]> git.ipfire.org Git - people/ms/u-boot.git/blob - board/Marvell/db64360/sdram_init.c
Add GPL-2.0+ SPDX-License-Identifier to source files
[people/ms/u-boot.git] / board / Marvell / db64360 / sdram_init.c
1 /*
2 * (C) Copyright 2001
3 * Josh Huber <huber@mclx.com>, Mission Critical Linux, Inc.
4 *
5 * SPDX-License-Identifier: GPL-2.0+
6 */
7
8 /*************************************************************************
9 * adaption for the Marvell DB64360 Board
10 * Ingo Assmus (ingo.assmus@keymile.com)
11 ************************************************************************/
12
13
14 /* sdram_init.c - automatic memory sizing */
15
16 #include <common.h>
17 #include <74xx_7xx.h>
18 #include "../include/memory.h"
19 #include "../include/pci.h"
20 #include "../include/mv_gen_reg.h"
21 #include <net.h>
22
23 #include "eth.h"
24 #include "mpsc.h"
25 #include "../common/i2c.h"
26 #include "64360.h"
27 #include "mv_regs.h"
28
29 DECLARE_GLOBAL_DATA_PTR;
30
31 #define MAP_PCI
32
33 int set_dfcdlInit (void); /* setup delay line of Mv64360 */
34 int mvDmaIsChannelActive (int);
35 int mvDmaSetMemorySpace (ulong, ulong, ulong, ulong, ulong);
36 int mvDmaTransfer (int, ulong, ulong, ulong, ulong);
37
38 /* ------------------------------------------------------------------------- */
39
40 int
41 memory_map_bank (unsigned int bankNo,
42 unsigned int bankBase, unsigned int bankLength)
43 {
44 #ifdef MAP_PCI
45 PCI_HOST host;
46 #endif
47
48
49 #ifdef DEBUG
50 if (bankLength > 0) {
51 printf ("mapping bank %d at %08x - %08x\n",
52 bankNo, bankBase, bankBase + bankLength - 1);
53 } else {
54 printf ("unmapping bank %d\n", bankNo);
55 }
56 #endif
57
58 memoryMapBank (bankNo, bankBase, bankLength);
59
60 #ifdef MAP_PCI
61 for (host = PCI_HOST0; host <= PCI_HOST1; host++) {
62 const int features =
63 PREFETCH_ENABLE |
64 DELAYED_READ_ENABLE |
65 AGGRESSIVE_PREFETCH |
66 READ_LINE_AGGRESSIVE_PREFETCH |
67 READ_MULTI_AGGRESSIVE_PREFETCH |
68 MAX_BURST_4 | PCI_NO_SWAP;
69
70 pciMapMemoryBank (host, bankNo, bankBase, bankLength);
71
72 pciSetRegionSnoopMode (host, bankNo, PCI_SNOOP_WB, bankBase,
73 bankLength);
74
75 pciSetRegionFeatures (host, bankNo, features, bankBase,
76 bankLength);
77 }
78 #endif
79 return 0;
80 }
81
82 #define GB (1 << 30)
83
84 /* much of this code is based on (or is) the code in the pip405 port */
85 /* thanks go to the authors of said port - Josh */
86
87 /* structure to store the relevant information about an sdram bank */
88 typedef struct sdram_info {
89 uchar drb_size;
90 uchar registered, ecc;
91 uchar tpar;
92 uchar tras_clocks;
93 uchar burst_len;
94 uchar banks, slot;
95 } sdram_info_t;
96
97 /* Typedefs for 'gtAuxilGetDIMMinfo' function */
98
99 typedef enum _memoryType { SDRAM, DDR } MEMORY_TYPE;
100
101 typedef enum _voltageInterface { TTL_5V_TOLERANT, LVTTL, HSTL_1_5V,
102 SSTL_3_3V, SSTL_2_5V, VOLTAGE_UNKNOWN,
103 } VOLTAGE_INTERFACE;
104
105 typedef enum _max_CL_supported_DDR { DDR_CL_1 = 1, DDR_CL_1_5 = 2, DDR_CL_2 =
106 4, DDR_CL_2_5 = 8, DDR_CL_3 = 16, DDR_CL_3_5 =
107 32, DDR_CL_FAULT } MAX_CL_SUPPORTED_DDR;
108 typedef enum _max_CL_supported_SD { SD_CL_1 =
109 1, SD_CL_2, SD_CL_3, SD_CL_4, SD_CL_5, SD_CL_6, SD_CL_7,
110 SD_FAULT } MAX_CL_SUPPORTED_SD;
111
112
113 /* SDRAM/DDR information struct */
114 typedef struct _gtMemoryDimmInfo {
115 MEMORY_TYPE memoryType;
116 unsigned int numOfRowAddresses;
117 unsigned int numOfColAddresses;
118 unsigned int numOfModuleBanks;
119 unsigned int dataWidth;
120 VOLTAGE_INTERFACE voltageInterface;
121 unsigned int errorCheckType; /* ECC , PARITY.. */
122 unsigned int sdramWidth; /* 4,8,16 or 32 */ ;
123 unsigned int errorCheckDataWidth; /* 0 - no, 1 - Yes */
124 unsigned int minClkDelay;
125 unsigned int burstLengthSupported;
126 unsigned int numOfBanksOnEachDevice;
127 unsigned int suportedCasLatencies;
128 unsigned int RefreshInterval;
129 unsigned int maxCASlatencySupported_LoP; /* LoP left of point (measured in ns) */
130 unsigned int maxCASlatencySupported_RoP; /* RoP right of point (measured in ns) */
131 MAX_CL_SUPPORTED_DDR maxClSupported_DDR;
132 MAX_CL_SUPPORTED_SD maxClSupported_SD;
133 unsigned int moduleBankDensity;
134 /* module attributes (true for yes) */
135 bool bufferedAddrAndControlInputs;
136 bool registeredAddrAndControlInputs;
137 bool onCardPLL;
138 bool bufferedDQMBinputs;
139 bool registeredDQMBinputs;
140 bool differentialClockInput;
141 bool redundantRowAddressing;
142
143 /* module general attributes */
144 bool suportedAutoPreCharge;
145 bool suportedPreChargeAll;
146 bool suportedEarlyRasPreCharge;
147 bool suportedWrite1ReadBurst;
148 bool suported5PercentLowVCC;
149 bool suported5PercentUpperVCC;
150 /* module timing parameters */
151 unsigned int minRasToCasDelay;
152 unsigned int minRowActiveRowActiveDelay;
153 unsigned int minRasPulseWidth;
154 unsigned int minRowPrechargeTime; /* measured in ns */
155
156 int addrAndCommandHoldTime; /* LoP left of point (measured in ns) */
157 int addrAndCommandSetupTime; /* (measured in ns/100) */
158 int dataInputSetupTime; /* LoP left of point (measured in ns) */
159 int dataInputHoldTime; /* LoP left of point (measured in ns) */
160 /* tAC times for highest 2nd and 3rd highest CAS Latency values */
161 unsigned int clockToDataOut_LoP; /* LoP left of point (measured in ns) */
162 unsigned int clockToDataOut_RoP; /* RoP right of point (measured in ns) */
163 unsigned int clockToDataOutMinus1_LoP; /* LoP left of point (measured in ns) */
164 unsigned int clockToDataOutMinus1_RoP; /* RoP right of point (measured in ns) */
165 unsigned int clockToDataOutMinus2_LoP; /* LoP left of point (measured in ns) */
166 unsigned int clockToDataOutMinus2_RoP; /* RoP right of point (measured in ns) */
167
168 unsigned int minimumCycleTimeAtMaxCasLatancy_LoP; /* LoP left of point (measured in ns) */
169 unsigned int minimumCycleTimeAtMaxCasLatancy_RoP; /* RoP right of point (measured in ns) */
170
171 unsigned int minimumCycleTimeAtMaxCasLatancyMinus1_LoP; /* LoP left of point (measured in ns) */
172 unsigned int minimumCycleTimeAtMaxCasLatancyMinus1_RoP; /* RoP right of point (measured in ns) */
173
174 unsigned int minimumCycleTimeAtMaxCasLatancyMinus2_LoP; /* LoP left of point (measured in ns) */
175 unsigned int minimumCycleTimeAtMaxCasLatancyMinus2_RoP; /* RoP right of point (measured in ns) */
176
177 /* Parameters calculated from
178 the extracted DIMM information */
179 unsigned int size;
180 unsigned int deviceDensity; /* 16,64,128,256 or 512 Mbit */
181 unsigned int numberOfDevices;
182 uchar drb_size; /* DRAM size in n*64Mbit */
183 uchar slot; /* Slot Number this module is inserted in */
184 uchar spd_raw_data[128]; /* Content of SPD-EEPROM copied 1:1 */
185 #ifdef DEBUG
186 uchar manufactura[8]; /* Content of SPD-EEPROM Byte 64-71 */
187 uchar modul_id[18]; /* Content of SPD-EEPROM Byte 73-90 */
188 uchar vendor_data[27]; /* Content of SPD-EEPROM Byte 99-125 */
189 unsigned long modul_serial_no; /* Content of SPD-EEPROM Byte 95-98 */
190 unsigned int manufac_date; /* Content of SPD-EEPROM Byte 93-94 */
191 unsigned int modul_revision; /* Content of SPD-EEPROM Byte 91-92 */
192 uchar manufac_place; /* Content of SPD-EEPROM Byte 72 */
193
194 #endif
195 } AUX_MEM_DIMM_INFO;
196
197
198 /*
199 * translate ns.ns/10 coding of SPD timing values
200 * into 10 ps unit values
201 */
202 static inline unsigned short NS10to10PS (unsigned char spd_byte)
203 {
204 unsigned short ns, ns10;
205
206 /* isolate upper nibble */
207 ns = (spd_byte >> 4) & 0x0F;
208 /* isolate lower nibble */
209 ns10 = (spd_byte & 0x0F);
210
211 return (ns * 100 + ns10 * 10);
212 }
213
214 /*
215 * translate ns coding of SPD timing values
216 * into 10 ps unit values
217 */
218 static inline unsigned short NSto10PS (unsigned char spd_byte)
219 {
220 return (spd_byte * 100);
221 }
222
223 /* This code reads the SPD chip on the sdram and populates
224 * the array which is passed in with the relevant information */
225 /* static int check_dimm(uchar slot, AUX_MEM_DIMM_INFO *info) */
