]> git.ipfire.org Git - people/ms/u-boot.git/blob - cmd/i2c.c
i2c: Set default I2C bus number
[people/ms/u-boot.git] / cmd / i2c.c
1 /*
2 * (C) Copyright 2009
3 * Sergey Kubushyn, himself, ksi@koi8.net
4 *
5 * Changes for unified multibus/multiadapter I2C support.
6 *
7 * (C) Copyright 2001
8 * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
9 *
10 * SPDX-License-Identifier: GPL-2.0+
11 */
12
13 /*
14 * I2C Functions similar to the standard memory functions.
15 *
16 * There are several parameters in many of the commands that bear further
17 * explanations:
18 *
19 * {i2c_chip} is the I2C chip address (the first byte sent on the bus).
20 * Each I2C chip on the bus has a unique address. On the I2C data bus,
21 * the address is the upper seven bits and the LSB is the "read/write"
22 * bit. Note that the {i2c_chip} address specified on the command
23 * line is not shifted up: e.g. a typical EEPROM memory chip may have
24 * an I2C address of 0x50, but the data put on the bus will be 0xA0
25 * for write and 0xA1 for read. This "non shifted" address notation
26 * matches at least half of the data sheets :-/.
27 *
28 * {addr} is the address (or offset) within the chip. Small memory
29 * chips have 8 bit addresses. Large memory chips have 16 bit
30 * addresses. Other memory chips have 9, 10, or 11 bit addresses.
31 * Many non-memory chips have multiple registers and {addr} is used
32 * as the register index. Some non-memory chips have only one register
33 * and therefore don't need any {addr} parameter.
34 *
35 * The default {addr} parameter is one byte (.1) which works well for
36 * memories and registers with 8 bits of address space.
37 *
38 * You can specify the length of the {addr} field with the optional .0,
39 * .1, or .2 modifier (similar to the .b, .w, .l modifier). If you are
40 * manipulating a single register device which doesn't use an address
41 * field, use "0.0" for the address and the ".0" length field will
42 * suppress the address in the I2C data stream. This also works for
43 * successive reads using the I2C auto-incrementing memory pointer.
44 *
45 * If you are manipulating a large memory with 2-byte addresses, use
46 * the .2 address modifier, e.g. 210.2 addresses location 528 (decimal).
47 *
48 * Then there are the unfortunate memory chips that spill the most
49 * significant 1, 2, or 3 bits of address into the chip address byte.
50 * This effectively makes one chip (logically) look like 2, 4, or
51 * 8 chips. This is handled (awkwardly) by #defining
52 * CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the
53 * {addr} field (since .1 is the default, it doesn't actually have to
54 * be specified). Examples: given a memory chip at I2C chip address
55 * 0x50, the following would happen...
56 * i2c md 50 0 10 display 16 bytes starting at 0x000
57 * On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd>
58 * i2c md 50 100 10 display 16 bytes starting at 0x100
59 * On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd>
60 * i2c md 50 210 10 display 16 bytes starting at 0x210
61 * On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd>
62 * This is awfully ugly. It would be nice if someone would think up
63 * a better way of handling this.
64 *
65 * Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de).
66 */
67
68 #include <common.h>
69 #include <bootretry.h>
70 #include <cli.h>
71 #include <command.h>
72 #include <console.h>
73 #include <dm.h>
74 #include <edid.h>
75 #include <environment.h>
76 #include <errno.h>
77 #include <i2c.h>
78 #include <malloc.h>
79 #include <asm/byteorder.h>
80 #include <linux/compiler.h>
81
82 DECLARE_GLOBAL_DATA_PTR;
83
84 /* Display values from last command.
85 * Memory modify remembered values are different from display memory.
86 */
87 static uint i2c_dp_last_chip;
88 static uint i2c_dp_last_addr;
89 static uint i2c_dp_last_alen;
90 static uint i2c_dp_last_length = 0x10;
91
92 static uint i2c_mm_last_chip;
93 static uint i2c_mm_last_addr;
94 static uint i2c_mm_last_alen;
95
96 /* If only one I2C bus is present, the list of devices to ignore when
97 * the probe command is issued is represented by a 1D array of addresses.
98 * When multiple buses are present, the list is an array of bus-address
99 * pairs. The following macros take care of this */
100
101 #if defined(CONFIG_SYS_I2C_NOPROBES)
102 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_I2C_MULTI_BUS)
103 static struct
104 {
105 uchar bus;
106 uchar addr;
107 } i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES;
108 #define GET_BUS_NUM i2c_get_bus_num()
109 #define COMPARE_BUS(b,i) (i2c_no_probes[(i)].bus == (b))
110 #define COMPARE_ADDR(a,i) (i2c_no_probes[(i)].addr == (a))
111 #define NO_PROBE_ADDR(i) i2c_no_probes[(i)].addr
112 #else /* single bus */
113 static uchar i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES;
114 #define GET_BUS_NUM 0
115 #define COMPARE_BUS(b,i) ((b) == 0) /* Make compiler happy */
116 #define COMPARE_ADDR(a,i) (i2c_no_probes[(i)] == (a))
117 #define NO_PROBE_ADDR(i) i2c_no_probes[(i)]
118 #endif /* defined(CONFIG_SYS_I2C) */
119 #endif
120
121 #define DISP_LINE_LEN 16
122
123 /*
124 * Default for driver model is to use the chip's existing address length.
125 * For legacy code, this is not stored, so we need to use a suitable
126 * default.
