]> git.ipfire.org Git - people/ms/u-boot.git/blob - board/samsung/odroid/odroid.c
Merge branch 'u-boot-samsung/master' into 'u-boot-arm/master'
[people/ms/u-boot.git] / board / samsung / odroid / odroid.c
1 /*
2 * Copyright (C) 2014 Samsung Electronics
3 * Przemyslaw Marczak <p.marczak@samsung.com>
4 *
5 * SPDX-License-Identifier: GPL-2.0+
6 */
7
8 #include <common.h>
9 #include <asm/arch/pinmux.h>
10 #include <asm/arch/power.h>
11 #include <asm/arch/clock.h>
12 #include <asm/arch/gpio.h>
13 #include <asm/gpio.h>
14 #include <asm/arch/cpu.h>
15 #include <power/pmic.h>
16 #include <power/max77686_pmic.h>
17 #include <errno.h>
18 #include <usb.h>
19 #include <usb/s3c_udc.h>
20 #include <samsung/misc.h>
21 #include "setup.h"
22
23 DECLARE_GLOBAL_DATA_PTR;
24
25 #ifdef CONFIG_BOARD_TYPES
26 /* Odroid board types */
27 enum {
28 ODROID_TYPE_U3,
29 ODROID_TYPE_X2,
30 ODROID_TYPES,
31 };
32
33 void set_board_type(void)
34 {
35 /* Set GPA1 pin 1 to HI - enable XCL205 output */
36 writel(XCL205_EN_GPIO_CON_CFG, XCL205_EN_GPIO_CON);
37 writel(XCL205_EN_GPIO_DAT_CFG, XCL205_EN_GPIO_CON + 0x4);
38 writel(XCL205_EN_GPIO_PUD_CFG, XCL205_EN_GPIO_CON + 0x8);
39 writel(XCL205_EN_GPIO_DRV_CFG, XCL205_EN_GPIO_CON + 0xc);
40
41 /* Set GPC1 pin 2 to IN - check XCL205 output state */
42 writel(XCL205_STATE_GPIO_CON_CFG, XCL205_STATE_GPIO_CON);
43 writel(XCL205_STATE_GPIO_PUD_CFG, XCL205_STATE_GPIO_CON + 0x8);
44
45 /* XCL205 - needs some latch time */
46 sdelay(200000);
47
48 /* Check GPC1 pin2 - LED supplied by XCL205 - X2 only */
49 if (readl(XCL205_STATE_GPIO_DAT) & (1 << XCL205_STATE_GPIO_PIN))
50 gd->board_type = ODROID_TYPE_X2;
51 else
52 gd->board_type = ODROID_TYPE_U3;
53 }
54
55 const char *get_board_type(void)
56 {
57 const char *board_type[] = {"u3", "x2"};
58
59 return board_type[gd->board_type];
60 }
61 #endif
62
63 #ifdef CONFIG_SET_DFU_ALT_INFO
64 char *get_dfu_alt_system(void)
65 {
66 return getenv("dfu_alt_system");
67 }
68
69 char *get_dfu_alt_boot(void)
70 {
71 char *alt_boot;
72
73 switch (get_boot_mode()) {
74 case BOOT_MODE_SD:
75 alt_boot = CONFIG_DFU_ALT_BOOT_SD;
76 break;
77 case BOOT_MODE_EMMC:
78 case BOOT_MODE_EMMC_SD:
79 alt_boot = CONFIG_DFU_ALT_BOOT_EMMC;
80 break;
81 default:
82 alt_boot = NULL;
83 break;
84 }
85 return alt_boot;
86 }
87 #endif
88
89 static void board_clock_init(void)
90 {
