]> git.ipfire.org Git - people/ms/u-boot.git/blob - arch/powerpc/cpu/mpc8xx/i2c.c
3dff4ab4ac426245733072b74fd321bb5291fed4
[people/ms/u-boot.git] / arch / powerpc / cpu / mpc8xx / i2c.c
1 /*
2 * (C) Copyright 2000
3 * Paolo Scaffardi, AIRVENT SAM s.p.a - RIMINI(ITALY), arsenio@tin.it
4 *
5 * (C) Copyright 2000 Sysgo Real-Time Solutions, GmbH <www.elinos.com>
6 * Marius Groeger <mgroeger@sysgo.de>
7 *
8 * SPDX-License-Identifier: GPL-2.0+
9 *
10 * Back ported to the 8xx platform (from the 8260 platform) by
11 * Murray.Jensen@cmst.csiro.au, 27-Jan-01.
12 */
13
14 #include <common.h>
15 #include <console.h>
16
17 #ifdef CONFIG_HARD_I2C
18
19 #include <commproc.h>
20 #include <i2c.h>
21
22 DECLARE_GLOBAL_DATA_PTR;
23
24 /* tx/rx timeout (we need the i2c early, so we don't use get_timer()) */
25 #define TOUT_LOOP 1000000
26
27 #define NUM_RX_BDS 4
28 #define NUM_TX_BDS 4
29 #define MAX_TX_SPACE 256
30 #define I2C_RXTX_LEN 128 /* maximum tx/rx buffer length */
31
32 typedef struct I2C_BD {
33 unsigned short status;
34 unsigned short length;
35 unsigned char *addr;
36 } I2C_BD;
37
38 #define BD_I2C_TX_START 0x0400 /* special status for i2c: Start condition */
39
40 #define BD_I2C_TX_CL 0x0001 /* collision error */
41 #define BD_I2C_TX_UN 0x0002 /* underflow error */
42 #define BD_I2C_TX_NAK 0x0004 /* no acknowledge error */
43 #define BD_I2C_TX_ERR (BD_I2C_TX_NAK|BD_I2C_TX_UN|BD_I2C_TX_CL)
44
45 #define BD_I2C_RX_ERR BD_SC_OV
46
47 typedef void (*i2c_ecb_t) (int, int); /* error callback function */
48
49 /* This structure keeps track of the bd and buffer space usage. */
50 typedef struct i2c_state {
51 int rx_idx; /* index to next free Rx BD */
52 int tx_idx; /* index to next free Tx BD */
53 void *rxbd; /* pointer to next free Rx BD */
54 void *txbd; /* pointer to next free Tx BD */
55 int tx_space; /* number of Tx bytes left */
56 unsigned char *tx_buf; /* pointer to free Tx area */
57 i2c_ecb_t err_cb; /* error callback function */
58 } i2c_state_t;
59
60
61 /* flags for i2c_send() and i2c_receive() */
62 #define I2CF_ENABLE_SECONDARY 0x01 /* secondary_address is valid */
63 #define I2CF_START_COND 0x02 /* tx: generate start condition */
64 #define I2CF_STOP_COND 0x04 /* tx: generate stop condition */
65
66 /* return codes */
67 #define I2CERR_NO_BUFFERS 0x01 /* no more BDs or buffer space */
68 #define I2CERR_MSG_TOO_LONG 0x02 /* tried to send/receive to much data */
69 #define I2CERR_TIMEOUT 0x03 /* timeout in i2c_doio() */
70 #define I2CERR_QUEUE_EMPTY 0x04 /* i2c_doio called without send/receive */
71
72 /* error callback flags */
73 #define I2CECB_RX_ERR 0x10 /* this is a receive error */
74 #define I2CECB_RX_ERR_OV 0x02 /* receive overrun error */
75 #define I2CECB_RX_MASK 0x0f /* mask for error bits */
76 #define I2CECB_TX_ERR 0x20 /* this is a transmit error */
77 #define I2CECB_TX_CL 0x01 /* transmit collision error */
78 #define I2CECB_TX_UN 0x02 /* transmit underflow error */
79 #define I2CECB_TX_NAK 0x04 /* transmit no ack error */
80 #define I2CECB_TX_MASK 0x0f /* mask for error bits */
81 #define I2CECB_TIMEOUT 0x40 /* this is a timeout error */
82
83 /*
84 * Returns the best value of I2BRG to meet desired clock speed of I2C with
85 * input parameters (clock speed, filter, and predivider value).
