]> git.ipfire.org Git - people/ms/u-boot.git/blob - board/ti/am335x/board.c
board: ti: amx3xx: Remove multiple EEPROM reads
[people/ms/u-boot.git] / board / ti / am335x / board.c
1 /*
2 * board.c
3 *
4 * Board functions for TI AM335X based boards
5 *
6 * Copyright (C) 2011, Texas Instruments, Incorporated - http://www.ti.com/
7 *
8 * SPDX-License-Identifier: GPL-2.0+
9 */
10
11 #include <common.h>
12 #include <errno.h>
13 #include <spl.h>
14 #include <serial.h>
15 #include <asm/arch/cpu.h>
16 #include <asm/arch/hardware.h>
17 #include <asm/arch/omap.h>
18 #include <asm/arch/ddr_defs.h>
19 #include <asm/arch/clock.h>
20 #include <asm/arch/clk_synthesizer.h>
21 #include <asm/arch/gpio.h>
22 #include <asm/arch/mmc_host_def.h>
23 #include <asm/arch/sys_proto.h>
24 #include <asm/arch/mem.h>
25 #include <asm/io.h>
26 #include <asm/emif.h>
27 #include <asm/gpio.h>
28 #include <asm/omap_sec_common.h>
29 #include <i2c.h>
30 #include <miiphy.h>
31 #include <cpsw.h>
32 #include <power/tps65217.h>
33 #include <power/tps65910.h>
34 #include <environment.h>
35 #include <watchdog.h>
36 #include <environment.h>
37 #include "../common/board_detect.h"
38 #include "board.h"
39
40 DECLARE_GLOBAL_DATA_PTR;
41
42 /* GPIO that controls power to DDR on EVM-SK */
43 #define GPIO_TO_PIN(bank, gpio) (32 * (bank) + (gpio))
44 #define GPIO_DDR_VTT_EN GPIO_TO_PIN(0, 7)
45 #define ICE_GPIO_DDR_VTT_EN GPIO_TO_PIN(0, 18)
46 #define GPIO_PR1_MII_CTRL GPIO_TO_PIN(3, 4)
47 #define GPIO_MUX_MII_CTRL GPIO_TO_PIN(3, 10)
48 #define GPIO_FET_SWITCH_CTRL GPIO_TO_PIN(0, 7)
49 #define GPIO_PHY_RESET GPIO_TO_PIN(2, 5)
50 #define GPIO_ETH0_MODE GPIO_TO_PIN(0, 11)
51 #define GPIO_ETH1_MODE GPIO_TO_PIN(1, 26)
52
53 static struct ctrl_dev *cdev = (struct ctrl_dev *)CTRL_DEVICE_BASE;
54
55 #define GPIO0_RISINGDETECT (AM33XX_GPIO0_BASE + OMAP_GPIO_RISINGDETECT)
56 #define GPIO1_RISINGDETECT (AM33XX_GPIO1_BASE + OMAP_GPIO_RISINGDETECT)
57
58 #define GPIO0_IRQSTATUS1 (AM33XX_GPIO0_BASE + OMAP_GPIO_IRQSTATUS1)
59 #define GPIO1_IRQSTATUS1 (AM33XX_GPIO1_BASE + OMAP_GPIO_IRQSTATUS1)
60
61 #define GPIO0_IRQSTATUSRAW (AM33XX_GPIO0_BASE + 0x024)
62 #define GPIO1_IRQSTATUSRAW (AM33XX_GPIO1_BASE + 0x024)
63
64 /*
65 * Read header information from EEPROM into global structure.
