]> git.ipfire.org Git - people/ms/u-boot.git/blob - board/gdsys/p1022/controlcenterd-id.c
lib: tpm: Add command to flush resources
[people/ms/u-boot.git] / board / gdsys / p1022 / controlcenterd-id.c
1 /*
2 * (C) Copyright 2013
3 * Reinhard Pfau, Guntermann & Drunck GmbH, reinhard.pfau@gdsys.cc
4 *
5 * SPDX-License-Identifier: GPL-2.0+
6 */
7
8 /* TODO: some more #ifdef's to avoid unneeded code for stage 1 / stage 2 */
9
10 #ifdef CCDM_ID_DEBUG
11 #define DEBUG
12 #endif
13
14 #include <common.h>
15 #include <malloc.h>
16 #include <fs.h>
17 #include <i2c.h>
18 #include <mmc.h>
19 #include <tpm.h>
20 #include <u-boot/sha1.h>
21 #include <asm/byteorder.h>
22 #include <asm/unaligned.h>
23 #include <pca9698.h>
24
25 #undef CCDM_FIRST_STAGE
26 #undef CCDM_SECOND_STAGE
27 #undef CCDM_AUTO_FIRST_STAGE
28
29 #ifdef CONFIG_DEVELOP
30 #define CCDM_DEVELOP
31 #endif
32
33 #ifdef CONFIG_TRAILBLAZER
34 #define CCDM_FIRST_STAGE
35 #undef CCDM_SECOND_STAGE
36 #else
37 #undef CCDM_FIRST_STAGE
38 #define CCDM_SECOND_STAGE
39 #endif
40
41 #if defined(CCDM_DEVELOP) && defined(CCDM_SECOND_STAGE) && \
42 !defined(CCCM_FIRST_STAGE)
43 #define CCDM_AUTO_FIRST_STAGE
44 #endif
45
46 /* CCDM specific contants */
47 enum {
48 /* NV indices */
49 NV_COMMON_DATA_INDEX = 0x40000001,
50 /* magics for key blob chains */
51 MAGIC_KEY_PROGRAM = 0x68726500,
52 MAGIC_HMAC = 0x68616300,
53 MAGIC_END_OF_CHAIN = 0x00000000,
54 /* sizes */
55 NV_COMMON_DATA_MIN_SIZE = 3 * sizeof(uint64_t) + 2 * sizeof(uint16_t),
56 };
57
58 /* other constants */
59 enum {
60 ESDHC_BOOT_IMAGE_SIG_OFS = 0x40,
61 ESDHC_BOOT_IMAGE_SIZE_OFS = 0x48,
62 ESDHC_BOOT_IMAGE_ADDR_OFS = 0x50,
63 ESDHC_BOOT_IMAGE_TARGET_OFS = 0x58,
64 ESDHC_BOOT_IMAGE_ENTRY_OFS = 0x60,
65 };
66
67 enum {
68 I2C_SOC_0 = 0,
69 I2C_SOC_1 = 1,
70 };
71
72 struct key_program {
73 uint32_t magic;
74 uint32_t code_crc;
75 uint32_t code_size;
76 uint8_t code[];
77 };
78
79 struct h_reg {
80 bool valid;
81 uint8_t digest[20];
82 };
83
84
85 enum access_mode {
86 HREG_NONE = 0,
87 HREG_RD = 1,
88 HREG_WR = 2,
89 HREG_RDWR = 3,
90 };
91
92 /* register constants */
93 enum {
94 FIX_HREG_DEVICE_ID_HASH = 0,
95 FIX_HREG_SELF_HASH = 1,
96 FIX_HREG_STAGE2_HASH = 2,
97 FIX_HREG_VENDOR = 3,
98 COUNT_FIX_HREGS
99 };
100
101
102 /* hre opcodes */
103 enum {
104 /* opcodes w/o data */
105 HRE_NOP = 0x00,
106 HRE_SYNC = HRE_NOP,
107 HRE_CHECK0 = 0x01,
108 /* opcodes w/o data, w/ sync dst */
109 /* opcodes w/ data */
110 HRE_LOAD = 0x81,
111 /* opcodes w/data, w/sync dst */
112 HRE_XOR = 0xC1,
113 HRE_AND = 0xC2,
114 HRE_OR = 0xC3,
115 HRE_EXTEND = 0xC4,
116 HRE_LOADKEY = 0xC5,
117 };
118
119 /* hre errors */
120 enum {
121 HRE_E_OK = 0,
122 HRE_E_TPM_FAILURE,
123 HRE_E_INVALID_HREG,
124 };
125
126 static uint64_t device_id;
127 static uint64_t device_cl;
128 static uint64_t device_type;
129
130 static uint32_t platform_key_handle;
131
132 static void(*bl2_entry)(void);
133
134 static struct h_reg pcr_hregs[24];
135 static struct h_reg fix_hregs[COUNT_FIX_HREGS];
136 static struct h_reg var_hregs[8];
137 static uint32_t hre_tpm_err;
138 static int hre_err = HRE_E_OK;
139
140 #define IS_PCR_HREG(spec) ((spec) & 0x20)
141 #define IS_FIX_HREG(spec) (((spec) & 0x38) == 0x08)
142 #define IS_VAR_HREG(spec) (((spec) & 0x38) == 0x10)
143 #define HREG_IDX(spec) ((spec) & (IS_PCR_HREG(spec) ? 0x1f : 0x7))
144
145