226 static int check_dimm (uchar slot, AUX_MEM_DIMM_INFO * dimmInfo)
227 {
228 unsigned long spd_checksum;
229
230 #ifdef ZUMA_NTL
231 /* zero all the values */
232 memset (info, 0, sizeof (*info));
233
234 /*
235 if (!slot) {
236 info->slot = 0;
237 info->banks = 1;
238 info->registered = 0;
239 info->drb_size = 16;*/ /* 16 - 256MBit, 32 - 512MBit */
240 /* info->tpar = 3;
241 info->tras_clocks = 5;
242 info->burst_len = 4;
243 */
244 #ifdef CONFIG_MV64360_ECC
245 /* check for ECC/parity [0 = none, 1 = parity, 2 = ecc] */
246 dimmInfo->errorCheckType = 2;
247 /* info->ecc = 2;*/
248 #endif
249 }
250
251 return 0;
252
253 #else
254 uchar addr = slot == 0 ? DIMM0_I2C_ADDR : DIMM1_I2C_ADDR;
255 int ret;
256 unsigned int i, j, density = 1;
257
258 #ifdef DEBUG
259 unsigned int k;
260 #endif
261 unsigned int rightOfPoint = 0, leftOfPoint = 0, mult, div, time_tmp;
262 int sign = 1, shift, maskLeftOfPoint, maskRightOfPoint;
263 uchar supp_cal, cal_val;
264 ulong memclk, tmemclk;
265 ulong tmp;
266 uchar trp_clocks = 0, tras_clocks;
267 uchar data[128];
268
269 memclk = gd->bus_clk;
270 tmemclk = 1000000000 / (memclk / 100); /* in 10 ps units */
271
272 debug("before i2c read\n");
273
274 ret = i2c_read (addr, 0, 1, data, 128);
275
276 debug("after i2c read\n");
277
278 /* zero all the values */
279 memset (dimmInfo, 0, sizeof (*dimmInfo));
280
281 /* copy the SPD content 1:1 into the dimmInfo structure */
282 for (i = 0; i <= 127; i++) {
283 dimmInfo->spd_raw_data[i] = data[i];
284 }
285
286 if (ret) {
287 debug("No DIMM in slot %d [err = %x]\n", slot, ret);
288 return 0;
289 } else
290 dimmInfo->slot = slot; /* start to fill up dimminfo for this "slot" */
291
292 #ifdef CONFIG_SYS_DISPLAY_DIMM_SPD_CONTENT
293
294 for (i = 0; i <= 127; i++) {
295 printf ("SPD-EEPROM Byte %3d = %3x (%3d)\n", i, data[i],
296 data[i]);
297 }
298
299 #endif
300 #ifdef DEBUG
301 /* find Manufactura of Dimm Module */
302 for (i = 0; i < sizeof (dimmInfo->manufactura); i++) {
303 dimmInfo->manufactura[i] = data[64 + i];
304 }
305 printf ("\nThis RAM-Module is produced by: %s\n",
306 dimmInfo->manufactura);
307
308 /* find Manul-ID of Dimm Module */
309 for (i = 0; i < sizeof (dimmInfo->modul_id); i++) {
310 dimmInfo->modul_id[i] = data[73 + i];
311 }
312 printf ("The Module-ID of this RAM-Module is: %s\n",
313 dimmInfo->modul_id);
314
315 /* find Vendor-Data of Dimm Module */
316 for (i = 0; i < sizeof (dimmInfo->vendor_data); i++) {
317 dimmInfo->vendor_data[i] = data[99 + i];
318 }
319 printf ("Vendor Data of this RAM-Module is: %s\n",
320 dimmInfo->vendor_data);
321
322 /* find modul_serial_no of Dimm Module */
323 dimmInfo->modul_serial_no = (*((unsigned long *) (&data[95])));
324 printf ("Serial No. of this RAM-Module is: %ld (%lx)\n",
325 dimmInfo->modul_serial_no, dimmInfo->modul_serial_no);
326
327 /* find Manufac-Data of Dimm Module */
328 dimmInfo->manufac_date = (*((unsigned int *) (&data[93])));
329 printf ("Manufactoring Date of this RAM-Module is: %d.%d\n", data[93], data[94]); /*dimmInfo->manufac_date */
330
331 /* find modul_revision of Dimm Module */
332 dimmInfo->modul_revision = (*((unsigned int *) (&data[91])));
333 printf ("Module Revision of this RAM-Module is: %d.%d\n", data[91], data[92]); /* dimmInfo->modul_revision */
334
335 /* find manufac_place of Dimm Module */
336 dimmInfo->manufac_place = (*((unsigned char *) (&data[72])));
337 printf ("manufac_place of this RAM-Module is: %d\n",
338 dimmInfo->manufac_place);
339
340 #endif
341
342 /*------------------------------------------------------------------------------------------------------------------------------*/
343 /* calculate SPD checksum */
344 /*------------------------------------------------------------------------------------------------------------------------------*/
345 spd_checksum = 0;
346
347 for (i = 0; i <= 62; i++) {
348 spd_checksum += data[i];
349 }
350
351 if ((spd_checksum & 0xff) != data[63]) {
352 printf ("### Error in SPD Checksum !!! Is_value: %2x should value %2x\n", (unsigned int) (spd_checksum & 0xff), data[63]);
353 hang ();
354 }
355
356 else
357 printf ("SPD Checksum ok!\n");
358
359
360 /*------------------------------------------------------------------------------------------------------------------------------*/
361 for (i = 2; i <= 35; i++) {
362 switch (i) {
363 case 2: /* Memory type (DDR / SDRAM) */
364 dimmInfo->memoryType = (data[i] == 0x7) ? DDR : SDRAM;
365 if (dimmInfo->memoryType == 0)
366 debug
367 ("Dram_type in slot %d is: SDRAM\n",
368 dimmInfo->slot);
369 if (dimmInfo->memoryType == 1)
370 debug
371 ("Dram_type in slot %d is: DDRAM\n",
372 dimmInfo->slot);
373 break;
374 /*------------------------------------------------------------------------------------------------------------------------------*/
375
376 case 3: /* Number Of Row Addresses */
377 dimmInfo->numOfRowAddresses = data[i];
378 debug
379 ("Module Number of row addresses: %d\n",
380 dimmInfo->numOfRowAddresses);
381 break;
382 /*------------------------------------------------------------------------------------------------------------------------------*/
383
384 case 4: /* Number Of Column Addresses */
385 dimmInfo->numOfColAddresses = data[i];
386 debug
387 ("Module Number of col addresses: %d\n",
388 dimmInfo->numOfColAddresses);
389 break;
390 /*------------------------------------------------------------------------------------------------------------------------------*/
391
392 case 5: /* Number Of Module Banks */
393 dimmInfo->numOfModuleBanks = data[i];
394 debug
395 ("Number of Banks on Mod. : %d\n",
396 dimmInfo->numOfModuleBanks);
397 break;
398 /*------------------------------------------------------------------------------------------------------------------------------*/
399
400 case 6: /* Data Width */
401 dimmInfo->dataWidth = data[i];
402 debug
403 ("Module Data Width: %d\n",
404 dimmInfo->dataWidth);
405 break;
406 /*------------------------------------------------------------------------------------------------------------------------------*/
407
408 case 8: /* Voltage Interface */
409 switch (data[i]) {
410 case 0x0:
411 dimmInfo->voltageInterface = TTL_5V_TOLERANT;
412 debug
413 ("Module is TTL_5V_TOLERANT\n");
414 break;
415 case 0x1:
416 dimmInfo->voltageInterface = LVTTL;
417 debug
418 ("Module is LVTTL\n");
419 break;
420 case 0x2:
421 dimmInfo->voltageInterface = HSTL_1_5V;
422 debug
423 ("Module is TTL_5V_TOLERANT\n");
424 break;
425 case 0x3:
426 dimmInfo->voltageInterface = SSTL_3_3V;
427 debug
428 ("Module is HSTL_1_5V\n");
429 break;
430 case 0x4:
431 dimmInfo->voltageInterface = SSTL_2_5V;
432 debug
433 ("Module is SSTL_2_5V\n");
434 break;
435 default:
436 dimmInfo->voltageInterface = VOLTAGE_UNKNOWN;
437 debug
438 ("Module is VOLTAGE_UNKNOWN\n");
439 break;
440 }
441 break;
442 /*------------------------------------------------------------------------------------------------------------------------------*/
443
444 case 9: /* Minimum Cycle Time At Max CasLatancy */
445 shift = (dimmInfo->memoryType == DDR) ? 4 : 2;
446 mult = (dimmInfo->memoryType == DDR) ? 10 : 25;
447 maskLeftOfPoint =
448 (dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc;
449 maskRightOfPoint =
450 (dimmInfo->memoryType == DDR) ? 0xf : 0x03;
451 leftOfPoint = (data[i] & maskLeftOfPoint) >> shift;
452 rightOfPoint = (data[i] & maskRightOfPoint) * mult;
453 dimmInfo->minimumCycleTimeAtMaxCasLatancy_LoP =
454 leftOfPoint;
455 dimmInfo->minimumCycleTimeAtMaxCasLatancy_RoP =
456 rightOfPoint;
457 debug
458 ("Minimum Cycle Time At Max CasLatancy: %d.%d [ns]\n",
459 leftOfPoint, rightOfPoint);
460 break;
461 /*------------------------------------------------------------------------------------------------------------------------------*/
462
463 case 10: /* Clock To Data Out */
464 div = (dimmInfo->memoryType == DDR) ? 100 : 10;
465 time_tmp =
466 (((data[i] & 0xf0) >> 4) * 10) +
467 ((data[i] & 0x0f));
468 leftOfPoint = time_tmp / div;
469 rightOfPoint = time_tmp % div;
470 dimmInfo->clockToDataOut_LoP = leftOfPoint;
471 dimmInfo->clockToDataOut_RoP = rightOfPoint;