66 */
67 #ifdef CONFIG_TI_I2C_BOARD_DETECT
68 void do_board_detect(void)
69 {
70 enable_i2c0_pin_mux();
71 i2c_init(CONFIG_SYS_OMAP24_I2C_SPEED, CONFIG_SYS_OMAP24_I2C_SLAVE);
72
73 if (ti_i2c_eeprom_am_get(-1, CONFIG_SYS_I2C_EEPROM_ADDR))
74 printf("ti_i2c_eeprom_init failed\n");
75 }
76 #endif
77
78 #ifndef CONFIG_DM_SERIAL
79 struct serial_device *default_serial_console(void)
80 {
81 if (board_is_icev2())
82 return &eserial4_device;
83 else
84 return &eserial1_device;
85 }
86 #endif
87
88 #ifndef CONFIG_SKIP_LOWLEVEL_INIT
89 static const struct ddr_data ddr2_data = {
90 .datardsratio0 = MT47H128M16RT25E_RD_DQS,
91 .datafwsratio0 = MT47H128M16RT25E_PHY_FIFO_WE,
92 .datawrsratio0 = MT47H128M16RT25E_PHY_WR_DATA,
93 };
94
95 static const struct cmd_control ddr2_cmd_ctrl_data = {
96 .cmd0csratio = MT47H128M16RT25E_RATIO,
97
98 .cmd1csratio = MT47H128M16RT25E_RATIO,
99
100 .cmd2csratio = MT47H128M16RT25E_RATIO,
101 };
102
103 static const struct emif_regs ddr2_emif_reg_data = {
104 .sdram_config = MT47H128M16RT25E_EMIF_SDCFG,
105 .ref_ctrl = MT47H128M16RT25E_EMIF_SDREF,
106 .sdram_tim1 = MT47H128M16RT25E_EMIF_TIM1,
107 .sdram_tim2 = MT47H128M16RT25E_EMIF_TIM2,
108 .sdram_tim3 = MT47H128M16RT25E_EMIF_TIM3,
109 .emif_ddr_phy_ctlr_1 = MT47H128M16RT25E_EMIF_READ_LATENCY,
110 };
111
112 static const struct ddr_data ddr3_data = {
113 .datardsratio0 = MT41J128MJT125_RD_DQS,
114 .datawdsratio0 = MT41J128MJT125_WR_DQS,
115 .datafwsratio0 = MT41J128MJT125_PHY_FIFO_WE,
116 .datawrsratio0 = MT41J128MJT125_PHY_WR_DATA,
117 };
118
119 static const struct ddr_data ddr3_beagleblack_data = {
120 .datardsratio0 = MT41K256M16HA125E_RD_DQS,
121 .datawdsratio0 = MT41K256M16HA125E_WR_DQS,
122 .datafwsratio0 = MT41K256M16HA125E_PHY_FIFO_WE,
123 .datawrsratio0 = MT41K256M16HA125E_PHY_WR_DATA,
124 };
125
126 static const struct ddr_data ddr3_evm_data = {
127 .datardsratio0 = MT41J512M8RH125_RD_DQS,
128 .datawdsratio0 = MT41J512M8RH125_WR_DQS,
129 .datafwsratio0 = MT41J512M8RH125_PHY_FIFO_WE,
130 .datawrsratio0 = MT41J512M8RH125_PHY_WR_DATA,
131 };
132
133 static const struct ddr_data ddr3_icev2_data = {
134 .datardsratio0 = MT41J128MJT125_RD_DQS_400MHz,
135 .datawdsratio0 = MT41J128MJT125_WR_DQS_400MHz,
136 .datafwsratio0 = MT41J128MJT125_PHY_FIFO_WE_400MHz,
137 .datawrsratio0 = MT41J128MJT125_PHY_WR_DATA_400MHz,
138 };
139
140 static const struct cmd_control ddr3_cmd_ctrl_data = {
141 .cmd0csratio = MT41J128MJT125_RATIO,
142 .cmd0iclkout = MT41J128MJT125_INVERT_CLKOUT,
143
144 .cmd1csratio = MT41J128MJT125_RATIO,
145 .cmd1iclkout = MT41J128MJT125_INVERT_CLKOUT,
146
147 .cmd2csratio = MT41J128MJT125_RATIO,
148 .cmd2iclkout = MT41J128MJT125_INVERT_CLKOUT,
149 };
150
151 static const struct cmd_control ddr3_beagleblack_cmd_ctrl_data = {
152 .cmd0csratio = MT41K256M16HA125E_RATIO,
153 .cmd0iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
154
155 .cmd1csratio = MT41K256M16HA125E_RATIO,
156 .cmd1iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
157
158 .cmd2csratio = MT41K256M16HA125E_RATIO,
159 .cmd2iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
160 };
161
162 static const struct cmd_control ddr3_evm_cmd_ctrl_data = {
163 .cmd0csratio = MT41J512M8RH125_RATIO,
164 .cmd0iclkout = MT41J512M8RH125_INVERT_CLKOUT,
165
166 .cmd1csratio = MT41J512M8RH125_RATIO,
167 .cmd1iclkout = MT41J512M8RH125_INVERT_CLKOUT,
168
169 .cmd2csratio = MT41J512M8RH125_RATIO,
