]> git.ipfire.org Git - people/ms/u-boot.git/blob - arch/powerpc/cpu/mpc8xxx/ddr/lc_common_dimm_params.c
powerpc: mpc85xx: Support booting from SD Card with SPL
[people/ms/u-boot.git] / arch / powerpc / cpu / mpc8xxx / ddr / lc_common_dimm_params.c
1 /*
2 * Copyright 2008-2012 Freescale Semiconductor, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * Version 2 as published by the Free Software Foundation.
7 */
8
9 #include <common.h>
10 #include <asm/fsl_ddr_sdram.h>
11
12 #include "ddr.h"
13
14 #if defined(CONFIG_FSL_DDR3)
15 static unsigned int
16 compute_cas_latency_ddr3(const dimm_params_t *dimm_params,
17 common_timing_params_t *outpdimm,
18 unsigned int number_of_dimms)
19 {
20 unsigned int i;
21 unsigned int tAAmin_ps = 0;
22 unsigned int tCKmin_X_ps = 0;
23 unsigned int common_caslat;
24 unsigned int caslat_actual;
25 unsigned int retry = 16;
26 unsigned int tmp;
27 const unsigned int mclk_ps = get_memory_clk_period_ps();
28
29 /* compute the common CAS latency supported between slots */
30 tmp = dimm_params[0].caslat_X;
31 for (i = 1; i < number_of_dimms; i++) {
32 if (dimm_params[i].n_ranks)
33 tmp &= dimm_params[i].caslat_X;
34 }
35 common_caslat = tmp;
36
37 /* compute the max tAAmin tCKmin between slots */
38 for (i = 0; i < number_of_dimms; i++) {
39 tAAmin_ps = max(tAAmin_ps, dimm_params[i].tAA_ps);
40 tCKmin_X_ps = max(tCKmin_X_ps, dimm_params[i].tCKmin_X_ps);
41 }
42 /* validate if the memory clk is in the range of dimms */
43 if (mclk_ps < tCKmin_X_ps) {
44 printf("DDR clock (MCLK cycle %u ps) is faster than "
45 "the slowest DIMM(s) (tCKmin %u ps) can support.\n",
46 mclk_ps, tCKmin_X_ps);
47 }
48 /* determine the acutal cas latency */
49 caslat_actual = (tAAmin_ps + mclk_ps - 1) / mclk_ps;
50 /* check if the dimms support the CAS latency */
51 while (!(common_caslat & (1 << caslat_actual)) && retry > 0) {
52 caslat_actual++;
53 retry--;
54 }
55 /* once the caculation of caslat_actual is completed
56 * we must verify that this CAS latency value does not
57 * exceed tAAmax, which is 20 ns for all DDR3 speed grades
58 */
59 if (caslat_actual * mclk_ps > 20000) {
60 printf("The choosen cas latency %d is too large\n",
61 caslat_actual);
62 }
63 outpdimm->lowest_common_SPD_caslat = caslat_actual;
64
65 return 0;
66 }
67 #endif
68
69 /*
70 * compute_lowest_common_dimm_parameters()
71 *
72 * Determine the worst-case DIMM timing parameters from the set of DIMMs
73 * whose parameters have been computed into the array pointed to
74 * by dimm_params.
75 */
76 unsigned int
77 compute_lowest_common_dimm_parameters(const dimm_params_t *dimm_params,
78 common_timing_params_t *outpdimm,
79 const unsigned int number_of_dimms)
80 {
81 unsigned int i, j;
82
83 unsigned int tCKmin_X_ps = 0;
84 unsigned int tCKmax_ps = 0xFFFFFFFF;
85 unsigned int tCKmax_max_ps = 0;
86 unsigned int tRCD_ps = 0;
87 unsigned int tRP_ps = 0;
88 unsigned int tRAS_ps = 0;
89 unsigned int tWR_ps = 0;
90 unsigned int tWTR_ps = 0;
91 unsigned int tRFC_ps = 0;
92 unsigned int tRRD_ps = 0;
93 unsigned int tRC_ps = 0;
94 unsigned int refresh_rate_ps = 0;
95 unsigned int tIS_ps = 0;
96 unsigned int tIH_ps = 0;
97 unsigned int tDS_ps = 0;
98 unsigned int tDH_ps = 0;
99 unsigned int tRTP_ps = 0;
100 unsigned int tDQSQ_max_ps = 0;
101 unsigned int tQHS_ps = 0;
102
103 unsigned int temp1, temp2;
104 unsigned int additive_latency = 0;
105 #if !defined(CONFIG_FSL_DDR3)
106 const unsigned int mclk_ps = get_memory_clk_period_ps();
107 unsigned int lowest_good_caslat;
108 unsigned int not_ok;
109
110 debug("using mclk_ps = %u\n", mclk_ps);
111 #endif
112
113 temp1 = 0;
114 for (i = 0; i < number_of_dimms; i++) {
115 /*
116 * If there are no ranks on this DIMM,
117 * it probably doesn't exist, so skip it.
