relax();
90 }
91 }
92
93 static void ddrphy_dqs_delay_fixup(void __iomem *phy_base, int nr_dx, int step)
94 {
95 int dx;
96 u32 lcdlr1, rdqsd;
97 void __iomem *dx_base = phy_base + MPHY_DX_BASE;
98
99 ddrphy_vt_ctrl(phy_base, 0);
100
101 for (dx = 0; dx < nr_dx; dx++) {
102 lcdlr1 = readl(dx_base + MPHY_DX_LCDLR1);
103 rdqsd = (lcdlr1 >> 8) & 0xff;
104 rdqsd = clamp(rdqsd + step, 0U, 0xffU);
105 lcdlr1 = (lcdlr1 & ~(0xff << 8)) | (rdqsd << 8);
106 writel(lcdlr1, dx_base + MPHY_DX_LCDLR1);
107 readl(dx_base + MPHY_DX_LCDLR1); /* relax */
108 dx_base += MPHY_DX_STRIDE;
109 }
110
111 ddrphy_vt_ctrl(phy_base, 1);
112 }
113
114 static int ddrphy_get_system_latency(void __iomem *phy_base, int width)
115 {
116 void __iomem *dx_base = phy_base + MPHY_DX_BASE;
117 const int nr_dx = width / 8;
118 int dx, rank;
119 u32 gtr;
120 int dgsl, dgsl_min = INT_MAX, dgsl_max = 0;
121
122 for (dx = 0; dx < nr_dx; dx++) {
123 gtr = readl(dx_base + MPHY_DX_GTR);
124 for (rank = 0; rank < 4; rank++) {
125 dgsl = gtr & 0x7;
126 /* if dgsl is zero, this rank was not trained. skip. */
127 if (dgsl) {
128 dgsl_min = min(dgsl_min, dgsl);
129 dgsl_max = max(dgsl_max, dgsl);
130 }
131 gtr >>= 3;
132 }
133 dx_base += MPHY_DX_STRIDE;
134 }
135
136 if (dgsl_min != dgsl_max)
137 printf("DQS Gateing System Latencies are not all leveled.\n");
138
139 return dgsl_max;
140 }
141
142 static void ddrphy_init(void __iomem *phy_base, enum dram_freq freq, int width,
143 int ch)
144 {
145 u32 tmp;
146 void __iomem *zq_base, *dx_base;
147 int zq, dx;
148 int nr_dx;
149
150 nr_dx = width / 8;
151
152 writel(MPHY_PIR_ZCALBYP, phy_base + MPHY_PIR);
153 /*
154 * Disable RGLVT bit (Read DQS Gating LCDL Delay VT Compensation)
155 * to avoid read error issue.
156 */
157 writel(0x07d81e37, phy_base + MPHY_PGCR0);
158 writel(0x0200c4e0, phy_base + MPHY_PGCR1);
159
160 tmp = ddrphy_pgcr2[freq];
161 if (width >= 32)
162 tmp |= MPHY_PGCR2_DUALCHN | MPHY_PGCR2_ACPDDC;
163 writel(tmp, phy_base + MPHY_PGCR2);
164
165 writel(ddrphy_ptr0[freq], phy_base + MPHY_PTR0);
166 writel(ddrphy_ptr1[freq], phy_base + MPHY_PTR1);
167 writel(0x00083def, phy_base + MPHY_PTR2);
168 writel(ddrphy_ptr3[freq], phy_base + MPHY_PTR3);
169 writel(ddrphy_ptr4[freq], phy_base + MPHY_PTR4);
170
171 writel(ddrphy_acbdlr0[ch], phy_base + MPHY_ACBDLR0);
172
173 writel(0x55555555, phy_base + MPHY_ACIOCR1);
174 writel(0x00000000, phy_base + MPHY_ACIOCR2);
175 writel(0x55555555, phy_base + MPHY_ACIOCR3);
176 writel(0x00000000, phy_base + MPHY_ACIOCR4);
177 writel(0x00000055, phy_base + MPHY_ACIOCR5);
178 writel(0x00181aa4, phy_base + MPHY_DXCCR);
179
180 writel(0x0024641e, phy_base + MPHY_DSGCR);
181 writel(0x0000040b, phy_base + MPHY_DCR);
182 writel(ddrphy_dtpr0[freq], phy_base + MPHY_DTPR0);
183 writel(ddrphy_dtpr1[freq], phy_base + MPHY_DTPR1);
184 writel(ddrphy_dtpr2[freq], phy_base + MPHY_DTPR2);
185 writel(ddrphy_dtpr3[freq], phy_base + MPHY_DTPR3);
186 writel(ddrphy_mr0[freq], phy_base + MPHY_MR0);
187 writel(0x00000006, phy_base + MPHY_MR1);
188 writel(ddrphy_mr2[freq], phy_base + MPHY_MR2);
