]> git.ipfire.org Git - people/ms/u-boot.git/blob - arch/x86/cpu/cpu.c
x86: Move i8254_init() to x86_cpu_init_f()
[people/ms/u-boot.git] / arch / x86 / cpu / cpu.c
1 /*
2 * (C) Copyright 2008-2011
3 * Graeme Russ, <graeme.russ@gmail.com>
4 *
5 * (C) Copyright 2002
6 * Daniel Engström, Omicron Ceti AB, <daniel@omicron.se>
7 *
8 * (C) Copyright 2002
9 * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
10 * Marius Groeger <mgroeger@sysgo.de>
11 *
12 * (C) Copyright 2002
13 * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
14 * Alex Zuepke <azu@sysgo.de>
15 *
16 * Part of this file is adapted from coreboot
17 * src/arch/x86/lib/cpu.c
18 *
19 * SPDX-License-Identifier: GPL-2.0+
20 */
21
22 #include <common.h>
23 #include <command.h>
24 #include <dm.h>
25 #include <errno.h>
26 #include <malloc.h>
27 #include <asm/control_regs.h>
28 #include <asm/cpu.h>
29 #include <asm/lapic.h>
30 #include <asm/mp.h>
31 #include <asm/msr.h>
32 #include <asm/mtrr.h>
33 #include <asm/post.h>
34 #include <asm/processor.h>
35 #include <asm/processor-flags.h>
36 #include <asm/interrupt.h>
37 #include <asm/tables.h>
38 #include <linux/compiler.h>
39
40 DECLARE_GLOBAL_DATA_PTR;
41
42 /*
43 * Constructor for a conventional segment GDT (or LDT) entry
44 * This is a macro so it can be used in initialisers
45 */
46 #define GDT_ENTRY(flags, base, limit) \
47 ((((base) & 0xff000000ULL) << (56-24)) | \
48 (((flags) & 0x0000f0ffULL) << 40) | \
49 (((limit) & 0x000f0000ULL) << (48-16)) | \
50 (((base) & 0x00ffffffULL) << 16) | \
51 (((limit) & 0x0000ffffULL)))
52
53 struct gdt_ptr {
54 u16 len;
55 u32 ptr;
56 } __packed;
57
58 struct cpu_device_id {
59 unsigned vendor;
60 unsigned device;
61 };
62
63 struct cpuinfo_x86 {
64 uint8_t x86; /* CPU family */
65 uint8_t x86_vendor; /* CPU vendor */
66 uint8_t x86_model;
67 uint8_t x86_mask;
68 };
69
70 /*
71 * List of cpu vendor strings along with their normalized
72 * id values.
73 */
74 static struct {
75 int vendor;
76 const char *name;
77 } x86_vendors[] = {
78 { X86_VENDOR_INTEL, "GenuineIntel", },
79 { X86_VENDOR_CYRIX, "CyrixInstead", },
80 { X86_VENDOR_AMD, "AuthenticAMD", },
81 { X86_VENDOR_UMC, "UMC UMC UMC ", },
82 { X86_VENDOR_NEXGEN, "NexGenDriven", },
83 { X86_VENDOR_CENTAUR, "CentaurHauls", },
84 { X86_VENDOR_RISE, "RiseRiseRise", },
85 { X86_VENDOR_TRANSMETA, "GenuineTMx86", },
86 { X86_VENDOR_TRANSMETA, "TransmetaCPU", },
87 { X86_VENDOR_NSC, "Geode by NSC", },
88 { X86_VENDOR_SIS, "SiS SiS SiS ", },
89 };
90
91 static const char *const x86_vendor_name[] = {
92 [X86_VENDOR_INTEL] = "Intel",
93 [X86_VENDOR_CYRIX] = "Cyrix",
94 [X86_VENDOR_AMD] = "AMD",
95 [X86_VENDOR_UMC] = "UMC",
96 [X86_VENDOR_NEXGEN] = "NexGen",
97 [X86_VENDOR_CENTAUR] = "Centaur",
98 [X86_VENDOR_RISE] = "Rise",
99 [X86_VENDOR_TRANSMETA] = "Transmeta",