118 */
119 if (dimm_params[i].n_ranks == 0) {
120 temp1++;
121 continue;
122 }
123 if (dimm_params[i].n_ranks == 4 && i != 0) {
124 printf("Found Quad-rank DIMM in wrong bank, ignored."
125 " Software may not run as expected.\n");
126 temp1++;
127 continue;
128 }
129
130 /*
131 * check if quad-rank DIMM is plugged if
132 * CONFIG_CHIP_SELECT_QUAD_CAPABLE is not defined
133 * Only the board with proper design is capable
134 */
135 #ifndef CONFIG_FSL_DDR_FIRST_SLOT_QUAD_CAPABLE
136 if (dimm_params[i].n_ranks == 4 && \
137 CONFIG_CHIP_SELECTS_PER_CTRL/CONFIG_DIMM_SLOTS_PER_CTLR < 4) {
138 printf("Found Quad-rank DIMM, not able to support.");
139 temp1++;
140 continue;
141 }
142 #endif
143 /*
144 * Find minimum tCKmax_ps to find fastest slow speed,
145 * i.e., this is the slowest the whole system can go.
146 */
147 tCKmax_ps = min(tCKmax_ps, dimm_params[i].tCKmax_ps);
148
149 /* Either find maximum value to determine slowest
150 * speed, delay, time, period, etc */
151 tCKmin_X_ps = max(tCKmin_X_ps, dimm_params[i].tCKmin_X_ps);
152 tCKmax_max_ps = max(tCKmax_max_ps, dimm_params[i].tCKmax_ps);
153 tRCD_ps = max(tRCD_ps, dimm_params[i].tRCD_ps);
154 tRP_ps = max(tRP_ps, dimm_params[i].tRP_ps);
155 tRAS_ps = max(tRAS_ps, dimm_params[i].tRAS_ps);
156 tWR_ps = max(tWR_ps, dimm_params[i].tWR_ps);
157 tWTR_ps = max(tWTR_ps, dimm_params[i].tWTR_ps);
158 tRFC_ps = max(tRFC_ps, dimm_params[i].tRFC_ps);
159 tRRD_ps = max(tRRD_ps, dimm_params[i].tRRD_ps);
160 tRC_ps = max(tRC_ps, dimm_params[i].tRC_ps);
161 tIS_ps = max(tIS_ps, dimm_params[i].tIS_ps);
162 tIH_ps = max(tIH_ps, dimm_params[i].tIH_ps);
163 tDS_ps = max(tDS_ps, dimm_params[i].tDS_ps);
164 tDH_ps = max(tDH_ps, dimm_params[i].tDH_ps);
165 tRTP_ps = max(tRTP_ps, dimm_params[i].tRTP_ps);
166 tQHS_ps = max(tQHS_ps, dimm_params[i].tQHS_ps);
167 refresh_rate_ps = max(refresh_rate_ps,
168 dimm_params[i].refresh_rate_ps);
169
170 /*
171 * Find maximum tDQSQ_max_ps to find slowest.
172 *
173 * FIXME: is finding the slowest value the correct
174 * strategy for this parameter?