189 writel(0x00000000, phy_base + MPHY_MR3);
190
191 tmp = 0;
192 for (dx = 0; dx < nr_dx; dx++)
193 tmp |= BIT(MPHY_DTCR_RANKEN_SHIFT + ddrphy_get_rank(dx));
194 writel(0x90003087 | tmp, phy_base + MPHY_DTCR);
195
196 writel(0x00000000, phy_base + MPHY_DTAR0);
197 writel(0x00000008, phy_base + MPHY_DTAR1);
198 writel(0x00000010, phy_base + MPHY_DTAR2);
199 writel(0x00000018, phy_base + MPHY_DTAR3);
200 writel(0xdd22ee11, phy_base + MPHY_DTDR0);
201 writel(0x7788bb44, phy_base + MPHY_DTDR1);
202
203 /* impedance control settings */
204 writel(0x04048900, phy_base + MPHY_ZQCR);
205
206 zq_base = phy_base + MPHY_ZQ_BASE;
207 for (zq = 0; zq < 4; zq++) {
208 /*
209 * board-dependent
210 * PXS2: CH0ZQ0=0x5B, CH1ZQ0=0x5B, CH2ZQ0=0x59, others=0x5D
211 */
212 writel(0x0007BB5D, zq_base + MPHY_ZQ_PR);
213 zq_base += MPHY_ZQ_STRIDE;
214 }
215
216 /* DATX8 settings */
217 dx_base = phy_base + MPHY_DX_BASE;
218 for (dx = 0; dx < 4; dx++) {
219 tmp = readl(dx_base + MPHY_DX_GCR0);
220 tmp &= ~MPHY_DX_GCR0_WLRKEN_MASK;
221 tmp |= BIT(MPHY_DX_GCR0_WLRKEN_SHIFT + ddrphy_get_rank(dx)) &
222 MPHY_DX_GCR0_WLRKEN_MASK;
223 writel(tmp, dx_base + MPHY_DX_GCR0);
224
225 writel(0x00000000, dx_base + MPHY_DX_GCR1);
226 writel(0x00000000, dx_base + MPHY_DX_GCR2);
227 writel(0x00000000, dx_base + MPHY_DX_GCR3);
228 dx_base += MPHY_DX_STRIDE;
229 }
230
231 while (!(readl(phy_base + MPHY_PGSR0) & MPHY_PGSR0_IDONE))
232 cpu_relax();
233
234 ddrphy_dqs_delay_fixup(phy_base, nr_dx, -4);
235 }
236
237 struct ddrphy_init_sequence {
238 char *description;
239 u32 init_flag;
240 u32 done_flag;
241 u32 err_flag;
242 };
243
244 static const struct ddrphy_init_sequence impedance_calibration_sequence[] = {
245 {
246 "Impedance Calibration",
247 MPHY_PIR_ZCAL,
248 MPHY_PGSR0_ZCDONE,
249 MPHY_PGSR0_ZCERR,
250 },
251 { /* sentinel */ }
252 };
253
254 static const struct ddrphy_init_sequence dram_init_sequence[] = {
255 {
256 "DRAM Initialization",
257 MPHY_PIR_DRAMRST | MPHY_PIR_DRAMINIT,
258 MPHY_PGSR0_DIDONE,
259 0,
260 },
261 { /* sentinel */ }
262 };
263
264 static const struct ddrphy_init_sequence training_sequence[] = {
265 {
266 "Write Leveling",
267 MPHY_PIR_WL,
268 MPHY_PGSR0_WLDONE,
269 MPHY_PGSR0_WLERR,
270 },
271 {
272 "Read DQS Gate Training",
273 MPHY_PIR_QSGATE,
274 MPHY_PGSR0_QSGDONE,
275 MPHY_PGSR0_QSGERR,
276 },
277 {
278 "Write Leveling Adjustment",
279 MPHY_PIR_WLADJ,
280 MPHY_PGSR0_WLADONE,
281 MPHY_PGSR0_WLAERR,
282 },
283 {
284 "Read Bit Deskew",
285 MPHY_PIR_RDDSKW,
286 MPHY_PGSR0_RDDONE,
287 MPHY_PGSR0_RDERR,
288 },
289 {
290 "Write Bit Deskew",
291 MPHY_PIR_WRDSKW,
292 MPHY_PGSR0_WDDONE,
293 MPHY_PGSR0_WDERR,
294 },
295 {
296 "Read Eye Training",
297 MPHY_PIR_RDEYE,
298 MPHY_PGSR0_REDONE,
299 MPHY_PGSR0_REERR,
300 },
301 {
302 "Write Eye Training",
303 MPHY_PIR_WREYE,
304 MPHY_PGSR0_WEDONE,
305 MPHY_PGSR0_WEERR,
306 },
307 { /* sentinel */ }
308 };
309
310 static int __ddrphy_training(void __iomem *phy_base,
311 const struct ddrphy_init_sequence *seq)
312 {
313 const struct ddrphy_init_sequence *s;
314 u32 pgsr0;