86 * It returns computer speed value and the difference between it and desired
87 * speed.
88 */
89 static inline int
90 i2c_roundrate(int hz, int speed, int filter, int modval,
91 int *brgval, int *totspeed)
92 {
93 int moddiv = 1 << (5 - (modval & 3)), brgdiv, div;
94
95 debug("\t[I2C] trying hz=%d, speed=%d, filter=%d, modval=%d\n",
96 hz, speed, filter, modval);
97
98 div = moddiv * speed;
99 brgdiv = (hz + div - 1) / div;
100
101 debug("\t\tmoddiv=%d, brgdiv=%d\n", moddiv, brgdiv);
102
103 *brgval = ((brgdiv + 1) / 2) - 3 - (2 * filter);
104
105 if ((*brgval < 0) || (*brgval > 255)) {
106 debug("\t\trejected brgval=%d\n", *brgval);
107 return -1;
108 }
109
110 brgdiv = 2 * (*brgval + 3 + (2 * filter));
111 div = moddiv * brgdiv;
112 *totspeed = hz / div;
113
114 debug("\t\taccepted brgval=%d, totspeed=%d\n", *brgval, *totspeed);
115
116 return 0;
117 }
118
119 /*
120 * Sets the I2C clock predivider and divider to meet required clock speed.
121 */
122 static int i2c_setrate(int hz, int speed)
123 {
124 immap_t *immap = (immap_t *) CONFIG_SYS_IMMR;
125 volatile i2c8xx_t *i2c = (i2c8xx_t *) & immap->im_i2c;
126 int brgval,
127 modval, /* 0-3 */
128 bestspeed_diff = speed,
129 bestspeed_brgval = 0,
130 bestspeed_modval = 0,
131 bestspeed_filter = 0,
132 totspeed,
133 filter = 0; /* Use this fixed value */
134
135 for (modval = 0; modval < 4; modval++) {
136 if (i2c_roundrate
137 (hz, speed, filter, modval, &brgval, &totspeed) == 0) {
138 int diff = speed - totspeed;
139
140 if ((diff >= 0) && (diff < bestspeed_diff)) {
141 bestspeed_diff = diff;
142 bestspeed_modval = modval;
143 bestspeed_brgval = brgval;
144 bestspeed_filter = filter;
145 }
146 }
147 }
148
149 debug("[I2C] Best is:\n");
150 debug("[I2C] CPU=%dhz RATE=%d F=%d I2MOD=%08x I2BRG=%08x DIFF=%dhz\n",
151 hz,
152 speed,
153 bestspeed_filter,
154 bestspeed_modval,
155 bestspeed_brgval,
156 bestspeed_diff);
157
158 i2c->i2c_i2mod |=
159 ((bestspeed_modval & 3) << 1) | (bestspeed_filter << 3);
160 i2c->i2c_i2brg = bestspeed_brgval & 0xff;
161
162 debug("[I2C] i2mod=%08x i2brg=%08x\n",
163 i2c->i2c_i2mod,
164 i2c->i2c_i2brg);
165
166 return 1;
167 }
168
169 void i2c_init(int speed, int slaveaddr)
170 {
171 volatile immap_t *immap = (immap_t *) CONFIG_SYS_IMMR;
172 volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm;
173 volatile i2c8xx_t *i2c = (i2c8xx_t *)&immap->im_i2c;
174 volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
175 ulong rbase, tbase;
176 volatile I2C_BD *rxbd, *txbd;
177 uint dpaddr;
178
179 #ifdef CONFIG_SYS_I2C_INIT_BOARD
180 /* call board specific i2c bus reset routine before accessing the */
181 /* environment, which might be in a chip on that bus. For details */
182 /* about this problem see doc/I2C_Edge_Conditions. */
183 i2c_init_board();
184 #endif
185
186 #ifdef CONFIG_SYS_I2C_UCODE_PATCH
187 iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
188 #else
189 /* Disable relocation */
190 iip->iic_rpbase = 0;
191 #endif
192
193 #ifdef CONFIG_SYS_ALLOC_DPRAM
194 dpaddr = iip->iic_rbase;
195 if (dpaddr == 0) {
196 /* need to allocate dual port ram */
197 dpaddr = dpram_alloc_align((NUM_RX_BDS * sizeof(I2C_BD)) +
198 (NUM_TX_BDS * sizeof(I2C_BD)) +
199 MAX_TX_SPACE, 8);
200 }
201 #else