91 unsigned int set, clr, clr_src_cpu, clr_pll_con0, clr_src_dmc;
92 struct exynos4x12_clock *clk = (struct exynos4x12_clock *)
93 samsung_get_base_clock();
94
95 /*
96 * CMU_CPU clocks src to MPLL
97 * Bit values: 0 ; 1
98 * MUX_APLL_SEL: FIN_PLL ; FOUT_APLL
99 * MUX_CORE_SEL: MOUT_APLL ; SCLK_MPLL
100 * MUX_HPM_SEL: MOUT_APLL ; SCLK_MPLL_USER_C
101 * MUX_MPLL_USER_SEL_C: FIN_PLL ; SCLK_MPLL
102 */
103 clr_src_cpu = MUX_APLL_SEL(1) | MUX_CORE_SEL(1) |
104 MUX_HPM_SEL(1) | MUX_MPLL_USER_SEL_C(1);
105 set = MUX_APLL_SEL(0) | MUX_CORE_SEL(1) | MUX_HPM_SEL(1) |
106 MUX_MPLL_USER_SEL_C(1);
107
108 clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set);
109
110 /* Wait for mux change */
111 while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING)
112 continue;
113
114 /* Set APLL to 1000MHz */
115 clr_pll_con0 = SDIV(7) | PDIV(63) | MDIV(1023) | FSEL(1);
116 set = SDIV(0) | PDIV(3) | MDIV(125) | FSEL(1);
117
118 clrsetbits_le32(&clk->apll_con0, clr_pll_con0, set);
119
120 /* Wait for PLL to be locked */
121 while (!(readl(&clk->apll_con0) & PLL_LOCKED_BIT))
122 continue;
123
124 /* Set CMU_CPU clocks src to APLL */
125 set = MUX_APLL_SEL(1) | MUX_CORE_SEL(0) | MUX_HPM_SEL(0) |
126 MUX_MPLL_USER_SEL_C(1);
127 clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set);
128
129 /* Wait for mux change */
130 while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING)
131 continue;
132
133 set = CORE_RATIO(0) | COREM0_RATIO(2) | COREM1_RATIO(5) |
134 PERIPH_RATIO(0) | ATB_RATIO(4) | PCLK_DBG_RATIO(1) |
135 APLL_RATIO(0) | CORE2_RATIO(0);
136 /*
137 * Set dividers for MOUTcore = 1000 MHz
138 * coreout = MOUT / (ratio + 1) = 1000 MHz (0)
139 * corem0 = armclk / (ratio + 1) = 333 MHz (2)
140 * corem1 = armclk / (ratio + 1) = 166 MHz (5)
141 * periph = armclk / (ratio + 1) = 1000 MHz (0)
142 * atbout = MOUT / (ratio + 1) = 200 MHz (4)
143 * pclkdbgout = atbout / (ratio + 1) = 100 MHz (1)
144 * sclkapll = MOUTapll / (ratio + 1) = 1000 MHz (0)
145 * core2out = core_out / (ratio + 1) = 1000 MHz (0) (armclk)
146 */
147 clr = CORE_RATIO(7) | COREM0_RATIO(7) | COREM1_RATIO(7) |
148 PERIPH_RATIO(7) | ATB_RATIO(7) | PCLK_DBG_RATIO(7) |
149 APLL_RATIO(7) | CORE2_RATIO(7);
150
151 clrsetbits_le32(&clk->div_cpu0, clr, set);
152
153 /* Wait for divider ready status */
154 while (readl(&clk->div_stat_cpu0) & DIV_STAT_CPU0_CHANGING)