170 .cmd2iclkout = MT41J512M8RH125_INVERT_CLKOUT,
171 };
172
173 static const struct cmd_control ddr3_icev2_cmd_ctrl_data = {
174 .cmd0csratio = MT41J128MJT125_RATIO_400MHz,
175 .cmd0iclkout = MT41J128MJT125_INVERT_CLKOUT_400MHz,
176
177 .cmd1csratio = MT41J128MJT125_RATIO_400MHz,
178 .cmd1iclkout = MT41J128MJT125_INVERT_CLKOUT_400MHz,
179
180 .cmd2csratio = MT41J128MJT125_RATIO_400MHz,
181 .cmd2iclkout = MT41J128MJT125_INVERT_CLKOUT_400MHz,
182 };
183
184 static struct emif_regs ddr3_emif_reg_data = {
185 .sdram_config = MT41J128MJT125_EMIF_SDCFG,
186 .ref_ctrl = MT41J128MJT125_EMIF_SDREF,
187 .sdram_tim1 = MT41J128MJT125_EMIF_TIM1,
188 .sdram_tim2 = MT41J128MJT125_EMIF_TIM2,
189 .sdram_tim3 = MT41J128MJT125_EMIF_TIM3,
190 .zq_config = MT41J128MJT125_ZQ_CFG,
191 .emif_ddr_phy_ctlr_1 = MT41J128MJT125_EMIF_READ_LATENCY |
192 PHY_EN_DYN_PWRDN,
193 };
194
195 static struct emif_regs ddr3_beagleblack_emif_reg_data = {
196 .sdram_config = MT41K256M16HA125E_EMIF_SDCFG,
197 .ref_ctrl = MT41K256M16HA125E_EMIF_SDREF,
198 .sdram_tim1 = MT41K256M16HA125E_EMIF_TIM1,
199 .sdram_tim2 = MT41K256M16HA125E_EMIF_TIM2,
200 .sdram_tim3 = MT41K256M16HA125E_EMIF_TIM3,
201 .zq_config = MT41K256M16HA125E_ZQ_CFG,
202 .emif_ddr_phy_ctlr_1 = MT41K256M16HA125E_EMIF_READ_LATENCY,
203 };
204
205 static struct emif_regs ddr3_evm_emif_reg_data = {
206 .sdram_config = MT41J512M8RH125_EMIF_SDCFG,
207 .ref_ctrl = MT41J512M8RH125_EMIF_SDREF,
208 .sdram_tim1 = MT41J512M8RH125_EMIF_TIM1,
209 .sdram_tim2 = MT41J512M8RH125_EMIF_TIM2,
210 .sdram_tim3 = MT41J512M8RH125_EMIF_TIM3,
211 .zq_config = MT41J512M8RH125_ZQ_CFG,
212 .emif_ddr_phy_ctlr_1 = MT41J512M8RH125_EMIF_READ_LATENCY |
213 PHY_EN_DYN_PWRDN,
214 };
215
216 static struct emif_regs ddr3_icev2_emif_reg_data = {
217 .sdram_config = MT41J128MJT125_EMIF_SDCFG_400MHz,
218 .ref_ctrl = MT41J128MJT125_EMIF_SDREF_400MHz,
219 .sdram_tim1 = MT41J128MJT125_EMIF_TIM1_400MHz,
220 .sdram_tim2 = MT41J128MJT125_EMIF_TIM2_400MHz,
221 .sdram_tim3 = MT41J128MJT125_EMIF_TIM3_400MHz,
222 .zq_config = MT41J128MJT125_ZQ_CFG_400MHz,
223 .emif_ddr_phy_ctlr_1 = MT41J128MJT125_EMIF_READ_LATENCY_400MHz |
224 PHY_EN_DYN_PWRDN,
225 };
226
227 #ifdef CONFIG_SPL_OS_BOOT
228 int spl_start_uboot(void)
229 {
230 /* break into full u-boot on 'c' */
231 if (serial_tstc() && serial_getc() == 'c')
232 return 1;
233
234 #ifdef CONFIG_SPL_ENV_SUPPORT
235 env_init();
236 env_relocate_spec();
237 if (getenv_yesno("boot_os") != 1)
238 return 1;
239 #endif
240
241 return 0;
242 }
243 #endif
244
245 #define OSC (V_OSCK/1000000)
246 const struct dpll_params dpll_ddr = {
247 266, OSC-1, 1, -1, -1, -1, -1};
248 const struct dpll_params dpll_ddr_evm_sk = {
249 303, OSC-1, 1, -1, -1, -1, -1};
250 const struct dpll_params dpll_ddr_bone_black = {
251 400, OSC-1, 1, -1, -1, -1, -1};
252
253 void am33xx_spl_board_init(void)
254 {
255 int mpu_vdd;
256
257 /* Get the frequency */
258 dpll_mpu_opp100.m = am335x_get_efuse_mpu_max_freq(cdev);
259
260 if (board_is_bone() || board_is_bone_lt()) {
261 /* BeagleBone PMIC Code */
262 int usb_cur_lim;
263
264 /*
265 * Only perform PMIC configurations if board rev > A1
266 * on Beaglebone White
267 */
268 if (board_is_bone() && !strncmp(board_ti_get_rev(), "00A1", 4))
269 return;
270
271 if (i2c_probe(TPS65217_CHIP_PM))
272 return;
273
274 /*
275 * On Beaglebone White we need to ensure we have AC power
276 * before increasing the frequency.