127 */
128 #ifdef CONFIG_DM_I2C
129 #define DEFAULT_ADDR_LEN (-1)
130 #else
131 #define DEFAULT_ADDR_LEN 1
132 #endif
133
134 #ifdef CONFIG_DM_I2C
135 static struct udevice *i2c_cur_bus;
136
137 static int cmd_i2c_set_bus_num(unsigned int busnum)
138 {
139 struct udevice *bus;
140 int ret;
141
142 ret = uclass_get_device_by_seq(UCLASS_I2C, busnum, &bus);
143 if (ret) {
144 debug("%s: No bus %d\n", __func__, busnum);
145 return ret;
146 }
147 i2c_cur_bus = bus;
148
149 return 0;
150 }
151
152 static int i2c_get_cur_bus(struct udevice **busp)
153 {
154 #ifdef CONFIG_I2C_SET_DEFAULT_BUS_NUM
155 if (!i2c_cur_bus) {
156 if (cmd_i2c_set_bus_num(CONFIG_I2C_DEFAULT_BUS_NUMBER)) {
157 printf("Default I2C bus %d not found\n",
158 CONFIG_I2C_DEFAULT_BUS_NUMBER);
159 return -ENODEV;
160 }
161 }
162 #endif
163
164 if (!i2c_cur_bus) {
165 puts("No I2C bus selected\n");
166 return -ENODEV;
167 }
168 *busp = i2c_cur_bus;
169
170 return 0;
171 }
172
173 static int i2c_get_cur_bus_chip(uint chip_addr, struct udevice **devp)
174 {
175 struct udevice *bus;
176 int ret;
177
178 ret = i2c_get_cur_bus(&bus);
179 if (ret)
180 return ret;
181
182 return i2c_get_chip(bus, chip_addr, 1, devp);
183 }
184
185 #endif
186
187 /**
188 * i2c_init_board() - Board-specific I2C bus init
189 *
190 * This function is the default no-op implementation of I2C bus
191 * initialization. This function can be overridden by board-specific
192 * implementation if needed.
193 */
194 __weak
195 void i2c_init_board(void)
196 {
197 }
198
199 /* TODO: Implement architecture-specific get/set functions */
200
201 /**
202 * i2c_get_bus_speed() - Return I2C bus speed
203 *
204 * This function is the default implementation of function for retrieveing
205 * the current I2C bus speed in Hz.
206 *
207 * A driver implementing runtime switching of I2C bus speed must override
208 * this function to report the speed correctly. Simple or legacy drivers
209 * can use this fallback.
210 *
211 * Returns I2C bus speed in Hz.
212 */
213 #if !defined(CONFIG_SYS_I2C) && !defined(CONFIG_DM_I2C)
214 /*
215 * TODO: Implement architecture-specific get/set functions
216 * Should go away, if we switched completely to new multibus support
217 */
218 __weak
219 unsigned int i2c_get_bus_speed(void)
220 {
221 return CONFIG_SYS_I2C_SPEED;
222 }
223
224 /**
225 * i2c_set_bus_speed() - Configure I2C bus speed
226 * @speed: Newly set speed of the I2C bus in Hz
227 *
228 * This function is the default implementation of function for setting
229 * the I2C bus speed in Hz.
230 *
231 * A driver implementing runtime switching of I2C bus speed must override
232 * this function to report the speed correctly. Simple or legacy drivers
233 * can use this fallback.
234 *
235 * Returns zero on success, negative value on error.
236 */
237 __weak
238 int i2c_set_bus_speed(unsigned int speed)
239 {
240 if (speed != CONFIG_SYS_I2C_SPEED)
241 return -1;
242
243 return 0;
244 }
245 #endif
246
247 /**
248 * get_alen() - Small parser helper function to get address length
249 *
250 * Returns the address length.
251 */
252 static uint get_alen(char *arg, int default_len)
253 {
254 int j;
255 int alen;
256
257 alen = default_len;
258 for (j = 0; j < 8; j++) {
259 if (arg[j] == '.') {
260 alen = arg[j+1] - '0';
261 break;
262 } else if (arg[j] == '\0')
263 break;
264 }
265 return alen;
266 }
267
268 enum i2c_err_op {
269 I2C_ERR_READ,
270 I2C_ERR_WRITE,
271 };
272
273 static int i2c_report_err(int ret, enum i2c_err_op op)
274 {
275 printf("Error %s the chip: %d\n",
276 op == I2C_ERR_READ ? "reading" : "writing", ret);
277
278 return CMD_RET_FAILURE;
279 }
280
281 /**
282 * do_i2c_read() - Handle the "i2c read" command-line command
283 * @cmdtp: Command data struct pointer
284 * @flag: Command flag
285 * @argc: Command-line argument count
286 * @argv: Array of command-line arguments
287 *
288 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
289 * on error.
290 *
291 * Syntax:
292 * i2c read {i2c_chip} {devaddr}{.0, .1, .2} {len} {memaddr}
293 */
294 static int do_i2c_read ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
295 {
296 uint chip;
297 uint devaddr, length;
298 int alen;
299 u_char *memaddr;
300 int ret;
301 #ifdef CONFIG_DM_I2C
302 struct udevice *dev;
303 #endif
304
305 if (argc != 5)
306 return CMD_RET_USAGE;
307
308 /*
309 * I2C chip address
310 */
311 chip = simple_strtoul(argv[1], NULL, 16);
312
313 /*
314 * I2C data address within the chip. This can be 1 or
315 * 2 bytes long. Some day it might be 3 bytes long :-).
316 */
317 devaddr = simple_strtoul(argv[2], NULL, 16);
318 alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
319 if (alen > 3)
320 return CMD_RET_USAGE;
321
322 /*
323 * Length is the number of objects, not number of bytes.
