]> git.ipfire.org Git - people/ms/u-boot.git/blob - arch/powerpc/cpu/ppc4xx/denali_spd_ddr2.c
Add GPL-2.0+ SPDX-License-Identifier to source files
[people/ms/u-boot.git] / arch / powerpc / cpu / ppc4xx / denali_spd_ddr2.c
1 /*
2 * arch/powerpc/cpu/ppc4xx/denali_spd_ddr2.c
3 * This SPD SDRAM detection code supports AMCC PPC44x CPUs with a Denali-core
4 * DDR2 controller, specifically the 440EPx/GRx.
5 *
6 * (C) Copyright 2007-2008
7 * Larry Johnson, lrj@acm.org.
8 *
9 * Based primarily on arch/powerpc/cpu/ppc4xx/4xx_spd_ddr2.c, which is...
10 *
11 * (C) Copyright 2007
12 * Stefan Roese, DENX Software Engineering, sr@denx.de.
13 *
14 * COPYRIGHT AMCC CORPORATION 2004
15 *
16 * SPDX-License-Identifier: GPL-2.0+
17 */
18
19 /* define DEBUG for debugging output (obviously ;-)) */
20 #if 0
21 #define DEBUG
22 #endif
23
24 #include <common.h>
25 #include <command.h>
26 #include <asm/ppc4xx.h>
27 #include <i2c.h>
28 #include <asm/io.h>
29 #include <asm/processor.h>
30 #include <asm/mmu.h>
31 #include <asm/cache.h>
32
33 #if defined(CONFIG_SPD_EEPROM) && \
34 (defined(CONFIG_440EPX) || defined(CONFIG_440GRX))
35
36 /*-----------------------------------------------------------------------------+
37 * Defines
38 *-----------------------------------------------------------------------------*/
39 #define MAXDIMMS 2
40 #define MAXRANKS 2
41
42 #define ONE_BILLION 1000000000
43
44 #define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
45
46 #define DLL_DQS_DELAY 0x19
47 #define DLL_DQS_BYPASS 0x0B
48 #define DQS_OUT_SHIFT 0x7F
49
50 /*
51 * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
52 * region. Right now the cache should still be disabled in U-Boot because of the
53 * EMAC driver, that need it's buffer descriptor to be located in non cached
54 * memory.
55 *
56 * If at some time this restriction doesn't apply anymore, just define
57 * CONFIG_4xx_DCACHE in the board config file and this code should setup
58 * everything correctly.
59 */
60 #if defined(CONFIG_4xx_DCACHE)
61 #define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
62 #else
63 #define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
64 #endif
65
66 /*-----------------------------------------------------------------------------+
67 * Prototypes
68 *-----------------------------------------------------------------------------*/
69 extern int denali_wait_for_dlllock(void);
70 extern void denali_core_search_data_eye(void);
71 extern void dcbz_area(u32 start_address, u32 num_bytes);
72
73 /*
74 * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
75 */
76 void __spd_ddr_init_hang(void)
77 {
78 hang();
79 }
80 void spd_ddr_init_hang(void)
81 __attribute__ ((weak, alias("__spd_ddr_init_hang")));
82
83 #if defined(DEBUG)
84 static void print_mcsr(void)
85 {
86 printf("MCSR = 0x%08X\n", mfspr(SPRN_MCSR));
87 }
88
89 static void denali_sdram_register_dump(void)
90 {
91 unsigned int sdram_data;
92
93 printf("\n Register Dump:\n");
94 mfsdram(DDR0_00, sdram_data);
95 printf(" DDR0_00 = 0x%08X", sdram_data);
96 mfsdram(DDR0_01, sdram_data);
97 printf(" DDR0_01 = 0x%08X\n", sdram_data);
98 mfsdram(DDR0_02, sdram_data);
99 printf(" DDR0_02 = 0x%08X", sdram_data);
100 mfsdram(DDR0_03, sdram_data);
101 printf(" DDR0_03 = 0x%08X\n", sdram_data);
102 mfsdram(DDR0_04, sdram_data);
103 printf(" DDR0_04 = 0x%08X", sdram_data);
104 mfsdram(DDR0_05, sdram_data);
105 printf(" DDR0_05 = 0x%08X\n", sdram_data);
106 mfsdram(DDR0_06, sdram_data);
107 printf(" DDR0_06 = 0x%08X", sdram_data);
108 mfsdram(DDR0_07, sdram_data);
109 printf(" DDR0_07 = 0x%08X\n", sdram_data);
110 mfsdram(DDR0_08, sdram_data);
111 printf(" DDR0_08 = 0x%08X", sdram_data);
112 mfsdram(DDR0_09, sdram_data);
113 printf(" DDR0_09 = 0x%08X\n", sdram_data);
114 mfsdram(DDR0_10, sdram_data);
115 printf(" DDR0_10 = 0x%08X", sdram_data);
116 mfsdram(DDR0_11, sdram_data);
117 printf(" DDR0_11 = 0x%08X\n", sdram_data);
118 mfsdram(DDR0_12, sdram_data);
119 printf(" DDR0_12 = 0x%08X", sdram_data);
120 mfsdram(DDR0_14, sdram_data);
121 printf(" DDR0_14 = 0x%08X\n", sdram_data);
122 mfsdram(DDR0_17, sdram_data);
123 printf(" DDR0_17 = 0x%08X", sdram_data);
124 mfsdram(DDR0_18, sdram_data);
125 printf(" DDR0_18 = 0x%08X\n", sdram_data);
126 mfsdram(DDR0_19, sdram_data);
127 printf(" DDR0_19 = 0x%08X", sdram_data);
128 mfsdram(DDR0_20, sdram_data);
129 printf(" DDR0_20 = 0x%08X\n", sdram_data);
130 mfsdram(DDR0_21, sdram_data);
131 printf(" DDR0_21 = 0x%08X", sdram_data);
132 mfsdram(DDR0_22, sdram_data);
133 printf(" DDR0_22 = 0x%08X\n", sdram_data);
134 mfsdram(DDR0_23, sdram_data);
135 printf(" DDR0_23 = 0x%08X", sdram_data);
136 mfsdram(DDR0_24, sdram_data);
137 printf(" DDR0_24 = 0x%08X\n", sdram_data);
138 mfsdram(DDR0_25, sdram_data);
139 printf(" DDR0_25 = 0x%08X", sdram_data);
140 mfsdram(DDR0_26, sdram_data);
141 printf(" DDR0_26 = 0x%08X\n", sdram_data);
142 mfsdram(DDR0_27, sdram_data);
143 printf(" DDR0_27 = 0x%08X", sdram_data);
144 mfsdram(DDR0_28, sdram_data);
145 printf(" DDR0_28 = 0x%08X\n", sdram_data);
146 mfsdram(DDR0_31, sdram_data);
147 printf(" DDR0_31 = 0x%08X", sdram_data);
148 mfsdram(DDR0_32, sdram_data);
149 printf(" DDR0_32 = 0x%08X\n", sdram_data);
150 mfsdram(DDR0_33, sdram_data);
151 printf(" DDR0_33 = 0x%08X", sdram_data);
152 mfsdram(DDR0_34, sdram_data);
153 printf(" DDR0_34 = 0x%08X\n", sdram_data);
154 mfsdram(DDR0_35, sdram_data);
155 printf(" DDR0_35 = 0x%08X", sdram_data);
156 mfsdram(DDR0_36, sdram_data);
157 printf(" DDR0_36 = 0x%08X\n", sdram_data);
158 mfsdram(DDR0_37, sdram_data);