315 u32 init_flag = MPHY_PIR_INIT;
316 u32 done_flag = MPHY_PGSR0_IDONE;
317 int timeout = 50000; /* 50 msec is long enough */
318 #ifdef DISPLAY_ELAPSED_TIME
319 ulong start = get_timer(0);
320 #endif
321
322 for (s = seq; s->description; s++) {
323 init_flag |= s->init_flag;
324 done_flag |= s->done_flag;
325 }
326
327 writel(init_flag, phy_base + MPHY_PIR);
328
329 do {
330 if (--timeout < 0) {
331 pr_err("%s: error: timeout during DDR training\n",
332 __func__);
333 return -ETIMEDOUT;
334 }
335 udelay(1);
336 pgsr0 = readl(phy_base + MPHY_PGSR0);
337 } while ((pgsr0 & done_flag) != done_flag);
338
339 for (s = seq; s->description; s++) {
340 if (pgsr0 & s->err_flag) {
341 pr_err("%s: error: %s failed\n", __func__,
342 s->description);
343 return -EIO;
344 }
345 }
346
347 #ifdef DISPLAY_ELAPSED_TIME
348 printf("%s: info: elapsed time %ld msec\n", get_timer(start));
349 #endif
350
351 return 0;
352 }
353
354 static int ddrphy_impedance_calibration(void __iomem *phy_base)
355 {
356 int ret;
357 u32 tmp;
358
359 ret = __ddrphy_training(phy_base, impedance_calibration_sequence);
360 if (ret)
361 return ret;
362
363 /*
364 * Because of a hardware bug, IDONE flag is set when the first ZQ block
365 * is calibrated. The flag does not guarantee the completion for all
366 * the ZQ blocks. Wait a little more just in case.
367 */
368 udelay(1);
369
370 /* reflect ZQ settings and enable average algorithm*/
371 tmp = readl(phy_base + MPHY_ZQCR);
372 tmp |= MPHY_ZQCR_FORCE_ZCAL_VT_UPDATE;
373 writel(tmp, phy_base + MPHY_ZQCR);
374 tmp &= ~MPHY_ZQCR_FORCE_ZCAL_VT_UPDATE;
375 tmp |= MPHY_ZQCR_AVGEN;
376 writel(tmp, phy_base + MPHY_ZQCR);
377
378 return 0;
379 }
380
381 static int ddrphy_dram_init(void __iomem *phy_base)
382 {
383 return __ddrphy_training(phy_base, dram_init_sequence);
384 }
385
386 static int ddrphy_training(void __iomem *phy_base)
387 {
388 return __ddrphy_training(phy_base, training_sequence);
389 }
390
391 /* UMC */
392 static u32 umc_cmdctla[DRAM_FREQ_NR] = {0x66DD131D, 0x77EE1722};
393 /*
394 * The ch2 is a different generation UMC core.
395 * The register spec is different, unfortunately.
396 */
397 static u32 umc_cmdctlb_ch01[DRAM_FREQ_NR] = {0x13E87C44, 0x18F88C44};
398 static u32 umc_cmdctlb_ch2[DRAM_FREQ_NR] = {0x19E8DC44, 0x1EF8EC44};
399 static u32 umc_spcctla[DRAM_FREQ_NR][DRAM_SZ_NR] = {
400 {0x004A071D, 0x0078071D},
401 {0x0055081E, 0x0089081E},
402 };
403
404 static u32 umc_spcctlb[] = {0x00FF000A, 0x00FF000B};
405 /* The ch2 is different for some reason only hardware guys know... */
406 static u32 umc_flowctla_ch01[] = {0x0800001E, 0x08000022};
407 static u32 umc_flowctla_ch2[] = {0x0800001E, 0x0800001E};
408
409 static void umc_set_system_latency(void __iomem *dc_base, int phy_latency)
410 {
411 u32 val;
412 int latency;
413
414 val = readl(dc_base + UMC_RDATACTL_D0);
415 latency = (val & UMC_RDATACTL_RADLTY_MASK) >> UMC_RDATACTL_RADLTY_SHIFT;
416 latency += (val & UMC_RDATACTL_RAD2LTY_MASK) >>
417 UMC_RDATACTL_RAD2LTY_SHIFT;
418 /*
419 * UMC works at the half clock rate of the PHY.