155 continue;
156
157 /*
158 * For MOUThpm = 1000 MHz (MOUTapll)
159 * doutcopy = MOUThpm / (ratio + 1) = 200 (4)
160 * sclkhpm = doutcopy / (ratio + 1) = 200 (4)
161 * cores_out = armclk / (ratio + 1) = 1000 (0)
162 */
163 clr = COPY_RATIO(7) | HPM_RATIO(7) | CORES_RATIO(7);
164 set = COPY_RATIO(4) | HPM_RATIO(4) | CORES_RATIO(0);
165
166 clrsetbits_le32(&clk->div_cpu1, clr, set);
167
168 /* Wait for divider ready status */
169 while (readl(&clk->div_stat_cpu1) & DIV_STAT_CPU1_CHANGING)
170 continue;
171
172 /*
173 * Set CMU_DMC clocks src to APLL
174 * Bit values: 0 ; 1
175 * MUX_C2C_SEL: SCLKMPLL ; SCLKAPLL
176 * MUX_DMC_BUS_SEL: SCLKMPLL ; SCLKAPLL
177 * MUX_DPHY_SEL: SCLKMPLL ; SCLKAPLL
178 * MUX_MPLL_SEL: FINPLL ; MOUT_MPLL_FOUT
179 * MUX_PWI_SEL: 0110 (MPLL); 0111 (EPLL); 1000 (VPLL); 0(XXTI)
180 * MUX_G2D_ACP0_SEL: SCLKMPLL ; SCLKAPLL
181 * MUX_G2D_ACP1_SEL: SCLKEPLL ; SCLKVPLL
182 * MUX_G2D_ACP_SEL: OUT_ACP0 ; OUT_ACP1
183 */
184 clr_src_dmc = MUX_C2C_SEL(1) | MUX_DMC_BUS_SEL(1) |
185 MUX_DPHY_SEL(1) | MUX_MPLL_SEL(1) |
186 MUX_PWI_SEL(15) | MUX_G2D_ACP0_SEL(1) |
187 MUX_G2D_ACP1_SEL(1) | MUX_G2D_ACP_SEL(1);
188 set = MUX_C2C_SEL(1) | MUX_DMC_BUS_SEL(1) | MUX_DPHY_SEL(1) |
189 MUX_MPLL_SEL(0) | MUX_PWI_SEL(0) | MUX_G2D_ACP0_SEL(1) |
190 MUX_G2D_ACP1_SEL(1) | MUX_G2D_ACP_SEL(1);
191
192 clrsetbits_le32(&clk->src_dmc, clr_src_dmc, set);
193
194 /* Wait for mux change */
195 while (readl(&clk->mux_stat_dmc) & MUX_STAT_DMC_CHANGING)
196 continue;
197
198 /* Set MPLL to 880MHz */
199 set = SDIV(0) | PDIV(3) | MDIV(110) | FSEL(0) | PLL_ENABLE(1);
200
201 clrsetbits_le32(&clk->mpll_con0, clr_pll_con0, set);
202
203 /* Wait for PLL to be locked */
204 while (!(readl(&clk->mpll_con0) & PLL_LOCKED_BIT))
205 continue;
206
207 /* Switch back CMU_DMC mux */
208 set = MUX_C2C_SEL(0) | MUX_DMC_BUS_SEL(0) | MUX_DPHY_SEL(0) |
209 MUX_MPLL_SEL(1) | MUX_PWI_SEL(8) | MUX_G2D_ACP0_SEL(0) |
210 MUX_G2D_ACP1_SEL(0) | MUX_G2D_ACP_SEL(0);
211
212 clrsetbits_le32(&clk->src_dmc, clr_src_dmc, set);
213
214 /* Wait for mux change */
215 while (readl(&clk->mux_stat_dmc) & MUX_STAT_DMC_CHANGING)
216 continue;
217
218 /* CLK_DIV_DMC0 */
219 clr = ACP_RATIO(7) | ACP_PCLK_RATIO(7) | DPHY_RATIO(7) |
220 DMC_RATIO(7) | DMCD_RATIO(7) | DMCP_RATIO(7);
221 /*
222 * For:
223 * MOUTdmc = 880 MHz
224 * MOUTdphy = 880 MHz