159 printf(" DDR0_37 = 0x%08X", sdram_data);
160 mfsdram(DDR0_38, sdram_data);
161 printf(" DDR0_38 = 0x%08X\n", sdram_data);
162 mfsdram(DDR0_39, sdram_data);
163 printf(" DDR0_39 = 0x%08X", sdram_data);
164 mfsdram(DDR0_40, sdram_data);
165 printf(" DDR0_40 = 0x%08X\n", sdram_data);
166 mfsdram(DDR0_41, sdram_data);
167 printf(" DDR0_41 = 0x%08X", sdram_data);
168 mfsdram(DDR0_42, sdram_data);
169 printf(" DDR0_42 = 0x%08X\n", sdram_data);
170 mfsdram(DDR0_43, sdram_data);
171 printf(" DDR0_43 = 0x%08X", sdram_data);
172 mfsdram(DDR0_44, sdram_data);
173 printf(" DDR0_44 = 0x%08X\n", sdram_data);
174 }
175 #else
176 static inline void denali_sdram_register_dump(void)
177 {
178 }
179
180 inline static void print_mcsr(void)
181 {
182 }
183 #endif /* defined(DEBUG) */
184
185 static int is_ecc_enabled(void)
186 {
187 u32 val;
188
189 mfsdram(DDR0_22, val);
190 return 0x3 == DDR0_22_CTRL_RAW_DECODE(val);
191 }
192
193 static unsigned char spd_read(u8 chip, unsigned int addr)
194 {
195 u8 data[2];
196
197 if (0 != i2c_probe(chip) || 0 != i2c_read(chip, addr, 1, data, 1)) {
198 debug("spd_read(0x%02X, 0x%02X) failed\n", chip, addr);
199 return 0;
200 }
201 debug("spd_read(0x%02X, 0x%02X) returned 0x%02X\n",
202 chip, addr, data[0]);
203 return data[0];
204 }
205
206 static unsigned long get_tcyc(unsigned char reg)
207 {
208 /*
209 * Byte 9, et al: Cycle time for CAS Latency=X, is split into two
210 * nibbles: the higher order nibble (bits 4-7) designates the cycle time
211 * to a granularity of 1ns; the value presented by the lower order
212 * nibble (bits 0-3) has a granularity of .1ns and is added to the value
213 * designated by the higher nibble. In addition, four lines of the lower
214 * order nibble are assigned to support +.25, +.33, +.66, and +.75.
215 */
216
217 unsigned char subfield_b = reg & 0x0F;
218
219 switch (subfield_b & 0x0F) {
220 case 0x0:
221 case 0x1:
222 case 0x2:
223 case 0x3:
224 case 0x4:
225 case 0x5:
226 case 0x6:
227 case 0x7:
228 case 0x8:
229 case 0x9:
230 return 1000 * (reg >> 4) + 100 * subfield_b;
231 case 0xA:
232 return 1000 * (reg >> 4) + 250;
233 case 0xB:
234 return 1000 * (reg >> 4) + 333;
235 case 0xC:
236 return 1000 * (reg >> 4) + 667;
237 case 0xD:
238 return 1000 * (reg >> 4) + 750;
239 }
240 return 0;
241 }
242
243 /*------------------------------------------------------------------
244 * Find the installed DIMMs, make sure that the are DDR2, and fill
245 * in the dimm_ranks array. Then dimm_ranks[dimm_num] > 0 iff the
246 * DIMM and dimm_num is present.
247 * Note: Because there are only two chip-select lines, it is assumed
248 * that a board with a single socket can support two ranks on that
249 * socket, while a board with two sockets can support only one rank
250 * on each socket.
251 *-----------------------------------------------------------------*/
252 static void get_spd_info(unsigned long dimm_ranks[],
253 unsigned long *ranks,
254 unsigned char const iic0_dimm_addr[],
255 unsigned long num_dimm_banks)
256 {
257 unsigned long dimm_num;
258 unsigned long dimm_found = false;
259 unsigned long const max_ranks_per_dimm = (1 == num_dimm_banks) ? 2 : 1;
260 unsigned char num_of_bytes;
261 unsigned char total_size;
262
263 *ranks = 0;
264 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
265 num_of_bytes = 0;
266 total_size = 0;
267
268 num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
269 total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
270 if ((num_of_bytes != 0) && (total_size != 0)) {
271 unsigned char const dimm_type =
272 spd_read(iic0_dimm_addr[dimm_num], 2);
273
274 unsigned long ranks_on_dimm =
275 (spd_read(iic0_dimm_addr[dimm_num], 5) & 0x07) + 1;
276
277 if (8 != dimm_type) {
278 switch (dimm_type) {
279 case 1:
280 printf("ERROR: Standard Fast Page Mode "
281 "DRAM DIMM");
282 break;
283 case 2:
284 printf("ERROR: EDO DIMM");
285 break;
286 case 3:
287 printf("ERROR: Pipelined Nibble DIMM");
288 break;
289 case 4:
290 printf("ERROR: SDRAM DIMM");
291 break;
292 case 5:
293 printf("ERROR: Multiplexed ROM DIMM");
294 break;
295 case 6:
296 printf("ERROR: SGRAM DIMM");
297 break;
298 case 7:
299 printf("ERROR: DDR1 DIMM");
300 break;
301 default:
302 printf("ERROR: Unknown DIMM (type %d)",
303 (unsigned int)dimm_type);
304 break;
305 }
306 printf(" detected in slot %lu.\n", dimm_num);
307 printf("Only DDR2 SDRAM DIMMs are supported."
308 "\n");
309 printf("Replace the module with a DDR2 DIMM."
310 "\n\n");
311 spd_ddr_init_hang();
312 }
313 dimm_found = true;
314 debug("DIMM slot %lu: populated with %lu-rank DDR2 DIMM"
315 "\n", dimm_num, ranks_on_dimm);
316 if (ranks_on_dimm > max_ranks_per_dimm) {
317 printf("WARNING: DRAM DIMM in slot %lu has %lu "
318 "ranks.\n", dimm_num, ranks_on_dimm);
319 if (1 == max_ranks_per_dimm) {
320 printf("Only one rank will be used.\n");
321 } else {
322 printf
323 ("Only two ranks will be used.\n");
324 }
325 ranks_on_dimm = max_ranks_per_dimm;
326 }
327 dimm_ranks[dimm_num] = ranks_on_dimm;
328 *ranks += ranks_on_dimm;
329 } else {
330 dimm_ranks[dimm_num] = 0;
331 debug("DIMM slot %lu: Not populated\n", dimm_num);
332 }
333 }
334 if (dimm_found == false) {
335 printf("ERROR: No memory installed.\n");
336 printf("Install at least one DDR2 DIMM.\n\n");
337 spd_ddr_init_hang();
338 }
339 debug("Total number of ranks = %ld\n", *ranks);
340 }
341
342 /*------------------------------------------------------------------
343 * For the memory DIMMs installed, this routine verifies that
344 * frequency previously calculated is supported.