277 */
278 if (board_is_bone()) {
279 uchar pmic_status_reg;
280 if (tps65217_reg_read(TPS65217_STATUS,
281 &pmic_status_reg))
282 return;
283 if (!(pmic_status_reg & TPS65217_PWR_SRC_AC_BITMASK)) {
284 puts("No AC power, disabling frequency switch\n");
285 return;
286 }
287 }
288
289 /*
290 * Override what we have detected since we know if we have
291 * a Beaglebone Black it supports 1GHz.
292 */
293 if (board_is_bone_lt())
294 dpll_mpu_opp100.m = MPUPLL_M_1000;
295
296 /*
297 * Increase USB current limit to 1300mA or 1800mA and set
298 * the MPU voltage controller as needed.
299 */
300 if (dpll_mpu_opp100.m == MPUPLL_M_1000) {
301 usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1800MA;
302 mpu_vdd = TPS65217_DCDC_VOLT_SEL_1325MV;
303 } else {
304 usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1300MA;
305 mpu_vdd = TPS65217_DCDC_VOLT_SEL_1275MV;
306 }
307
308 if (tps65217_reg_write(TPS65217_PROT_LEVEL_NONE,
309 TPS65217_POWER_PATH,
310 usb_cur_lim,
311 TPS65217_USB_INPUT_CUR_LIMIT_MASK))
312 puts("tps65217_reg_write failure\n");
313
314 /* Set DCDC3 (CORE) voltage to 1.125V */
315 if (tps65217_voltage_update(TPS65217_DEFDCDC3,
316 TPS65217_DCDC_VOLT_SEL_1125MV)) {
317 puts("tps65217_voltage_update failure\n");
318 return;
319 }
320
321 /* Set CORE Frequencies to OPP100 */
322 do_setup_dpll(&dpll_core_regs, &dpll_core_opp100);
323
324 /* Set DCDC2 (MPU) voltage */
325 if (tps65217_voltage_update(TPS65217_DEFDCDC2, mpu_vdd)) {
326 puts("tps65217_voltage_update failure\n");
327 return;
328 }
329
330 /*
331 * Set LDO3, LDO4 output voltage to 3.3V for Beaglebone.
332 * Set LDO3 to 1.8V and LDO4 to 3.3V for Beaglebone Black.
333 */
334 if (board_is_bone()) {
335 if (tps65217_reg_write(TPS65217_PROT_LEVEL_2,
336 TPS65217_DEFLS1,
337 TPS65217_LDO_VOLTAGE_OUT_3_3,
338 TPS65217_LDO_MASK))
339 puts("tps65217_reg_write failure\n");
340 } else {
341 if (tps65217_reg_write(TPS65217_PROT_LEVEL_2,
342 TPS65217_DEFLS1,
343 TPS65217_LDO_VOLTAGE_OUT_1_8,
344 TPS65217_LDO_MASK))
345 puts("tps65217_reg_write failure\n");
346 }
347
348 if (tps65217_reg_write(TPS65217_PROT_LEVEL_2,
349 TPS65217_DEFLS2,
350 TPS65217_LDO_VOLTAGE_OUT_3_3,
351 TPS65217_LDO_MASK))
352 puts("tps65217_reg_write failure\n");
353 } else {
354 int sil_rev;
355
356 /*
357 * The GP EVM, IDK and EVM SK use a TPS65910 PMIC. For all
358 * MPU frequencies we support we use a CORE voltage of
359 * 1.1375V. For MPU voltage we need to switch based on
360 * the frequency we are running at.
361 */
362 if (i2c_probe(TPS65910_CTRL_I2C_ADDR))
363 return;
364
365 /*
366 * Depending on MPU clock and PG we will need a different
367 * VDD to drive at that speed.