324 */
325 length = simple_strtoul(argv[3], NULL, 16);
326
327 /*
328 * memaddr is the address where to store things in memory
329 */
330 memaddr = (u_char *)simple_strtoul(argv[4], NULL, 16);
331
332 #ifdef CONFIG_DM_I2C
333 ret = i2c_get_cur_bus_chip(chip, &dev);
334 if (!ret && alen != -1)
335 ret = i2c_set_chip_offset_len(dev, alen);
336 if (!ret)
337 ret = dm_i2c_read(dev, devaddr, memaddr, length);
338 #else
339 ret = i2c_read(chip, devaddr, alen, memaddr, length);
340 #endif
341 if (ret)
342 return i2c_report_err(ret, I2C_ERR_READ);
343
344 return 0;
345 }
346
347 static int do_i2c_write(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
348 {
349 uint chip;
350 uint devaddr, length;
351 int alen;
352 u_char *memaddr;
353 int ret;
354 #ifdef CONFIG_DM_I2C
355 struct udevice *dev;
356 struct dm_i2c_chip *i2c_chip;
357 #endif
358
359 if ((argc < 5) || (argc > 6))
360 return cmd_usage(cmdtp);
361
362 /*
363 * memaddr is the address where to store things in memory
364 */
365 memaddr = (u_char *)simple_strtoul(argv[1], NULL, 16);
366
367 /*
368 * I2C chip address
369 */
370 chip = simple_strtoul(argv[2], NULL, 16);
371
372 /*
373 * I2C data address within the chip. This can be 1 or
374 * 2 bytes long. Some day it might be 3 bytes long :-).
375 */
376 devaddr = simple_strtoul(argv[3], NULL, 16);
377 alen = get_alen(argv[3], DEFAULT_ADDR_LEN);
378 if (alen > 3)
379 return cmd_usage(cmdtp);
380
381 /*
382 * Length is the number of bytes.
383 */
384 length = simple_strtoul(argv[4], NULL, 16);
385
386 #ifdef CONFIG_DM_I2C
387 ret = i2c_get_cur_bus_chip(chip, &dev);
388 if (!ret && alen != -1)
389 ret = i2c_set_chip_offset_len(dev, alen);
390 if (ret)
391 return i2c_report_err(ret, I2C_ERR_WRITE);
392 i2c_chip = dev_get_parent_platdata(dev);
393 if (!i2c_chip)
394 return i2c_report_err(ret, I2C_ERR_WRITE);
395 #endif
396
397 if (argc == 6 && !strcmp(argv[5], "-s")) {
398 /*
399 * Write all bytes in a single I2C transaction. If the target
400 * device is an EEPROM, it is your responsibility to not cross
401 * a page boundary. No write delay upon completion, take this
402 * into account if linking commands.
403 */
404 #ifdef CONFIG_DM_I2C
405 i2c_chip->flags &= ~DM_I2C_CHIP_WR_ADDRESS;
406 ret = dm_i2c_write(dev, devaddr, memaddr, length);
407 #else
408 ret = i2c_write(chip, devaddr, alen, memaddr, length);
409 #endif
410 if (ret)
411 return i2c_report_err(ret, I2C_ERR_WRITE);
412 } else {
413 /*
414 * Repeated addressing - perform <length> separate
415 * write transactions of one byte each
416 */
417 while (length-- > 0) {
418 #ifdef CONFIG_DM_I2C
419 i2c_chip->flags |= DM_I2C_CHIP_WR_ADDRESS;
420 ret = dm_i2c_write(dev, devaddr++, memaddr++, 1);
421 #else
422 ret = i2c_write(chip, devaddr++, alen, memaddr++, 1);
423 #endif
424 if (ret)
425 return i2c_report_err(ret, I2C_ERR_WRITE);
426 /*
427 * No write delay with FRAM devices.
428 */
429 #if !defined(CONFIG_SYS_I2C_FRAM)
430 udelay(11000);
431 #endif
432 }
433 }
434 return 0;
435 }
436
437 #ifdef CONFIG_DM_I2C
438 static int do_i2c_flags(cmd_tbl_t *cmdtp, int flag, int argc,
439 char *const argv[])
440 {
441 struct udevice *dev;
442 uint flags;
443 int chip;
444 int ret;
445
446 if (argc < 2)
447 return CMD_RET_USAGE;
448
449 chip = simple_strtoul(argv[1], NULL, 16);
450 ret = i2c_get_cur_bus_chip(chip, &dev);
451 if (ret)
452 return i2c_report_err(ret, I2C_ERR_READ);
453
454 if (argc > 2) {
455 flags = simple_strtoul(argv[2], NULL, 16);
456 ret = i2c_set_chip_flags(dev, flags);
457 } else {
458 ret = i2c_get_chip_flags(dev, &flags);
459 if (!ret)
460 printf("%x\n", flags);
461 }
462 if (ret)
463 return i2c_report_err(ret, I2C_ERR_READ);
464
465 return 0;
466 }
467
468 static int do_i2c_olen(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
469 {
470 struct udevice *dev;
471 uint olen;
472 int chip;
473 int ret;
474
475 if (argc < 2)
476 return CMD_RET_USAGE;
477
478 chip = simple_strtoul(argv[1], NULL, 16);
479 ret = i2c_get_cur_bus_chip(chip, &dev);
480 if (ret)
481 return i2c_report_err(ret, I2C_ERR_READ);
482
483 if (argc > 2) {
484 olen = simple_strtoul(argv[2], NULL, 16);
485 ret = i2c_set_chip_offset_len(dev, olen);
486 } else {
487 ret = i2c_get_chip_offset_len(dev);
488 if (ret >= 0) {
489 printf("%x\n", ret);
490 ret = 0;
491 }
492 }
493 if (ret)
494 return i2c_report_err(ret, I2C_ERR_READ);
495
496 return 0;
497 }
498 #endif
499
500 /**
501 * do_i2c_md() - Handle the "i2c md" command-line command
502 * @cmdtp: Command data struct pointer
503 * @flag: Command flag
504 * @argc: Command-line argument count
505 * @argv: Array of command-line arguments
506 *
507 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
508 * on error.
509 *
510 * Syntax:
511 * i2c md {i2c_chip} {addr}{.0, .1, .2} {len}
512 */
513 static int do_i2c_md ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
514 {
515 uint chip;
516 uint addr, length;
517 int alen;
518 int j, nbytes, linebytes;
519 int ret;
520 #ifdef CONFIG_DM_I2C
521 struct udevice *dev;
522 #endif
523
524 /* We use the last specified parameters, unless new ones are
525 * entered.