175 */
176 tDQSQ_max_ps = max(tDQSQ_max_ps, dimm_params[i].tDQSQ_max_ps);
177 }
178
179 outpdimm->ndimms_present = number_of_dimms - temp1;
180
181 if (temp1 == number_of_dimms) {
182 debug("no dimms this memory controller\n");
183 return 0;
184 }
185
186 outpdimm->tCKmin_X_ps = tCKmin_X_ps;
187 outpdimm->tCKmax_ps = tCKmax_ps;
188 outpdimm->tCKmax_max_ps = tCKmax_max_ps;
189 outpdimm->tRCD_ps = tRCD_ps;
190 outpdimm->tRP_ps = tRP_ps;
191 outpdimm->tRAS_ps = tRAS_ps;
192 outpdimm->tWR_ps = tWR_ps;
193 outpdimm->tWTR_ps = tWTR_ps;
194 outpdimm->tRFC_ps = tRFC_ps;
195 outpdimm->tRRD_ps = tRRD_ps;
196 outpdimm->tRC_ps = tRC_ps;
197 outpdimm->refresh_rate_ps = refresh_rate_ps;
198 outpdimm->tIS_ps = tIS_ps;
199 outpdimm->tIH_ps = tIH_ps;
200 outpdimm->tDS_ps = tDS_ps;
201 outpdimm->tDH_ps = tDH_ps;
202 outpdimm->tRTP_ps = tRTP_ps;
203 outpdimm->tDQSQ_max_ps = tDQSQ_max_ps;
204 outpdimm->tQHS_ps = tQHS_ps;
205
206 /* Determine common burst length for all DIMMs. */
207 temp1 = 0xff;
208 for (i = 0; i < number_of_dimms; i++) {
209 if (dimm_params[i].n_ranks) {
210 temp1 &= dimm_params[i].burst_lengths_bitmask;
211 }
212 }
213 outpdimm->all_DIMMs_burst_lengths_bitmask = temp1;
214
215 /* Determine if all DIMMs registered buffered. */
216 temp1 = temp2 = 0;
217 for (i = 0; i < number_of_dimms; i++) {
218 if (dimm_params[i].n_ranks) {
219 if (dimm_params[i].registered_dimm) {
220 temp1 = 1;
221 #ifndef CONFIG_SPL_BUILD
222 printf("Detected RDIMM %s\n",
223 dimm_params[i].mpart);
224 #endif
225 } else {
226 temp2 = 1;
227 #ifndef CONFIG_SPL_BUILD
228 printf("Detected UDIMM %s\n",
229 dimm_params[i].mpart);
230 #endif
231 }
232 }
233 }
234
235 outpdimm->all_DIMMs_registered = 0;
236 outpdimm->all_DIMMs_unbuffered = 0;
237 if (temp1 && !temp2) {
238 outpdimm->all_DIMMs_registered = 1;
239 } else if (!temp1 && temp2) {
240 outpdimm->all_DIMMs_unbuffered = 1;
241 } else {
242 printf("ERROR: Mix of registered buffered and unbuffered "
243 "DIMMs detected!\n");
244 }
245
246 temp1 = 0;
247 if (outpdimm->all_DIMMs_registered)
248 for (j = 0; j < 16; j++) {
249 outpdimm->rcw[j] = dimm_params[0].rcw[j];
250 for (i = 1; i < number_of_dimms; i++) {
251 if (!dimm_params[i].n_ranks)
252 continue;
253 if (dimm_params[i].rcw[j] != dimm_params[0].rcw[j]) {
254 temp1 = 1;
255 break;
256 }
257 }
258 }
259
260 if (temp1 != 0)
261 printf("ERROR: Mix different RDIMM detected!\n");
262
263 #if defined(CONFIG_FSL_DDR3)
264 if (compute_cas_latency_ddr3(dimm_params, outpdimm, number_of_dimms))
265 return 1;
266 #else
267 /*
268 * Compute a CAS latency suitable for all DIMMs
269 *
270 * Strategy for SPD-defined latencies: compute only
271 * CAS latency defined by all DIMMs.
272 */
273
274 /*
275 * Step 1: find CAS latency common to all DIMMs using bitwise
276 * operation.
277 */
278 temp1 = 0xFF;
279 for (i = 0; i < number_of_dimms; i++) {
280 if (dimm_params[i].n_ranks) {
281 temp2 = 0;
282 temp2 |= 1 << dimm_params[i].caslat_X;
283 temp2 |= 1 << dimm_params[i].caslat_X_minus_1;
284 temp2 |= 1 << dimm_params[i].caslat_X_minus_2;
285 /*
286 * FIXME: If there was no entry for X-2 (X-1) in
287 * the SPD, then caslat_X_minus_2
288 * (caslat_X_minus_1) contains either 255 or
289 * 0xFFFFFFFF because that's what the glorious
290 * __ilog2 function returns for an input of 0.
291 * On 32-bit PowerPC, left shift counts with bit
292 * 26 set (that the value of 255 or 0xFFFFFFFF
293 * will have), cause the destination register to
294 * be 0. That is why this works.