368 */
369 sil_rev = readl(&cdev->deviceid) >> 28;
370 mpu_vdd = am335x_get_tps65910_mpu_vdd(sil_rev,
371 dpll_mpu_opp100.m);
372
373 /* Tell the TPS65910 to use i2c */
374 tps65910_set_i2c_control();
375
376 /* First update MPU voltage. */
377 if (tps65910_voltage_update(MPU, mpu_vdd))
378 return;
379
380 /* Second, update the CORE voltage. */
381 if (tps65910_voltage_update(CORE, TPS65910_OP_REG_SEL_1_1_3))
382 return;
383
384 /* Set CORE Frequencies to OPP100 */
385 do_setup_dpll(&dpll_core_regs, &dpll_core_opp100);
386 }
387
388 /* Set MPU Frequency to what we detected now that voltages are set */
389 do_setup_dpll(&dpll_mpu_regs, &dpll_mpu_opp100);
390 }
391
392 const struct dpll_params *get_dpll_ddr_params(void)
393 {
394 if (board_is_evm_sk())
395 return &dpll_ddr_evm_sk;
396 else if (board_is_bone_lt() || board_is_icev2())
397 return &dpll_ddr_bone_black;
398 else if (board_is_evm_15_or_later())
399 return &dpll_ddr_evm_sk;
400 else
401 return &dpll_ddr;
402 }
403
404 void set_uart_mux_conf(void)
405 {
406 #if CONFIG_CONS_INDEX == 1
407 enable_uart0_pin_mux();
408 #elif CONFIG_CONS_INDEX == 2
409 enable_uart1_pin_mux();
410 #elif CONFIG_CONS_INDEX == 3
411 enable_uart2_pin_mux();
412 #elif CONFIG_CONS_INDEX == 4
413 enable_uart3_pin_mux();
414 #elif CONFIG_CONS_INDEX == 5
415 enable_uart4_pin_mux();
416 #elif CONFIG_CONS_INDEX == 6
417 enable_uart5_pin_mux();
418 #endif
419 }
420
421 void set_mux_conf_regs(void)
422 {
423 enable_board_pin_mux();
424 }
425
426 const struct ctrl_ioregs ioregs_evmsk = {
427 .cm0ioctl = MT41J128MJT125_IOCTRL_VALUE,
428 .cm1ioctl = MT41J128MJT125_IOCTRL_VALUE,
429 .cm2ioctl = MT41J128MJT125_IOCTRL_VALUE,
430 .dt0ioctl = MT41J128MJT125_IOCTRL_VALUE,
431 .dt1ioctl = MT41J128MJT125_IOCTRL_VALUE,
432 };
433
434 const struct ctrl_ioregs ioregs_bonelt = {
435 .cm0ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
436 .cm1ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
437 .cm2ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
438 .dt0ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
439 .dt1ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
440 };
441
442 const struct ctrl_ioregs ioregs_evm15 = {
443 .cm0ioctl = MT41J512M8RH125_IOCTRL_VALUE,
444 .cm1ioctl = MT41J512M8RH125_IOCTRL_VALUE,
445 .cm2ioctl = MT41J512M8RH125_IOCTRL_VALUE,
446 .dt0ioctl = MT41J512M8RH125_IOCTRL_VALUE,
447 .dt1ioctl = MT41J512M8RH125_IOCTRL_VALUE,
448 };
449
450 const struct ctrl_ioregs ioregs = {
451 .cm0ioctl = MT47H128M16RT25E_IOCTRL_VALUE,
452 .cm1ioctl = MT47H128M16RT25E_IOCTRL_VALUE,
453 .cm2ioctl = MT47H128M16RT25E_IOCTRL_VALUE,
454 .dt0ioctl = MT47H128M16RT25E_IOCTRL_VALUE,
455 .dt1ioctl = MT47H128M16RT25E_IOCTRL_VALUE,
456 };
457
458 void sdram_init(void)
459 {
460 if (board_is_evm_sk()) {
461 /*
462 * EVM SK 1.2A and later use gpio0_7 to enable DDR3.
463 * This is safe enough to do on older revs.
464 */
465 gpio_request(GPIO_DDR_VTT_EN, "ddr_vtt_en");
466 gpio_direction_output(GPIO_DDR_VTT_EN, 1);
467 }
468
469 if (board_is_icev2()) {
470 gpio_request(ICE_GPIO_DDR_VTT_EN, "ddr_vtt_en");
471 gpio_direction_output(ICE_GPIO_DDR_VTT_EN, 1);
472 }
473
474 if (board_is_evm_sk())
475 config_ddr(303, &ioregs_evmsk, &ddr3_data,
476 &ddr3_cmd_ctrl_data, &ddr3_emif_reg_data, 0);
477 else if (board_is_bone_lt())
478 config_ddr(400, &ioregs_bonelt,
479 &ddr3_beagleblack_data,
480 &ddr3_beagleblack_cmd_ctrl_data,
481 &ddr3_beagleblack_emif_reg_data, 0);
482 else if (board_is_evm_15_or_later())
483 config_ddr(303, &ioregs_evm15, &ddr3_evm_data,
484 &ddr3_evm_cmd_ctrl_data, &ddr3_evm_emif_reg_data, 0);
485 else if (board_is_icev2())
486 config_ddr(400, &ioregs_evmsk, &ddr3_icev2_data,
487 &ddr3_icev2_cmd_ctrl_data, &ddr3_icev2_emif_reg_data,
488 0);
489 else
490 config_ddr(266, &ioregs, &ddr2_data,
491 &ddr2_cmd_ctrl_data, &ddr2_emif_reg_data, 0);
492 }
493 #endif
494
495 #if !defined(CONFIG_SPL_BUILD) || \
496 (defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
497 static void request_and_set_gpio(int gpio, char *name, int val)
498 {
499 int ret;
500
501 ret = gpio_request(gpio, name);
502 if (ret < 0) {
503 printf("%s: Unable to request %s\n", __func__, name);
504 return;
505 }
506
507 ret = gpio_direction_output(gpio, 0);
508 if (ret < 0) {
509 printf("%s: Unable to set %s as output\n", __func__, name);
510 goto err_free_gpio;
511 }
512
513 gpio_set_value(gpio, val);
514
515 return;
516
517 err_free_gpio:
518 gpio_free(gpio);
519 }
520
521 #define REQUEST_AND_SET_GPIO(N) request_and_set_gpio(N, #N, 1);
522 #define REQUEST_AND_CLR_GPIO(N) request_and_set_gpio(N, #N, 0);
523
524 /**
525 * RMII mode on ICEv2 board needs 50MHz clock. Given the clock
526 * synthesizer With a capacitor of 18pF, and 25MHz input clock cycle
527 * PLL1 gives an output of 100MHz. So, configuring the div2/3 as 2 to
528 * give 50MHz output for Eth0 and 1.