100 [X86_VENDOR_NSC] = "NSC",
101 [X86_VENDOR_SIS] = "SiS",
102 };
103
104 static void load_ds(u32 segment)
105 {
106 asm volatile("movl %0, %%ds" : : "r" (segment * X86_GDT_ENTRY_SIZE));
107 }
108
109 static void load_es(u32 segment)
110 {
111 asm volatile("movl %0, %%es" : : "r" (segment * X86_GDT_ENTRY_SIZE));
112 }
113
114 static void load_fs(u32 segment)
115 {
116 asm volatile("movl %0, %%fs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
117 }
118
119 static void load_gs(u32 segment)
120 {
121 asm volatile("movl %0, %%gs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
122 }
123
124 static void load_ss(u32 segment)
125 {
126 asm volatile("movl %0, %%ss" : : "r" (segment * X86_GDT_ENTRY_SIZE));
127 }
128
129 static void load_gdt(const u64 *boot_gdt, u16 num_entries)
130 {
131 struct gdt_ptr gdt;
132
133 gdt.len = (num_entries * X86_GDT_ENTRY_SIZE) - 1;
134 gdt.ptr = (u32)boot_gdt;
135
136 asm volatile("lgdtl %0\n" : : "m" (gdt));
137 }
138
139 void arch_setup_gd(gd_t *new_gd)
140 {
141 u64 *gdt_addr;
142
143 gdt_addr = new_gd->arch.gdt;
144
145 /*
146 * CS: code, read/execute, 4 GB, base 0
147 *
148 * Some OS (like VxWorks) requires GDT entry 1 to be the 32-bit CS
149 */
150 gdt_addr[X86_GDT_ENTRY_UNUSED] = GDT_ENTRY(0xc09b, 0, 0xfffff);
151 gdt_addr[X86_GDT_ENTRY_32BIT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff);
152
153 /* DS: data, read/write, 4 GB, base 0 */
154 gdt_addr[X86_GDT_ENTRY_32BIT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff);
155
156 /* FS: data, read/write, 4 GB, base (Global Data Pointer) */
157 new_gd->arch.gd_addr = new_gd;
158 gdt_addr[X86_GDT_ENTRY_32BIT_FS] = GDT_ENTRY(0xc093,
159 (ulong)&new_gd->arch.gd_addr, 0xfffff);
160
161 /* 16-bit CS: code, read/execute, 64 kB, base 0 */
162 gdt_addr[X86_GDT_ENTRY_16BIT_CS] = GDT_ENTRY(0x009b, 0, 0x0ffff);
163
164 /* 16-bit DS: data, read/write, 64 kB, base 0 */
165 gdt_addr[X86_GDT_ENTRY_16BIT_DS] = GDT_ENTRY(0x0093, 0, 0x0ffff);
166
167 gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_CS] = GDT_ENTRY(0x809b, 0, 0xfffff);
168 gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_DS] = GDT_ENTRY(0x8093, 0, 0xfffff);
169
170 load_gdt(gdt_addr, X86_GDT_NUM_ENTRIES);
171 load_ds(X86_GDT_ENTRY_32BIT_DS);
172 load_es(X86_GDT_ENTRY_32BIT_DS);
173 load_gs(X86_GDT_ENTRY_32BIT_DS);
174 load_ss(X86_GDT_ENTRY_32BIT_DS);
175 load_fs(X86_GDT_ENTRY_32BIT_FS);
176 }
177
178 #ifdef CONFIG_HAVE_FSP
179 /*
180 * Setup FSP execution environment GDT
181 *
182 * Per Intel FSP external architecture specification, before calling any FSP
183 * APIs, we need make sure the system is in flat 32-bit mode and both the code
184 * and data selectors should have full 4GB access range. Here we reuse the one
185 * we used in arch/x86/cpu/start16.S, and reload the segement registers.