146 static const uint8_t prg_stage1_prepare[] = {
147 0x00, 0x20, 0x00, 0x00, /* opcode: SYNC f0 */
148 0x00, 0x24, 0x00, 0x00, /* opcode: SYNC f1 */
149 0x01, 0x80, 0x00, 0x00, /* opcode: CHECK0 PCR0 */
150 0x81, 0x22, 0x00, 0x00, /* opcode: LOAD PCR0, f0 */
151 0x01, 0x84, 0x00, 0x00, /* opcode: CHECK0 PCR1 */
152 0x81, 0x26, 0x10, 0x00, /* opcode: LOAD PCR1, f1 */
153 0x01, 0x88, 0x00, 0x00, /* opcode: CHECK0 PCR2 */
154 0x81, 0x2a, 0x20, 0x00, /* opcode: LOAD PCR2, f2 */
155 0x01, 0x8c, 0x00, 0x00, /* opcode: CHECK0 PCR3 */
156 0x81, 0x2e, 0x30, 0x00, /* opcode: LOAD PCR3, f3 */
157 };
158
159 static const uint8_t prg_stage2_prepare[] = {
160 0x00, 0x80, 0x00, 0x00, /* opcode: SYNC PCR0 */
161 0x00, 0x84, 0x00, 0x00, /* opcode: SYNC PCR1 */
162 0x00, 0x88, 0x00, 0x00, /* opcode: SYNC PCR2 */
163 0x00, 0x8c, 0x00, 0x00, /* opcode: SYNC PCR3 */
164 0x00, 0x90, 0x00, 0x00, /* opcode: SYNC PCR4 */
165 };
166
167 static const uint8_t prg_stage2_success[] = {
168 0x81, 0x02, 0x40, 0x14, /* opcode: LOAD PCR4, #<20B data> */
169 0x48, 0xfd, 0x95, 0x17, 0xe7, 0x54, 0x6b, 0x68, /* data */
170 0x92, 0x31, 0x18, 0x05, 0xf8, 0x58, 0x58, 0x3c, /* data */
171 0xe4, 0xd2, 0x81, 0xe0, /* data */
172 };
173
174 static const uint8_t prg_stage_fail[] = {
175 0x81, 0x01, 0x00, 0x14, /* opcode: LOAD v0, #<20B data> */
176 0xc0, 0x32, 0xad, 0xc1, 0xff, 0x62, 0x9c, 0x9b, /* data */
177 0x66, 0xf2, 0x27, 0x49, 0xad, 0x66, 0x7e, 0x6b, /* data */
178 0xea, 0xdf, 0x14, 0x4b, /* data */
179 0x81, 0x42, 0x30, 0x00, /* opcode: LOAD PCR3, v0 */
180 0x81, 0x42, 0x40, 0x00, /* opcode: LOAD PCR4, v0 */
181 };
182
183 static const uint8_t vendor[] = "Guntermann & Drunck";
184
185
186 /**
187 * @brief read a bunch of data from MMC into memory.
188 *
189 * @param mmc pointer to the mmc structure to use.
190 * @param src offset where the data starts on MMC/SD device (in bytes).
191 * @param dst pointer to the location where the read data should be stored.
192 * @param size number of bytes to read from the MMC/SD device.
193 * @return number of bytes read or -1 on error.
194 */
195 static int ccdm_mmc_read(struct mmc *mmc, u64 src, u8 *dst, int size)
196 {
197 int result = 0;
198 u32 blk_len, ofs;
199 ulong block_no, n, cnt;
200 u8 *tmp_buf = NULL;
201
202 if (size <= 0)
203 goto end;
204
205 blk_len = mmc->read_bl_len;
206 tmp_buf = malloc(blk_len);
207 if (!tmp_buf)
208 goto failure;
209 block_no = src / blk_len;
210 ofs = src % blk_len;
211
212 if (ofs) {
213 n = mmc->block_dev.block_read(&mmc->block_dev, block_no++, 1,
214 tmp_buf);
215 if (!n)
216 goto failure;
217 result = min(size, (int)(blk_len - ofs));
218 memcpy(dst, tmp_buf + ofs, result);
219 dst += result;
220 size -= result;
221 }
222 cnt = size / blk_len;
223 if (cnt) {
224 n = mmc->block_dev.block_read(&mmc->block_dev, block_no, cnt,
225 dst);
226 if (n != cnt)
227 goto failure;
228 size -= cnt * blk_len;
229 result += cnt * blk_len;
230 dst += cnt * blk_len;
231 block_no += cnt;
232 }
233 if (size) {
234 n = mmc->block_dev.block_read(&mmc->block_dev, block_no++, 1,
235 tmp_buf);
236 if (!n)
237 goto failure;
238 memcpy(dst, tmp_buf, size);
239 result += size;
240 }
241 goto end;
242 failure:
243 result = -1;
244 end:
245 if (tmp_buf)
246 free(tmp_buf);
247 return result;
248 }
249
250 /**
251 * @brief returns a location where the 2nd stage bootloader can be(/ is) placed.