529 */
530 static struct clk_synth cdce913_data = {
531 .id = 0x81,
532 .capacitor = 0x90,
533 .mux = 0x6d,
534 .pdiv2 = 0x2,
535 .pdiv3 = 0x2,
536 };
537 #endif
538
539 /*
540 * Basic board specific setup. Pinmux has been handled already.
541 */
542 int board_init(void)
543 {
544 #if defined(CONFIG_HW_WATCHDOG)
545 hw_watchdog_init();
546 #endif
547
548 gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100;
549 #if defined(CONFIG_NOR) || defined(CONFIG_NAND)
550 gpmc_init();
551 #endif
552
553 #if !defined(CONFIG_SPL_BUILD) || \
554 (defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
555 if (board_is_icev2()) {
556 int rv;
557 u32 reg;
558
559 REQUEST_AND_SET_GPIO(GPIO_PR1_MII_CTRL);
560 /* Make J19 status available on GPIO1_26 */
561 REQUEST_AND_CLR_GPIO(GPIO_MUX_MII_CTRL);
562
563 REQUEST_AND_SET_GPIO(GPIO_FET_SWITCH_CTRL);
564 /*
565 * Both ports can be set as RMII-CPSW or MII-PRU-ETH using
566 * jumpers near the port. Read the jumper value and set
567 * the pinmux, external mux and PHY clock accordingly.
568 * As jumper line is overridden by PHY RX_DV pin immediately
569 * after bootstrap (power-up/reset), we need to sample
570 * it during PHY reset using GPIO rising edge detection.
571 */
572 REQUEST_AND_SET_GPIO(GPIO_PHY_RESET);
573 /* Enable rising edge IRQ on GPIO0_11 and GPIO 1_26 */
574 reg = readl(GPIO0_RISINGDETECT) | BIT(11);
575 writel(reg, GPIO0_RISINGDETECT);
576 reg = readl(GPIO1_RISINGDETECT) | BIT(26);
577 writel(reg, GPIO1_RISINGDETECT);
578 /* Reset PHYs to capture the Jumper setting */
579 gpio_set_value(GPIO_PHY_RESET, 0);
580 udelay(2); /* PHY datasheet states 1uS min. */
581 gpio_set_value(GPIO_PHY_RESET, 1);
582
583 reg = readl(GPIO0_IRQSTATUSRAW) & BIT(11);
584 if (reg) {
585 writel(reg, GPIO0_IRQSTATUS1); /* clear irq */
586 /* RMII mode */
587 printf("ETH0, CPSW\n");
588 } else {
589 /* MII mode */
590 printf("ETH0, PRU\n");
591 cdce913_data.pdiv3 = 4; /* 25MHz PHY clk */
592 }
593
594 reg = readl(GPIO1_IRQSTATUSRAW) & BIT(26);
595 if (reg) {
596 writel(reg, GPIO1_IRQSTATUS1); /* clear irq */
597 /* RMII mode */
598 printf("ETH1, CPSW\n");
599 gpio_set_value(GPIO_MUX_MII_CTRL, 1);
600 } else {
601 /* MII mode */
602 printf("ETH1, PRU\n");
603 cdce913_data.pdiv2 = 4; /* 25MHz PHY clk */
604 }
605
606 /* disable rising edge IRQs */
607 reg = readl(GPIO0_RISINGDETECT) & ~BIT(11);
608 writel(reg, GPIO0_RISINGDETECT);
609 reg = readl(GPIO1_RISINGDETECT) & ~BIT(26);
610 writel(reg, GPIO1_RISINGDETECT);
611
612 rv = setup_clock_synthesizer(&cdce913_data);
613 if (rv) {
614 printf("Clock synthesizer setup failed %d\n", rv);
615 return rv;
616 }
617
618 /* reset PHYs */
619 gpio_set_value(GPIO_PHY_RESET, 0);
620 udelay(2); /* PHY datasheet states 1uS min. */
621 gpio_set_value(GPIO_PHY_RESET, 1);
622 }
623 #endif
624
625 return 0;
626 }
627
628 #ifdef CONFIG_BOARD_LATE_INIT
629 int board_late_init(void)
630 {
631 #if !defined(CONFIG_SPL_BUILD)
632 uint8_t mac_addr[6];
633 uint32_t mac_hi, mac_lo;
634 #endif
635