345 *-----------------------------------------------------------------*/
346 static void check_frequency(unsigned long *dimm_ranks,
347 unsigned char const iic0_dimm_addr[],
348 unsigned long num_dimm_banks,
349 unsigned long sdram_freq)
350 {
351 unsigned long dimm_num;
352 unsigned long cycle_time;
353 unsigned long calc_cycle_time;
354
355 /*
356 * calc_cycle_time is calculated from DDR frequency set by board/chip
357 * and is expressed in picoseconds to match the way DIMM cycle time is
358 * calculated below.
359 */
360 calc_cycle_time = MULDIV64(ONE_BILLION, 1000, sdram_freq);
361
362 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
363 if (dimm_ranks[dimm_num]) {
364 cycle_time =
365 get_tcyc(spd_read(iic0_dimm_addr[dimm_num], 9));
366 debug("cycle_time=%ld ps\n", cycle_time);
367
368 if (cycle_time > (calc_cycle_time + 10)) {
369 /*
370 * the provided sdram cycle_time is too small
371 * for the available DIMM cycle_time. The
372 * additionnal 10ps is here to accept a small
373 * incertainty.
374 */
375 printf
376 ("ERROR: DRAM DIMM detected with cycle_time %d ps in "
377 "slot %d \n while calculated cycle time is %d ps.\n",
378 (unsigned int)cycle_time,
379 (unsigned int)dimm_num,
380 (unsigned int)calc_cycle_time);
381 printf
382 ("Replace the DIMM, or change DDR frequency via "
383 "strapping bits.\n\n");
384 spd_ddr_init_hang();
385 }
386 }
387 }
388 }
389
390 /*------------------------------------------------------------------
391 * This routine gets size information for the installed memory
392 * DIMMs.
393 *-----------------------------------------------------------------*/
394 static void get_dimm_size(unsigned long dimm_ranks[],
395 unsigned char const iic0_dimm_addr[],
396 unsigned long num_dimm_banks,
397 unsigned long *const rows,
398 unsigned long *const banks,
399 unsigned long *const cols, unsigned long *const width)
400 {
401 unsigned long dimm_num;
402
403 *rows = 0;
404 *banks = 0;
405 *cols = 0;
406 *width = 0;
407 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
408 if (dimm_ranks[dimm_num]) {
409 unsigned long t;
410
411 /* Rows */
412 t = spd_read(iic0_dimm_addr[dimm_num], 3);
413 if (0 == *rows) {
414 *rows = t;
415 } else if (t != *rows) {
416 printf("ERROR: DRAM DIMM modules do not all "
417 "have the same number of rows.\n\n");
418 spd_ddr_init_hang();
419 }
420 /* Banks */
421 t = spd_read(iic0_dimm_addr[dimm_num], 17);
422 if (0 == *banks) {
423 *banks = t;
424 } else if (t != *banks) {
425 printf("ERROR: DRAM DIMM modules do not all "
426 "have the same number of banks.\n\n");
427 spd_ddr_init_hang();
428 }
429 /* Columns */
430 t = spd_read(iic0_dimm_addr[dimm_num], 4);
431 if (0 == *cols) {
432 *cols = t;
433 } else if (t != *cols) {
434 printf("ERROR: DRAM DIMM modules do not all "
435 "have the same number of columns.\n\n");
436 spd_ddr_init_hang();
437 }
438 /* Data width */
439 t = spd_read(iic0_dimm_addr[dimm_num], 6);
440 if (0 == *width) {
441 *width = t;
442 } else if (t != *width) {
443 printf("ERROR: DRAM DIMM modules do not all "
444 "have the same data width.\n\n");
445 spd_ddr_init_hang();
446 }
447 }
448 }
449 debug("Number of rows = %ld\n", *rows);
450 debug("Number of columns = %ld\n", *cols);
451 debug("Number of banks = %ld\n", *banks);
452 debug("Data width = %ld\n", *width);
453 if (*rows > 14) {
454 printf("ERROR: DRAM DIMM modules have %lu address rows.\n",
455 *rows);
456 printf("Only modules with 14 or fewer rows are supported.\n\n");
457 spd_ddr_init_hang();
458 }
459 if (4 != *banks && 8 != *banks) {
460 printf("ERROR: DRAM DIMM modules have %lu banks.\n", *banks);
461 printf("Only modules with 4 or 8 banks are supported.\n\n");
462 spd_ddr_init_hang();
463 }
464 if (*cols > 12) {
465 printf("ERROR: DRAM DIMM modules have %lu address columns.\n",
466 *cols);
467 printf("Only modules with 12 or fewer columns are "
468 "supported.\n\n");
469 spd_ddr_init_hang();
470 }
471 if (32 != *width && 40 != *width && 64 != *width && 72 != *width) {
472 printf("ERROR: DRAM DIMM modules have a width of %lu bit.\n",
473 *width);
474 printf("Only modules with widths of 32, 40, 64, and 72 bits "
475 "are supported.\n\n");
476 spd_ddr_init_hang();
477 }
478 }
479
480 /*------------------------------------------------------------------
481 * Only 1.8V modules are supported. This routine verifies this.