295 */
296 temp1 &= temp2;
297 }
298 }
299
300 /*
301 * Step 2: check each common CAS latency against tCK of each
302 * DIMM's SPD.
303 */
304 lowest_good_caslat = 0;
305 temp2 = 0;
306 while (temp1) {
307 not_ok = 0;
308 temp2 = __ilog2(temp1);
309 debug("checking common caslat = %u\n", temp2);
310
311 /* Check if this CAS latency will work on all DIMMs at tCK. */
312 for (i = 0; i < number_of_dimms; i++) {
313 if (!dimm_params[i].n_ranks) {
314 continue;
315 }
316 if (dimm_params[i].caslat_X == temp2) {
317 if (mclk_ps >= dimm_params[i].tCKmin_X_ps) {
318 debug("CL = %u ok on DIMM %u at tCK=%u"
319 " ps with its tCKmin_X_ps of %u\n",
320 temp2, i, mclk_ps,
321 dimm_params[i].tCKmin_X_ps);
322 continue;
323 } else {
324 not_ok++;
325 }
326 }
327
328 if (dimm_params[i].caslat_X_minus_1 == temp2) {
329 unsigned int tCKmin_X_minus_1_ps
330 = dimm_params[i].tCKmin_X_minus_1_ps;
331 if (mclk_ps >= tCKmin_X_minus_1_ps) {
332 debug("CL = %u ok on DIMM %u at "
333 "tCK=%u ps with its "
334 "tCKmin_X_minus_1_ps of %u\n",
335 temp2, i, mclk_ps,
336 tCKmin_X_minus_1_ps);
337 continue;
338 } else {
339 not_ok++;
340 }
341 }
342
343 if (dimm_params[i].caslat_X_minus_2 == temp2) {
344 unsigned int tCKmin_X_minus_2_ps
345 = dimm_params[i].tCKmin_X_minus_2_ps;
346 if (mclk_ps >= tCKmin_X_minus_2_ps) {
347 debug("CL = %u ok on DIMM %u at "
348 "tCK=%u ps with its "
349 "tCKmin_X_minus_2_ps of %u\n",
350 temp2, i, mclk_ps,
351 tCKmin_X_minus_2_ps);
352 continue;
353 } else {
354 not_ok++;
355 }
356 }
357 }
358
359 if (!not_ok) {
360 lowest_good_caslat = temp2;
361 }
362
363 temp1 &= ~(1 << temp2);
364 }
365
366 debug("lowest common SPD-defined CAS latency = %u\n",
367 lowest_good_caslat);
368 outpdimm->lowest_common_SPD_caslat = lowest_good_caslat;
369
370
371 /*
372 * Compute a common 'de-rated' CAS latency.
373 *
374 * The strategy here is to find the *highest* dereated cas latency
375 * with the assumption that all of the DIMMs will support a dereated
376 * CAS latency higher than or equal to their lowest dereated value.
377 */
378 temp1 = 0;
379 for (i = 0; i < number_of_dimms; i++) {
380 temp1 = max(temp1, dimm_params[i].caslat_lowest_derated);
381 }
382 outpdimm->highest_common_derated_caslat = temp1;
383 debug("highest common dereated CAS latency = %u\n", temp1);
384 #endif /* #if defined(CONFIG_FSL_DDR3) */
385
386 /* Determine if all DIMMs ECC capable. */
387 temp1 = 1;
388 for (i = 0; i < number_of_dimms; i++) {
389 if (dimm_params[i].n_ranks &&
390 !(dimm_params[i].edc_config & EDC_ECC)) {
391 temp1 = 0;
392 break;
393 }
394 }
395 if (temp1) {
396 debug("all DIMMs ECC capable\n");
397 } else {
398 debug("Warning: not all DIMMs ECC capable, cant enable ECC\n");
399 }
400 outpdimm->all_DIMMs_ECC_capable = temp1;
401
402 #ifndef CONFIG_FSL_DDR3
403 /* FIXME: move to somewhere else to validate. */
404 if (mclk_ps > tCKmax_max_ps) {
405 printf("Warning: some of the installed DIMMs "
406 "can not operate this slowly.\n");
407 return 1;
408 }
409 #endif
410 /*
411 * Compute additive latency.
412 *
413 * For DDR1, additive latency should be 0.