225 *
226 * aclk_acp = MOUTdmc / (ratio + 1) = 220 (3)
227 * pclk_acp = aclk_acp / (ratio + 1) = 110 (1)
228 * sclk_dphy = MOUTdphy / (ratio + 1) = 440 (1)
229 * sclk_dmc = MOUTdmc / (ratio + 1) = 440 (1)
230 * aclk_dmcd = sclk_dmc / (ratio + 1) = 220 (1)
231 * aclk_dmcp = aclk_dmcd / (ratio + 1) = 110 (1)
232 */
233 set = ACP_RATIO(3) | ACP_PCLK_RATIO(1) | DPHY_RATIO(1) |
234 DMC_RATIO(1) | DMCD_RATIO(1) | DMCP_RATIO(1);
235
236 clrsetbits_le32(&clk->div_dmc0, clr, set);
237
238 /* Wait for divider ready status */
239 while (readl(&clk->div_stat_dmc0) & DIV_STAT_DMC0_CHANGING)
240 continue;
241
242 /* CLK_DIV_DMC1 */
243 clr = G2D_ACP_RATIO(15) | C2C_RATIO(7) | PWI_RATIO(15) |
244 C2C_ACLK_RATIO(7) | DVSEM_RATIO(127) | DPM_RATIO(127);
245 /*
246 * For:
247 * MOUTg2d = 880 MHz
248 * MOUTc2c = 880 Mhz
249 * MOUTpwi = 108 MHz
250 *
251 * sclk_g2d_acp = MOUTg2d / (ratio + 1) = 440 (1)
252 * sclk_c2c = MOUTc2c / (ratio + 1) = 440 (1)
253 * aclk_c2c = sclk_c2c / (ratio + 1) = 220 (1)
254 * sclk_pwi = MOUTpwi / (ratio + 1) = 18 (5)
255 */
256 set = G2D_ACP_RATIO(1) | C2C_RATIO(1) | PWI_RATIO(5) |
257 C2C_ACLK_RATIO(1) | DVSEM_RATIO(1) | DPM_RATIO(1);
258
259 clrsetbits_le32(&clk->div_dmc1, clr, set);
260
261 /* Wait for divider ready status */
262 while (readl(&clk->div_stat_dmc1) & DIV_STAT_DMC1_CHANGING)
263 continue;
264
265 /* CLK_SRC_PERIL0 */
266 clr = UART0_SEL(15) | UART1_SEL(15) | UART2_SEL(15) |
267 UART3_SEL(15) | UART4_SEL(15);
268 /*
269 * Set CLK_SRC_PERIL0 clocks src to MPLL
270 * src values: 0(XXTI); 1(XusbXTI); 2(SCLK_HDMI24M); 3(SCLK_USBPHY0);
271 * 5(SCLK_HDMIPHY); 6(SCLK_MPLL_USER_T); 7(SCLK_EPLL);
272 * 8(SCLK_VPLL)
273 *
274 * Set all to SCLK_MPLL_USER_T
275 */
276 set = UART0_SEL(6) | UART1_SEL(6) | UART2_SEL(6) | UART3_SEL(6) |
277 UART4_SEL(6);
278
279 clrsetbits_le32(&clk->src_peril0, clr, set);
280
281 /* CLK_DIV_PERIL0 */
282 clr = UART0_RATIO(15) | UART1_RATIO(15) | UART2_RATIO(15) |
283 UART3_RATIO(15) | UART4_RATIO(15);
284 /*
285 * For MOUTuart0-4: 880MHz
286 *
287 * SCLK_UARTx = MOUTuartX / (ratio + 1) = 110 (7)
288 */
289 set = UART0_RATIO(7) | UART1_RATIO(7) | UART2_RATIO(7) |
290 UART3_RATIO(7) | UART4_RATIO(7);
291
292 clrsetbits_le32(&clk->div_peril0, clr, set);
293
294 while (readl(&clk->div_stat_peril0) & DIV_STAT_PERIL0_CHANGING)
295 continue;
296
297 /* CLK_DIV_FSYS1 */