252 *
253 * @return pointer to the location for/of the 2nd stage bootloader
254 */
255 static u8 *get_2nd_stage_bl_location(ulong target_addr)
256 {
257 ulong addr;
258 #ifdef CCDM_SECOND_STAGE
259 addr = getenv_ulong("loadaddr", 16, CONFIG_LOADADDR);
260 #else
261 addr = target_addr;
262 #endif
263 return (u8 *)(addr);
264 }
265
266
267 #ifdef CCDM_SECOND_STAGE
268 /**
269 * @brief returns a location where the image can be(/ is) placed.
270 *
271 * @return pointer to the location for/of the image
272 */
273 static u8 *get_image_location(void)
274 {
275 ulong addr;
276 /* TODO use other area? */
277 addr = getenv_ulong("loadaddr", 16, CONFIG_LOADADDR);
278 return (u8 *)(addr);
279 }
280 #endif
281
282 /**
283 * @brief get the size of a given (TPM) NV area
284 * @param index NV index of the area to get size for
285 * @param size pointer to the size
286 * @return 0 on success, != 0 on error
287 */
288 static int get_tpm_nv_size(uint32_t index, uint32_t *size)
289 {
290 uint32_t err;
291 uint8_t info[72];
292 uint8_t *ptr;
293 uint16_t v16;
294
295 err = tpm_get_capability(TPM_CAP_NV_INDEX, index,
296 info, sizeof(info));
297 if (err) {
298 printf("tpm_get_capability(CAP_NV_INDEX, %08x) failed: %u\n",
299 index, err);
300 return 1;
301 }
302
303 /* skip tag and nvIndex */
304 ptr = info + 6;
305 /* skip 2 pcr info fields */
306 v16 = get_unaligned_be16(ptr);
307 ptr += 2 + v16 + 1 + 20;
308 v16 = get_unaligned_be16(ptr);
309 ptr += 2 + v16 + 1 + 20;
310 /* skip permission and flags */
311 ptr += 6 + 3;
312
313 *size = get_unaligned_be32(ptr);
314 return 0;
315 }
316
317 /**
318 * @brief search for a key by usage auth and pub key hash.
319 * @param auth usage auth of the key to search for
320 * @param pubkey_digest (SHA1) hash of the pub key structure of the key
321 * @param[out] handle the handle of the key iff found
322 * @return 0 if key was found in TPM; != 0 if not.
323 */
324 static int find_key(const uint8_t auth[20], const uint8_t pubkey_digest[20],
325 uint32_t *handle)
326 {
327 uint16_t key_count;
328 uint32_t key_handles[10];
329 uint8_t buf[288];
330 uint8_t *ptr;
331 uint32_t err;
332 uint8_t digest[20];
333 size_t buf_len;
334 unsigned int i;
335
336 /* fetch list of already loaded keys in the TPM */
337 err = tpm_get_capability(TPM_CAP_HANDLE, TPM_RT_KEY, buf, sizeof(buf));
338 if (err)
339 return -1;
340 key_count = get_unaligned_be16(buf);
341 ptr = buf + 2;
342 for (i = 0; i < key_count; ++i, ptr += 4)
343 key_handles[i] = get_unaligned_be32(ptr);
344
345 /* now search a(/ the) key which we can access with the given auth */
346 for (i = 0; i < key_count; ++i) {
347 buf_len = sizeof(buf);
348 err = tpm_get_pub_key_oiap(key_handles[i], auth, buf, &buf_len);
349 if (err && err != TPM_AUTHFAIL)
350 return -1;
351 if (err)
352 continue;
353 sha1_csum(buf, buf_len, digest);
354 if (!memcmp(digest, pubkey_digest, 20)) {
355 *handle = key_handles[i];
356 return 0;
357 }
358 }
359 return 1;
360 }
361
362 /**
363 * @brief read CCDM common data from TPM NV
364 * @return 0 if CCDM common data was found and read, !=0 if something failed.
365 */
366 static int read_common_data(void)
367 {
368 uint32_t size;
369 uint32_t err;
370 uint8_t buf[256];
371 sha1_context ctx;
372
373 if (get_tpm_nv_size(NV_COMMON_DATA_INDEX, &size) ||
374 size < NV_COMMON_DATA_MIN_SIZE)
375 return 1;
376 err = tpm_nv_read_value(NV_COMMON_DATA_INDEX,
377 buf, min(sizeof(buf), size));
378 if (err) {
379 printf("tpm_nv_read_value() failed: %u\n", err);
380 return 1;
381 }
382
383 device_id = get_unaligned_be64(buf);
384 device_cl = get_unaligned_be64(buf + 8);
385 device_type = get_unaligned_be64(buf + 16);
386
387 sha1_starts(&ctx);
388 sha1_update(&ctx, buf, 24);
389 sha1_finish(&ctx, fix_hregs[FIX_HREG_DEVICE_ID_HASH].digest);
390 fix_hregs[FIX_HREG_DEVICE_ID_HASH].valid = true;
391
392 platform_key_handle = get_unaligned_be32(buf + 24);
393
394 return 0;
395 }
396
397 /**
398 * @brief compute hash of bootloader itself.
399 * @param[out] dst hash register where the hash should be stored
400 * @return 0 on success, != 0 on failure.
401 *
402 * @note MUST be called at a time where the boot loader is accessible at the
403 * configured location (; so take care when code is reallocated).