472 debug("Clock To Data Out: %d.%2d [ns]\n", leftOfPoint, rightOfPoint); /*dimmInfo->clockToDataOut */
473 break;
474 /*------------------------------------------------------------------------------------------------------------------------------*/
475
476 /*#ifdef CONFIG_ECC */
477 case 11: /* Error Check Type */
478 dimmInfo->errorCheckType = data[i];
479 debug
480 ("Error Check Type (0=NONE): %d\n",
481 dimmInfo->errorCheckType);
482 break;
483 /* #endif */
484 /*------------------------------------------------------------------------------------------------------------------------------*/
485
486 case 12: /* Refresh Interval */
487 dimmInfo->RefreshInterval = data[i];
488 debug
489 ("RefreshInterval (80= Self refresh Normal, 15.625us) : %x\n",
490 dimmInfo->RefreshInterval);
491 break;
492 /*------------------------------------------------------------------------------------------------------------------------------*/
493
494 case 13: /* Sdram Width */
495 dimmInfo->sdramWidth = data[i];
496 debug
497 ("Sdram Width: %d\n",
498 dimmInfo->sdramWidth);
499 break;
500 /*------------------------------------------------------------------------------------------------------------------------------*/
501
502 case 14: /* Error Check Data Width */
503 dimmInfo->errorCheckDataWidth = data[i];
504 debug
505 ("Error Check Data Width: %d\n",
506 dimmInfo->errorCheckDataWidth);
507 break;
508 /*------------------------------------------------------------------------------------------------------------------------------*/
509
510 case 15: /* Minimum Clock Delay */
511 dimmInfo->minClkDelay = data[i];
512 debug
513 ("Minimum Clock Delay: %d\n",
514 dimmInfo->minClkDelay);
515 break;
516 /*------------------------------------------------------------------------------------------------------------------------------*/
517
518 case 16: /* Burst Length Supported */
519 /******-******-******-*******
520 * bit3 | bit2 | bit1 | bit0 *
521 *******-******-******-*******
522 burst length = * 8 | 4 | 2 | 1 *
523 *****************************
524
525 If for example bit0 and bit2 are set, the burst
526 length supported are 1 and 4. */
527
528 dimmInfo->burstLengthSupported = data[i];
529 #ifdef DEBUG
530 debug
531 ("Burst Length Supported: ");
532 if (dimmInfo->burstLengthSupported & 0x01)
533 debug("1, ");
534 if (dimmInfo->burstLengthSupported & 0x02)
535 debug("2, ");
536 if (dimmInfo->burstLengthSupported & 0x04)
537 debug("4, ");
538 if (dimmInfo->burstLengthSupported & 0x08)
539 debug("8, ");
540 debug(" Bit \n");
541 #endif
542 break;
543 /*------------------------------------------------------------------------------------------------------------------------------*/
544
545 case 17: /* Number Of Banks On Each Device */
546 dimmInfo->numOfBanksOnEachDevice = data[i];
547 debug
548 ("Number Of Banks On Each Chip: %d\n",
549 dimmInfo->numOfBanksOnEachDevice);
550 break;
551 /*------------------------------------------------------------------------------------------------------------------------------*/
552
553 case 18: /* Suported Cas Latencies */
554
555 /* DDR:
556 *******-******-******-******-******-******-******-*******
557 * bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 *
558 *******-******-******-******-******-******-******-*******
559 CAS = * TBD | TBD | 3.5 | 3 | 2.5 | 2 | 1.5 | 1 *
560 *********************************************************
561 SDRAM:
562 *******-******-******-******-******-******-******-*******
563 * bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 *
564 *******-******-******-******-******-******-******-*******
565 CAS = * TBD | 7 | 6 | 5 | 4 | 3 | 2 | 1 *
566 ********************************************************/
567 dimmInfo->suportedCasLatencies = data[i];
568 #ifdef DEBUG
569 debug
570 ("Suported Cas Latencies: (CL) ");
571 if (dimmInfo->memoryType == 0) { /* SDRAM */
572 for (k = 0; k <= 7; k++) {
573 if (dimmInfo->
574 suportedCasLatencies & (1 << k))
575 debug
576 ("%d, ",
577 k + 1);
578 }
579
580 } else { /* DDR-RAM */
581
582 if (dimmInfo->suportedCasLatencies & 1)
583 debug("1, ");
584 if (dimmInfo->suportedCasLatencies & 2)
585 debug("1.5, ");
586 if (dimmInfo->suportedCasLatencies & 4)
587 debug("2, ");
588 if (dimmInfo->suportedCasLatencies & 8)
589 debug("2.5, ");
590 if (dimmInfo->suportedCasLatencies & 16)
591 debug("3, ");
592 if (dimmInfo->suportedCasLatencies & 32)
593 debug("3.5, ");
594
595 }
596 debug("\n");
597 #endif
598 /* Calculating MAX CAS latency */
599 for (j = 7; j > 0; j--) {
600 if (((dimmInfo->
601 suportedCasLatencies >> j) & 0x1) ==
602 1) {
603 switch (dimmInfo->memoryType) {
604 case DDR:
605 /* CAS latency 1, 1.5, 2, 2.5, 3, 3.5 */
606 switch (j) {
607 case 7:
608 debug
609 ("Max. Cas Latencies (DDR): ERROR !!!\n");
610 dimmInfo->
611 maxClSupported_DDR
612 =
613 DDR_CL_FAULT;
614 hang ();
615 break;
616 case 6:
617 debug
618 ("Max. Cas Latencies (DDR): ERROR !!!\n");
619 dimmInfo->
620 maxClSupported_DDR
621 =
622 DDR_CL_FAULT;
623 hang ();
624 break;
625 case 5:
626 debug
627 ("Max. Cas Latencies (DDR): 3.5 clk's\n");
628 dimmInfo->
629 maxClSupported_DDR
630 = DDR_CL_3_5;
631 break;
632 case 4:
633 debug
634 ("Max. Cas Latencies (DDR): 3 clk's \n");
635 dimmInfo->
636 maxClSupported_DDR
637 = DDR_CL_3;
638 break;
639 case 3:
640 debug
641 ("Max. Cas Latencies (DDR): 2.5 clk's \n");
642 dimmInfo->
643 maxClSupported_DDR
644 = DDR_CL_2_5;
645 break;
646 case 2:
647 debug
648 ("Max. Cas Latencies (DDR): 2 clk's \n");
649 dimmInfo->
650 maxClSupported_DDR
651 = DDR_CL_2;
652 break;
653 case 1:
654 debug
655 ("Max. Cas Latencies (DDR): 1.5 clk's \n");
656 dimmInfo->
657 maxClSupported_DDR
658 = DDR_CL_1_5;
659 break;
660 }
661
662 /* ronen - in case we have a DIMM with minimumCycleTimeAtMaxCasLatancy
663 lower then our SDRAM cycle count, we won't be able to support this CAL
664 and we will have to use lower CAL. (minus - means from 3.0 to 2.5) */
665 if ((dimmInfo->
666 minimumCycleTimeAtMaxCasLatancy_LoP
667 <
668 CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_LOP)
669 ||
670 ((dimmInfo->
671 minimumCycleTimeAtMaxCasLatancy_LoP
672 ==
673 CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_LOP)
674 && (dimmInfo->
675 minimumCycleTimeAtMaxCasLatancy_RoP
676 <
677 CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_ROP)))
678 {
679 dimmInfo->
680 maxClSupported_DDR
681 =
682 dimmInfo->
683 maxClSupported_DDR
684 >> 1;
685 debug
686 ("*** Change actual Cas Latencies cause of minimumCycleTime n");
687 }
688 /* ronen - checkif the Dimm frequency compared to the Sysclock. */
689 if ((dimmInfo->
690 minimumCycleTimeAtMaxCasLatancy_LoP
691 >
692 CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_LOP)
693 ||
694 ((dimmInfo->
695 minimumCycleTimeAtMaxCasLatancy_LoP
696 ==
697 CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_LOP)
698 && (dimmInfo->
699 minimumCycleTimeAtMaxCasLatancy_RoP
700 >
701 CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_ROP)))
702 {
703 printf ("*********************************************************\n");
704 printf ("*** sysClock is higher than SDRAM's allowed frequency ***\n");
705 printf ("*********************************************************\n");
706 hang ();
707 }
708
709 dimmInfo->
710 maxCASlatencySupported_LoP
711 =
712 1 +
713 (int) (5 * j / 10);
714 if (((5 * j) % 10) != 0)
715 dimmInfo->
716 maxCASlatencySupported_RoP
717 = 5;
718 else
719 dimmInfo->
720 maxCASlatencySupported_RoP
721 = 0;
722 debug
723 ("Max. Cas Latencies (DDR LoP.RoP Notation): %d.%d \n",
724 dimmInfo->
725 maxCASlatencySupported_LoP,
726 dimmInfo->
727 maxCASlatencySupported_RoP);
728 break;
729 case SDRAM:
730 /* CAS latency 1, 2, 3, 4, 5, 6, 7 */
731 dimmInfo->maxClSupported_SD = j; /* Cas Latency DDR-RAM Coded */
732 debug
733 ("Max. Cas Latencies (SD): %d\n",
734 dimmInfo->
735 maxClSupported_SD);
736 dimmInfo->
737 maxCASlatencySupported_LoP
738 = j;
739 dimmInfo->
740 maxCASlatencySupported_RoP
741 = 0;
742 debug
743 ("Max. Cas Latencies (DDR LoP.RoP Notation): %d.%d \n",
744 dimmInfo->
745 maxCASlatencySupported_LoP,