186 */
187 void setup_fsp_gdt(void)
188 {
189 load_gdt((const u64 *)(gdt_rom + CONFIG_RESET_SEG_START), 4);
190 load_ds(X86_GDT_ENTRY_32BIT_DS);
191 load_ss(X86_GDT_ENTRY_32BIT_DS);
192 load_es(X86_GDT_ENTRY_32BIT_DS);
193 load_fs(X86_GDT_ENTRY_32BIT_DS);
194 load_gs(X86_GDT_ENTRY_32BIT_DS);
195 }
196 #endif
197
198 int __weak x86_cleanup_before_linux(void)
199 {
200 #ifdef CONFIG_BOOTSTAGE_STASH
201 bootstage_stash((void *)CONFIG_BOOTSTAGE_STASH_ADDR,
202 CONFIG_BOOTSTAGE_STASH_SIZE);
203 #endif
204
205 return 0;
206 }
207
208 /*
209 * Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected
210 * by the fact that they preserve the flags across the division of 5/2.
211 * PII and PPro exhibit this behavior too, but they have cpuid available.
212 */
213
214 /*
215 * Perform the Cyrix 5/2 test. A Cyrix won't change
216 * the flags, while other 486 chips will.
217 */
218 static inline int test_cyrix_52div(void)
219 {
220 unsigned int test;
221
222 __asm__ __volatile__(
223 "sahf\n\t" /* clear flags (%eax = 0x0005) */
224 "div %b2\n\t" /* divide 5 by 2 */
225 "lahf" /* store flags into %ah */
226 : "=a" (test)
227 : "0" (5), "q" (2)
228 : "cc");
229
230 /* AH is 0x02 on Cyrix after the divide.. */
231 return (unsigned char) (test >> 8) == 0x02;
232 }
233
234 /*
235 * Detect a NexGen CPU running without BIOS hypercode new enough
236 * to have CPUID. (Thanks to Herbert Oppmann)
237 */
238
239 static int deep_magic_nexgen_probe(void)
240 {
241 int ret;
242
243 __asm__ __volatile__ (
244 " movw $0x5555, %%ax\n"
245 " xorw %%dx,%%dx\n"
246 " movw $2, %%cx\n"
247 " divw %%cx\n"
248 " movl $0, %%eax\n"
249 " jnz 1f\n"
250 " movl $1, %%eax\n"
251 "1:\n"
252 : "=a" (ret) : : "cx", "dx");
253 return ret;
254 }
255
256 static bool has_cpuid(void)
257 {
258 return flag_is_changeable_p(X86_EFLAGS_ID);
259 }
260
261 static bool has_mtrr(void)
262 {
263 return cpuid_edx(0x00000001) & (1 << 12) ? true : false;
264 }
265
266 static int build_vendor_name(char *vendor_name)
267 {
268 struct cpuid_result result;
269 result = cpuid(0x00000000);
270 unsigned int *name_as_ints = (unsigned int *)vendor_name;
271
272 name_as_ints[0] = result.ebx;
273 name_as_ints[1] = result.edx;
274 name_as_ints[2] = result.ecx;
275
276 return result.eax;
277 }
278
279 static void identify_cpu(struct cpu_device_id *cpu)
280 {
281 char vendor_name[16];
282 int i;
283
284 vendor_name[0] = '\0'; /* Unset */
285 cpu->device = 0; /* fix gcc 4.4.4 warning */
286
287 /* Find the id and vendor_name */
288 if (!has_cpuid()) {
289 /* Its a 486 if we can modify the AC flag */
290 if (flag_is_changeable_p(X86_EFLAGS_AC))
291 cpu->device = 0x00000400; /* 486 */
292 else
293 cpu->device = 0x00000300; /* 386 */
294 if ((cpu->device == 0x00000400) && test_cyrix_52div()) {
295 memcpy(vendor_name, "CyrixInstead", 13);
296 /* If we ever care we can enable cpuid here */
297 }
298 /* Detect NexGen with old hypercode */
299 else if (deep_magic_nexgen_probe())
300 memcpy(vendor_name, "NexGenDriven", 13);
301 }
302 if (has_cpuid()) {
303 int cpuid_level;
304
305 cpuid_level = build_vendor_name(vendor_name);
306 vendor_name[12] = '\0';
307
308 /* Intel-defined flags: level 0x00000001 */
309 if (cpuid_level >= 0x00000001) {