526 */
527 chip = i2c_dp_last_chip;
528 addr = i2c_dp_last_addr;
529 alen = i2c_dp_last_alen;
530 length = i2c_dp_last_length;
531
532 if (argc < 3)
533 return CMD_RET_USAGE;
534
535 if ((flag & CMD_FLAG_REPEAT) == 0) {
536 /*
537 * New command specified.
538 */
539
540 /*
541 * I2C chip address
542 */
543 chip = simple_strtoul(argv[1], NULL, 16);
544
545 /*
546 * I2C data address within the chip. This can be 1 or
547 * 2 bytes long. Some day it might be 3 bytes long :-).
548 */
549 addr = simple_strtoul(argv[2], NULL, 16);
550 alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
551 if (alen > 3)
552 return CMD_RET_USAGE;
553
554 /*
555 * If another parameter, it is the length to display.
556 * Length is the number of objects, not number of bytes.
557 */
558 if (argc > 3)
559 length = simple_strtoul(argv[3], NULL, 16);
560 }
561
562 #ifdef CONFIG_DM_I2C
563 ret = i2c_get_cur_bus_chip(chip, &dev);
564 if (!ret && alen != -1)
565 ret = i2c_set_chip_offset_len(dev, alen);
566 if (ret)
567 return i2c_report_err(ret, I2C_ERR_READ);
568 #endif
569
570 /*
571 * Print the lines.
572 *
573 * We buffer all read data, so we can make sure data is read only
574 * once.
575 */
576 nbytes = length;
577 do {
578 unsigned char linebuf[DISP_LINE_LEN];
579 unsigned char *cp;
580
581 linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
582
583 #ifdef CONFIG_DM_I2C
584 ret = dm_i2c_read(dev, addr, linebuf, linebytes);
585 #else
586 ret = i2c_read(chip, addr, alen, linebuf, linebytes);
587 #endif
588 if (ret)
589 return i2c_report_err(ret, I2C_ERR_READ);
590 else {
591 printf("%04x:", addr);
592 cp = linebuf;
593 for (j=0; j<linebytes; j++) {
594 printf(" %02x", *cp++);
595 addr++;
596 }
597 puts (" ");
598 cp = linebuf;
599 for (j=0; j<linebytes; j++) {
600 if ((*cp < 0x20) || (*cp > 0x7e))
601 puts (".");
602 else
603 printf("%c", *cp);
604 cp++;
605 }
606 putc ('\n');
607 }
608 nbytes -= linebytes;
609 } while (nbytes > 0);
610
611 i2c_dp_last_chip = chip;
612 i2c_dp_last_addr = addr;
613 i2c_dp_last_alen = alen;
614 i2c_dp_last_length = length;
615
616 return 0;
617 }
618
619 /**
620 * do_i2c_mw() - Handle the "i2c mw" command-line command
621 * @cmdtp: Command data struct pointer
622 * @flag: Command flag
623 * @argc: Command-line argument count
624 * @argv: Array of command-line arguments
625 *
626 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
627 * on error.
628 *
629 * Syntax:
630 * i2c mw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}]
631 */
632 static int do_i2c_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
633 {
634 uint chip;
635 ulong addr;
636 int alen;
637 uchar byte;
638 int count;
639 int ret;
640 #ifdef CONFIG_DM_I2C
641 struct udevice *dev;
642 #endif
643
644 if ((argc < 4) || (argc > 5))
645 return CMD_RET_USAGE;
646
647 /*
648 * Chip is always specified.
649 */
650 chip = simple_strtoul(argv[1], NULL, 16);
651
652 /*
653 * Address is always specified.
654 */
655 addr = simple_strtoul(argv[2], NULL, 16);
656 alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
657 if (alen > 3)
658 return CMD_RET_USAGE;
659
660 #ifdef CONFIG_DM_I2C
661 ret = i2c_get_cur_bus_chip(chip, &dev);
662 if (!ret && alen != -1)
663 ret = i2c_set_chip_offset_len(dev, alen);
664 if (ret)
665 return i2c_report_err(ret, I2C_ERR_WRITE);
666 #endif
667 /*
668 * Value to write is always specified.
669 */
670 byte = simple_strtoul(argv[3], NULL, 16);
671
672 /*
673 * Optional count
674 */
675 if (argc == 5)
676 count = simple_strtoul(argv[4], NULL, 16);
677 else
678 count = 1;
679
680 while (count-- > 0) {
681 #ifdef CONFIG_DM_I2C
682 ret = dm_i2c_write(dev, addr++, &byte, 1);
683 #else
684 ret = i2c_write(chip, addr++, alen, &byte, 1);
685 #endif
686 if (ret)
687 return i2c_report_err(ret, I2C_ERR_WRITE);
688 /*
689 * Wait for the write to complete. The write can take
690 * up to 10mSec (we allow a little more time).
691 */
692 /*
693 * No write delay with FRAM devices.
694 */
695 #if !defined(CONFIG_SYS_I2C_FRAM)
696 udelay(11000);
697 #endif
698 }
699
700 return 0;
701 }
702
703 /**
704 * do_i2c_crc() - Handle the "i2c crc32" command-line command
705 * @cmdtp: Command data struct pointer
706 * @flag: Command flag
707 * @argc: Command-line argument count
708 * @argv: Array of command-line arguments
709 *
710 * Calculate a CRC on memory
711 *
712 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
713 * on error.
714 *
715 * Syntax:
716 * i2c crc32 {i2c_chip} {addr}{.0, .1, .2} {count}
717 */
718 static int do_i2c_crc (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
719 {
720 uint chip;
721 ulong addr;
722 int alen;
723 int count;
724 uchar byte;
725 ulong crc;
726 ulong err;
727 int ret = 0;
728 #ifdef CONFIG_DM_I2C
729 struct udevice *dev;
730 #endif
731
732 if (argc < 4)
733 return CMD_RET_USAGE;
734
735 /*
736 * Chip is always specified.
737 */
738 chip = simple_strtoul(argv[1], NULL, 16);
739
740 /*
741 * Address is always specified.