298 clr = MMC0_RATIO(15) | MMC0_PRE_RATIO(255) | MMC1_RATIO(15) |
299 MMC1_PRE_RATIO(255);
300 /*
301 * For MOUTmmc0-3 = 880 MHz (MPLL)
302 *
303 * DOUTmmc1 = MOUTmmc1 / (ratio + 1) = 110 (7)
304 * sclk_mmc1 = DOUTmmc1 / (ratio + 1) = 60 (1)
305 * DOUTmmc0 = MOUTmmc0 / (ratio + 1) = 110 (7)
306 * sclk_mmc0 = DOUTmmc0 / (ratio + 1) = 60 (1)
307 */
308 set = MMC0_RATIO(7) | MMC0_PRE_RATIO(1) | MMC1_RATIO(7) |
309 MMC1_PRE_RATIO(1);
310
311 clrsetbits_le32(&clk->div_fsys1, clr, set);
312
313 /* Wait for divider ready status */
314 while (readl(&clk->div_stat_fsys1) & DIV_STAT_FSYS1_CHANGING)
315 continue;
316
317 /* CLK_DIV_FSYS2 */
318 clr = MMC2_RATIO(15) | MMC2_PRE_RATIO(255) | MMC3_RATIO(15) |
319 MMC3_PRE_RATIO(255);
320 /*
321 * For MOUTmmc0-3 = 880 MHz (MPLL)
322 *
323 * DOUTmmc3 = MOUTmmc3 / (ratio + 1) = 110 (7)
324 * sclk_mmc3 = DOUTmmc3 / (ratio + 1) = 60 (1)
325 * DOUTmmc2 = MOUTmmc2 / (ratio + 1) = 110 (7)
326 * sclk_mmc2 = DOUTmmc2 / (ratio + 1) = 60 (1)
327 */
328 set = MMC2_RATIO(7) | MMC2_PRE_RATIO(1) | MMC3_RATIO(7) |
329 MMC3_PRE_RATIO(1);
330
331 clrsetbits_le32(&clk->div_fsys2, clr, set);
332
333 /* Wait for divider ready status */
334 while (readl(&clk->div_stat_fsys2) & DIV_STAT_FSYS2_CHANGING)
335 continue;
336
337 /* CLK_DIV_FSYS3 */
338 clr = MMC4_RATIO(15) | MMC4_PRE_RATIO(255);
339 /*
340 * For MOUTmmc4 = 880 MHz (MPLL)
341 *
342 * DOUTmmc4 = MOUTmmc4 / (ratio + 1) = 110 (7)
343 * sclk_mmc4 = DOUTmmc4 / (ratio + 1) = 110 (0)
344 */
345 set = MMC4_RATIO(7) | MMC4_PRE_RATIO(0);
346
347 clrsetbits_le32(&clk->div_fsys3, clr, set);
348
349 /* Wait for divider ready status */
350 while (readl(&clk->div_stat_fsys3) & DIV_STAT_FSYS3_CHANGING)
351 continue;
352
353 return;
354 }
355
356 static void board_gpio_init(void)
357 {
358 /* eMMC Reset Pin */
359 gpio_cfg_pin(EXYNOS4X12_GPIO_K12, S5P_GPIO_FUNC(0x1));
360 gpio_set_pull(EXYNOS4X12_GPIO_K12, S5P_GPIO_PULL_NONE);
361 gpio_set_drv(EXYNOS4X12_GPIO_K12, S5P_GPIO_DRV_4X);
362
363 /* Enable FAN (Odroid U3) */
364 gpio_set_pull(EXYNOS4X12_GPIO_D00, S5P_GPIO_PULL_UP);
365 gpio_set_drv(EXYNOS4X12_GPIO_D00, S5P_GPIO_DRV_4X);
366 gpio_direction_output(EXYNOS4X12_GPIO_D00, 1);
367
368 /* OTG Vbus output (Odroid U3+) */
369 gpio_set_pull(EXYNOS4X12_GPIO_L20, S5P_GPIO_PULL_NONE);
370 gpio_set_drv(EXYNOS4X12_GPIO_L20, S5P_GPIO_DRV_4X);