746 dimmInfo->
747 maxCASlatencySupported_RoP);
748 break;
749 }
750 break;
751 }
752 }
753 break;
754 /*------------------------------------------------------------------------------------------------------------------------------*/
755
756 case 21: /* Buffered Address And Control Inputs */
757 debug("\nModul Attributes (SPD Byte 21): \n");
758 dimmInfo->bufferedAddrAndControlInputs =
759 data[i] & BIT0;
760 dimmInfo->registeredAddrAndControlInputs =
761 (data[i] & BIT1) >> 1;
762 dimmInfo->onCardPLL = (data[i] & BIT2) >> 2;
763 dimmInfo->bufferedDQMBinputs = (data[i] & BIT3) >> 3;
764 dimmInfo->registeredDQMBinputs =
765 (data[i] & BIT4) >> 4;
766 dimmInfo->differentialClockInput =
767 (data[i] & BIT5) >> 5;
768 dimmInfo->redundantRowAddressing =
769 (data[i] & BIT6) >> 6;
770 #ifdef DEBUG
771 if (dimmInfo->bufferedAddrAndControlInputs == 1)
772 debug
773 (" - Buffered Address/Control Input: Yes \n");
774 else
775 debug
776 (" - Buffered Address/Control Input: No \n");
777
778 if (dimmInfo->registeredAddrAndControlInputs == 1)
779 debug
780 (" - Registered Address/Control Input: Yes \n");
781 else
782 debug
783 (" - Registered Address/Control Input: No \n");
784
785 if (dimmInfo->onCardPLL == 1)
786 debug
787 (" - On-Card PLL (clock): Yes \n");
788 else
789 debug
790 (" - On-Card PLL (clock): No \n");
791
792 if (dimmInfo->bufferedDQMBinputs == 1)
793 debug
794 (" - Bufferd DQMB Inputs: Yes \n");
795 else
796 debug
797 (" - Bufferd DQMB Inputs: No \n");
798
799 if (dimmInfo->registeredDQMBinputs == 1)
800 debug
801 (" - Registered DQMB Inputs: Yes \n");
802 else
803 debug
804 (" - Registered DQMB Inputs: No \n");
805
806 if (dimmInfo->differentialClockInput == 1)
807 debug
808 (" - Differential Clock Input: Yes \n");
809 else
810 debug
811 (" - Differential Clock Input: No \n");
812
813 if (dimmInfo->redundantRowAddressing == 1)
814 debug
815 (" - redundant Row Addressing: Yes \n");
816 else
817 debug
818 (" - redundant Row Addressing: No \n");
819
820 #endif
821 break;
822 /*------------------------------------------------------------------------------------------------------------------------------*/
823
824 case 22: /* Suported AutoPreCharge */
825 debug("\nModul Attributes (SPD Byte 22): \n");
826 dimmInfo->suportedEarlyRasPreCharge = data[i] & BIT0;
827 dimmInfo->suportedAutoPreCharge =
828 (data[i] & BIT1) >> 1;
829 dimmInfo->suportedPreChargeAll =
830 (data[i] & BIT2) >> 2;
831 dimmInfo->suportedWrite1ReadBurst =
832 (data[i] & BIT3) >> 3;
833 dimmInfo->suported5PercentLowVCC =
834 (data[i] & BIT4) >> 4;
835 dimmInfo->suported5PercentUpperVCC =
836 (data[i] & BIT5) >> 5;
837 #ifdef DEBUG
838 if (dimmInfo->suportedEarlyRasPreCharge == 1)
839 debug
840 (" - Early Ras Precharge: Yes \n");
841 else
842 debug
843 (" - Early Ras Precharge: No \n");
844
845 if (dimmInfo->suportedAutoPreCharge == 1)
846 debug
847 (" - AutoPreCharge: Yes \n");
848 else
849 debug
850 (" - AutoPreCharge: No \n");
851
852 if (dimmInfo->suportedPreChargeAll == 1)
853 debug
854 (" - Precharge All: Yes \n");
855 else
856 debug
857 (" - Precharge All: No \n");
858
859 if (dimmInfo->suportedWrite1ReadBurst == 1)
860 debug
861 (" - Write 1/ReadBurst: Yes \n");
862 else
863 debug
864 (" - Write 1/ReadBurst: No \n");
865
866 if (dimmInfo->suported5PercentLowVCC == 1)
867 debug
868 (" - lower VCC tolerance: 5 Percent \n");
869 else
870 debug
871 (" - lower VCC tolerance: 10 Percent \n");
872
873 if (dimmInfo->suported5PercentUpperVCC == 1)
874 debug
875 (" - upper VCC tolerance: 5 Percent \n");
876 else
877 debug
878 (" - upper VCC tolerance: 10 Percent \n");
879
880 #endif
881 break;
882 /*------------------------------------------------------------------------------------------------------------------------------*/
883
884 case 23: /* Minimum Cycle Time At Maximum Cas Latancy Minus 1 (2nd highest CL) */
885 shift = (dimmInfo->memoryType == DDR) ? 4 : 2;
886 mult = (dimmInfo->memoryType == DDR) ? 10 : 25;
887 maskLeftOfPoint =
888 (dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc;
889 maskRightOfPoint =
890 (dimmInfo->memoryType == DDR) ? 0xf : 0x03;
891 leftOfPoint = (data[i] & maskLeftOfPoint) >> shift;
892 rightOfPoint = (data[i] & maskRightOfPoint) * mult;
893 dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus1_LoP =
894 leftOfPoint;
895 dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus1_RoP =
896 rightOfPoint;
897 debug("Minimum Cycle Time At 2nd highest CasLatancy (0 = Not supported): %d.%d [ns]\n", leftOfPoint, rightOfPoint); /*dimmInfo->minimumCycleTimeAtMaxCasLatancy */
898 break;
899 /*------------------------------------------------------------------------------------------------------------------------------*/
900
901 case 24: /* Clock To Data Out 2nd highest Cas Latency Value */
902 div = (dimmInfo->memoryType == DDR) ? 100 : 10;
903 time_tmp =
904 (((data[i] & 0xf0) >> 4) * 10) +
905 ((data[i] & 0x0f));
906 leftOfPoint = time_tmp / div;
907 rightOfPoint = time_tmp % div;
908 dimmInfo->clockToDataOutMinus1_LoP = leftOfPoint;
909 dimmInfo->clockToDataOutMinus1_RoP = rightOfPoint;
910 debug
911 ("Clock To Data Out (2nd CL value): %d.%2d [ns]\n",
912 leftOfPoint, rightOfPoint);
913 break;
914 /*------------------------------------------------------------------------------------------------------------------------------*/
915
916 case 25: /* Minimum Cycle Time At Maximum Cas Latancy Minus 2 (3rd highest CL) */
917 shift = (dimmInfo->memoryType == DDR) ? 4 : 2;
918 mult = (dimmInfo->memoryType == DDR) ? 10 : 25;
919 maskLeftOfPoint =
920 (dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc;
921 maskRightOfPoint =
922 (dimmInfo->memoryType == DDR) ? 0xf : 0x03;
923 leftOfPoint = (data[i] & maskLeftOfPoint) >> shift;
924 rightOfPoint = (data[i] & maskRightOfPoint) * mult;
925 dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus2_LoP =
926 leftOfPoint;
927 dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus2_RoP =
928 rightOfPoint;
929 debug("Minimum Cycle Time At 3rd highest CasLatancy (0 = Not supported): %d.%d [ns]\n", leftOfPoint, rightOfPoint); /*dimmInfo->minimumCycleTimeAtMaxCasLatancy */
930 break;
931 /*------------------------------------------------------------------------------------------------------------------------------*/
932
933 case 26: /* Clock To Data Out 3rd highest Cas Latency Value */
934 div = (dimmInfo->memoryType == DDR) ? 100 : 10;
935 time_tmp =
936 (((data[i] & 0xf0) >> 4) * 10) +
937 ((data[i] & 0x0f));
938 leftOfPoint = time_tmp / div;
939 rightOfPoint = time_tmp % div;
940 dimmInfo->clockToDataOutMinus2_LoP = leftOfPoint;
941 dimmInfo->clockToDataOutMinus2_RoP = rightOfPoint;
942 debug
943 ("Clock To Data Out (3rd CL value): %d.%2d [ns]\n",
944 leftOfPoint, rightOfPoint);
945 break;
946 /*------------------------------------------------------------------------------------------------------------------------------*/
947
948 case 27: /* Minimum Row Precharge Time */
949 shift = (dimmInfo->memoryType == DDR) ? 2 : 0;
950 maskLeftOfPoint =
951 (dimmInfo->memoryType == DDR) ? 0xfc : 0xff;
952 maskRightOfPoint =
953 (dimmInfo->memoryType == DDR) ? 0x03 : 0x00;
954 leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift);
955 rightOfPoint = (data[i] & maskRightOfPoint) * 25;
956
957 dimmInfo->minRowPrechargeTime = ((leftOfPoint * 100) + rightOfPoint); /* measured in n times 10ps Intervals */
958 trp_clocks =
959 (dimmInfo->minRowPrechargeTime +
960 (tmemclk - 1)) / tmemclk;
961 debug
962 ("*** 1 clock cycle = %ld 10ps intervalls = %ld.%ld ns****\n",
963 tmemclk, tmemclk / 100, tmemclk % 100);
964 debug
965 ("Minimum Row Precharge Time [ns]: %d.%2d = in Clk cycles %d\n",
966 leftOfPoint, rightOfPoint, trp_clocks);
967 break;
968 /*------------------------------------------------------------------------------------------------------------------------------*/
969
970 case 28: /* Minimum Row Active to Row Active Time */
971 shift = (dimmInfo->memoryType == DDR) ? 2 : 0;
972 maskLeftOfPoint =
973 (dimmInfo->memoryType == DDR) ? 0xfc : 0xff;
974 maskRightOfPoint =