482 *-----------------------------------------------------------------*/
483 static void check_voltage_type(unsigned long dimm_ranks[],
484 unsigned char const iic0_dimm_addr[],
485 unsigned long num_dimm_banks)
486 {
487 unsigned long dimm_num;
488 unsigned long voltage_type;
489
490 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
491 if (dimm_ranks[dimm_num]) {
492 voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
493 if (0x05 != voltage_type) { /* 1.8V for DDR2 */
494 printf("ERROR: Slot %lu provides 1.8V for DDR2 "
495 "DIMMs.\n", dimm_num);
496 switch (voltage_type) {
497 case 0x00:
498 printf("This DIMM is 5.0 Volt/TTL.\n");
499 break;
500 case 0x01:
501 printf("This DIMM is LVTTL.\n");
502 break;
503 case 0x02:
504 printf("This DIMM is 1.5 Volt.\n");
505 break;
506 case 0x03:
507 printf("This DIMM is 3.3 Volt/TTL.\n");
508 break;
509 case 0x04:
510 printf("This DIMM is 2.5 Volt.\n");
511 break;
512 default:
513 printf("This DIMM is an unknown "
514 "voltage.\n");
515 break;
516 }
517 printf("Replace it with a 1.8V DDR2 DIMM.\n\n");
518 spd_ddr_init_hang();
519 }
520 }
521 }
522 }
523
524 static void program_ddr0_03(unsigned long dimm_ranks[],
525 unsigned char const iic0_dimm_addr[],
526 unsigned long num_dimm_banks,
527 unsigned long sdram_freq,
528 unsigned long rows, unsigned long *cas_latency)
529 {
530 unsigned long dimm_num;
531 unsigned long cas_index;
532 unsigned long cycle_2_0_clk;
533 unsigned long cycle_3_0_clk;
534 unsigned long cycle_4_0_clk;
535 unsigned long cycle_5_0_clk;
536 unsigned long max_2_0_tcyc_ps = 100;
537 unsigned long max_3_0_tcyc_ps = 100;
538 unsigned long max_4_0_tcyc_ps = 100;
539 unsigned long max_5_0_tcyc_ps = 100;
540 unsigned char cas_available = 0x3C; /* value for DDR2 */
541 u32 ddr0_03 = DDR0_03_BSTLEN_ENCODE(0x2) | DDR0_03_INITAREF_ENCODE(0x2);
542 unsigned int const tcyc_addr[3] = { 9, 23, 25 };
543
544 /*------------------------------------------------------------------
545 * Get the board configuration info.
546 *-----------------------------------------------------------------*/
547 debug("sdram_freq = %ld\n", sdram_freq);
548
549 /*------------------------------------------------------------------
550 * Handle the timing. We need to find the worst case timing of all
551 * the dimm modules installed.
552 *-----------------------------------------------------------------*/
553 /* loop through all the DIMM slots on the board */
554 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
555 /* If a dimm is installed in a particular slot ... */
556 if (dimm_ranks[dimm_num]) {
557 unsigned char const cas_bit =
558 spd_read(iic0_dimm_addr[dimm_num], 18);
559 unsigned char cas_mask;
560
561 cas_available &= cas_bit;
562 for (cas_mask = 0x80; cas_mask; cas_mask >>= 1) {
563 if (cas_bit & cas_mask)
564 break;
565 }
566 debug("cas_bit (SPD byte 18) = %02X, cas_mask = %02X\n",
567 cas_bit, cas_mask);
568
569 for (cas_index = 0; cas_index < 3;
570 cas_mask >>= 1, cas_index++) {
571 unsigned long cycle_time_ps;
572
573 if (!(cas_available & cas_mask)) {
574 continue;
575 }
576 cycle_time_ps =
577 get_tcyc(spd_read(iic0_dimm_addr[dimm_num],
578 tcyc_addr[cas_index]));
579
580 debug("cas_index = %ld: cycle_time_ps = %ld\n",
581 cas_index, cycle_time_ps);
582 /*
583 * DDR2 devices use the following bitmask for CAS latency:
584 * Bit 7 6 5 4 3 2 1 0
585 * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD
586 */
587 switch (cas_mask) {
588 case 0x20:
589 max_5_0_tcyc_ps =
590 max(max_5_0_tcyc_ps, cycle_time_ps);
591 break;
592 case 0x10:
593 max_4_0_tcyc_ps =
594 max(max_4_0_tcyc_ps, cycle_time_ps);
595 break;
596 case 0x08:
597 max_3_0_tcyc_ps =
598 max(max_3_0_tcyc_ps, cycle_time_ps);
599 break;
600 case 0x04:
601 max_2_0_tcyc_ps =
602 max(max_2_0_tcyc_ps, cycle_time_ps);
603 break;
604 }
605 }
606 }
607 }
608 debug("cas_available (bit map) = 0x%02X\n", cas_available);
609
610 /*------------------------------------------------------------------
611 * Set the SDRAM mode, SDRAM_MMODE
612 *-----------------------------------------------------------------*/
613
614 /* add 10 here because of rounding problems */
615 cycle_2_0_clk = MULDIV64(ONE_BILLION, 1000, max_2_0_tcyc_ps) + 10;
616 cycle_3_0_clk = MULDIV64(ONE_BILLION, 1000, max_3_0_tcyc_ps) + 10;
617 cycle_4_0_clk = MULDIV64(ONE_BILLION, 1000, max_4_0_tcyc_ps) + 10;
618 cycle_5_0_clk = MULDIV64(ONE_BILLION, 1000, max_5_0_tcyc_ps) + 10;
619 debug("cycle_2_0_clk = %ld\n", cycle_2_0_clk);
620 debug("cycle_3_0_clk = %ld\n", cycle_3_0_clk);
621 debug("cycle_4_0_clk = %ld\n", cycle_4_0_clk);
622 debug("cycle_5_0_clk = %ld\n", cycle_5_0_clk);
623
624 if ((cas_available & 0x04) && (sdram_freq <= cycle_2_0_clk)) {
625 *cas_latency = 2;
626 ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x2) |
627 DDR0_03_CASLAT_LIN_ENCODE(0x4);
628 } else if ((cas_available & 0x08) && (sdram_freq <= cycle_3_0_clk)) {
629 *cas_latency = 3;
630 ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x3) |
631 DDR0_03_CASLAT_LIN_ENCODE(0x6);
632 } else if ((cas_available & 0x10) && (sdram_freq <= cycle_4_0_clk)) {
633 *cas_latency = 4;
634 ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x4) |
635 DDR0_03_CASLAT_LIN_ENCODE(0x8);
636 } else if ((cas_available & 0x20) && (sdram_freq <= cycle_5_0_clk)) {
637 *cas_latency = 5;
638 ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x5) |
639 DDR0_03_CASLAT_LIN_ENCODE(0xA);
640 } else {
641 printf("ERROR: Cannot find a supported CAS latency with the "
642 "installed DIMMs.\n");
643 printf("Only DDR2 DIMMs with CAS latencies of 2.0, 3.0, 4.0, "
644 "and 5.0 are supported.\n");
645 printf("Make sure the PLB speed is within the supported range "
646 "of the DIMMs.\n");
647 printf("sdram_freq=%ld cycle2=%ld cycle3=%ld cycle4=%ld "
648 "cycle5=%ld\n\n", sdram_freq, cycle_2_0_clk,
649 cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
650 spd_ddr_init_hang();
651 }
652 debug("CAS latency = %ld\n", *cas_latency);
653 mtsdram(DDR0_03, ddr0_03);
654 }
655
656 static void program_ddr0_04(unsigned long dimm_ranks[],
657 unsigned char const iic0_dimm_addr[],
658 unsigned long num_dimm_banks,
659 unsigned long sdram_freq)
660 {
661 unsigned long dimm_num;
662 unsigned long t_rc_ps = 0;
663 unsigned long t_rrd_ps = 0;
664 unsigned long t_rtp_ps = 0;
665 unsigned long t_rc_clk;
666 unsigned long t_rrd_clk;
667 unsigned long t_rtp_clk;
668
669 /*------------------------------------------------------------------
670 * Handle the timing. We need to find the worst case timing of all
671 * the dimm modules installed.