202 dpaddr = CPM_I2C_BASE;
203 #endif
204
205 /*
206 * initialise data in dual port ram:
207 *
208 * dpaddr->rbase -> rx BD (NUM_RX_BDS * sizeof(I2C_BD) bytes)
209 * tbase -> tx BD (NUM_TX_BDS * sizeof(I2C_BD) bytes)
210 * tx buffer (MAX_TX_SPACE bytes)
211 */
212
213 rbase = dpaddr;
214 tbase = rbase + NUM_RX_BDS * sizeof(I2C_BD);
215
216 /* Initialize Port B I2C pins. */
217 cp->cp_pbpar |= 0x00000030;
218 cp->cp_pbdir |= 0x00000030;
219 cp->cp_pbodr |= 0x00000030;
220
221 /* Disable interrupts */
222 i2c->i2c_i2mod = 0x00;
223 i2c->i2c_i2cmr = 0x00;
224 i2c->i2c_i2cer = 0xff;
225 i2c->i2c_i2add = slaveaddr;
226
227 /*
228 * Set the I2C BRG Clock division factor from desired i2c rate
229 * and current CPU rate (we assume sccr dfbgr field is 0;
230 * divide BRGCLK by 1)
231 */
232 debug("[I2C] Setting rate...\n");
233 i2c_setrate(gd->cpu_clk, CONFIG_SYS_I2C_SPEED);
234
235 /* Set I2C controller in master mode */
236 i2c->i2c_i2com = 0x01;
237
238 /* Set SDMA bus arbitration level to 5 (SDCR) */
239 immap->im_siu_conf.sc_sdcr = 0x0001;
240
241 /* Initialize Tx/Rx parameters */
242 iip->iic_rbase = rbase;
243 iip->iic_tbase = tbase;
244 rxbd = (I2C_BD *) ((unsigned char *) &cp->cp_dpmem[iip->iic_rbase]);
245 txbd = (I2C_BD *) ((unsigned char *) &cp->cp_dpmem[iip->iic_tbase]);
246
247 debug("[I2C] rbase = %04x\n", iip->iic_rbase);
248 debug("[I2C] tbase = %04x\n", iip->iic_tbase);
249 debug("[I2C] rxbd = %08x\n", (int)rxbd);
250 debug("[I2C] txbd = %08x\n", (int)txbd);
251
252 /* Set big endian byte order */
253 iip->iic_tfcr = 0x10;
254 iip->iic_rfcr = 0x10;
255
256 /* Set maximum receive size. */
257 iip->iic_mrblr = I2C_RXTX_LEN;
258
259 #ifdef CONFIG_SYS_I2C_UCODE_PATCH
260 /*
261 * Initialize required parameters if using microcode patch.
262 */
263 iip->iic_rbptr = iip->iic_rbase;
264 iip->iic_tbptr = iip->iic_tbase;
265 iip->iic_rstate = 0;
266 iip->iic_tstate = 0;
267 #else
268 cp->cp_cpcr = mk_cr_cmd(CPM_CR_CH_I2C, CPM_CR_INIT_TRX) | CPM_CR_FLG;
269 do {
270 __asm__ __volatile__("eieio");
271 } while (cp->cp_cpcr & CPM_CR_FLG);
272 #endif
273
274 /* Clear events and interrupts */
275 i2c->i2c_i2cer = 0xff;
276 i2c->i2c_i2cmr = 0x00;
277 }
278
279 static void i2c_newio(i2c_state_t *state)
280 {
281 volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR;
282 volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm;
283 volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
284
285 debug("[I2C] i2c_newio\n");
286
287 #ifdef CONFIG_SYS_I2C_UCODE_PATCH
288 iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
289 #endif
290 state->rx_idx = 0;
291 state->tx_idx = 0;
292 state->rxbd = (void *)&cp->cp_dpmem[iip->iic_rbase];
293 state->txbd = (void *)&cp->cp_dpmem[iip->iic_tbase];
294 state->tx_space = MAX_TX_SPACE;
295 state->tx_buf = (uchar *)state->txbd + NUM_TX_BDS * sizeof(I2C_BD);
296 state->err_cb = NULL;
297
298 debug("[I2C] rxbd = %08x\n", (int)state->rxbd);
299 debug("[I2C] txbd = %08x\n", (int)state->txbd);
300 debug("[I2C] tx_buf = %08x\n", (int)state->tx_buf);
301
302 /* clear the buffer memory */
303 memset((char *)state->tx_buf, 0, MAX_TX_SPACE);
304 }
305
306 static int
307 i2c_send(i2c_state_t *state,
308 unsigned char address,
309 unsigned char secondary_address,