975 (dimmInfo->memoryType == DDR) ? 0x03 : 0x00;
976 leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift);
977 rightOfPoint = (data[i] & maskRightOfPoint) * 25;
978
979 dimmInfo->minRowActiveRowActiveDelay = ((leftOfPoint * 100) + rightOfPoint); /* measured in 100ns Intervals */
980 debug
981 ("Minimum Row Active -To- Row Active Delay [ns]: %d.%2d = in Clk cycles %d\n",
982 leftOfPoint, rightOfPoint, trp_clocks);
983 break;
984 /*------------------------------------------------------------------------------------------------------------------------------*/
985
986 case 29: /* Minimum Ras-To-Cas Delay */
987 shift = (dimmInfo->memoryType == DDR) ? 2 : 0;
988 maskLeftOfPoint =
989 (dimmInfo->memoryType == DDR) ? 0xfc : 0xff;
990 maskRightOfPoint =
991 (dimmInfo->memoryType == DDR) ? 0x03 : 0x00;
992 leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift);
993 rightOfPoint = (data[i] & maskRightOfPoint) * 25;
994
995 dimmInfo->minRowActiveRowActiveDelay = ((leftOfPoint * 100) + rightOfPoint); /* measured in 100ns Intervals */
996 debug
997 ("Minimum Ras-To-Cas Delay [ns]: %d.%2d = in Clk cycles %d\n",
998 leftOfPoint, rightOfPoint, trp_clocks);
999 break;
1000 /*------------------------------------------------------------------------------------------------------------------------------*/
1001
1002 case 30: /* Minimum Ras Pulse Width */
1003 dimmInfo->minRasPulseWidth = data[i];
1004 tras_clocks =
1005 (NSto10PS (data[i]) +
1006 (tmemclk - 1)) / tmemclk;
1007 debug
1008 ("Minimum Ras Pulse Width [ns]: %d = in Clk cycles %d\n",
1009 dimmInfo->minRasPulseWidth, tras_clocks);
1010
1011 break;
1012 /*------------------------------------------------------------------------------------------------------------------------------*/
1013
1014 case 31: /* Module Bank Density */
1015 dimmInfo->moduleBankDensity = data[i];
1016 debug
1017 ("Module Bank Density: %d\n",
1018 dimmInfo->moduleBankDensity);
1019 #ifdef DEBUG
1020 debug
1021 ("*** Offered Densities (more than 1 = Multisize-Module): ");
1022 {
1023 if (dimmInfo->moduleBankDensity & 1)
1024 debug("4MB, ");
1025 if (dimmInfo->moduleBankDensity & 2)
1026 debug("8MB, ");
1027 if (dimmInfo->moduleBankDensity & 4)
1028 debug("16MB, ");
1029 if (dimmInfo->moduleBankDensity & 8)
1030 debug("32MB, ");
1031 if (dimmInfo->moduleBankDensity & 16)
1032 debug("64MB, ");
1033 if (dimmInfo->moduleBankDensity & 32)
1034 debug("128MB, ");
1035 if ((dimmInfo->moduleBankDensity & 64)
1036 || (dimmInfo->moduleBankDensity & 128)) {
1037 debug("ERROR, ");
1038 hang ();
1039 }
1040 }
1041 debug("\n");
1042 #endif
1043 break;
1044 /*------------------------------------------------------------------------------------------------------------------------------*/
1045
1046 case 32: /* Address And Command Setup Time (measured in ns/1000) */
1047 sign = 1;
1048 switch (dimmInfo->memoryType) {
1049 case DDR:
1050 time_tmp =
1051 (((data[i] & 0xf0) >> 4) * 10) +
1052 ((data[i] & 0x0f));
1053 leftOfPoint = time_tmp / 100;
1054 rightOfPoint = time_tmp % 100;
1055 break;
1056 case SDRAM:
1057 leftOfPoint = (data[i] & 0xf0) >> 4;
1058 if (leftOfPoint > 7) {
1059 leftOfPoint = data[i] & 0x70 >> 4;
1060 sign = -1;
1061 }
1062 rightOfPoint = (data[i] & 0x0f);
1063 break;
1064 }
1065 dimmInfo->addrAndCommandSetupTime =
1066 (leftOfPoint * 100 + rightOfPoint) * sign;
1067 debug
1068 ("Address And Command Setup Time [ns]: %d.%d\n",
1069 sign * leftOfPoint, rightOfPoint);
1070 break;
1071 /*------------------------------------------------------------------------------------------------------------------------------*/
1072
1073 case 33: /* Address And Command Hold Time */
1074 sign = 1;
1075 switch (dimmInfo->memoryType) {
1076 case DDR:
1077 time_tmp =
1078 (((data[i] & 0xf0) >> 4) * 10) +
1079 ((data[i] & 0x0f));
1080 leftOfPoint = time_tmp / 100;
1081 rightOfPoint = time_tmp % 100;
1082 break;
1083 case SDRAM:
1084 leftOfPoint = (data[i] & 0xf0) >> 4;
1085 if (leftOfPoint > 7) {
1086 leftOfPoint = data[i] & 0x70 >> 4;
1087 sign = -1;
1088 }
1089 rightOfPoint = (data[i] & 0x0f);
1090 break;
1091 }
1092 dimmInfo->addrAndCommandHoldTime =
1093 (leftOfPoint * 100 + rightOfPoint) * sign;
1094 debug
1095 ("Address And Command Hold Time [ns]: %d.%d\n",
1096 sign * leftOfPoint, rightOfPoint);
1097 break;
1098 /*------------------------------------------------------------------------------------------------------------------------------*/
1099
1100 case 34: /* Data Input Setup Time */
1101 sign = 1;
1102 switch (dimmInfo->memoryType) {
1103 case DDR:
1104 time_tmp =
1105 (((data[i] & 0xf0) >> 4) * 10) +
1106 ((data[i] & 0x0f));
1107 leftOfPoint = time_tmp / 100;
1108 rightOfPoint = time_tmp % 100;
1109 break;
1110 case SDRAM:
1111 leftOfPoint = (data[i] & 0xf0) >> 4;
1112 if (leftOfPoint > 7) {
1113 leftOfPoint = data[i] & 0x70 >> 4;
1114 sign = -1;
1115 }
1116 rightOfPoint = (data[i] & 0x0f);
1117 break;
1118 }
1119 dimmInfo->dataInputSetupTime =
1120 (leftOfPoint * 100 + rightOfPoint) * sign;
1121 debug
1122 ("Data Input Setup Time [ns]: %d.%d\n",
1123 sign * leftOfPoint, rightOfPoint);
1124 break;
1125 /*------------------------------------------------------------------------------------------------------------------------------*/
1126
1127 case 35: /* Data Input Hold Time */
1128 sign = 1;
1129 switch (dimmInfo->memoryType) {
1130 case DDR:
1131 time_tmp =
1132 (((data[i] & 0xf0) >> 4) * 10) +
1133 ((data[i] & 0x0f));
1134 leftOfPoint = time_tmp / 100;
1135 rightOfPoint = time_tmp % 100;
1136 break;
1137 case SDRAM:
1138 leftOfPoint = (data[i] & 0xf0) >> 4;
1139 if (leftOfPoint > 7) {
1140 leftOfPoint = data[i] & 0x70 >> 4;
1141 sign = -1;
1142 }
1143 rightOfPoint = (data[i] & 0x0f);
1144 break;
1145 }
1146 dimmInfo->dataInputHoldTime =
1147 (leftOfPoint * 100 + rightOfPoint) * sign;
1148 debug
1149 ("Data Input Hold Time [ns]: %d.%d\n\n",
1150 sign * leftOfPoint, rightOfPoint);
1151 break;
1152 /*------------------------------------------------------------------------------------------------------------------------------*/
1153 }
1154 }
1155 /* calculating the sdram density */
1156 for (i = 0;
1157 i < dimmInfo->numOfRowAddresses + dimmInfo->numOfColAddresses;
1158 i++) {
1159 density = density * 2;
1160 }
1161 dimmInfo->deviceDensity = density * dimmInfo->numOfBanksOnEachDevice *
1162 dimmInfo->sdramWidth;
1163 dimmInfo->numberOfDevices =
1164 (dimmInfo->dataWidth / dimmInfo->sdramWidth) *
1165 dimmInfo->numOfModuleBanks;
1166 if ((dimmInfo->errorCheckType == 0x1)
1167 || (dimmInfo->errorCheckType == 0x2)
1168 || (dimmInfo->errorCheckType == 0x3)) {
1169 dimmInfo->size =
1170 (dimmInfo->deviceDensity / 8) *
1171 (dimmInfo->numberOfDevices -
1172 /* ronen on the 1G dimm we get wrong value. (was devicesForErrCheck) */
1173 dimmInfo->numberOfDevices / 8);
1174 } else {
1175 dimmInfo->size =
1176 (dimmInfo->deviceDensity / 8) *
1177 dimmInfo->numberOfDevices;
1178 }
1179
1180 /* compute the module DRB size */
1181 tmp = (1 <<
1182 (dimmInfo->numOfRowAddresses + dimmInfo->numOfColAddresses));
1183 tmp *= dimmInfo->numOfModuleBanks;
1184 tmp *= dimmInfo->sdramWidth;
1185 tmp = tmp >> 24; /* div by 0x4000000 (64M) */
1186 dimmInfo->drb_size = (uchar) tmp;
1187 debug("Module DRB size (n*64Mbit): %d\n", dimmInfo->drb_size);
1188
1189 /* try a CAS latency of 3 first... */
1190
1191 /* bit 1 is CL2, bit 2 is CL3 */
1192 supp_cal = (dimmInfo->suportedCasLatencies & 0x6) >> 1;
1193
1194 cal_val = 0;
1195 if (supp_cal & 3) {
1196 if (NS10to10PS (data[9]) <= tmemclk)
1197 cal_val = 3;
1198 }
1199
1200 /* then 2... */
1201 if (supp_cal & 2) {
1202 if (NS10to10PS (data[23]) <= tmemclk)
1203 cal_val = 2;
1204 }
1205
1206 debug("cal_val = %d\n", cal_val);
1207
1208 /* bummer, did't work... */
1209 if (cal_val == 0) {
1210 debug("Couldn't find a good CAS latency\n");
1211 hang ();
1212 return 0;
1213 }
1214
1215 return true;
1216
1217 #endif
1218 }
1219
1220 /* sets up the GT properly with information passed in */
1221 int setup_sdram (AUX_MEM_DIMM_INFO * info)
1222 {
1223 ulong tmp, check;