404 */
405 static int compute_self_hash(struct h_reg *dst)
406 {
407 sha1_csum((const uint8_t *)CONFIG_SYS_MONITOR_BASE,
408 CONFIG_SYS_MONITOR_LEN, dst->digest);
409 dst->valid = true;
410 return 0;
411 }
412
413 int ccdm_compute_self_hash(void)
414 {
415 if (!fix_hregs[FIX_HREG_SELF_HASH].valid)
416 compute_self_hash(&fix_hregs[FIX_HREG_SELF_HASH]);
417 return 0;
418 }
419
420 /**
421 * @brief compute the hash of the 2nd stage boot loader (on SD card)
422 * @param[out] dst hash register to store the computed hash
423 * @return 0 on success, != 0 on failure
424 *
425 * Determines the size and location of the 2nd stage boot loader on SD card,
426 * loads the 2nd stage boot loader and computes the (SHA1) hash value.
427 * Within the 1st stage boot loader, the 2nd stage boot loader is loaded at
428 * the desired memory location and the variable @a bl2_entry is set.
429 *
430 * @note This sets the variable @a bl2_entry to the entry point when the
431 * 2nd stage boot loader is loaded at its configured memory location.
432 */
433 static int compute_second_stage_hash(struct h_reg *dst)
434 {
435 int result = 0;
436 u32 code_len, code_offset, target_addr, exec_entry;
437 struct mmc *mmc;
438 u8 *load_addr = NULL;
439 u8 buf[128];
440
441 mmc = find_mmc_device(0);
442 if (!mmc)
443 goto failure;
444 mmc_init(mmc);
445
446 if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) < 0)
447 goto failure;
448
449 code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS);
450 code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS);
451 target_addr = *(u32 *)(buf + ESDHC_BOOT_IMAGE_TARGET_OFS);
452 exec_entry = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ENTRY_OFS);
453
454 load_addr = get_2nd_stage_bl_location(target_addr);
455 if (load_addr == (u8 *)target_addr)
456 bl2_entry = (void(*)(void))exec_entry;
457
458 if (ccdm_mmc_read(mmc, code_offset, load_addr, code_len) < 0)
459 goto failure;
460
461 sha1_csum(load_addr, code_len, dst->digest);
462 dst->valid = true;
463
464 goto end;
465 failure:
466 result = 1;
467 bl2_entry = NULL;
468 end:
469 return result;
470 }
471
472 /**
473 * @brief get pointer to hash register by specification
474 * @param spec specification of a hash register
475 * @return pointer to hash register or NULL if @a spec does not qualify a
476 * valid hash register; NULL else.
477 */
478 static struct h_reg *get_hreg(uint8_t spec)
479 {
480 uint8_t idx;
481
482 idx = HREG_IDX(spec);
483 if (IS_FIX_HREG(spec)) {
484 if (idx < ARRAY_SIZE(fix_hregs))
485 return fix_hregs + idx;
486 hre_err = HRE_E_INVALID_HREG;
487 } else if (IS_PCR_HREG(spec)) {
488 if (idx < ARRAY_SIZE(pcr_hregs))
489 return pcr_hregs + idx;
490 hre_err = HRE_E_INVALID_HREG;
491 } else if (IS_VAR_HREG(spec)) {
492 if (idx < ARRAY_SIZE(var_hregs))
493 return var_hregs + idx;
494 hre_err = HRE_E_INVALID_HREG;
495 }
496 return NULL;
497 }
498
499 /**
500 * @brief get pointer of a hash register by specification and usage.
501 * @param spec specification of a hash register
502 * @param mode access mode (read or write or read/write)
503 * @return pointer to hash register if found and valid; NULL else.
504 *
505 * This func uses @a get_reg() to determine the hash register for a given spec.
506 * If a register is found it is validated according to the desired access mode.
507 * The value of automatic registers (PCR register and fixed registers) is
508 * loaded or computed on read access.