420 * The LSB of latency is ignored
421 */
422 latency += phy_latency & ~1;
423
424 val &= ~(UMC_RDATACTL_RADLTY_MASK | UMC_RDATACTL_RAD2LTY_MASK);
425 if (latency > 0xf) {
426 val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT;
427 val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT;
428 } else {
429 val |= latency << UMC_RDATACTL_RADLTY_SHIFT;
430 }
431
432 writel(val, dc_base + UMC_RDATACTL_D0);
433 writel(val, dc_base + UMC_RDATACTL_D1);
434
435 readl(dc_base + UMC_RDATACTL_D1); /* relax */
436 }
437
438 /* enable/disable auto refresh */
439 static void umc_refresh_ctrl(void __iomem *dc_base, int enable)
440 {
441 u32 tmp;
442
443 tmp = readl(dc_base + UMC_SPCSETB);
444 tmp &= ~UMC_SPCSETB_AREFMD_MASK;
445
446 if (enable)
447 tmp |= UMC_SPCSETB_AREFMD_ARB;
448 else
449 tmp |= UMC_SPCSETB_AREFMD_REG;
450
451 writel(tmp, dc_base + UMC_SPCSETB);
452 udelay(1);
453 }
454
455 static void umc_ud_init(void __iomem *umc_base, int ch)
456 {
457 writel(0x00000003, umc_base + UMC_BITPERPIXELMODE_D0);
458
459 if (ch == 2)
460 writel(0x00000033, umc_base + UMC_PAIR1DOFF_D0);
461 }
462
463 static int umc_dc_init(void __iomem *dc_base, enum dram_freq freq,
464 unsigned long size, int width, int ch)
465 {
466 enum dram_size size_e;
467 int latency;
468 u32 val;
469
470 switch (size) {
471 case 0:
472 return 0;
473 case SZ_256M:
474 size_e = DRAM_SZ_256M;
475 break;
476 case SZ_512M:
477 size_e = DRAM_SZ_512M;
478 break;
479 default:
480 pr_err("unsupported DRAM size 0x%08lx (per 16bit) for ch%d\n",
481 size, ch);
482 return -EINVAL;
483 }
484
485 writel(umc_cmdctla[freq], dc_base + UMC_CMDCTLA);
486
487 writel(ch == 2 ? umc_cmdctlb_ch2[freq] : umc_cmdctlb_ch01[freq],
488 dc_base + UMC_CMDCTLB);
489
490 writel(umc_spcctla[freq][size_e], dc_base + UMC_SPCCTLA);
491 writel(umc_spcctlb[freq], dc_base + UMC_SPCCTLB);
492
493 val = 0x000e000e;
494 latency = 12;
495 /* ES2 inserted one more FF to the logic. */
496 if (uniphier_get_soc_model() >= 2)
497 latency += 2;
498
499 if (latency > 0xf) {
500 val |= 0xf << UMC_RDATACTL_RADLTY_SHIFT;
501 val |= (latency - 0xf) << UMC_RDATACTL_RAD2LTY_SHIFT;
502 } else {
503 val |= latency << UMC_RDATACTL_RADLTY_SHIFT;
504 }
505
506 writel(val, dc_base + UMC_RDATACTL_D0);
507 if (width >= 32)
508 writel(val, dc_base + UMC_RDATACTL_D1);
509
510 writel(0x04060A02, dc_base + UMC_WDATACTL_D0);
511 if (width >= 32)
512 writel(0x04060A02, dc_base + UMC_WDATACTL_D1);
513 writel(0x04000000, dc_base + UMC_DATASET);
514 writel(0x00400020, dc_base + UMC_DCCGCTL);
515 writel(0x00000084, dc_base + UMC_FLOWCTLG);
516 writel(0x00000000, dc_base + UMC_ACSSETA);
517
518 writel(ch == 2 ? umc_flowctla_ch2[freq] : umc_flowctla_ch01[freq],
519 dc_base + UMC_FLOWCTLA);
520
521 writel(0x00004400, dc_base + UMC_FLOWCTLC);
522 writel(0x200A0A00, dc_base + UMC_SPCSETB);
523 writel(0x00000520, dc_base + UMC_DFICUPDCTLA);
524 writel(0x0000000D, dc_base + UMC_RESPCTL);