310 unsigned int flags, unsigned short size, unsigned char *dataout)
311 {
312 volatile I2C_BD *txbd;
313 int i, j;
314
315 debug("[I2C] i2c_send add=%02d sec=%02d flag=%02d size=%d\n",
316 address, secondary_address, flags, size);
317
318 /* trying to send message larger than BD */
319 if (size > I2C_RXTX_LEN)
320 return I2CERR_MSG_TOO_LONG;
321
322 /* no more free bds */
323 if (state->tx_idx >= NUM_TX_BDS || state->tx_space < (2 + size))
324 return I2CERR_NO_BUFFERS;
325
326 txbd = (I2C_BD *) state->txbd;
327 txbd->addr = state->tx_buf;
328
329 debug("[I2C] txbd = %08x\n", (int)txbd);
330
331 if (flags & I2CF_START_COND) {
332 debug("[I2C] Formatting addresses...\n");
333 if (flags & I2CF_ENABLE_SECONDARY) {
334 /* Length of msg + dest addr */
335 txbd->length = size + 2;
336
337 txbd->addr[0] = address << 1;
338 txbd->addr[1] = secondary_address;
339 i = 2;
340 } else {
341 /* Length of msg + dest addr */
342 txbd->length = size + 1;
343 /* Write dest addr to BD */
344 txbd->addr[0] = address << 1;
345 i = 1;
346 }
347 } else {
348 txbd->length = size; /* Length of message */
349 i = 0;
350 }
351
352 /* set up txbd */
353 txbd->status = BD_SC_READY;
354 if (flags & I2CF_START_COND)
355 txbd->status |= BD_I2C_TX_START;
356 if (flags & I2CF_STOP_COND)
357 txbd->status |= BD_SC_LAST | BD_SC_WRAP;
358
359 /* Copy data to send into buffer */
360 debug("[I2C] copy data...\n");
361 for(j = 0; j < size; i++, j++)
362 txbd->addr[i] = dataout[j];
363
364 debug("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
365 txbd->length,
366 txbd->status,
367 txbd->addr[0],
368 txbd->addr[1]);
369
370 /* advance state */
371 state->tx_buf += txbd->length;
372 state->tx_space -= txbd->length;
373 state->tx_idx++;
374 state->txbd = (void *) (txbd + 1);
375
376 return 0;
377 }
378
379 static int
380 i2c_receive(i2c_state_t *state,
381 unsigned char address,
382 unsigned char secondary_address,
383 unsigned int flags,
384 unsigned short size_to_expect, unsigned char *datain)
385 {
386 volatile I2C_BD *rxbd, *txbd;
387
388 debug("[I2C] i2c_receive %02d %02d %02d\n",
389 address, secondary_address, flags);
390
391 /* Expected to receive too much */
392 if (size_to_expect > I2C_RXTX_LEN)
393 return I2CERR_MSG_TOO_LONG;
394
395 /* no more free bds */
396 if (state->tx_idx >= NUM_TX_BDS || state->rx_idx >= NUM_RX_BDS
397 || state->tx_space < 2)
398 return I2CERR_NO_BUFFERS;
399
400 rxbd = (I2C_BD *) state->rxbd;
401 txbd = (I2C_BD *) state->txbd;
402
403 debug("[I2C] rxbd = %08x\n", (int)rxbd);
404 debug("[I2C] txbd = %08x\n", (int)txbd);
405
406 txbd->addr = state->tx_buf;
407
408 /* set up TXBD for destination address */
409 if (flags & I2CF_ENABLE_SECONDARY) {
410 txbd->length = 2;
411 txbd->addr[0] = address << 1; /* Write data */
412 txbd->addr[1] = secondary_address; /* Internal address */
413 txbd->status = BD_SC_READY;
414 } else {
415 txbd->length = 1 + size_to_expect;
416 txbd->addr[0] = (address << 1) | 0x01;
417 txbd->status = BD_SC_READY;
418 memset(&txbd->addr[1], 0, txbd->length);
419 }
420
421 /* set up rxbd for reception */
422 rxbd->status = BD_SC_EMPTY;
423 rxbd->length = size_to_expect;
424 rxbd->addr = datain;
425
426 txbd->status |= BD_I2C_TX_START;
427 if (flags & I2CF_STOP_COND) {