509 */
510 static struct h_reg *access_hreg(uint8_t spec, enum access_mode mode)
511 {
512 struct h_reg *result;
513
514 result = get_hreg(spec);
515 if (!result)
516 return NULL;
517
518 if (mode & HREG_WR) {
519 if (IS_FIX_HREG(spec)) {
520 hre_err = HRE_E_INVALID_HREG;
521 return NULL;
522 }
523 }
524 if (mode & HREG_RD) {
525 if (!result->valid) {
526 if (IS_PCR_HREG(spec)) {
527 hre_tpm_err = tpm_pcr_read(HREG_IDX(spec),
528 result->digest, 20);
529 result->valid = (hre_tpm_err == TPM_SUCCESS);
530 } else if (IS_FIX_HREG(spec)) {
531 switch (HREG_IDX(spec)) {
532 case FIX_HREG_DEVICE_ID_HASH:
533 read_common_data();
534 break;
535 case FIX_HREG_SELF_HASH:
536 ccdm_compute_self_hash();
537 break;
538 case FIX_HREG_STAGE2_HASH:
539 compute_second_stage_hash(result);
540 break;
541 case FIX_HREG_VENDOR:
542 memcpy(result->digest, vendor, 20);
543 result->valid = true;
544 break;
545 }
546 } else {
547 result->valid = true;
548 }
549 }
550 if (!result->valid) {
551 hre_err = HRE_E_INVALID_HREG;
552 return NULL;
553 }
554 }
555
556 return result;
557 }
558
559 static void *compute_and(void *_dst, const void *_src, size_t n)
560 {
561 uint8_t *dst = _dst;
562 const uint8_t *src = _src;
563 size_t i;
564
565 for (i = n; i-- > 0; )
566 *dst++ &= *src++;
567
568 return _dst;
569 }
570
571 static void *compute_or(void *_dst, const void *_src, size_t n)
572 {
573 uint8_t *dst = _dst;
574 const uint8_t *src = _src;
575 size_t i;
576
577 for (i = n; i-- > 0; )
578 *dst++ |= *src++;
579
580 return _dst;
581 }
582
583 static void *compute_xor(void *_dst, const void *_src, size_t n)
584 {
585 uint8_t *dst = _dst;
586 const uint8_t *src = _src;
587 size_t i;
588
589 for (i = n; i-- > 0; )
590 *dst++ ^= *src++;
591
592 return _dst;
593 }
594
595 static void *compute_extend(void *_dst, const void *_src, size_t n)
596 {
597 uint8_t digest[20];
598 sha1_context ctx;
599
600 sha1_starts(&ctx);
601 sha1_update(&ctx, _dst, n);
602 sha1_update(&ctx, _src, n);
603 sha1_finish(&ctx, digest);
604 memcpy(_dst, digest, min(n, sizeof(digest)));
605
606 return _dst;
607 }
608
609 static int hre_op_loadkey(struct h_reg *src_reg, struct h_reg *dst_reg,
610 const void *key, size_t key_size)
611 {
612 uint32_t parent_handle;
613 uint32_t key_handle;
614
615 if (!src_reg || !dst_reg || !src_reg->valid || !dst_reg->valid)
616 return -1;
617 if (find_key(src_reg->digest, dst_reg->digest, &parent_handle))
618 return -1;
619 hre_tpm_err = tpm_load_key2_oiap(parent_handle, key, key_size,
620 src_reg->digest, &key_handle);
621 if (hre_tpm_err) {
622 hre_err = HRE_E_TPM_FAILURE;
623 return -1;
624 }
625 /* TODO remember key handle somehow? */
626
627 return 0;
628 }
629
630 /**
631 * @brief executes the next opcode on the hash register engine.
632 * @param[in,out] ip pointer to the opcode (instruction pointer)
633 * @param[in,out] code_size (remaining) size of the code
634 * @return new instruction pointer on success, NULL on error.
635 */
636 static const uint8_t *hre_execute_op(const uint8_t **ip, size_t *code_size)
637 {
638 bool dst_modified = false;
639 uint32_t ins;
640 uint8_t opcode;
641 uint8_t src_spec;
642 uint8_t dst_spec;
643 uint16_t data_size;
644 struct h_reg *src_reg, *dst_reg;
645 uint8_t buf[20];
646 const uint8_t *src_buf, *data;
647 uint8_t *ptr;
648 int i;
649 void * (*bin_func)(void *, const void *, size_t);
650
651 if (*code_size < 4)
652 return NULL;
653
654 ins = get_unaligned_be32(*ip);
655 opcode = **ip;
656 data = *ip + 4;
657 src_spec = (ins >> 18) & 0x3f;
658 dst_spec = (ins >> 12) & 0x3f;
659 data_size = (ins & 0x7ff);
660
661 debug("HRE: ins=%08x (op=%02x, s=%02x, d=%02x, L=%d)\n", ins,
662 opcode, src_spec, dst_spec, data_size);
663
664 if ((opcode & 0x80) && (data_size + 4) > *code_size)
665 return NULL;
666
667 src_reg = access_hreg(src_spec, HREG_RD);
668 if (hre_err || hre_tpm_err)
669 return NULL;
670 dst_reg = access_hreg(dst_spec, (opcode & 0x40) ? HREG_RDWR : HREG_WR);
671 if (hre_err || hre_tpm_err)
672 return NULL;
673
674 switch (opcode) {
675 case HRE_NOP:
676 goto end;
677 case HRE_CHECK0:
678 if (src_reg) {
679 for (i = 0; i < 20; ++i) {
680 if (src_reg->digest[i])
681 return NULL;
682 }
683 }
684 break;
685 case HRE_LOAD:
686 bin_func = memcpy;
687 goto do_bin_func;
688 case HRE_XOR:
689 bin_func = compute_xor;
690 goto do_bin_func;
691 case HRE_AND:
692 bin_func = compute_and;
693 goto do_bin_func;
694 case HRE_OR:
695 bin_func = compute_or;
696 goto do_bin_func;
697 case HRE_EXTEND:
698 bin_func = compute_extend;
699 do_bin_func:
700 if (!dst_reg)
701 return NULL;
702 if (src_reg) {
703 src_buf = src_reg->digest;
704 } else {
705 if (!data_size) {
706 memset(buf, 0, 20);
707 src_buf = buf;
708 } else if (data_size == 1) {
709 memset(buf, *data, 20);
710 src_buf = buf;
711 } else if (data_size >= 20) {
712 src_buf = data;
713 } else {
714 src_buf = buf;
715 for (ptr = (uint8_t *)src_buf, i = 20; i > 0;
716 i -= data_size, ptr += data_size)
717 memcpy(ptr, data,
718 min_t(size_t, i, data_size));
719 }
720 }
721 bin_func(dst_reg->digest, src_buf, 20);
722 dst_reg->valid = true;
723 dst_modified = true;
724 break;
725 case HRE_LOADKEY:
726 if (hre_op_loadkey(src_reg, dst_reg, data, data_size))
727 return NULL;
728 break;
729 default:
730 return NULL;
731 }
732
733 if (dst_reg && dst_modified && IS_PCR_HREG(dst_spec)) {
734 hre_tpm_err = tpm_extend(HREG_IDX(dst_spec), dst_reg->digest,
735 dst_reg->digest);
736 if (hre_tpm_err) {
737 hre_err = HRE_E_TPM_FAILURE;
738 return NULL;
739 }
740 }
741 end:
742 *ip += 4;
743 *code_size -= 4;
744 if (opcode & 0x80) {
745 *ip += data_size;
746 *code_size -= data_size;
747 }
748
749 return *ip;
750 }
751
752 /**
753 * @brief runs a program on the hash register engine.