672 *-----------------------------------------------------------------*/
673 /* loop through all the DIMM slots on the board */
674 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
675 /* If a dimm is installed in a particular slot ... */
676 if (dimm_ranks[dimm_num]) {
677 unsigned long ps;
678
679 /* tRC */
680 ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 41);
681 switch (spd_read(iic0_dimm_addr[dimm_num], 40) >> 4) {
682 case 0x1:
683 ps += 250;
684 break;
685 case 0x2:
686 ps += 333;
687 break;
688 case 0x3:
689 ps += 500;
690 break;
691 case 0x4:
692 ps += 667;
693 break;
694 case 0x5:
695 ps += 750;
696 break;
697 }
698 t_rc_ps = max(t_rc_ps, ps);
699 /* tRRD */
700 ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 28);
701 t_rrd_ps = max(t_rrd_ps, ps);
702 /* tRTP */
703 ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 38);
704 t_rtp_ps = max(t_rtp_ps, ps);
705 }
706 }
707 debug("t_rc_ps = %ld\n", t_rc_ps);
708 t_rc_clk = (MULDIV64(sdram_freq, t_rc_ps, ONE_BILLION) + 999) / 1000;
709 debug("t_rrd_ps = %ld\n", t_rrd_ps);
710 t_rrd_clk = (MULDIV64(sdram_freq, t_rrd_ps, ONE_BILLION) + 999) / 1000;
711 debug("t_rtp_ps = %ld\n", t_rtp_ps);
712 t_rtp_clk = (MULDIV64(sdram_freq, t_rtp_ps, ONE_BILLION) + 999) / 1000;
713 mtsdram(DDR0_04, DDR0_04_TRC_ENCODE(t_rc_clk) |
714 DDR0_04_TRRD_ENCODE(t_rrd_clk) |
715 DDR0_04_TRTP_ENCODE(t_rtp_clk));
716 }
717
718 static void program_ddr0_05(unsigned long dimm_ranks[],
719 unsigned char const iic0_dimm_addr[],
720 unsigned long num_dimm_banks,
721 unsigned long sdram_freq)
722 {
723 unsigned long dimm_num;
724 unsigned long t_rp_ps = 0;
725 unsigned long t_ras_ps = 0;
726 unsigned long t_rp_clk;
727 unsigned long t_ras_clk;
728 u32 ddr0_05 = DDR0_05_TMRD_ENCODE(0x2) | DDR0_05_TEMRS_ENCODE(0x2);
729
730 /*------------------------------------------------------------------
731 * Handle the timing. We need to find the worst case timing of all
732 * the dimm modules installed.
733 *-----------------------------------------------------------------*/
734 /* loop through all the DIMM slots on the board */
735 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
736 /* If a dimm is installed in a particular slot ... */
737 if (dimm_ranks[dimm_num]) {
738 unsigned long ps;
739
740 /* tRP */
741 ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 27);
742 t_rp_ps = max(t_rp_ps, ps);
743 /* tRAS */
744 ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 30);
745 t_ras_ps = max(t_ras_ps, ps);
746 }
747 }
748 debug("t_rp_ps = %ld\n", t_rp_ps);
749 t_rp_clk = (MULDIV64(sdram_freq, t_rp_ps, ONE_BILLION) + 999) / 1000;
750 debug("t_ras_ps = %ld\n", t_ras_ps);
751 t_ras_clk = (MULDIV64(sdram_freq, t_ras_ps, ONE_BILLION) + 999) / 1000;
752 mtsdram(DDR0_05, ddr0_05 | DDR0_05_TRP_ENCODE(t_rp_clk) |
753 DDR0_05_TRAS_MIN_ENCODE(t_ras_clk));
754 }
755
756 static void program_ddr0_06(unsigned long dimm_ranks[],
757 unsigned char const iic0_dimm_addr[],
758 unsigned long num_dimm_banks,
759 unsigned long sdram_freq)
760 {
761 unsigned long dimm_num;
762 unsigned char spd_40;
763 unsigned long t_wtr_ps = 0;
764 unsigned long t_rfc_ps = 0;
765 unsigned long t_wtr_clk;
766 unsigned long t_rfc_clk;
767 u32 ddr0_06 =
768 DDR0_06_WRITEINTERP_ENCODE(0x1) | DDR0_06_TDLL_ENCODE(200);
769
770 /*------------------------------------------------------------------
771 * Handle the timing. We need to find the worst case timing of all
772 * the dimm modules installed.
773 *-----------------------------------------------------------------*/
774 /* loop through all the DIMM slots on the board */
775 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
776 /* If a dimm is installed in a particular slot ... */
777 if (dimm_ranks[dimm_num]) {
778 unsigned long ps;
779
780 /* tWTR */
781 ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 37);
782 t_wtr_ps = max(t_wtr_ps, ps);
783 /* tRFC */
784 ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 42);
785 spd_40 = spd_read(iic0_dimm_addr[dimm_num], 40);
786 ps += 256000 * (spd_40 & 0x01);
787 switch ((spd_40 & 0x0E) >> 1) {
788 case 0x1:
789 ps += 250;
790 break;
791 case 0x2:
792 ps += 333;
793 break;
794 case 0x3:
795 ps += 500;
796 break;
797 case 0x4:
798 ps += 667;
799 break;
800 case 0x5:
801 ps += 750;
802 break;
803 }
804 t_rfc_ps = max(t_rfc_ps, ps);
805 }
806 }
807 debug("t_wtr_ps = %ld\n", t_wtr_ps);
808 t_wtr_clk = (MULDIV64(sdram_freq, t_wtr_ps, ONE_BILLION) + 999) / 1000;
809 debug("t_rfc_ps = %ld\n", t_rfc_ps);
810 t_rfc_clk = (MULDIV64(sdram_freq, t_rfc_ps, ONE_BILLION) + 999) / 1000;
811 mtsdram(DDR0_06, ddr0_06 | DDR0_06_TWTR_ENCODE(t_wtr_clk) |
812 DDR0_06_TRFC_ENCODE(t_rfc_clk));
813 }
814
815 static void program_ddr0_10(unsigned long dimm_ranks[], unsigned long ranks)
816 {
817 unsigned long csmap;
818
819 if (2 == ranks) {
820 /* Both chip selects in use */
821 csmap = 0x03;
822 } else {
823 /* One chip select in use */
824 csmap = (1 == dimm_ranks[0]) ? 0x1 : 0x2;
825 }
826 mtsdram(DDR0_10, DDR0_10_WRITE_MODEREG_ENCODE(0x0) |
827 DDR0_10_CS_MAP_ENCODE(csmap) |
828 DDR0_10_OCD_ADJUST_PUP_CS_0_ENCODE(0));