525
526 if (ch != 2) {
527 writel(0x00202000, dc_base + UMC_FLOWCTLB);
528 writel(0xFDBFFFFF, dc_base + UMC_FLOWCTLOB0);
529 writel(0xFFFFFFFF, dc_base + UMC_FLOWCTLOB1);
530 writel(0x00080700, dc_base + UMC_BSICMAPSET);
531 } else {
532 writel(0x00200000, dc_base + UMC_FLOWCTLB);
533 writel(0x00000000, dc_base + UMC_BSICMAPSET);
534 }
535
536 writel(0x00000000, dc_base + UMC_ERRMASKA);
537 writel(0x00000000, dc_base + UMC_ERRMASKB);
538
539 return 0;
540 }
541
542 static int umc_ch_init(void __iomem *umc_ch_base, enum dram_freq freq,
543 unsigned long size, unsigned int width, int ch)
544 {
545 void __iomem *dc_base = umc_ch_base + 0x00011000;
546 void __iomem *phy_base = umc_ch_base + 0x00030000;
547 int ret;
548
549 writel(0x00000002, dc_base + UMC_INITSET);
550 while (readl(dc_base + UMC_INITSTAT) & BIT(2))
551 cpu_relax();
552
553 /* deassert PHY reset signals */
554 writel(UMC_DIOCTLA_CTL_NRST | UMC_DIOCTLA_CFG_NRST,
555 dc_base + UMC_DIOCTLA);
556
557 ddrphy_init(phy_base, freq, width, ch);
558
559 ret = ddrphy_impedance_calibration(phy_base);
560 if (ret)
561 return ret;
562
563 ddrphy_dram_init(phy_base);
564 if (ret)
565 return ret;
566
567 ret = umc_dc_init(dc_base, freq, size, width, ch);
568 if (ret)
569 return ret;
570
571 umc_ud_init(umc_ch_base, ch);
572
573 ret = ddrphy_training(phy_base);
574 if (ret)
575 return ret;
576
577 udelay(1);
578
579 /* match the system latency between UMC and PHY */
580 umc_set_system_latency(dc_base,
581 ddrphy_get_system_latency(phy_base, width));
582
583 udelay(1);
584
585 /* stop auto refresh before clearing FIFO in PHY */
586 umc_refresh_ctrl(dc_base, 0);
587 ddrphy_fifo_reset(phy_base);
588 umc_refresh_ctrl(dc_base, 1);
589
590 udelay(10);
591
592 return 0;
593 }
594
595 static void um_init(void __iomem *um_base)
596 {
597 writel(0x000000ff, um_base + UMC_MBUS0);
598 writel(0x000000ff, um_base + UMC_MBUS1);
599 writel(0x000000ff, um_base + UMC_MBUS2);
600 writel(0x000000ff, um_base + UMC_MBUS3);
601 }
602
603 int uniphier_pxs2_umc_init(const struct uniphier_board_data *bd)
604 {
605 void __iomem *um_base = (void __iomem *)0x5b600000;
606 void __iomem *umc_ch_base = (void __iomem *)0x5b800000;
607 enum dram_freq freq;
608 int ch, ret;
609
610 switch (bd->dram_freq) {
611 case 1866:
612 freq = DRAM_FREQ_1866M;
613 break;
614 case 2133:
615 freq = DRAM_FREQ_2133M;
616 break;
617 default:
618 pr_err("unsupported DRAM frequency %d MHz\n", bd->dram_freq);
619 return -EINVAL;
620 }
621
622 for (ch = 0; ch < DRAM_CH_NR; ch++) {
623 unsigned long size = bd->dram_ch[ch].size;
624 unsigned int width = bd->dram_ch[ch].width;
625
626 if (size) {
627 ret = umc_ch_init(umc_ch_base, freq,
628 size / (width / 16), width, ch);
629 if (ret) {
630 pr_err("failed to initialize UMC ch%d\n", ch);
631 return ret;
632 }
633 }
634
635 umc_ch_base += 0x00200000;
636 }
637
638 um_init(um_base);
639
640 return 0;
641 }