754 * @param code pointer to the (HRE) code.
755 * @param code_size size of the code (in bytes).
756 * @return 0 on success, != 0 on failure.
757 */
758 static int hre_run_program(const uint8_t *code, size_t code_size)
759 {
760 size_t code_left;
761 const uint8_t *ip = code;
762
763 code_left = code_size;
764 hre_tpm_err = 0;
765 hre_err = HRE_E_OK;
766 while (code_left > 0)
767 if (!hre_execute_op(&ip, &code_left))
768 return -1;
769
770 return hre_err;
771 }
772
773 static int check_hmac(struct key_program *hmac,
774 const uint8_t *data, size_t data_size)
775 {
776 uint8_t key[20], computed_hmac[20];
777 uint32_t type;
778
779 type = get_unaligned_be32(hmac->code);
780 if (type != 0)
781 return 1;
782 memset(key, 0, sizeof(key));
783 compute_extend(key, pcr_hregs[1].digest, 20);
784 compute_extend(key, pcr_hregs[2].digest, 20);
785 compute_extend(key, pcr_hregs[3].digest, 20);
786 compute_extend(key, pcr_hregs[4].digest, 20);
787
788 sha1_hmac(key, sizeof(key), data, data_size, computed_hmac);
789
790 return memcmp(computed_hmac, hmac->code + 4, 20);
791 }
792
793 static int verify_program(struct key_program *prg)
794 {
795 uint32_t crc;
796 crc = crc32(0, prg->code, prg->code_size);
797
798 if (crc != prg->code_crc) {
799 printf("HRC crc mismatch: %08x != %08x\n",
800 crc, prg->code_crc);
801 return 1;
802 }
803 return 0;
804 }
805
806 #if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE)
807 static struct key_program *load_sd_key_program(void)
808 {
809 u32 code_len, code_offset;
810 struct mmc *mmc;
811 u8 buf[128];
812 struct key_program *result = NULL, *hmac = NULL;
813 struct key_program header;
814
815 mmc = find_mmc_device(0);
816 if (!mmc)
817 return NULL;
818 mmc_init(mmc);
819
820 if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) <= 0)
821 goto failure;
822
823 code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS);
824 code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS);
825
826 code_offset += code_len;
827 /* TODO: the following needs to be the size of the 2nd stage env */
828 code_offset += CONFIG_ENV_SIZE;
829
830 if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0)
831 goto failure;
832
833 header.magic = get_unaligned_be32(buf);
834 header.code_crc = get_unaligned_be32(buf + 4);
835 header.code_size = get_unaligned_be32(buf + 8);
836
837 if (header.magic != MAGIC_KEY_PROGRAM)
838 goto failure;
839
840 result = malloc(sizeof(struct key_program) + header.code_size);
841 if (!result)
842 goto failure;
843 *result = header;
844
845 printf("load key program chunk from SD card (%u bytes) ",
846 header.code_size);
847 code_offset += 12;
848 if (ccdm_mmc_read(mmc, code_offset, result->code, header.code_size)
849 < 0)
850 goto failure;
851 code_offset += header.code_size;
852 puts("\n");
853
854 if (verify_program(result))
855 goto failure;
856
857 if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0)
858 goto failure;
859
860 header.magic = get_unaligned_be32(buf);
861 header.code_crc = get_unaligned_be32(buf + 4);
862 header.code_size = get_unaligned_be32(buf + 8);
863
864 if (header.magic == MAGIC_HMAC) {
865 puts("check integrity\n");
866 hmac = malloc(sizeof(struct key_program) + header.code_size);
867 if (!hmac)
868 goto failure;
869 *hmac = header;
870 code_offset += 12;
871 if (ccdm_mmc_read(mmc, code_offset, hmac->code,
872 hmac->code_size) < 0)
873 goto failure;
874 if (verify_program(hmac))
875 goto failure;
876 if (check_hmac(hmac, result->code, result->code_size)) {
877 puts("key program integrity could not be verified\n");
878 goto failure;
879 }
880 puts("key program verified\n");
881 }
882
883 goto end;
884 failure:
885 if (result)
886 free(result);
887 result = NULL;
888 end:
889 if (hmac)
890 free(hmac);
891
892 return result;
893 }
894 #endif
895
896 #ifdef CCDM_SECOND_STAGE
897 /**
898 * @brief load a key program from file system.