829 }
830
831 static void program_ddr0_11(unsigned long sdram_freq)
832 {
833 unsigned long const t_xsnr_ps = 200000; /* 200 ns */
834 unsigned long t_xsnr_clk;
835
836 debug("t_xsnr_ps = %ld\n", t_xsnr_ps);
837 t_xsnr_clk =
838 (MULDIV64(sdram_freq, t_xsnr_ps, ONE_BILLION) + 999) / 1000;
839 mtsdram(DDR0_11, DDR0_11_SREFRESH_ENCODE(0) |
840 DDR0_11_TXSNR_ENCODE(t_xsnr_clk) | DDR0_11_TXSR_ENCODE(200));
841 }
842
843 static void program_ddr0_22(unsigned long dimm_ranks[],
844 unsigned char const iic0_dimm_addr[],
845 unsigned long num_dimm_banks, unsigned long width)
846 {
847 #if defined(CONFIG_DDR_ECC)
848 unsigned long dimm_num;
849 unsigned long ecc_available = width >= 64;
850 u32 ddr0_22 = DDR0_22_DQS_OUT_SHIFT_BYPASS_ENCODE(0x26) |
851 DDR0_22_DQS_OUT_SHIFT_ENCODE(DQS_OUT_SHIFT) |
852 DDR0_22_DLL_DQS_BYPASS_8_ENCODE(DLL_DQS_BYPASS);
853
854 /* loop through all the DIMM slots on the board */
855 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
856 /* If a dimm is installed in a particular slot ... */
857 if (dimm_ranks[dimm_num]) {
858 /* Check for ECC */
859 if (0 == (spd_read(iic0_dimm_addr[dimm_num], 11) &
860 0x02)) {
861 ecc_available = false;
862 }
863 }
864 }
865 if (ecc_available) {
866 debug("ECC found on all DIMMs present\n");
867 mtsdram(DDR0_22, ddr0_22 | DDR0_22_CTRL_RAW_ENCODE(0x3));
868 } else {
869 debug("ECC not found on some or all DIMMs present\n");
870 mtsdram(DDR0_22, ddr0_22 | DDR0_22_CTRL_RAW_ENCODE(0x0));
871 }
872 #else
873 mtsdram(DDR0_22, DDR0_22_CTRL_RAW_ENCODE(0x0) |
874 DDR0_22_DQS_OUT_SHIFT_BYPASS_ENCODE(0x26) |
875 DDR0_22_DQS_OUT_SHIFT_ENCODE(DQS_OUT_SHIFT) |
876 DDR0_22_DLL_DQS_BYPASS_8_ENCODE(DLL_DQS_BYPASS));
877 #endif /* defined(CONFIG_DDR_ECC) */
878 }
879
880 static void program_ddr0_24(unsigned long ranks)
881 {
882 u32 ddr0_24 = DDR0_24_RTT_PAD_TERMINATION_ENCODE(0x1) | /* 75 ohm */
883 DDR0_24_ODT_RD_MAP_CS1_ENCODE(0x0);
884
885 if (2 == ranks) {
886 /* Both chip selects in use */
887 ddr0_24 |= DDR0_24_ODT_WR_MAP_CS1_ENCODE(0x1) |
888 DDR0_24_ODT_WR_MAP_CS0_ENCODE(0x2);
889 } else {
890 /* One chip select in use */
891 /* One of the two fields added to ddr0_24 is a "don't care" */
892 ddr0_24 |= DDR0_24_ODT_WR_MAP_CS1_ENCODE(0x2) |
893 DDR0_24_ODT_WR_MAP_CS0_ENCODE(0x1);
894 }
895 mtsdram(DDR0_24, ddr0_24);
896 }
897
898 static void program_ddr0_26(unsigned long sdram_freq)
899 {
900 unsigned long const t_ref_ps = 7800000; /* 7.8 us. refresh */
901 /* TODO: check definition of tRAS_MAX */
902 unsigned long const t_ras_max_ps = 9 * t_ref_ps;
903 unsigned long t_ras_max_clk;
904 unsigned long t_ref_clk;
905
906 /* Round down t_ras_max_clk and t_ref_clk */
907 debug("t_ras_max_ps = %ld\n", t_ras_max_ps);
908 t_ras_max_clk = MULDIV64(sdram_freq, t_ras_max_ps, ONE_BILLION) / 1000;
909 debug("t_ref_ps = %ld\n", t_ref_ps);
910 t_ref_clk = MULDIV64(sdram_freq, t_ref_ps, ONE_BILLION) / 1000;
911 mtsdram(DDR0_26, DDR0_26_TRAS_MAX_ENCODE(t_ras_max_clk) |
912 DDR0_26_TREF_ENCODE(t_ref_clk));
913 }
914
915 static void program_ddr0_27(unsigned long sdram_freq)
916 {
917 unsigned long const t_init_ps = 200000000; /* 200 us. init */
918 unsigned long t_init_clk;
919
920 debug("t_init_ps = %ld\n", t_init_ps);
921 t_init_clk =
922 (MULDIV64(sdram_freq, t_init_ps, ONE_BILLION) + 999) / 1000;
923 mtsdram(DDR0_27, DDR0_27_EMRS_DATA_ENCODE(0x0000) |
924 DDR0_27_TINIT_ENCODE(t_init_clk));
925 }
926
927 static void program_ddr0_43(unsigned long dimm_ranks[],
928 unsigned char const iic0_dimm_addr[],
929 unsigned long num_dimm_banks,
930 unsigned long sdram_freq,
931 unsigned long cols, unsigned long banks)
932 {
933 unsigned long dimm_num;
934 unsigned long t_wr_ps = 0;
935 unsigned long t_wr_clk;
936 u32 ddr0_43 = DDR0_43_APREBIT_ENCODE(10) |
937 DDR0_43_COLUMN_SIZE_ENCODE(12 - cols) |
938 DDR0_43_EIGHT_BANK_MODE_ENCODE(8 == banks ? 1 : 0);
939
940 /*------------------------------------------------------------------
941 * Handle the timing. We need to find the worst case timing of all
942 * the dimm modules installed.
943 *-----------------------------------------------------------------*/
944 /* loop through all the DIMM slots on the board */
945 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
946 /* If a dimm is installed in a particular slot ... */
947 if (dimm_ranks[dimm_num]) {
948 unsigned long ps;
949
950 ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 36);
951 t_wr_ps = max(t_wr_ps, ps);
952 }
953 }
954 debug("t_wr_ps = %ld\n", t_wr_ps);
955 t_wr_clk = (MULDIV64(sdram_freq, t_wr_ps, ONE_BILLION) + 999) / 1000;
956 mtsdram(DDR0_43, ddr0_43 | DDR0_43_TWR_ENCODE(t_wr_clk));
957 }
958
959 static void program_ddr0_44(unsigned long dimm_ranks[],
960 unsigned char const iic0_dimm_addr[],
961 unsigned long num_dimm_banks,
962 unsigned long sdram_freq)
963 {
964 unsigned long dimm_num;
965 unsigned long t_rcd_ps = 0;
966 unsigned long t_rcd_clk;
967
968 /*------------------------------------------------------------------
969 * Handle the timing. We need to find the worst case timing of all
970 * the dimm modules installed.