310 cpu->device = cpuid_eax(0x00000001);
311 } else {
312 /* Have CPUID level 0 only unheard of */
313 cpu->device = 0x00000400;
314 }
315 }
316 cpu->vendor = X86_VENDOR_UNKNOWN;
317 for (i = 0; i < ARRAY_SIZE(x86_vendors); i++) {
318 if (memcmp(vendor_name, x86_vendors[i].name, 12) == 0) {
319 cpu->vendor = x86_vendors[i].vendor;
320 break;
321 }
322 }
323 }
324
325 static inline void get_fms(struct cpuinfo_x86 *c, uint32_t tfms)
326 {
327 c->x86 = (tfms >> 8) & 0xf;
328 c->x86_model = (tfms >> 4) & 0xf;
329 c->x86_mask = tfms & 0xf;
330 if (c->x86 == 0xf)
331 c->x86 += (tfms >> 20) & 0xff;
332 if (c->x86 >= 0x6)
333 c->x86_model += ((tfms >> 16) & 0xF) << 4;
334 }
335
336 int x86_cpu_init_f(void)
337 {
338 const u32 em_rst = ~X86_CR0_EM;
339 const u32 mp_ne_set = X86_CR0_MP | X86_CR0_NE;
340
341 if (ll_boot_init()) {
342 /* initialize FPU, reset EM, set MP and NE */
343 asm ("fninit\n" \
344 "movl %%cr0, %%eax\n" \
345 "andl %0, %%eax\n" \
346 "orl %1, %%eax\n" \
347 "movl %%eax, %%cr0\n" \
348 : : "i" (em_rst), "i" (mp_ne_set) : "eax");
349 }
350
351 /* identify CPU via cpuid and store the decoded info into gd->arch */
352 if (has_cpuid()) {
353 struct cpu_device_id cpu;
354 struct cpuinfo_x86 c;
355
356 identify_cpu(&cpu);
357 get_fms(&c, cpu.device);
358 gd->arch.x86 = c.x86;
359 gd->arch.x86_vendor = cpu.vendor;
360 gd->arch.x86_model = c.x86_model;
361 gd->arch.x86_mask = c.x86_mask;
362 gd->arch.x86_device = cpu.device;
363
364 gd->arch.has_mtrr = has_mtrr();
365 }
366 /* Don't allow PCI region 3 to use memory in the 2-4GB memory hole */
367 gd->pci_ram_top = 0x80000000U;
368
369 /* Configure fixed range MTRRs for some legacy regions */
370 if (gd->arch.has_mtrr) {
371 u64 mtrr_cap;
372
373 mtrr_cap = native_read_msr(MTRR_CAP_MSR);
374 if (mtrr_cap & MTRR_CAP_FIX) {
375 /* Mark the VGA RAM area as uncacheable */
376 native_write_msr(MTRR_FIX_16K_A0000_MSR,
377 MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE),
378 MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE));
379
380 /*
381 * Mark the PCI ROM area as cacheable to improve ROM
382 * execution performance.
383 */
384 native_write_msr(MTRR_FIX_4K_C0000_MSR,
385 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
386 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
387 native_write_msr(MTRR_FIX_4K_C8000_MSR,
388 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
389 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
390 native_write_msr(MTRR_FIX_4K_D0000_MSR,
391 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
392 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
393 native_write_msr(MTRR_FIX_4K_D8000_MSR,
394 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
395 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
396
397 /* Enable the fixed range MTRRs */
398 msr_setbits_64(MTRR_DEF_TYPE_MSR, MTRR_DEF_TYPE_FIX_EN);
399 }
400 }
401
402 #ifdef CONFIG_I8254_TIMER
403 /* Set up the i8254 timer if required */
404 i8254_init();
405 #endif
406
407 return 0;
408 }
409
410 void x86_enable_caches(void)
411 {
412 unsigned long cr0;
413
414 cr0 = read_cr0();
415 cr0 &= ~(X86_CR0_NW | X86_CR0_CD);
416 write_cr0(cr0);
417 wbinvd();
418 }