899 * @param ifname interface of the file system
900 * @param dev_part_str device part of the file system
901 * @param fs_type tyep of the file system
902 * @param path path of the file to load.
903 * @return the loaded structure or NULL on failure.
904 */
905 static struct key_program *load_key_chunk(const char *ifname,
906 const char *dev_part_str, int fs_type,
907 const char *path)
908 {
909 struct key_program *result = NULL;
910 struct key_program header;
911 uint32_t crc;
912 uint8_t buf[12];
913 loff_t i;
914
915 if (fs_set_blk_dev(ifname, dev_part_str, fs_type))
916 goto failure;
917 if (fs_read(path, (ulong)buf, 0, 12, &i) < 0)
918 goto failure;
919 if (i < 12)
920 goto failure;
921 header.magic = get_unaligned_be32(buf);
922 header.code_crc = get_unaligned_be32(buf + 4);
923 header.code_size = get_unaligned_be32(buf + 8);
924
925 if (header.magic != MAGIC_HMAC && header.magic != MAGIC_KEY_PROGRAM)
926 goto failure;
927
928 result = malloc(sizeof(struct key_program) + header.code_size);
929 if (!result)
930 goto failure;
931 if (fs_set_blk_dev(ifname, dev_part_str, fs_type))
932 goto failure;
933 if (fs_read(path, (ulong)result, 0,
934 sizeof(struct key_program) + header.code_size, &i) < 0)
935 goto failure;
936 if (i <= 0)
937 goto failure;
938 *result = header;
939
940 crc = crc32(0, result->code, result->code_size);
941
942 if (crc != result->code_crc) {
943 printf("%s: HRC crc mismatch: %08x != %08x\n",
944 path, crc, result->code_crc);
945 goto failure;
946 }
947 goto end;
948 failure:
949 if (result) {
950 free(result);
951 result = NULL;
952 }
953 end:
954 return result;
955 }
956 #endif
957
958 #if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE)
959 static int first_stage_actions(void)
960 {
961 int result = 0;
962 struct key_program *sd_prg = NULL;
963
964 puts("CCDM S1: start actions\n");
965 #ifndef CCDM_SECOND_STAGE
966 if (tpm_continue_self_test())
967 goto failure;
968 #else
969 tpm_continue_self_test();
970 #endif
971 mdelay(37);
972
973 if (hre_run_program(prg_stage1_prepare, sizeof(prg_stage1_prepare)))
974 goto failure;
975
976 sd_prg = load_sd_key_program();
977 if (sd_prg) {
978 if (hre_run_program(sd_prg->code, sd_prg->code_size))
979 goto failure;
980 puts("SD code run successfully\n");
981 } else {
982 puts("no key program found on SD\n");
983 goto failure;
984 }
985 goto end;
986 failure:
987 result = 1;
988 end:
989 if (sd_prg)
990 free(sd_prg);
991 printf("CCDM S1: actions done (%d)\n", result);
992 return result;
993 }
994 #endif
995
996 #ifdef CCDM_FIRST_STAGE
997 static int first_stage_init(void)
998 {
999 int res = 0;
1000 puts("CCDM S1\n");
1001 if (tpm_init() || tpm_startup(TPM_ST_CLEAR))
1002 return 1;
1003 res = first_stage_actions();
1004 #ifndef CCDM_SECOND_STAGE
1005 if (!res) {
1006 if (bl2_entry)
1007 (*bl2_entry)();
1008 res = 1;
1009 }
1010 #endif
1011 return res;
1012 }
1013 #endif
1014
1015 #ifdef CCDM_SECOND_STAGE
1016 static int second_stage_init(void)
1017 {
1018 static const char mac_suffix[] = ".mac";
1019 bool did_first_stage_run = true;
1020 int result = 0;
1021 char *cptr, *mmcdev = NULL;
1022 struct key_program *hmac_blob = NULL;
1023 const char *image_path = "/ccdm.itb";
1024 char *mac_path = NULL;
1025 ulong image_addr;
1026 loff_t image_size;
1027 uint32_t err;
1028
1029 printf("CCDM S2\n");
1030 if (tpm_init())
1031 return 1;
1032 err = tpm_startup(TPM_ST_CLEAR);
1033 if (err != TPM_INVALID_POSTINIT)
1034 did_first_stage_run = false;
1035
1036 #ifdef CCDM_AUTO_FIRST_STAGE
1037 if (!did_first_stage_run && first_stage_actions())
1038 goto failure;
1039 #else
1040 if (!did_first_stage_run)
1041 goto failure;
1042 #endif
1043
1044 if (hre_run_program(prg_stage2_prepare, sizeof(prg_stage2_prepare)))
1045 goto failure;
1046
1047 /* run "prepboot" from env to get "mmcdev" set */
1048 cptr = getenv("prepboot");
1049 if (cptr && !run_command(cptr, 0))
1050 mmcdev = getenv("mmcdev");
1051 if (!mmcdev)
1052 goto failure;
1053
1054 cptr = getenv("ramdiskimage");
1055 if (cptr)