971 *-----------------------------------------------------------------*/
972 /* loop through all the DIMM slots on the board */
973 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
974 /* If a dimm is installed in a particular slot ... */
975 if (dimm_ranks[dimm_num]) {
976 unsigned long ps;
977
978 ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 29);
979 t_rcd_ps = max(t_rcd_ps, ps);
980 }
981 }
982 debug("t_rcd_ps = %ld\n", t_rcd_ps);
983 t_rcd_clk = (MULDIV64(sdram_freq, t_rcd_ps, ONE_BILLION) + 999) / 1000;
984 mtsdram(DDR0_44, DDR0_44_TRCD_ENCODE(t_rcd_clk));
985 }
986
987 /*-----------------------------------------------------------------------------+
988 * initdram. Initializes the 440EPx/GPx DDR SDRAM controller.
989 * Note: This routine runs from flash with a stack set up in the chip's
990 * sram space. It is important that the routine does not require .sbss, .bss or
991 * .data sections. It also cannot call routines that require these sections.
992 *-----------------------------------------------------------------------------*/
993 /*-----------------------------------------------------------------------------
994 * Function: initdram
995 * Description: Configures SDRAM memory banks for DDR operation.
996 * Auto Memory Configuration option reads the DDR SDRAM EEPROMs
997 * via the IIC bus and then configures the DDR SDRAM memory
998 * banks appropriately. If Auto Memory Configuration is
999 * not used, it is assumed that no DIMM is plugged
1000 *-----------------------------------------------------------------------------*/
1001 phys_size_t initdram(int board_type)
1002 {
1003 unsigned char const iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
1004 unsigned long dimm_ranks[MAXDIMMS];
1005 unsigned long ranks;
1006 unsigned long rows;
1007 unsigned long banks;
1008 unsigned long cols;
1009 unsigned long width;
1010 unsigned long const sdram_freq = get_bus_freq(0);
1011 unsigned long const num_dimm_banks = sizeof(iic0_dimm_addr); /* on board dimm banks */
1012 unsigned long cas_latency = 0; /* to quiet initialization warning */
1013 unsigned long dram_size;
1014
1015 debug("\nEntering initdram()\n");
1016
1017 /*------------------------------------------------------------------
1018 * Stop the DDR-SDRAM controller.
1019 *-----------------------------------------------------------------*/
1020 mtsdram(DDR0_02, DDR0_02_START_ENCODE(0));
1021
1022 /*
1023 * Make sure I2C controller is initialized
1024 * before continuing.
1025 */
1026 /* switch to correct I2C bus */
1027 I2C_SET_BUS(CONFIG_SYS_SPD_BUS_NUM);
1028 i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
1029
1030 /*------------------------------------------------------------------
1031 * Clear out the serial presence detect buffers.
1032 * Perform IIC reads from the dimm. Fill in the spds.
1033 * Check to see if the dimm slots are populated
1034 *-----------------------------------------------------------------*/
1035 get_spd_info(dimm_ranks, &ranks, iic0_dimm_addr, num_dimm_banks);
1036
1037 /*------------------------------------------------------------------
1038 * Check the frequency supported for the dimms plugged.
1039 *-----------------------------------------------------------------*/
1040 check_frequency(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
1041
1042 /*------------------------------------------------------------------
1043 * Check and get size information.
1044 *-----------------------------------------------------------------*/
1045 get_dimm_size(dimm_ranks, iic0_dimm_addr, num_dimm_banks, &rows, &banks,
1046 &cols, &width);
1047
1048 /*------------------------------------------------------------------
1049 * Check the voltage type for the dimms plugged.
1050 *-----------------------------------------------------------------*/
1051 check_voltage_type(dimm_ranks, iic0_dimm_addr, num_dimm_banks);
1052
1053 /*------------------------------------------------------------------
1054 * Program registers for SDRAM controller.
1055 *-----------------------------------------------------------------*/
1056 mtsdram(DDR0_00, DDR0_00_DLL_INCREMENT_ENCODE(0x19) |
1057 DDR0_00_DLL_START_POINT_DECODE(0x0A));
1058
1059 mtsdram(DDR0_01, DDR0_01_PLB0_DB_CS_LOWER_ENCODE(0x01) |
1060 DDR0_01_PLB0_DB_CS_UPPER_ENCODE(0x00) |
1061 DDR0_01_INT_MASK_ENCODE(0xFF));
1062
1063 program_ddr0_03(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq,
1064 rows, &cas_latency);
1065
1066 program_ddr0_04(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
1067
1068 program_ddr0_05(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
1069
1070 program_ddr0_06(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
1071
1072 /*
1073 * TODO: tFAW not found in SPD. Value of 13 taken from Sequoia
1074 * board SDRAM, but may be overly conservative.
1075 */
1076 mtsdram(DDR0_07, DDR0_07_NO_CMD_INIT_ENCODE(0) |
1077 DDR0_07_TFAW_ENCODE(13) |
1078 DDR0_07_AUTO_REFRESH_MODE_ENCODE(1) |
1079 DDR0_07_AREFRESH_ENCODE(0));
1080
1081 mtsdram(DDR0_08, DDR0_08_WRLAT_ENCODE(cas_latency - 1) |