414 *
415 * For DDR2, with ODT enabled, use "a value" less than ACTTORW,
416 * which comes from Trcd, and also note that:
417 * add_lat + caslat must be >= 4
418 *
419 * For DDR3, we use the AL=0
420 *
421 * When to use additive latency for DDR2:
422 *
423 * I. Because you are using CL=3 and need to do ODT on writes and
424 * want functionality.
425 * 1. Are you going to use ODT? (Does your board not have
426 * additional termination circuitry for DQ, DQS, DQS_,
427 * DM, RDQS, RDQS_ for x4/x8 configs?)
428 * 2. If so, is your lowest supported CL going to be 3?
429 * 3. If so, then you must set AL=1 because
430 *
431 * WL >= 3 for ODT on writes
432 * RL = AL + CL
433 * WL = RL - 1
434 * ->
435 * WL = AL + CL - 1
436 * AL + CL - 1 >= 3
437 * AL + CL >= 4
438 * QED
439 *
440 * RL >= 3 for ODT on reads
441 * RL = AL + CL
442 *
443 * Since CL aren't usually less than 2, AL=0 is a minimum,
444 * so the WL-derived AL should be the -- FIXME?
445 *
446 * II. Because you are using auto-precharge globally and want to
447 * use additive latency (posted CAS) to get more bandwidth.
448 * 1. Are you going to use auto-precharge mode globally?
449 *
450 * Use addtivie latency and compute AL to be 1 cycle less than
451 * tRCD, i.e. the READ or WRITE command is in the cycle
452 * immediately following the ACTIVATE command..
453 *
454 * III. Because you feel like it or want to do some sort of
455 * degraded-performance experiment.
456 * 1. Do you just want to use additive latency because you feel
457 * like it?
458 *
459 * Validation: AL is less than tRCD, and within the other
460 * read-to-precharge constraints.
461 */
462
463 additive_latency = 0;
464
465 #if defined(CONFIG_FSL_DDR2)
466 if (lowest_good_caslat < 4) {
467 additive_latency = (picos_to_mclk(tRCD_ps) > lowest_good_caslat)
468 ? picos_to_mclk(tRCD_ps) - lowest_good_caslat : 0;
469 if (mclk_to_picos(additive_latency) > tRCD_ps) {
470 additive_latency = picos_to_mclk(tRCD_ps);
471 debug("setting additive_latency to %u because it was "
472 " greater than tRCD_ps\n", additive_latency);
473 }
474 }
475
476 #elif defined(CONFIG_FSL_DDR3)
477 /*
478 * The system will not use the global auto-precharge mode.
479 * However, it uses the page mode, so we set AL=0
480 */
481 additive_latency = 0;
482 #endif
483
484 /*
485 * Validate additive latency
486 * FIXME: move to somewhere else to validate
487 *
488 * AL <= tRCD(min)
489 */
490 if (mclk_to_picos(additive_latency) > tRCD_ps) {
491 printf("Error: invalid additive latency exceeds tRCD(min).\n");
492 return 1;
493 }
494
495 /*
496 * RL = CL + AL; RL >= 3 for ODT_RD_CFG to be enabled
497 * WL = RL - 1; WL >= 3 for ODT_WL_CFG to be enabled
498 * ADD_LAT (the register) must be set to a value less
499 * than ACTTORW if WL = 1, then AL must be set to 1
500 * RD_TO_PRE (the register) must be set to a minimum
501 * tRTP + AL if AL is nonzero
502 */
503
504 /*
505 * Additive latency will be applied only if the memctl option to
506 * use it.
507 */
508 outpdimm->additive_latency = additive_latency;
509
510 debug("tCKmin_ps = %u\n", outpdimm->tCKmin_X_ps);
511 debug("tRCD_ps = %u\n", outpdimm->tRCD_ps);
512 debug("tRP_ps = %u\n", outpdimm->tRP_ps);
513 debug("tRAS_ps = %u\n", outpdimm->tRAS_ps);
514 debug("tWR_ps = %u\n", outpdimm->tWR_ps);
515 debug("tWTR_ps = %u\n", outpdimm->tWTR_ps);
516 debug("tRFC_ps = %u\n", outpdimm->tRFC_ps);
517 debug("tRRD_ps = %u\n", outpdimm->tRRD_ps);
518 debug("tRC_ps = %u\n", outpdimm->tRC_ps);
519
520 return 0;
521 }