1056 image_path = cptr;
1057
1058 mac_path = malloc(strlen(image_path) + strlen(mac_suffix) + 1);
1059 if (mac_path == NULL)
1060 goto failure;
1061 strcpy(mac_path, image_path);
1062 strcat(mac_path, mac_suffix);
1063
1064 /* read image from mmcdev (ccdm.itb) */
1065 image_addr = (ulong)get_image_location();
1066 if (fs_set_blk_dev("mmc", mmcdev, FS_TYPE_EXT))
1067 goto failure;
1068 if (fs_read(image_path, image_addr, 0, 0, &image_size) < 0)
1069 goto failure;
1070 if (image_size <= 0)
1071 goto failure;
1072 printf("CCDM image found on %s, %lld bytes\n", mmcdev, image_size);
1073
1074 hmac_blob = load_key_chunk("mmc", mmcdev, FS_TYPE_EXT, mac_path);
1075 if (!hmac_blob) {
1076 puts("failed to load mac file\n");
1077 goto failure;
1078 }
1079 if (verify_program(hmac_blob)) {
1080 puts("corrupted mac file\n");
1081 goto failure;
1082 }
1083 if (check_hmac(hmac_blob, (u8 *)image_addr, image_size)) {
1084 puts("image integrity could not be verified\n");
1085 goto failure;
1086 }
1087 puts("CCDM image OK\n");
1088
1089 hre_run_program(prg_stage2_success, sizeof(prg_stage2_success));
1090
1091 goto end;
1092 failure:
1093 result = 1;
1094 hre_run_program(prg_stage_fail, sizeof(prg_stage_fail));
1095 end:
1096 if (hmac_blob)
1097 free(hmac_blob);
1098 if (mac_path)
1099 free(mac_path);
1100
1101 return result;
1102 }
1103 #endif
1104
1105 int show_self_hash(void)
1106 {
1107 struct h_reg *hash_ptr;
1108 #ifdef CCDM_SECOND_STAGE
1109 struct h_reg hash;
1110
1111 hash_ptr = &hash;
1112 if (compute_self_hash(hash_ptr))
1113 return 1;
1114 #else
1115 hash_ptr = &fix_hregs[FIX_HREG_SELF_HASH];
1116 #endif
1117 puts("self hash: ");
1118 if (hash_ptr && hash_ptr->valid)
1119 print_buffer(0, hash_ptr->digest, 1, 20, 20);
1120 else
1121 puts("INVALID\n");
1122
1123 return 0;
1124 }
1125
1126 /**
1127 * @brief let the system hang.
1128 *
1129 * Called on error.
1130 * Will stop the boot process; display a message and signal the error condition
1131 * by blinking the "status" and the "finder" LED of the controller board.
1132 *
1133 * @note the develop version runs the blink cycle 2 times and then returns.
1134 * The release version never returns.
1135 */
1136 static void ccdm_hang(void)
1137 {
1138 static const u64 f0 = 0x0ba3bb8ba2e880; /* blink code "finder" LED */
1139 static const u64 s0 = 0x00f0f0f0f0f0f0; /* blink code "status" LED */
1140 u64 f, s;
1141 int i;
1142 #ifdef CCDM_DEVELOP
1143 int j;
1144 #endif
1145
1146 I2C_SET_BUS(I2C_SOC_0);
1147 pca9698_direction_output(0x22, 0, 0); /* Finder */
1148 pca9698_direction_output(0x22, 4, 0); /* Status */
1149
1150 puts("### ERROR ### Please RESET the board ###\n");
1151 bootstage_error(BOOTSTAGE_ID_NEED_RESET);
1152 #ifdef CCDM_DEVELOP
1153 puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n");
1154 puts("** but we continue since this is a DEVELOP version **\n");
1155 puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n");
1156 for (j = 2; j-- > 0;) {
1157 putc('#');
1158 #else
1159 for (;;) {
1160 #endif
1161 f = f0;
1162 s = s0;
1163 for (i = 54; i-- > 0;) {
1164 pca9698_set_value(0x22, 0, !(f & 1));
1165 pca9698_set_value(0x22, 4, (s & 1));
1166 f >>= 1;
1167 s >>= 1;
1168 mdelay(120);
1169 }
1170 }
1171 puts("\ncontinue...\n");
1172 }
1173
1174 int startup_ccdm_id_module(void)
1175 {
1176 int result = 0;
1177 unsigned int orig_i2c_bus;
1178
1179 orig_i2c_bus = i2c_get_bus_num();
1180 i2c_set_bus_num(I2C_SOC_1);
1181
1182 /* goto end; */
1183
1184 #ifdef CCDM_DEVELOP
1185 show_self_hash();
1186 #endif
1187 #ifdef CCDM_FIRST_STAGE
1188 result = first_stage_init();
1189 if (result) {
1190 puts("1st stage init failed\n");
1191 goto failure;
1192 }
1193 #endif
1194 #ifdef CCDM_SECOND_STAGE
1195 result = second_stage_init();
1196 if (result) {
1197 puts("2nd stage init failed\n");
1198 goto failure;
1199 }
1200 #endif
1201
1202 goto end;
1203 failure:
1204 result = 1;
1205 end:
1206 i2c_set_bus_num(orig_i2c_bus);
1207 if (result)
1208 ccdm_hang();
1209
1210 return result;
1211 }