1082 DDR0_08_TCPD_ENCODE(200) | DDR0_08_DQS_N_EN_ENCODE(0) |
1083 DDR0_08_DDRII_ENCODE(1));
1084
1085 mtsdram(DDR0_09, DDR0_09_OCD_ADJUST_PDN_CS_0_ENCODE(0x00) |
1086 DDR0_09_RTT_0_ENCODE(0x1) |
1087 DDR0_09_WR_DQS_SHIFT_BYPASS_ENCODE(0x1D) |
1088 DDR0_09_WR_DQS_SHIFT_ENCODE(DQS_OUT_SHIFT - 0x20));
1089
1090 program_ddr0_10(dimm_ranks, ranks);
1091
1092 program_ddr0_11(sdram_freq);
1093
1094 mtsdram(DDR0_12, DDR0_12_TCKE_ENCODE(3));
1095
1096 mtsdram(DDR0_14, DDR0_14_DLL_BYPASS_MODE_ENCODE(0) |
1097 DDR0_14_REDUC_ENCODE(width <= 40 ? 1 : 0) |
1098 DDR0_14_REG_DIMM_ENABLE_ENCODE(0));
1099
1100 mtsdram(DDR0_17, DDR0_17_DLL_DQS_DELAY_0_ENCODE(DLL_DQS_DELAY));
1101
1102 mtsdram(DDR0_18, DDR0_18_DLL_DQS_DELAY_4_ENCODE(DLL_DQS_DELAY) |
1103 DDR0_18_DLL_DQS_DELAY_3_ENCODE(DLL_DQS_DELAY) |
1104 DDR0_18_DLL_DQS_DELAY_2_ENCODE(DLL_DQS_DELAY) |
1105 DDR0_18_DLL_DQS_DELAY_1_ENCODE(DLL_DQS_DELAY));
1106
1107 mtsdram(DDR0_19, DDR0_19_DLL_DQS_DELAY_8_ENCODE(DLL_DQS_DELAY) |
1108 DDR0_19_DLL_DQS_DELAY_7_ENCODE(DLL_DQS_DELAY) |
1109 DDR0_19_DLL_DQS_DELAY_6_ENCODE(DLL_DQS_DELAY) |
1110 DDR0_19_DLL_DQS_DELAY_5_ENCODE(DLL_DQS_DELAY));
1111
1112 mtsdram(DDR0_20, DDR0_20_DLL_DQS_BYPASS_3_ENCODE(DLL_DQS_BYPASS) |
1113 DDR0_20_DLL_DQS_BYPASS_2_ENCODE(DLL_DQS_BYPASS) |
1114 DDR0_20_DLL_DQS_BYPASS_1_ENCODE(DLL_DQS_BYPASS) |
1115 DDR0_20_DLL_DQS_BYPASS_0_ENCODE(DLL_DQS_BYPASS));
1116
1117 mtsdram(DDR0_21, DDR0_21_DLL_DQS_BYPASS_7_ENCODE(DLL_DQS_BYPASS) |
1118 DDR0_21_DLL_DQS_BYPASS_6_ENCODE(DLL_DQS_BYPASS) |
1119 DDR0_21_DLL_DQS_BYPASS_5_ENCODE(DLL_DQS_BYPASS) |
1120 DDR0_21_DLL_DQS_BYPASS_4_ENCODE(DLL_DQS_BYPASS));
1121
1122 program_ddr0_22(dimm_ranks, iic0_dimm_addr, num_dimm_banks, width);
1123
1124 mtsdram(DDR0_23, DDR0_23_ODT_RD_MAP_CS0_ENCODE(0x0) |
1125 DDR0_23_FWC_ENCODE(0));
1126
1127 program_ddr0_24(ranks);
1128
1129 program_ddr0_26(sdram_freq);
1130
1131 program_ddr0_27(sdram_freq);
1132
1133 mtsdram(DDR0_28, DDR0_28_EMRS3_DATA_ENCODE(0x0000) |
1134 DDR0_28_EMRS2_DATA_ENCODE(0x0000));
1135
1136 mtsdram(DDR0_31, DDR0_31_XOR_CHECK_BITS_ENCODE(0x0000));
1137
1138 mtsdram(DDR0_42, DDR0_42_ADDR_PINS_ENCODE(14 - rows) |
1139 DDR0_42_CASLAT_LIN_GATE_ENCODE(2 * cas_latency));
1140
1141 program_ddr0_43(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq,
1142 cols, banks);
1143
1144 program_ddr0_44(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
1145
1146 denali_sdram_register_dump();
1147
1148 dram_size = (width >= 64) ? 8 : 4;
1149 dram_size *= 1 << cols;
1150 dram_size *= banks;
1151 dram_size *= 1 << rows;
1152 dram_size *= ranks;
1153 debug("dram_size = %lu\n", dram_size);
1154
1155 /* Start the SDRAM controler */
1156 mtsdram(DDR0_02, DDR0_02_START_ENCODE(1));
1157 denali_wait_for_dlllock();
1158
1159 #if defined(CONFIG_DDR_DATA_EYE)
1160 /*
1161 * Map the first 1 MiB of memory in the TLB, and perform the data eye
1162 * search.
1163 */
1164 program_tlb(0, CONFIG_SYS_SDRAM_BASE, TLB_1MB_SIZE, TLB_WORD2_I_ENABLE);
1165 denali_core_search_data_eye();
1166 denali_sdram_register_dump();
1167 remove_tlb(CONFIG_SYS_SDRAM_BASE, TLB_1MB_SIZE);
1168 #endif
1169
1170 #if defined(CONFIG_ZERO_SDRAM) || defined(CONFIG_DDR_ECC)
1171 program_tlb(0, CONFIG_SYS_SDRAM_BASE, dram_size, 0);
1172 sync();
1173 /* Zero the memory */
1174 debug("Zeroing SDRAM...");
1175 #if defined(CONFIG_SYS_MEM_TOP_HIDE)
1176 dcbz_area(CONFIG_SYS_SDRAM_BASE, dram_size - CONFIG_SYS_MEM_TOP_HIDE);
1177 #else
1178 #error Please define CONFIG_SYS_MEM_TOP_HIDE (see README) in your board config file
1179 #endif
1180 /* Write modified dcache lines back to memory */
1181 clean_dcache_range(CONFIG_SYS_SDRAM_BASE, CONFIG_SYS_SDRAM_BASE + dram_size - CONFIG_SYS_MEM_TOP_HIDE);
1182 debug("Completed\n");
1183 sync();
1184 remove_tlb(CONFIG_SYS_SDRAM_BASE, dram_size);
1185
1186 #if defined(CONFIG_DDR_ECC)
1187 /*
1188 * If ECC is enabled, clear and enable interrupts
1189 */
1190 if (is_ecc_enabled()) {
1191 u32 val;
1192
1193 sync();
1194 /* Clear error status */
1195 mfsdram(DDR0_00, val);
1196 mtsdram(DDR0_00, val | DDR0_00_INT_ACK_ALL);
1197 /* Set 'int_mask' parameter to functionnal value */
1198 mfsdram(DDR0_01, val);
1199 mtsdram(DDR0_01, (val & ~DDR0_01_INT_MASK_MASK) |
1200 DDR0_01_INT_MASK_ALL_OFF);
1201 #if defined(CONFIG_DDR_DATA_EYE)
1202 /*
1203 * Running denali_core_search_data_eye() when ECC is enabled
1204 * causes non-ECC machine checks. This clears them.
1205 */
1206 print_mcsr();
1207 mtspr(SPRN_MCSR, mfspr(SPRN_MCSR));
1208 print_mcsr();
1209 #endif
1210 sync();
1211 }
1212 #endif /* defined(CONFIG_DDR_ECC) */
1213 #endif /* defined(CONFIG_ZERO_SDRAM) || defined(CONFIG_DDR_ECC) */
1214
1215 program_tlb(0, CONFIG_SYS_SDRAM_BASE, dram_size, MY_TLB_WORD2_I_ENABLE);
1216 return dram_size;
1217 }
1218
1219 void board_add_ram_info(int use_default)
1220 {
1221 u32 val;
1222
1223 printf(" (ECC");
1224 if (!is_ecc_enabled()) {
1225 printf(" not");
1226 }
1227 printf(" enabled, %ld MHz", (2 * get_bus_freq(0)) / 1000000);
1228
1229 mfsdram(DDR0_03, val);
1230 printf(", CL%d)", DDR0_03_CASLAT_LIN_DECODE(val) >> 1);
1231 }
1232 #endif /* CONFIG_SPD_EEPROM */