1224 ulong tmp_sdram_mode = 0; /* 0x141c */
1225 ulong tmp_dunit_control_low = 0; /* 0x1404 */
1226 int i;
1227
1228 /* added 8/21/2003 P. Marchese */
1229 unsigned int sdram_config_reg;
1230
1231 /* added 10/10/2003 P. Marchese */
1232 ulong sdram_chip_size;
1233
1234 /* sanity checking */
1235 if (!info->numOfModuleBanks) {
1236 printf ("setup_sdram called with 0 banks\n");
1237 return 1;
1238 }
1239
1240 /* delay line */
1241 set_dfcdlInit (); /* may be its not needed */
1242 debug("Delay line set done\n");
1243
1244 /* set SDRAM mode NOP */ /* To_do check it */
1245 GT_REG_WRITE (SDRAM_OPERATION, 0x5);
1246 while (GTREGREAD (SDRAM_OPERATION) != 0) {
1247 debug
1248 ("\n*** SDRAM_OPERATION 1418: Module still busy ... please wait... ***\n");
1249 }
1250
1251 /* SDRAM configuration */
1252 /* added 8/21/2003 P. Marchese */
1253 /* code allows usage of registered DIMMS */
1254
1255 /* figure out the memory refresh internal */
1256 switch (info->RefreshInterval) {
1257 case 0x0:
1258 case 0x80: /* refresh period is 15.625 usec */
1259 sdram_config_reg =
1260 (unsigned int) (((float) 15.625 * (float) CONFIG_SYS_BUS_CLK)
1261 / (float) 1000000.0);
1262 break;
1263 case 0x1:
1264 case 0x81: /* refresh period is 3.9 usec */
1265 sdram_config_reg =
1266 (unsigned int) (((float) 3.9 * (float) CONFIG_SYS_BUS_CLK) /
1267 (float) 1000000.0);
1268 break;
1269 case 0x2:
1270 case 0x82: /* refresh period is 7.8 usec */
1271 sdram_config_reg =
1272 (unsigned int) (((float) 7.8 * (float) CONFIG_SYS_BUS_CLK) /
1273 (float) 1000000.0);
1274 break;
1275 case 0x3:
1276 case 0x83: /* refresh period is 31.3 usec */
1277 sdram_config_reg =
1278 (unsigned int) (((float) 31.3 * (float) CONFIG_SYS_BUS_CLK) /
1279 (float) 1000000.0);
1280 break;
1281 case 0x4:
1282 case 0x84: /* refresh period is 62.5 usec */
1283 sdram_config_reg =
1284 (unsigned int) (((float) 62.5 * (float) CONFIG_SYS_BUS_CLK) /
1285 (float) 1000000.0);
1286 break;
1287 case 0x5:
1288 case 0x85: /* refresh period is 125 usec */
1289 sdram_config_reg =
1290 (unsigned int) (((float) 125 * (float) CONFIG_SYS_BUS_CLK) /
1291 (float) 1000000.0);
1292 break;
1293 default: /* refresh period undefined */
1294 printf ("DRAM refresh period is unknown!\n");
1295 printf ("Aborting DRAM setup with an error\n");
1296 hang ();
1297 break;
1298 }
1299 debug("calculated refresh interval %0x\n", sdram_config_reg);
1300
1301 /* make sure the refresh value is only 14 bits */
1302 if (sdram_config_reg > 0x1fff)
1303 sdram_config_reg = 0x1fff;
1304 debug("adjusted refresh interval %0x\n", sdram_config_reg);
1305
1306 /* we want physical bank interleaving and */
1307 /* virtual bank interleaving enabled so do nothing */
1308 /* since these bits need to be zero to enable the interleaving */
1309
1310 /* registered DRAM ? */
1311 if (info->registeredAddrAndControlInputs == 1) {
1312 /* it's registered DRAM, so set the reg. DRAM bit */
1313 sdram_config_reg = sdram_config_reg | BIT17;
1314 debug("Enabling registered DRAM bit\n");
1315 }
1316 /* turn on DRAM ECC? */
1317 #ifdef CONFIG_MV64360_ECC
1318 if (info->errorCheckType == 0x2) {
1319 /* DRAM has ECC, so turn it on */
1320 sdram_config_reg = sdram_config_reg | BIT18;
1321 debug("Enabling ECC\n");
1322 }
1323 #endif
1324 /* set the data DQS pin configuration */
1325 switch (info->sdramWidth) {
1326 case 0x4: /* memory is x4 */
1327 sdram_config_reg = sdram_config_reg | BIT20 | BIT21;
1328 debug("Data DQS pins set for 16 pins\n");
1329 break;
1330 case 0x8: /* memory is x8 or x16 */
1331 case 0x10:
1332 sdram_config_reg = sdram_config_reg | BIT21;
1333 debug("Data DQS pins set for 8 pins\n");
1334 break;
1335 case 0x20: /* memory is x32 */
1336 /* both bits are cleared for x32 so nothing to do */
1337 debug("Data DQS pins set for 2 pins\n");
1338 break;
1339 default: /* memory width unsupported */
1340 printf ("DRAM chip width is unknown!\n");
1341 printf ("Aborting DRAM setup with an error\n");
1342 hang ();
1343 break;
1344 }
1345
1346 /* perform read buffer assignments */
1347 /* we are going to use the Power-up defaults */
1348 /* bit 26 = CPU = buffer 1 */
1349 /* bit 27 = PCI bus #0 = buffer 0 */
1350 /* bit 28 = PCI bus #1 = buffer 0 */
1351 /* bit 29 = MPSC = buffer 0 */
1352 /* bit 30 = IDMA = buffer 0 */
1353 /* bit 31 = Gigabit = buffer 0 */
1354 sdram_config_reg = sdram_config_reg | BIT26;
1355 /* sdram_config_reg = sdram_config_reg | 0x58000000; */
1356 /* sdram_config_reg = sdram_config_reg & 0xffffff00; */
1357
1358 /* write the value into the SDRAM configuration register */
1359 GT_REG_WRITE (SDRAM_CONFIG, sdram_config_reg);
1360 debug
1361 ("OOOOOOOOO sdram_conf 0x1400: %08x\n",
1362 GTREGREAD (SDRAM_CONFIG));
1363
1364 /* SDRAM open pages control keep open as much as I can */
1365 GT_REG_WRITE (SDRAM_OPEN_PAGES_CONTROL, 0x0);
1366 debug
1367 ("sdram_open_pages_controll 0x1414: %08x\n",
1368 GTREGREAD (SDRAM_OPEN_PAGES_CONTROL));
1369
1370 /* SDRAM D_UNIT_CONTROL_LOW 0x1404 */
1371 tmp = (GTREGREAD (D_UNIT_CONTROL_LOW) & 0x01); /* Clock Domain Sync from power on reset */
1372 if (tmp == 0)
1373 debug("Core Signals are sync (by HW-Setting)!!!\n");
1374 else
1375 debug
1376 ("Core Signals syncs. are bypassed (by HW-Setting)!!!\n");
1377
1378 /* SDRAM set CAS Latency according to SPD information */
1379 switch (info->memoryType) {
1380 case SDRAM:
1381 printf ("### SD-RAM not supported !!!\n");
1382 printf ("Aborting!!!\n");
1383 hang ();
1384 /* ToDo fill SD-RAM if needed !!!!! */
1385 break;
1386 /* Calculate the settings for SDRAM mode and Dunit control low registers */
1387 /* Values set according to technical bulletin TB-92 rev. c */
1388 case DDR:
1389 debug("### SET-CL for DDR-RAM\n");
1390 switch (info->maxClSupported_DDR) {
1391 case DDR_CL_3:
1392 tmp_sdram_mode = 0x32; /* CL=3 Burstlength = 4 */
1393 if (tmp == 1) { /* clocks sync */
1394 if (info->registeredAddrAndControlInputs == 1) /* registerd DDR SDRAM? */
1395 tmp_dunit_control_low = 0x05110051;
1396 else
1397 tmp_dunit_control_low = 0x24110051;
1398 debug
1399 ("Max. CL is 3 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
1400 tmp_sdram_mode, tmp_dunit_control_low);
1401 } else { /* clk sync. bypassed */
1402
1403 if (info->registeredAddrAndControlInputs == 1) /* registerd DDR SDRAM? */
1404 tmp_dunit_control_low = 0x2C1107F2;
1405 else
1406 tmp_dunit_control_low = 0x3C1107d2;
1407 debug
1408 ("Max. CL is 3 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
1409 tmp_sdram_mode, tmp_dunit_control_low);
1410 }
1411 break;
1412 case DDR_CL_2_5:
1413 tmp_sdram_mode = 0x62; /* CL=2.5 Burstlength = 4 */
1414 if (tmp == 1) { /* clocks sync */
1415 if (info->registeredAddrAndControlInputs == 1) /* registerd DDR SDRAM? */
1416 tmp_dunit_control_low = 0x25110051;
1417 else
1418 tmp_dunit_control_low = 0x24110051;
1419 debug
1420 ("Max. CL is 2.5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
1421 tmp_sdram_mode, tmp_dunit_control_low);
1422 } else { /* clk sync. bypassed */
1423
1424 if (info->registeredAddrAndControlInputs == 1) { /* registerd DDR SDRAM? */
1425 printf ("CL = 2.5, Clock Unsync'ed, Dunit Control Low register setting undefined\n");
1426 printf ("Aborting!!!\n");
1427 hang ();
1428 } else
1429 tmp_dunit_control_low = 0x1B1107d2;
1430 debug
1431 ("Max. CL is 2.5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
1432 tmp_sdram_mode, tmp_dunit_control_low);
1433 }
1434 break;
1435 case DDR_CL_2:
1436 tmp_sdram_mode = 0x22; /* CL=2 Burstlength = 4 */
1437 if (tmp == 1) { /* clocks sync */
1438 if (info->registeredAddrAndControlInputs == 1) /* registerd DDR SDRAM? */
1439 tmp_dunit_control_low = 0x04110051;
1440 else
1441 tmp_dunit_control_low = 0x03110051;
1442 debug
1443 ("Max. CL is 2 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
1444 tmp_sdram_mode, tmp_dunit_control_low);
1445 } else { /* clk sync. bypassed */
1446
1447 if (info->registeredAddrAndControlInputs == 1) { /* registerd DDR SDRAM? */
1448 printf ("CL = 2, Clock Unsync'ed, Dunit Control Low register setting undefined\n");
1449 printf ("Aborting!!!\n");
1450 hang ();
1451 } else