742 */
743 addr = simple_strtoul(argv[2], NULL, 16);
744 alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
745 if (alen > 3)
746 return CMD_RET_USAGE;
747
748 #ifdef CONFIG_DM_I2C
749 ret = i2c_get_cur_bus_chip(chip, &dev);
750 if (!ret && alen != -1)
751 ret = i2c_set_chip_offset_len(dev, alen);
752 if (ret)
753 return i2c_report_err(ret, I2C_ERR_READ);
754 #endif
755 /*
756 * Count is always specified
757 */
758 count = simple_strtoul(argv[3], NULL, 16);
759
760 printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1);
761 /*
762 * CRC a byte at a time. This is going to be slooow, but hey, the
763 * memories are small and slow too so hopefully nobody notices.
764 */
765 crc = 0;
766 err = 0;
767 while (count-- > 0) {
768 #ifdef CONFIG_DM_I2C
769 ret = dm_i2c_read(dev, addr, &byte, 1);
770 #else
771 ret = i2c_read(chip, addr, alen, &byte, 1);
772 #endif
773 if (ret)
774 err++;
775 crc = crc32 (crc, &byte, 1);
776 addr++;
777 }
778 if (err > 0)
779 i2c_report_err(ret, I2C_ERR_READ);
780 else
781 printf ("%08lx\n", crc);
782
783 return 0;
784 }
785
786 /**
787 * mod_i2c_mem() - Handle the "i2c mm" and "i2c nm" command-line command
788 * @cmdtp: Command data struct pointer
789 * @flag: Command flag
790 * @argc: Command-line argument count
791 * @argv: Array of command-line arguments
792 *
793 * Modify memory.
794 *
795 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
796 * on error.
797 *
798 * Syntax:
799 * i2c mm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
800 * i2c nm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
801 */
802 static int
803 mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char * const argv[])
804 {
805 uint chip;
806 ulong addr;
807 int alen;
808 ulong data;
809 int size = 1;
810 int nbytes;
811 int ret;
812 #ifdef CONFIG_DM_I2C
813 struct udevice *dev;
814 #endif
815
816 if (argc != 3)
817 return CMD_RET_USAGE;
818
819 bootretry_reset_cmd_timeout(); /* got a good command to get here */
820 /*
821 * We use the last specified parameters, unless new ones are
822 * entered.
823 */
824 chip = i2c_mm_last_chip;
825 addr = i2c_mm_last_addr;
826 alen = i2c_mm_last_alen;
827
828 if ((flag & CMD_FLAG_REPEAT) == 0) {
829 /*
830 * New command specified. Check for a size specification.
831 * Defaults to byte if no or incorrect specification.
832 */
833 size = cmd_get_data_size(argv[0], 1);
834
835 /*
836 * Chip is always specified.
837 */
838 chip = simple_strtoul(argv[1], NULL, 16);
839
840 /*
841 * Address is always specified.
842 */
843 addr = simple_strtoul(argv[2], NULL, 16);
844 alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
845 if (alen > 3)
846 return CMD_RET_USAGE;
847 }
848
849 #ifdef CONFIG_DM_I2C
850 ret = i2c_get_cur_bus_chip(chip, &dev);
851 if (!ret && alen != -1)
852 ret = i2c_set_chip_offset_len(dev, alen);
853 if (ret)
854 return i2c_report_err(ret, I2C_ERR_WRITE);
855 #endif
856
857 /*
858 * Print the address, followed by value. Then accept input for
859 * the next value. A non-converted value exits.
860 */
861 do {
862 printf("%08lx:", addr);
863 #ifdef CONFIG_DM_I2C
864 ret = dm_i2c_read(dev, addr, (uchar *)&data, size);
865 #else
866 ret = i2c_read(chip, addr, alen, (uchar *)&data, size);
867 #endif
868 if (ret)
869 return i2c_report_err(ret, I2C_ERR_READ);
870
871 data = cpu_to_be32(data);
872 if (size == 1)
873 printf(" %02lx", (data >> 24) & 0x000000FF);
874 else if (size == 2)
875 printf(" %04lx", (data >> 16) & 0x0000FFFF);
876 else
877 printf(" %08lx", data);
878
879 nbytes = cli_readline(" ? ");
880 if (nbytes == 0) {
881 /*
882 * <CR> pressed as only input, don't modify current
883 * location and move to next.
884 */
885 if (incrflag)
886 addr += size;
887 nbytes = size;
888 /* good enough to not time out */
889 bootretry_reset_cmd_timeout();
890 }
891 #ifdef CONFIG_BOOT_RETRY_TIME
892 else if (nbytes == -2)
893 break; /* timed out, exit the command */
894 #endif
895 else {
896 char *endp;
897
898 data = simple_strtoul(console_buffer, &endp, 16);
899 if (size == 1)
900 data = data << 24;
901 else if (size == 2)
902 data = data << 16;
903 data = be32_to_cpu(data);
904 nbytes = endp - console_buffer;
905 if (nbytes) {
906 /*
907 * good enough to not time out
908 */
909 bootretry_reset_cmd_timeout();
910 #ifdef CONFIG_DM_I2C
911 ret = dm_i2c_write(dev, addr, (uchar *)&data,
912 size);
913 #else
914 ret = i2c_write(chip, addr, alen,
915 (uchar *)&data, size);
916 #endif
917 if (ret)
918 return i2c_report_err(ret,
919 I2C_ERR_WRITE);
920 #ifdef CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS
921 udelay(CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS * 1000);
922 #endif
923 if (incrflag)
924 addr += size;
925 }
926 }
927 } while (nbytes);
928
929 i2c_mm_last_chip = chip;
930 i2c_mm_last_addr = addr;
931 i2c_mm_last_alen = alen;
932
933 return 0;
934 }
935
936 /**
937 * do_i2c_probe() - Handle the "i2c probe" command-line command
938 * @cmdtp: Command data struct pointer
939 * @flag: Command flag
940 * @argc: Command-line argument count
941 * @argv: Array of command-line arguments
942 *
943 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
944 * on error.