371 gpio_direction_output(EXYNOS4X12_GPIO_L20, 0);
372
373 /* OTG INT (Odroid U3+) */
374 gpio_set_pull(EXYNOS4X12_GPIO_X31, S5P_GPIO_PULL_UP);
375 gpio_set_drv(EXYNOS4X12_GPIO_X31, S5P_GPIO_DRV_4X);
376 gpio_direction_input(EXYNOS4X12_GPIO_X31);
377 }
378
379 static int pmic_init_max77686(void)
380 {
381 struct pmic *p = pmic_get("MAX77686_PMIC");
382
383 if (pmic_probe(p))
384 return -ENODEV;
385
386 /* Set LDO Voltage */
387 max77686_set_ldo_voltage(p, 20, 1800000); /* LDO20 eMMC */
388 max77686_set_ldo_voltage(p, 21, 2800000); /* LDO21 SD */
389 max77686_set_ldo_voltage(p, 22, 2800000); /* LDO22 eMMC */
390
391 return 0;
392 }
393
394 #ifdef CONFIG_SYS_I2C_INIT_BOARD
395 static void board_init_i2c(void)
396 {
397 /* I2C_0 */
398 if (exynos_pinmux_config(PERIPH_ID_I2C0, PINMUX_FLAG_NONE))
399 debug("I2C%d not configured\n", (I2C_0));
400 }
401 #endif
402
403 int exynos_early_init_f(void)
404 {
405 board_clock_init();
406 board_gpio_init();
407
408 return 0;
409 }
410
411 int exynos_init(void)
412 {
413 /* The last MB of memory is reserved for secure firmware */
414 gd->ram_size -= SZ_1M;
415 gd->bd->bi_dram[CONFIG_NR_DRAM_BANKS - 1].size -= SZ_1M;
416
417 return 0;
418 }
419
420 int exynos_power_init(void)
421 {
422 #ifdef CONFIG_SYS_I2C_INIT_BOARD
423 board_init_i2c();
424 #endif
425 pmic_init(I2C_0);
426 pmic_init_max77686();
427
428 return 0;
429 }
430
431 #ifdef CONFIG_USB_GADGET
432 static int s5pc210_phy_control(int on)
433 {
434 struct pmic *p_pmic;
435
436 p_pmic = pmic_get("MAX77686_PMIC");
437 if (!p_pmic)
438 return -ENODEV;
439
440 if (pmic_probe(p_pmic))
441 return -1;
442
443 if (on)
444 return max77686_set_ldo_mode(p_pmic, 12, OPMODE_ON);
445 else
446 return max77686_set_ldo_mode(p_pmic, 12, OPMODE_LPM);
447 }
448
449 struct s3c_plat_otg_data s5pc210_otg_data = {
450 .phy_control = s5pc210_phy_control,
451 .regs_phy = EXYNOS4X12_USBPHY_BASE,
452 .regs_otg = EXYNOS4X12_USBOTG_BASE,
453 .usb_phy_ctrl = EXYNOS4X12_USBPHY_CONTROL,
454 .usb_flags = PHY0_SLEEP,
455 };
456
457 int board_usb_init(int index, enum usb_init_type init)
458 {
459 debug("USB_udc_probe\n");
460 return s3c_udc_probe(&s5pc210_otg_data);
461 }
462 #endif
463
464 void reset_misc(void)
465 {
466 /* Reset eMMC*/
467 gpio_set_value(EXYNOS4X12_GPIO_K12, 0);
468 mdelay(10);
469 gpio_set_value(EXYNOS4X12_GPIO_K12, 1);
470 }