1452 tmp_dunit_control_low = 0x3B1107d2;
1453 debug
1454 ("Max. CL is 2 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
1455 tmp_sdram_mode, tmp_dunit_control_low);
1456 }
1457 break;
1458 case DDR_CL_1_5:
1459 tmp_sdram_mode = 0x52; /* CL=1.5 Burstlength = 4 */
1460 if (tmp == 1) { /* clocks sync */
1461 if (info->registeredAddrAndControlInputs == 1) /* registerd DDR SDRAM? */
1462 tmp_dunit_control_low = 0x24110051;
1463 else
1464 tmp_dunit_control_low = 0x23110051;
1465 debug
1466 ("Max. CL is 1.5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
1467 tmp_sdram_mode, tmp_dunit_control_low);
1468 } else { /* clk sync. bypassed */
1469
1470 if (info->registeredAddrAndControlInputs == 1) { /* registerd DDR SDRAM? */
1471 printf ("CL = 1.5, Clock Unsync'ed, Dunit Control Low register setting undefined\n");
1472 printf ("Aborting!!!\n");
1473 hang ();
1474 } else
1475 tmp_dunit_control_low = 0x1A1107d2;
1476 debug
1477 ("Max. CL is 1.5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
1478 tmp_sdram_mode, tmp_dunit_control_low);
1479 }
1480 break;
1481
1482 default:
1483 printf ("Max. CL is out of range %d\n",
1484 info->maxClSupported_DDR);
1485 hang ();
1486 break;
1487 } /* end DDR switch */
1488 break;
1489 } /* end CL switch */
1490
1491 /* Write results of CL detection procedure */
1492 /* set SDRAM mode reg. 0x141c */
1493 GT_REG_WRITE (SDRAM_MODE, tmp_sdram_mode);
1494
1495 /* set SDRAM mode SetCommand 0x1418 */
1496 GT_REG_WRITE (SDRAM_OPERATION, 0x3);
1497 while (GTREGREAD (SDRAM_OPERATION) != 0) {
1498 debug
1499 ("\n*** SDRAM_OPERATION 0x1418 after SDRAM_MODE: Module still busy ... please wait... ***\n");
1500 }
1501
1502 /* SDRAM D_UNIT_CONTROL_LOW 0x1404 */
1503 GT_REG_WRITE (D_UNIT_CONTROL_LOW, tmp_dunit_control_low);
1504
1505 /* set SDRAM mode SetCommand 0x1418 */
1506 GT_REG_WRITE (SDRAM_OPERATION, 0x3);
1507 while (GTREGREAD (SDRAM_OPERATION) != 0) {
1508 debug
1509 ("\n*** SDRAM_OPERATION 1418 after D_UNIT_CONTROL_LOW: Module still busy ... please wait... ***\n");
1510 }
1511
1512 /*------------------------------------------------------------------------------ */
1513
1514 /* bank parameters */
1515 /* SDRAM address decode register 0x1410 */
1516 /* program this with the default value */
1517 tmp = 0x02; /* power-up default address select decoding value */
1518
1519 debug("drb_size (n*64Mbit): %d\n", info->drb_size);
1520 /* figure out the DRAM chip size */
1521 sdram_chip_size =
1522 (1 << (info->numOfRowAddresses + info->numOfColAddresses));
1523 sdram_chip_size *= info->sdramWidth;
1524 sdram_chip_size *= 4;
1525 debug("computed sdram chip size is %#lx\n", sdram_chip_size);
1526 /* divide sdram chip size by 64 Mbits */
1527 sdram_chip_size = sdram_chip_size / 0x4000000;
1528 switch (sdram_chip_size) {
1529 case 1: /* 64 Mbit */
1530 case 2: /* 128 Mbit */
1531 debug("RAM-Device_size 64Mbit or 128Mbit)\n");
1532 tmp |= (0x00 << 4);
1533 break;
1534 case 4: /* 256 Mbit */
1535 case 8: /* 512 Mbit */
1536 debug("RAM-Device_size 256Mbit or 512Mbit)\n");
1537 tmp |= (0x01 << 4);
1538 break;
1539 case 16: /* 1 Gbit */
1540 case 32: /* 2 Gbit */
1541 debug("RAM-Device_size 1Gbit or 2Gbit)\n");
1542 tmp |= (0x02 << 4);
1543 break;
1544 default:
1545 printf ("Error in dram size calculation\n");
1546 printf ("RAM-Device_size is unsupported\n");
1547 hang ();
1548 }
1549
1550 /* SDRAM address control */
1551 GT_REG_WRITE (SDRAM_ADDR_CONTROL, tmp);
1552 debug
1553 ("setting up sdram address control (0x1410) with: %08lx \n",
1554 tmp);
1555
1556 /* ------------------------------------------------------------------------------ */
1557 /* same settings for registerd & non-registerd DDR SDRAM */
1558 debug
1559 ("setting up sdram_timing_control_low (0x1408) with: %08x \n",
1560 0x11511220);
1561 GT_REG_WRITE (SDRAM_TIMING_CONTROL_LOW, 0x11511220);
1562
1563
1564 /* ------------------------------------------------------------------------------ */
1565
1566 /* SDRAM configuration */
1567 tmp = GTREGREAD (SDRAM_CONFIG);
1568
1569 if (info->registeredAddrAndControlInputs
1570 || info->registeredDQMBinputs) {
1571 tmp |= (1 << 17);
1572 debug
1573 ("SPD says: registered Addr. and Cont.: %d; registered DQMBinputs: %d\n",
1574 info->registeredAddrAndControlInputs,
1575 info->registeredDQMBinputs);
1576 }
1577
1578 /* Use buffer 1 to return read data to the CPU
1579 * Page 426 MV64360 */
1580 tmp |= (1 << 26);
1581 debug
1582 ("Before Buffer assignment - sdram_conf (0x1400): %08x\n",
1583 GTREGREAD (SDRAM_CONFIG));
1584 debug
1585 ("After Buffer assignment - sdram_conf (0x1400): %08x\n",
1586 GTREGREAD (SDRAM_CONFIG));
1587
1588 /* SDRAM timing To_do: */
1589 /* ------------------------------------------------------------------------------ */
1590
1591 debug
1592 ("setting up sdram_timing_control_high (0x140c) with: %08x \n",
1593 0x9);
1594 GT_REG_WRITE (SDRAM_TIMING_CONTROL_HIGH, 0x9);
1595
1596 debug
1597 ("setting up sdram address pads control (0x14c0) with: %08x \n",
1598 0x7d5014a);
1599 GT_REG_WRITE (SDRAM_ADDR_CTRL_PADS_CALIBRATION, 0x7d5014a);
1600
1601 debug
1602 ("setting up sdram data pads control (0x14c4) with: %08x \n",
1603 0x7d5014a);
1604 GT_REG_WRITE (SDRAM_DATA_PADS_CALIBRATION, 0x7d5014a);
1605
1606 /* ------------------------------------------------------------------------------ */
1607
1608 /* set the SDRAM configuration for each bank */
1609
1610 /* for (i = info->slot * 2; i < ((info->slot * 2) + info->banks); i++) */
1611 {
1612 i = info->slot;
1613 debug
1614 ("\n*** Running a MRS cycle for bank %d ***\n", i);
1615
1616 /* map the bank */
1617 memory_map_bank (i, 0, GB / 4);
1618
1619 /* set SDRAM mode */ /* To_do check it */
1620 GT_REG_WRITE (SDRAM_OPERATION, 0x3);
1621 check = GTREGREAD (SDRAM_OPERATION);
1622 debug
1623 ("\n*** SDRAM_OPERATION 1418 (0 = Normal Operation) = %08lx ***\n",
1624 check);
1625
1626
1627 /* switch back to normal operation mode */
1628 GT_REG_WRITE (SDRAM_OPERATION, 0);
1629 check = GTREGREAD (SDRAM_OPERATION);
1630 debug
1631 ("\n*** SDRAM_OPERATION 1418 (0 = Normal Operation) = %08lx ***\n",
1632 check);
1633
1634 /* unmap the bank */
1635 memory_map_bank (i, 0, 0);
1636 }
1637
1638 return 0;
1639
1640 }
1641
1642 /*
1643 * Check memory range for valid RAM. A simple memory test determines
1644 * the actually available RAM size between addresses `base' and
1645 * `base + maxsize'. Some (not all) hardware errors are detected:
1646 * - short between address lines
1647 * - short between data lines
1648 */
1649 long int dram_size (long int *base, long int maxsize)
1650 {
1651 volatile long int *addr, *b = base;
1652 long int cnt, val, save1, save2;
1653
1654 #define STARTVAL (1<<20) /* start test at 1M */
1655 for (cnt = STARTVAL / sizeof (long); cnt < maxsize / sizeof (long);
1656 cnt <<= 1) {
1657 addr = base + cnt; /* pointer arith! */
1658
1659 save1 = *addr; /* save contents of addr */
1660 save2 = *b; /* save contents of base */
1661
1662 *addr = cnt; /* write cnt to addr */
1663 *b = 0; /* put null at base */
1664
1665 /* check at base address */
1666 if ((*b) != 0) {
1667 *addr = save1; /* restore *addr */
1668 *b = save2; /* restore *b */
1669 return (0);
1670 }
1671 val = *addr; /* read *addr */
1672 val = *addr; /* read *addr */
1673
1674 *addr = save1;
1675 *b = save2;
1676
1677 if (val != cnt) {
1678 debug
1679 ("Found %08x at Address %08x (failure)\n",
1680 (unsigned int) val, (unsigned int) addr);
1681 /* fix boundary condition.. STARTVAL means zero */
1682 if (cnt == STARTVAL / sizeof (long))
1683 cnt = 0;
1684 return (cnt * sizeof (long));
1685 }
1686 }
1687 return maxsize;
1688 }
1689
1690 /* ------------------------------------------------------------------------- */
1691
1692 /* ppcboot interface function to SDRAM init - this is where all the
1693 * controlling logic happens */
1694 phys_size_t initdram (int board_type)
1695 {
1696 int checkbank[4] = {[0 ... 3] = 0 };
1697 ulong realsize, total;
1698 AUX_MEM_DIMM_INFO dimmInfo1;
1699 AUX_MEM_DIMM_INFO dimmInfo2;
1700 int nhr, bank_no;
1701 ulong dest, memSpaceAttr;
1702