945 *
946 * Syntax:
947 * i2c probe {addr}
948 *
949 * Returns zero (success) if one or more I2C devices was found
950 */
951 static int do_i2c_probe (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
952 {
953 int j;
954 int addr = -1;
955 int found = 0;
956 #if defined(CONFIG_SYS_I2C_NOPROBES)
957 int k, skip;
958 unsigned int bus = GET_BUS_NUM;
959 #endif /* NOPROBES */
960 int ret;
961 #ifdef CONFIG_DM_I2C
962 struct udevice *bus, *dev;
963
964 if (i2c_get_cur_bus(&bus))
965 return CMD_RET_FAILURE;
966 #endif
967
968 if (argc == 2)
969 addr = simple_strtol(argv[1], 0, 16);
970
971 puts ("Valid chip addresses:");
972 for (j = 0; j < 128; j++) {
973 if ((0 <= addr) && (j != addr))
974 continue;
975
976 #if defined(CONFIG_SYS_I2C_NOPROBES)
977 skip = 0;
978 for (k = 0; k < ARRAY_SIZE(i2c_no_probes); k++) {
979 if (COMPARE_BUS(bus, k) && COMPARE_ADDR(j, k)) {
980 skip = 1;
981 break;
982 }
983 }
984 if (skip)
985 continue;
986 #endif
987 #ifdef CONFIG_DM_I2C
988 ret = dm_i2c_probe(bus, j, 0, &dev);
989 #else
990 ret = i2c_probe(j);
991 #endif
992 if (ret == 0) {
993 printf(" %02X", j);
994 found++;
995 }
996 }
997 putc ('\n');
998
999 #if defined(CONFIG_SYS_I2C_NOPROBES)
1000 puts ("Excluded chip addresses:");
1001 for (k = 0; k < ARRAY_SIZE(i2c_no_probes); k++) {
1002 if (COMPARE_BUS(bus,k))
1003 printf(" %02X", NO_PROBE_ADDR(k));
1004 }
1005 putc ('\n');
1006 #endif
1007
1008 return (0 == found);
1009 }
1010
1011 /**
1012 * do_i2c_loop() - Handle the "i2c loop" command-line command
1013 * @cmdtp: Command data struct pointer
1014 * @flag: Command flag
1015 * @argc: Command-line argument count
1016 * @argv: Array of command-line arguments
1017 *
1018 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1019 * on error.
1020 *
1021 * Syntax:
1022 * i2c loop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}]
1023 * {length} - Number of bytes to read
1024 * {delay} - A DECIMAL number and defaults to 1000 uSec
1025 */
1026 static int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
1027 {
1028 uint chip;
1029 int alen;
1030 uint addr;
1031 uint length;
1032 u_char bytes[16];
1033 int delay;
1034 int ret;
1035 #ifdef CONFIG_DM_I2C
1036 struct udevice *dev;
1037 #endif
1038
1039 if (argc < 3)
1040 return CMD_RET_USAGE;
1041
1042 /*
1043 * Chip is always specified.
1044 */
1045 chip = simple_strtoul(argv[1], NULL, 16);
1046
1047 /*
1048 * Address is always specified.
1049 */
1050 addr = simple_strtoul(argv[2], NULL, 16);
1051 alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
1052 if (alen > 3)
1053 return CMD_RET_USAGE;
1054 #ifdef CONFIG_DM_I2C
1055 ret = i2c_get_cur_bus_chip(chip, &dev);
1056 if (!ret && alen != -1)
1057 ret = i2c_set_chip_offset_len(dev, alen);
1058 if (ret)
1059 return i2c_report_err(ret, I2C_ERR_WRITE);
1060 #endif
1061
1062 /*
1063 * Length is the number of objects, not number of bytes.
1064 */
1065 length = 1;
1066 length = simple_strtoul(argv[3], NULL, 16);
1067 if (length > sizeof(bytes))
1068 length = sizeof(bytes);
1069
1070 /*
1071 * The delay time (uSec) is optional.
1072 */
1073 delay = 1000;
1074 if (argc > 3)
1075 delay = simple_strtoul(argv[4], NULL, 10);
1076 /*
1077 * Run the loop...
1078 */
1079 while (1) {
1080 #ifdef CONFIG_DM_I2C
1081 ret = dm_i2c_read(dev, addr, bytes, length);
1082 #else
1083 ret = i2c_read(chip, addr, alen, bytes, length);
1084 #endif
1085 if (ret)
1086 i2c_report_err(ret, I2C_ERR_READ);
1087 udelay(delay);
1088 }
1089
1090 /* NOTREACHED */
1091 return 0;
1092 }
1093
1094 /*
1095 * The SDRAM command is separately configured because many
1096 * (most?) embedded boards don't use SDRAM DIMMs.
1097 *
1098 * FIXME: Document and probably move elsewhere!