419 void enable_caches(void) __attribute__((weak, alias("x86_enable_caches")));
420
421 void x86_disable_caches(void)
422 {
423 unsigned long cr0;
424
425 cr0 = read_cr0();
426 cr0 |= X86_CR0_NW | X86_CR0_CD;
427 wbinvd();
428 write_cr0(cr0);
429 wbinvd();
430 }
431 void disable_caches(void) __attribute__((weak, alias("x86_disable_caches")));
432
433 int x86_init_cache(void)
434 {
435 enable_caches();
436
437 return 0;
438 }
439 int init_cache(void) __attribute__((weak, alias("x86_init_cache")));
440
441 int do_reset(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
442 {
443 printf("resetting ...\n");
444
445 /* wait 50 ms */
446 udelay(50000);
447 disable_interrupts();
448 reset_cpu(0);
449
450 /*NOTREACHED*/
451 return 0;
452 }
453
454 void flush_cache(unsigned long dummy1, unsigned long dummy2)
455 {
456 asm("wbinvd\n");
457 }
458
459 __weak void reset_cpu(ulong addr)
460 {
461 /* Do a hard reset through the chipset's reset control register */
462 outb(SYS_RST | RST_CPU, PORT_RESET);
463 for (;;)
464 cpu_hlt();
465 }
466
467 void x86_full_reset(void)
468 {
469 outb(FULL_RST | SYS_RST | RST_CPU, PORT_RESET);
470 }
471
472 int dcache_status(void)
473 {
474 return !(read_cr0() & X86_CR0_CD);
475 }
476
477 /* Define these functions to allow ehch-hcd to function */
478 void flush_dcache_range(unsigned long start, unsigned long stop)
479 {
480 }
481
482 void invalidate_dcache_range(unsigned long start, unsigned long stop)
483 {
484 }
485
486 void dcache_enable(void)
487 {
488 enable_caches();
489 }
490
491 void dcache_disable(void)
492 {
493 disable_caches();
494 }
495
496 void icache_enable(void)
497 {
498 }
499
500 void icache_disable(void)
501 {
502 }
503
504 int icache_status(void)
505 {
506 return 1;
507 }
508
509 void cpu_enable_paging_pae(ulong cr3)
510 {
511 __asm__ __volatile__(
512 /* Load the page table address */
513 "movl %0, %%cr3\n"
514 /* Enable pae */
515 "movl %%cr4, %%eax\n"
516 "orl $0x00000020, %%eax\n"
517 "movl %%eax, %%cr4\n"
518 /* Enable paging */
519 "movl %%cr0, %%eax\n"
520 "orl $0x80000000, %%eax\n"
521 "movl %%eax, %%cr0\n"
522 :
523 : "r" (cr3)
524 : "eax");
525 }
526
527 void cpu_disable_paging_pae(void)
528 {
529 /* Turn off paging */
530 __asm__ __volatile__ (
531 /* Disable paging */
532 "movl %%cr0, %%eax\n"
533 "andl $0x7fffffff, %%eax\n"
534 "movl %%eax, %%cr0\n"
535 /* Disable pae */
536 "movl %%cr4, %%eax\n"
537 "andl $0xffffffdf, %%eax\n"
538 "movl %%eax, %%cr4\n"
539 :
540 :
541 : "eax");
542 }
543
544 static bool can_detect_long_mode(void)
545 {
546 return cpuid_eax(0x80000000) > 0x80000000UL;
547 }
548
549 static bool has_long_mode(void)
550 {
551 return cpuid_edx(0x80000001) & (1 << 29) ? true : false;
552 }
553
554 int cpu_has_64bit(void)
555 {
556 return has_cpuid() && can_detect_long_mode() &&
557 has_long_mode();
558 }
559
560 const char *cpu_vendor_name(int vendor)
561 {
562 const char *name;
563 name = "<invalid cpu vendor>";
564 if ((vendor < (ARRAY_SIZE(x86_vendor_name))) &&
565 (x86_vendor_name[vendor] != 0))
566 name = x86_vendor_name[vendor];
567
568 return name;
569 }
570
571 char *cpu_get_name(char *name)
572 {
573 unsigned int *name_as_ints = (unsigned int *)name;
574 struct cpuid_result regs;
575 char *ptr;