428 txbd->status |= BD_SC_LAST | BD_SC_WRAP;
429 rxbd->status |= BD_SC_WRAP;
430 }
431
432 debug("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
433 txbd->length,
434 txbd->status,
435 txbd->addr[0],
436 txbd->addr[1]);
437 debug("[I2C] rxbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
438 rxbd->length,
439 rxbd->status,
440 rxbd->addr[0],
441 rxbd->addr[1]);
442
443 /* advance state */
444 state->tx_buf += txbd->length;
445 state->tx_space -= txbd->length;
446 state->tx_idx++;
447 state->txbd = (void *) (txbd + 1);
448 state->rx_idx++;
449 state->rxbd = (void *) (rxbd + 1);
450
451 return 0;
452 }
453
454
455 static int i2c_doio(i2c_state_t *state)
456 {
457 volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR;
458 volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm;
459 volatile i2c8xx_t *i2c = (i2c8xx_t *)&immap->im_i2c;
460 volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
461 volatile I2C_BD *txbd, *rxbd;
462 volatile int j = 0;
463
464 debug("[I2C] i2c_doio\n");
465
466 #ifdef CONFIG_SYS_I2C_UCODE_PATCH
467 iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
468 #endif
469
470 if (state->tx_idx <= 0 && state->rx_idx <= 0) {
471 debug("[I2C] No I/O is queued\n");
472 return I2CERR_QUEUE_EMPTY;
473 }
474
475 iip->iic_rbptr = iip->iic_rbase;
476 iip->iic_tbptr = iip->iic_tbase;
477
478 /* Enable I2C */
479 debug("[I2C] Enabling I2C...\n");
480 i2c->i2c_i2mod |= 0x01;
481
482 /* Begin transmission */
483 i2c->i2c_i2com |= 0x80;
484
485 /* Loop until transmit & receive completed */
486
487 if (state->tx_idx > 0) {
488 txbd = ((I2C_BD*)state->txbd) - 1;
489
490 debug("[I2C] Transmitting...(txbd=0x%08lx)\n",
491 (ulong)txbd);
492
493 while ((txbd->status & BD_SC_READY) && (j++ < TOUT_LOOP)) {
494 if (ctrlc())
495 return (-1);
496
497 __asm__ __volatile__("eieio");
498 }
499 }
500
501 if ((state->rx_idx > 0) && (j < TOUT_LOOP)) {
502 rxbd = ((I2C_BD*)state->rxbd) - 1;
503
504 debug("[I2C] Receiving...(rxbd=0x%08lx)\n",
505 (ulong)rxbd);
506
507 while ((rxbd->status & BD_SC_EMPTY) && (j++ < TOUT_LOOP)) {
508 if (ctrlc())
509 return (-1);
510
511 __asm__ __volatile__("eieio");
512 }
513 }
514
515 /* Turn off I2C */
516 i2c->i2c_i2mod &= ~0x01;
517
518 if (state->err_cb != NULL) {
519 int n, i, b;
520
521 /*
522 * if we have an error callback function, look at the
523 * error bits in the bd status and pass them back
524 */
525
526 if ((n = state->tx_idx) > 0) {
527 for (i = 0; i < n; i++) {
528 txbd = ((I2C_BD *) state->txbd) - (n - i);
529 if ((b = txbd->status & BD_I2C_TX_ERR) != 0)
530 (*state->err_cb) (I2CECB_TX_ERR | b,
531 i);
532 }
533 }
534
535 if ((n = state->rx_idx) > 0) {
536 for (i = 0; i < n; i++) {
537 rxbd = ((I2C_BD *) state->rxbd) - (n - i);
538 if ((b = rxbd->status & BD_I2C_RX_ERR) != 0)
539 (*state->err_cb) (I2CECB_RX_ERR | b,
540 i);
541 }
542 }
543
544 if (j >= TOUT_LOOP)
545 (*state->err_cb) (I2CECB_TIMEOUT, 0);
546 }
547
548 return (j >= TOUT_LOOP) ? I2CERR_TIMEOUT : 0;
549 }
550
551 static int had_tx_nak;
552
553 static void i2c_test_callback(int flags, int xnum)
554 {
555 if ((flags & I2CECB_TX_ERR) && (flags & I2CECB_TX_NAK))
556 had_tx_nak = 1;
557 }
558
559 int i2c_probe(uchar chip)
560 {
561 i2c_state_t state;
562 int rc;
563 uchar buf[1];