1099 */
1100 #if defined(CONFIG_CMD_SDRAM)
1101 static void print_ddr2_tcyc (u_char const b)
1102 {
1103 printf ("%d.", (b >> 4) & 0x0F);
1104 switch (b & 0x0F) {
1105 case 0x0:
1106 case 0x1:
1107 case 0x2:
1108 case 0x3:
1109 case 0x4:
1110 case 0x5:
1111 case 0x6:
1112 case 0x7:
1113 case 0x8:
1114 case 0x9:
1115 printf ("%d ns\n", b & 0x0F);
1116 break;
1117 case 0xA:
1118 puts ("25 ns\n");
1119 break;
1120 case 0xB:
1121 puts ("33 ns\n");
1122 break;
1123 case 0xC:
1124 puts ("66 ns\n");
1125 break;
1126 case 0xD:
1127 puts ("75 ns\n");
1128 break;
1129 default:
1130 puts ("?? ns\n");
1131 break;
1132 }
1133 }
1134
1135 static void decode_bits (u_char const b, char const *str[], int const do_once)
1136 {
1137 u_char mask;
1138
1139 for (mask = 0x80; mask != 0x00; mask >>= 1, ++str) {
1140 if (b & mask) {
1141 puts (*str);
1142 if (do_once)
1143 return;
1144 }
1145 }
1146 }
1147
1148 /*
1149 * Syntax:
1150 * i2c sdram {i2c_chip}
1151 */
1152 static int do_sdram (cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1153 {
1154 enum { unknown, EDO, SDRAM, DDR, DDR2, DDR3, DDR4 } type;
1155
1156 uint chip;
1157 u_char data[128];
1158 u_char cksum;
1159 int j;
1160
1161 static const char *decode_CAS_DDR2[] = {
1162 " TBD", " 6", " 5", " 4", " 3", " 2", " TBD", " TBD"
1163 };
1164
1165 static const char *decode_CAS_default[] = {
1166 " TBD", " 7", " 6", " 5", " 4", " 3", " 2", " 1"
1167 };
1168
1169 static const char *decode_CS_WE_default[] = {
1170 " TBD", " 6", " 5", " 4", " 3", " 2", " 1", " 0"
1171 };
1172
1173 static const char *decode_byte21_default[] = {
1174 " TBD (bit 7)\n",
1175 " Redundant row address\n",
1176 " Differential clock input\n",
1177 " Registerd DQMB inputs\n",
1178 " Buffered DQMB inputs\n",
1179 " On-card PLL\n",
1180 " Registered address/control lines\n",
1181 " Buffered address/control lines\n"
1182 };
1183
1184 static const char *decode_byte22_DDR2[] = {
1185 " TBD (bit 7)\n",
1186 " TBD (bit 6)\n",
1187 " TBD (bit 5)\n",
1188 " TBD (bit 4)\n",
1189 " TBD (bit 3)\n",
1190 " Supports partial array self refresh\n",
1191 " Supports 50 ohm ODT\n",
1192 " Supports weak driver\n"
1193 };
1194
1195 static const char *decode_row_density_DDR2[] = {
1196 "512 MiB", "256 MiB", "128 MiB", "16 GiB",
1197 "8 GiB", "4 GiB", "2 GiB", "1 GiB"
1198 };
1199
1200 static const char *decode_row_density_default[] = {
1201 "512 MiB", "256 MiB", "128 MiB", "64 MiB",
1202 "32 MiB", "16 MiB", "8 MiB", "4 MiB"
1203 };
1204
1205 if (argc < 2)
1206 return CMD_RET_USAGE;
1207
1208 /*
1209 * Chip is always specified.
1210 */
1211 chip = simple_strtoul (argv[1], NULL, 16);
1212
1213 if (i2c_read (chip, 0, 1, data, sizeof (data)) != 0) {
1214 puts ("No SDRAM Serial Presence Detect found.\n");
1215 return 1;
1216 }
1217
1218 cksum = 0;
1219 for (j = 0; j < 63; j++) {
1220 cksum += data[j];
1221 }
1222 if (cksum != data[63]) {
1223 printf ("WARNING: Configuration data checksum failure:\n"
1224 " is 0x%02x, calculated 0x%02x\n", data[63], cksum);
1225 }
1226 printf ("SPD data revision %d.%d\n",
1227 (data[62] >> 4) & 0x0F, data[62] & 0x0F);
1228 printf ("Bytes used 0x%02X\n", data[0]);
1229 printf ("Serial memory size 0x%02X\n", 1 << data[1]);
1230
1231 puts ("Memory type ");
1232 switch (data[2]) {
1233 case 2:
1234 type = EDO;
1235 puts ("EDO\n");
1236 break;
1237 case 4:
1238 type = SDRAM;
1239 puts ("SDRAM\n");
1240 break;
1241 case 7:
1242 type = DDR;
1243 puts("DDR\n");
1244 break;
1245 case 8:
1246 type = DDR2;
1247 puts ("DDR2\n");
1248 break;
1249 case 11:
1250 type = DDR3;
1251 puts("DDR3\n");
1252 break;
1253 case 12:
1254 type = DDR4;
1255 puts("DDR4\n");
1256 break;
1257 default:
1258 type = unknown;
1259 puts ("unknown\n");
1260 break;
1261 }
1262
1263 puts ("Row address bits ");
1264 if ((data[3] & 0x00F0) == 0)
1265 printf ("%d\n", data[3] & 0x0F);
1266 else
1267 printf ("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
1268
1269 puts ("Column address bits ");
1270 if ((data[4] & 0x00F0) == 0)
1271 printf ("%d\n", data[4] & 0x0F);
1272 else
1273 printf ("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
1274
1275 switch (type) {
1276 case DDR2:
1277 printf ("Number of ranks %d\n",
1278 (data[5] & 0x07) + 1);
1279 break;
1280 default:
1281 printf ("Module rows %d\n", data[5]);
1282 break;
1283 }
1284
1285 switch (type) {
1286 case DDR2:
1287 printf ("Module data width %d bits\n", data[6]);
1288 break;
1289 default:
1290 printf ("Module data width %d bits\n",
1291 (data[7] << 8) | data[6]);
1292 break;
1293 }
1294
1295 puts ("Interface signal levels ");
1296 switch(data[8]) {
1297 case 0: puts ("TTL 5.0 V\n"); break;
1298 case 1: puts ("LVTTL\n"); break;
1299 case 2: puts ("HSTL 1.5 V\n"); break;
1300 case 3: puts ("SSTL 3.3 V\n"); break;