636 #ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
637 char *name = NULL;
638
639 if (board_is_bbg1())
640 name = "BBG1";
641 set_board_info_env(name);
642 #endif
643
644 #if !defined(CONFIG_SPL_BUILD)
645 /* try reading mac address from efuse */
646 mac_lo = readl(&cdev->macid0l);
647 mac_hi = readl(&cdev->macid0h);
648 mac_addr[0] = mac_hi & 0xFF;
649 mac_addr[1] = (mac_hi & 0xFF00) >> 8;
650 mac_addr[2] = (mac_hi & 0xFF0000) >> 16;
651 mac_addr[3] = (mac_hi & 0xFF000000) >> 24;
652 mac_addr[4] = mac_lo & 0xFF;
653 mac_addr[5] = (mac_lo & 0xFF00) >> 8;
654
655 if (!getenv("ethaddr")) {
656 printf("<ethaddr> not set. Validating first E-fuse MAC\n");
657
658 if (is_valid_ethaddr(mac_addr))
659 eth_setenv_enetaddr("ethaddr", mac_addr);
660 }
661
662 mac_lo = readl(&cdev->macid1l);
663 mac_hi = readl(&cdev->macid1h);
664 mac_addr[0] = mac_hi & 0xFF;
665 mac_addr[1] = (mac_hi & 0xFF00) >> 8;
666 mac_addr[2] = (mac_hi & 0xFF0000) >> 16;
667 mac_addr[3] = (mac_hi & 0xFF000000) >> 24;
668 mac_addr[4] = mac_lo & 0xFF;
669 mac_addr[5] = (mac_lo & 0xFF00) >> 8;
670
671 if (!getenv("eth1addr")) {
672 if (is_valid_ethaddr(mac_addr))
673 eth_setenv_enetaddr("eth1addr", mac_addr);
674 }
675 #endif
676
677 return 0;
678 }
679 #endif
680
681 #ifndef CONFIG_DM_ETH
682
683 #if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \
684 (defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
685 static void cpsw_control(int enabled)
686 {
687 /* VTP can be added here */
688
689 return;
690 }
691
692 static struct cpsw_slave_data cpsw_slaves[] = {
693 {
694 .slave_reg_ofs = 0x208,
695 .sliver_reg_ofs = 0xd80,
696 .phy_addr = 0,
697 },
698 {
699 .slave_reg_ofs = 0x308,
700 .sliver_reg_ofs = 0xdc0,
701 .phy_addr = 1,
702 },
703 };
704
705 static struct cpsw_platform_data cpsw_data = {
706 .mdio_base = CPSW_MDIO_BASE,
707 .cpsw_base = CPSW_BASE,
708 .mdio_div = 0xff,
709 .channels = 8,
710 .cpdma_reg_ofs = 0x800,
711 .slaves = 1,
712 .slave_data = cpsw_slaves,
713 .ale_reg_ofs = 0xd00,
714 .ale_entries = 1024,
715 .host_port_reg_ofs = 0x108,
716 .hw_stats_reg_ofs = 0x900,
717 .bd_ram_ofs = 0x2000,
718 .mac_control = (1 << 5),
719 .control = cpsw_control,
720 .host_port_num = 0,
721 .version = CPSW_CTRL_VERSION_2,
722 };
723 #endif
724
725 #if ((defined(CONFIG_SPL_ETH_SUPPORT) || defined(CONFIG_SPL_USBETH_SUPPORT)) &&\
726 defined(CONFIG_SPL_BUILD)) || \
727 ((defined(CONFIG_DRIVER_TI_CPSW) || \
728 defined(CONFIG_USB_ETHER) && defined(CONFIG_MUSB_GADGET)) && \
729 !defined(CONFIG_SPL_BUILD))
730
731 /*
732 * This function will:
733 * Read the eFuse for MAC addresses, and set ethaddr/eth1addr/usbnet_devaddr
734 * in the environment
735 * Perform fixups to the PHY present on certain boards. We only need this
736 * function in:
737 * - SPL with either CPSW or USB ethernet support
738 * - Full U-Boot, with either CPSW or USB ethernet
739 * Build in only these cases to avoid warnings about unused variables
740 * when we build an SPL that has neither option but full U-Boot will.