1703 /* first, use the SPD to get info about the SDRAM/ DDRRAM */
1704
1705 /* check the NHR bit and skip mem init if it's already done */
1706 nhr = get_hid0 () & (1 << 16);
1707
1708 if (nhr) {
1709 printf ("Skipping SD- DDRRAM setup due to NHR bit being set\n");
1710 } else {
1711 /* DIMM0 */
1712 check_dimm (0, &dimmInfo1);
1713
1714 /* DIMM1 */
1715 check_dimm (1, &dimmInfo2);
1716
1717 memory_map_bank (0, 0, 0);
1718 memory_map_bank (1, 0, 0);
1719 memory_map_bank (2, 0, 0);
1720 memory_map_bank (3, 0, 0);
1721
1722 /* ronen check correct set of DIMMS */
1723 if (dimmInfo1.numOfModuleBanks && dimmInfo2.numOfModuleBanks) {
1724 if (dimmInfo1.errorCheckType !=
1725 dimmInfo2.errorCheckType)
1726 printf ("***WARNNING***!!!! different ECC support of the DIMMS\n");
1727 if (dimmInfo1.maxClSupported_DDR !=
1728 dimmInfo2.maxClSupported_DDR)
1729 printf ("***WARNNING***!!!! different CAL setting of the DIMMS\n");
1730 if (dimmInfo1.registeredAddrAndControlInputs !=
1731 dimmInfo2.registeredAddrAndControlInputs)
1732 printf ("***WARNNING***!!!! different Registration setting of the DIMMS\n");
1733 }
1734
1735 if (dimmInfo1.numOfModuleBanks && setup_sdram (&dimmInfo1)) {
1736 printf ("Setup for DIMM1 failed.\n");
1737 }
1738
1739 if (dimmInfo2.numOfModuleBanks && setup_sdram (&dimmInfo2)) {
1740 printf ("Setup for DIMM2 failed.\n");
1741 }
1742
1743 /* set the NHR bit */
1744 set_hid0 (get_hid0 () | (1 << 16));
1745 }
1746 /* next, size the SDRAM banks */
1747
1748 realsize = total = 0;
1749 if (dimmInfo1.numOfModuleBanks > 0) {
1750 checkbank[0] = 1;
1751 }
1752 if (dimmInfo1.numOfModuleBanks > 1) {
1753 checkbank[1] = 1;
1754 }
1755 if (dimmInfo1.numOfModuleBanks > 2)
1756 printf ("Error, SPD claims DIMM1 has >2 banks\n");
1757
1758 printf ("-- DIMM1 has %d banks\n", dimmInfo1.numOfModuleBanks);
1759
1760 if (dimmInfo2.numOfModuleBanks > 0) {
1761 checkbank[2] = 1;
1762 }
1763 if (dimmInfo2.numOfModuleBanks > 1) {
1764 checkbank[3] = 1;
1765 }
1766 if (dimmInfo2.numOfModuleBanks > 2)
1767 printf ("Error, SPD claims DIMM2 has >2 banks\n");
1768
1769 printf ("-- DIMM2 has %d banks\n", dimmInfo2.numOfModuleBanks);
1770
1771 for (bank_no = 0; bank_no < CONFIG_SYS_DRAM_BANKS; bank_no++) {
1772 /* skip over banks that are not populated */
1773 if (!checkbank[bank_no])
1774 continue;
1775
1776 /* ronen - realsize = dram_size((long int *)total, check); */
1777 if (bank_no == 0 || bank_no == 1) {
1778 if (checkbank[1] == 1)
1779 realsize = dimmInfo1.size / 2;
1780 else
1781 realsize = dimmInfo1.size;
1782 }
1783 if (bank_no == 2 || bank_no == 3) {
1784 if (checkbank[3] == 1)
1785 realsize = dimmInfo2.size / 2;
1786 else
1787 realsize = dimmInfo2.size;
1788 }
1789 memory_map_bank (bank_no, total, realsize);
1790
1791 /* ronen - initialize the DRAM for ECC */
1792 #ifdef CONFIG_MV64360_ECC
1793 if ((dimmInfo1.errorCheckType != 0) &&
1794 ((dimmInfo2.errorCheckType != 0)
1795 || (dimmInfo2.numOfModuleBanks == 0))) {
1796 printf ("ECC Initialization of Bank %d:", bank_no);
1797 memSpaceAttr = ((~(BIT0 << bank_no)) & 0xf) << 8;
1798 mvDmaSetMemorySpace (0, 0, memSpaceAttr, total,
1799 realsize);
1800 for (dest = total; dest < total + realsize;
1801 dest += _8M) {
1802 mvDmaTransfer (0, total, dest, _8M,
1803 BIT8 /*DMA_DTL_128BYTES */ |
1804 BIT3 /*DMA_HOLD_SOURCE_ADDR */
1805 |
1806 BIT11
1807 /*DMA_BLOCK_TRANSFER_MODE */ );
1808 while (mvDmaIsChannelActive (0));
1809 }
1810 printf (" PASS\n");
1811 }
1812 #endif
1813
1814 total += realsize;
1815 }
1816
1817 /* ronen- add DRAM conf prints */
1818 switch ((GTREGREAD (0x141c) >> 4) & 0x7) {
1819 case 0x2:
1820 printf ("CAS Latency = 2");
1821 break;
1822 case 0x3:
1823 printf ("CAS Latency = 3");
1824 break;
1825 case 0x5:
1826 printf ("CAS Latency = 1.5");
1827 break;
1828 case 0x6:
1829 printf ("CAS Latency = 2.5");
1830 break;
1831 }
1832 printf (" tRP = %d tRAS = %d tRCD=%d\n",
1833 ((GTREGREAD (0x1408) >> 8) & 0xf) + 1,
1834 ((GTREGREAD (0x1408) >> 20) & 0xf) + 1,
1835 ((GTREGREAD (0x1408) >> 4) & 0xf) + 1);
1836
1837 /* Setup Ethernet DMA Adress window to DRAM Area */
1838 if (total > _256M)
1839 printf ("*** ONLY the first 256MB DRAM memory are used out of the ");
1840 else
1841 printf ("Total SDRAM memory is ");
1842 /* (cause all the 4 BATS are taken) */
1843 return (total);
1844 }
1845
1846
1847 /* ronen- add Idma functions for usage of the ecc dram init. */
1848 /*******************************************************************************
1849 * mvDmaIsChannelActive - Checks if a engine is busy.
1850 ********************************************************************************/
1851 int mvDmaIsChannelActive (int engine)
1852 {
1853 ulong data;
1854
1855 data = GTREGREAD (MV64360_DMA_CHANNEL0_CONTROL + 4 * engine);
1856 if (data & BIT14 /*activity status */ ) {
1857 return 1;
1858 }
1859 return 0;
1860 }
1861
1862 /*******************************************************************************
1863 * mvDmaSetMemorySpace - Set a DMA memory window for the DMA's address decoding
1864 * map.
1865 *******************************************************************************/
1866 int mvDmaSetMemorySpace (ulong memSpace,
1867 ulong memSpaceTarget,
1868 ulong memSpaceAttr, ulong baseAddress, ulong size)
1869 {
1870 ulong temp;
1871
1872 /* The base address must be aligned to the size. */
1873 if (baseAddress % size != 0) {
1874 return 0;
1875 }
1876 if (size >= 0x10000 /*64K */ ) {
1877 size &= 0xffff0000;
1878 baseAddress = (baseAddress & 0xffff0000);
1879 /* Set the new attributes */
1880 GT_REG_WRITE (MV64360_DMA_BASE_ADDR_REG0 + memSpace * 8,
1881 (baseAddress | memSpaceTarget | memSpaceAttr));
1882 GT_REG_WRITE ((MV64360_DMA_SIZE_REG0 + memSpace * 8),
1883 (size - 1) & 0xffff0000);
1884 temp = GTREGREAD (MV64360_DMA_BASE_ADDR_ENABLE_REG);
1885 GT_REG_WRITE (DMA_BASE_ADDR_ENABLE_REG,
1886 (temp & ~(BIT0 << memSpace)));
1887 return 1;
1888 }
1889 return 0;
1890 }
1891
1892
1893 /*******************************************************************************
1894 * mvDmaTransfer - Transfer data from sourceAddr to destAddr on one of the 4
1895 * DMA channels.
1896 ********************************************************************************/
1897 int mvDmaTransfer (int engine, ulong sourceAddr,
1898 ulong destAddr, ulong numOfBytes, ulong command)
1899 {
1900 ulong engOffReg = 0; /* Engine Offset Register */
1901
1902 if (numOfBytes > 0xffff) {
1903 command = command | BIT31 /*DMA_16M_DESCRIPTOR_MODE */ ;
1904 }
1905 command = command | ((command >> 6) & 0x7);
1906 engOffReg = engine * 4;
1907 GT_REG_WRITE (MV64360_DMA_CHANNEL0_BYTE_COUNT + engOffReg,
1908 numOfBytes);
1909 GT_REG_WRITE (MV64360_DMA_CHANNEL0_SOURCE_ADDR + engOffReg,
1910 sourceAddr);
1911 GT_REG_WRITE (MV64360_DMA_CHANNEL0_DESTINATION_ADDR + engOffReg,
1912 destAddr);
1913 command =
1914 command | BIT12 /*DMA_CHANNEL_ENABLE */ | BIT9
1915 /*DMA_NON_CHAIN_MODE */ ;
1916 /* Activate DMA engine By writting to mvDmaControlRegister */
1917 GT_REG_WRITE (MV64360_DMA_CHANNEL0_CONTROL + engOffReg, command);
1918 return 1;
1919 }
1920
1921 /****************************************************************************************
1922 * SDRAM INIT *
1923 * This procedure detect all Sdram types: 64, 128, 256, 512 Mbit, 1Gbit and 2Gb *
1924 * This procedure fits only the Atlantis *
1925 * *
1926 ***************************************************************************************/
1927
1928
1929 /****************************************************************************************
1930 * DFCDL initialize MV643xx Design Considerations *
1931 * *
1932 ***************************************************************************************/
1933 int set_dfcdlInit (void)
1934 {
1935 int i;
1936 unsigned int dfcdl_word = 0x391; /* 0x14f; ronen new dfcdl */
1937
1938 for (i = 0; i < 64; i++) {
1939 GT_REG_WRITE (SRAM_DATA0, dfcdl_word);
1940 /* dfcdl_word += 0x41; - ronen new dfcdl */
1941 }
1942 GT_REG_WRITE (DFCDL_CONFIG0, 0x00300000); /* enable dynamic delay line updating */
1943
1944 return (0);
1945 }