564
565 i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
566
567 i2c_newio(&state);
568
569 state.err_cb = i2c_test_callback;
570 had_tx_nak = 0;
571
572 rc = i2c_receive(&state, chip, 0, I2CF_START_COND | I2CF_STOP_COND, 1,
573 buf);
574
575 if (rc != 0)
576 return (rc);
577
578 rc = i2c_doio(&state);
579
580 if ((rc != 0) && (rc != I2CERR_TIMEOUT))
581 return (rc);
582
583 return (had_tx_nak);
584 }
585
586 int i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len)
587 {
588 i2c_state_t state;
589 uchar xaddr[4];
590 int rc;
591
592 xaddr[0] = (addr >> 24) & 0xFF;
593 xaddr[1] = (addr >> 16) & 0xFF;
594 xaddr[2] = (addr >> 8) & 0xFF;
595 xaddr[3] = addr & 0xFF;
596
597 #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
598 /*
599 * EEPROM chips that implement "address overflow" are ones like
600 * Catalyst 24WC04/08/16 which has 9/10/11 bits of address and the
601 * extra bits end up in the "chip address" bit slots. This makes
602 * a 24WC08 (1Kbyte) chip look like four 256 byte chips.
603 *
604 * Note that we consider the length of the address field to still
605 * be one byte because the extra address bits are hidden in the
606 * chip address.
607 */
608 chip |= ((addr >> (alen * 8)) & CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
609 #endif
610
611 i2c_newio(&state);
612
613 rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen,
614 &xaddr[4 - alen]);
615 if (rc != 0) {
616 printf("i2c_read: i2c_send failed (%d)\n", rc);
617 return 1;
618 }
619
620 rc = i2c_receive(&state, chip, 0, I2CF_STOP_COND, len, buffer);
621 if (rc != 0) {
622 printf("i2c_read: i2c_receive failed (%d)\n", rc);
623 return 1;
624 }
625
626 rc = i2c_doio(&state);
627 if (rc != 0) {
628 printf("i2c_read: i2c_doio failed (%d)\n", rc);
629 return 1;
630 }
631 return 0;
632 }
633
634 int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len)
635 {
636 i2c_state_t state;
637 uchar xaddr[4];
638 int rc;
639
640 xaddr[0] = (addr >> 24) & 0xFF;
641 xaddr[1] = (addr >> 16) & 0xFF;
642 xaddr[2] = (addr >> 8) & 0xFF;
643 xaddr[3] = addr & 0xFF;
644
645 #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
646 /*
647 * EEPROM chips that implement "address overflow" are ones like
648 * Catalyst 24WC04/08/16 which has 9/10/11 bits of address and the
649 * extra bits end up in the "chip address" bit slots. This makes
650 * a 24WC08 (1Kbyte) chip look like four 256 byte chips.
651 *
652 * Note that we consider the length of the address field to still
653 * be one byte because the extra address bits are hidden in the
654 * chip address.
655 */
656 chip |= ((addr >> (alen * 8)) & CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
657 #endif
658
659 i2c_newio(&state);
660
661 rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen,
662 &xaddr[4 - alen]);
663 if (rc != 0) {
664 printf("i2c_write: first i2c_send failed (%d)\n", rc);
665 return 1;
666 }
667
668 rc = i2c_send(&state, 0, 0, I2CF_STOP_COND, len, buffer);
669 if (rc != 0) {
670 printf("i2c_write: second i2c_send failed (%d)\n", rc);
671 return 1;
672 }
673
674 rc = i2c_doio(&state);
675 if (rc != 0) {
676 printf("i2c_write: i2c_doio failed (%d)\n", rc);
677 return 1;
678 }
679 return 0;
680 }
681
682 #endif /* CONFIG_HARD_I2C */