741 */
742 int board_eth_init(bd_t *bis)
743 {
744 int rv, n = 0;
745 #if defined(CONFIG_USB_ETHER) && \
746 (!defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_USBETH_SUPPORT))
747 uint8_t mac_addr[6];
748 uint32_t mac_hi, mac_lo;
749
750 /*
751 * use efuse mac address for USB ethernet as we know that
752 * both CPSW and USB ethernet will never be active at the same time
753 */
754 mac_lo = readl(&cdev->macid0l);
755 mac_hi = readl(&cdev->macid0h);
756 mac_addr[0] = mac_hi & 0xFF;
757 mac_addr[1] = (mac_hi & 0xFF00) >> 8;
758 mac_addr[2] = (mac_hi & 0xFF0000) >> 16;
759 mac_addr[3] = (mac_hi & 0xFF000000) >> 24;
760 mac_addr[4] = mac_lo & 0xFF;
761 mac_addr[5] = (mac_lo & 0xFF00) >> 8;
762 #endif
763
764
765 #if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \
766 (defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
767
768 #ifdef CONFIG_DRIVER_TI_CPSW
769 if (board_is_bone() || board_is_bone_lt() ||
770 board_is_idk()) {
771 writel(MII_MODE_ENABLE, &cdev->miisel);
772 cpsw_slaves[0].phy_if = cpsw_slaves[1].phy_if =
773 PHY_INTERFACE_MODE_MII;
774 } else if (board_is_icev2()) {
775 writel(RMII_MODE_ENABLE | RMII_CHIPCKL_ENABLE, &cdev->miisel);
776 cpsw_slaves[0].phy_if = PHY_INTERFACE_MODE_RMII;
777 cpsw_slaves[1].phy_if = PHY_INTERFACE_MODE_RMII;
778 cpsw_slaves[0].phy_addr = 1;
779 cpsw_slaves[1].phy_addr = 3;
780 } else {
781 writel((RGMII_MODE_ENABLE | RGMII_INT_DELAY), &cdev->miisel);
782 cpsw_slaves[0].phy_if = cpsw_slaves[1].phy_if =
783 PHY_INTERFACE_MODE_RGMII;
784 }
785
786 rv = cpsw_register(&cpsw_data);
787 if (rv < 0)
788 printf("Error %d registering CPSW switch\n", rv);
789 else
790 n += rv;
791 #endif
792
793 /*
794 *
795 * CPSW RGMII Internal Delay Mode is not supported in all PVT
796 * operating points. So we must set the TX clock delay feature
797 * in the AR8051 PHY. Since we only support a single ethernet
798 * device in U-Boot, we only do this for the first instance.
799 */
800 #define AR8051_PHY_DEBUG_ADDR_REG 0x1d
801 #define AR8051_PHY_DEBUG_DATA_REG 0x1e
802 #define AR8051_DEBUG_RGMII_CLK_DLY_REG 0x5
803 #define AR8051_RGMII_TX_CLK_DLY 0x100
804
805 if (board_is_evm_sk() || board_is_gp_evm()) {
806 const char *devname;
807 devname = miiphy_get_current_dev();
808
809 miiphy_write(devname, 0x0, AR8051_PHY_DEBUG_ADDR_REG,
810 AR8051_DEBUG_RGMII_CLK_DLY_REG);
811 miiphy_write(devname, 0x0, AR8051_PHY_DEBUG_DATA_REG,
812 AR8051_RGMII_TX_CLK_DLY);
813 }
814 #endif
815 #if defined(CONFIG_USB_ETHER) && \
816 (!defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_USBETH_SUPPORT))
817 if (is_valid_ethaddr(mac_addr))
818 eth_setenv_enetaddr("usbnet_devaddr", mac_addr);
819
820 rv = usb_eth_initialize(bis);
821 if (rv < 0)
822 printf("Error %d registering USB_ETHER\n", rv);
823 else
824 n += rv;
825 #endif
826 return n;
827 }
828 #endif
829
830 #endif /* CONFIG_DM_ETH */
831
832 #ifdef CONFIG_SPL_LOAD_FIT
833 int board_fit_config_name_match(const char *name)
834 {
835 if (board_is_gp_evm() && !strcmp(name, "am335x-evm"))
836 return 0;
837 else if (board_is_bone() && !strcmp(name, "am335x-bone"))
838 return 0;
839 else if (board_is_bone_lt() && !strcmp(name, "am335x-boneblack"))
840 return 0;
841 else if (board_is_evm_sk() && !strcmp(name, "am335x-evmsk"))
842 return 0;
843 else if (board_is_bbg1() && !strcmp(name, "am335x-bonegreen"))
844 return 0;
845 else if (board_is_icev2() && !strcmp(name, "am335x-icev2"))
846 return 0;
847 else
848 return -1;
849 }
850 #endif
851
852 #ifdef CONFIG_TI_SECURE_DEVICE
853 void board_fit_image_post_process(void **p_image, size_t *p_size)
854 {
855 secure_boot_verify_image(p_image, p_size);
856 }
857 #endif