576 int i;
577
578 /* This bit adds up to 48 bytes */
579 for (i = 0; i < 3; i++) {
580 regs = cpuid(0x80000002 + i);
581 name_as_ints[i * 4 + 0] = regs.eax;
582 name_as_ints[i * 4 + 1] = regs.ebx;
583 name_as_ints[i * 4 + 2] = regs.ecx;
584 name_as_ints[i * 4 + 3] = regs.edx;
585 }
586 name[CPU_MAX_NAME_LEN - 1] = '\0';
587
588 /* Skip leading spaces. */
589 ptr = name;
590 while (*ptr == ' ')
591 ptr++;
592
593 return ptr;
594 }
595
596 int default_print_cpuinfo(void)
597 {
598 printf("CPU: %s, vendor %s, device %xh\n",
599 cpu_has_64bit() ? "x86_64" : "x86",
600 cpu_vendor_name(gd->arch.x86_vendor), gd->arch.x86_device);
601
602 return 0;
603 }
604
605 #define PAGETABLE_SIZE (6 * 4096)
606
607 /**
608 * build_pagetable() - build a flat 4GiB page table structure for 64-bti mode
609 *
610 * @pgtable: Pointer to a 24iKB block of memory
611 */
612 static void build_pagetable(uint32_t *pgtable)
613 {
614 uint i;
615
616 memset(pgtable, '\0', PAGETABLE_SIZE);
617
618 /* Level 4 needs a single entry */
619 pgtable[0] = (uint32_t)&pgtable[1024] + 7;
620
621 /* Level 3 has one 64-bit entry for each GiB of memory */
622 for (i = 0; i < 4; i++) {
623 pgtable[1024 + i * 2] = (uint32_t)&pgtable[2048] +
624 0x1000 * i + 7;
625 }
626
627 /* Level 2 has 2048 64-bit entries, each repesenting 2MiB */
628 for (i = 0; i < 2048; i++)
629 pgtable[2048 + i * 2] = 0x183 + (i << 21UL);
630 }
631
632 int cpu_jump_to_64bit(ulong setup_base, ulong target)
633 {
634 uint32_t *pgtable;
635
636 pgtable = memalign(4096, PAGETABLE_SIZE);
637 if (!pgtable)
638 return -ENOMEM;
639
640 build_pagetable(pgtable);
641 cpu_call64((ulong)pgtable, setup_base, target);
642 free(pgtable);
643
644 return -EFAULT;
645 }
646
647 void show_boot_progress(int val)
648 {
649 outb(val, POST_PORT);
650 }
651
652 #ifndef CONFIG_SYS_COREBOOT
653 int last_stage_init(void)
654 {
655 write_tables();
656
657 return 0;
658 }
659 #endif
660
661 #ifdef CONFIG_SMP
662 static int enable_smis(struct udevice *cpu, void *unused)
663 {
664 return 0;
665 }
666
667 static struct mp_flight_record mp_steps[] = {
668 MP_FR_BLOCK_APS(mp_init_cpu, NULL, mp_init_cpu, NULL),
669 /* Wait for APs to finish initialization before proceeding */
670 MP_FR_BLOCK_APS(NULL, NULL, enable_smis, NULL),
671 };
672
673 static int x86_mp_init(void)
674 {
675 struct mp_params mp_params;
676
677 mp_params.parallel_microcode_load = 0,
678 mp_params.flight_plan = &mp_steps[0];
679 mp_params.num_records = ARRAY_SIZE(mp_steps);
680 mp_params.microcode_pointer = 0;
681
682 if (mp_init(&mp_params)) {
683 printf("Warning: MP init failure\n");
684 return -EIO;
685 }
686
687 return 0;
688 }
689 #endif
690
691 __weak int x86_init_cpus(void)
692 {
693 #ifdef CONFIG_SMP
694 debug("Init additional CPUs\n");
695 x86_mp_init();
696 #else
697 struct udevice *dev;
698
699 /*
700 * This causes the cpu-x86 driver to be probed.
701 * We don't check return value here as we want to allow boards
702 * which have not been converted to use cpu uclass driver to boot.
703 */
704 uclass_first_device(UCLASS_CPU, &dev);
705 #endif
706
707 return 0;
708 }
709
710 int cpu_init_r(void)
711 {
712 if (ll_boot_init())
713 return x86_init_cpus();
714
715 return 0;
716 }