1301 case 4: puts ("SSTL 2.5 V\n"); break;
1302 case 5: puts ("SSTL 1.8 V\n"); break;
1303 default: puts ("unknown\n"); break;
1304 }
1305
1306 switch (type) {
1307 case DDR2:
1308 printf ("SDRAM cycle time ");
1309 print_ddr2_tcyc (data[9]);
1310 break;
1311 default:
1312 printf ("SDRAM cycle time %d.%d ns\n",
1313 (data[9] >> 4) & 0x0F, data[9] & 0x0F);
1314 break;
1315 }
1316
1317 switch (type) {
1318 case DDR2:
1319 printf ("SDRAM access time 0.%d%d ns\n",
1320 (data[10] >> 4) & 0x0F, data[10] & 0x0F);
1321 break;
1322 default:
1323 printf ("SDRAM access time %d.%d ns\n",
1324 (data[10] >> 4) & 0x0F, data[10] & 0x0F);
1325 break;
1326 }
1327
1328 puts ("EDC configuration ");
1329 switch (data[11]) {
1330 case 0: puts ("None\n"); break;
1331 case 1: puts ("Parity\n"); break;
1332 case 2: puts ("ECC\n"); break;
1333 default: puts ("unknown\n"); break;
1334 }
1335
1336 if ((data[12] & 0x80) == 0)
1337 puts ("No self refresh, rate ");
1338 else
1339 puts ("Self refresh, rate ");
1340
1341 switch(data[12] & 0x7F) {
1342 case 0: puts ("15.625 us\n"); break;
1343 case 1: puts ("3.9 us\n"); break;
1344 case 2: puts ("7.8 us\n"); break;
1345 case 3: puts ("31.3 us\n"); break;
1346 case 4: puts ("62.5 us\n"); break;
1347 case 5: puts ("125 us\n"); break;
1348 default: puts ("unknown\n"); break;
1349 }
1350
1351 switch (type) {
1352 case DDR2:
1353 printf ("SDRAM width (primary) %d\n", data[13]);
1354 break;
1355 default:
1356 printf ("SDRAM width (primary) %d\n", data[13] & 0x7F);
1357 if ((data[13] & 0x80) != 0) {
1358 printf (" (second bank) %d\n",
1359 2 * (data[13] & 0x7F));
1360 }
1361 break;
1362 }
1363
1364 switch (type) {
1365 case DDR2:
1366 if (data[14] != 0)
1367 printf ("EDC width %d\n", data[14]);
1368 break;
1369 default:
1370 if (data[14] != 0) {
1371 printf ("EDC width %d\n",
1372 data[14] & 0x7F);
1373
1374 if ((data[14] & 0x80) != 0) {
1375 printf (" (second bank) %d\n",
1376 2 * (data[14] & 0x7F));
1377 }
1378 }
1379 break;
1380 }
1381
1382 if (DDR2 != type) {
1383 printf ("Min clock delay, back-to-back random column addresses "
1384 "%d\n", data[15]);
1385 }
1386
1387 puts ("Burst length(s) ");
1388 if (data[16] & 0x80) puts (" Page");
1389 if (data[16] & 0x08) puts (" 8");
1390 if (data[16] & 0x04) puts (" 4");
1391 if (data[16] & 0x02) puts (" 2");
1392 if (data[16] & 0x01) puts (" 1");
1393 putc ('\n');
1394 printf ("Number of banks %d\n", data[17]);
1395
1396 switch (type) {
1397 case DDR2:
1398 puts ("CAS latency(s) ");
1399 decode_bits (data[18], decode_CAS_DDR2, 0);
1400 putc ('\n');
1401 break;
1402 default:
1403 puts ("CAS latency(s) ");
1404 decode_bits (data[18], decode_CAS_default, 0);
1405 putc ('\n');
1406 break;
1407 }
1408
1409 if (DDR2 != type) {
1410 puts ("CS latency(s) ");
1411 decode_bits (data[19], decode_CS_WE_default, 0);
1412 putc ('\n');
1413 }
1414
1415 if (DDR2 != type) {
1416 puts ("WE latency(s) ");
1417 decode_bits (data[20], decode_CS_WE_default, 0);
1418 putc ('\n');
1419 }
1420
1421 switch (type) {
1422 case DDR2:
1423 puts ("Module attributes:\n");
1424 if (data[21] & 0x80)
1425 puts (" TBD (bit 7)\n");
1426 if (data[21] & 0x40)
1427 puts (" Analysis probe installed\n");
1428 if (data[21] & 0x20)
1429 puts (" TBD (bit 5)\n");
1430 if (data[21] & 0x10)
1431 puts (" FET switch external enable\n");
1432 printf (" %d PLLs on DIMM\n", (data[21] >> 2) & 0x03);
1433 if (data[20] & 0x11) {
1434 printf (" %d active registers on DIMM\n",
1435 (data[21] & 0x03) + 1);
1436 }
1437 break;
1438 default:
1439 puts ("Module attributes:\n");
1440 if (!data[21])
1441 puts (" (none)\n");
1442 else
1443 decode_bits (data[21], decode_byte21_default, 0);
1444 break;
1445 }
1446
1447 switch (type) {
1448 case DDR2:
1449 decode_bits (data[22], decode_byte22_DDR2, 0);
1450 break;
1451 default:
1452 puts ("Device attributes:\n");
1453 if (data[22] & 0x80) puts (" TBD (bit 7)\n");
1454 if (data[22] & 0x40) puts (" TBD (bit 6)\n");
1455 if (data[22] & 0x20) puts (" Upper Vcc tolerance 5%\n");
1456 else puts (" Upper Vcc tolerance 10%\n");
1457 if (data[22] & 0x10) puts (" Lower Vcc tolerance 5%\n");
1458 else puts (" Lower Vcc tolerance 10%\n");
1459 if (data[22] & 0x08) puts (" Supports write1/read burst\n");
1460 if (data[22] & 0x04) puts (" Supports precharge all\n");
1461 if (data[22] & 0x02) puts (" Supports auto precharge\n");
1462 if (data[22] & 0x01) puts (" Supports early RAS# precharge\n");
1463 break;
1464 }
1465
1466 switch (type) {
1467 case DDR2:
1468 printf ("SDRAM cycle time (2nd highest CAS latency) ");
1469 print_ddr2_tcyc (data[23]);
1470 break;
1471 default:
1472 printf ("SDRAM cycle time (2nd highest CAS latency) %d."
1473 "%d ns\n", (data[23] >> 4) & 0x0F, data[23] & 0x0F);
1474 break;
1475 }
1476
1477 switch (type) {
1478 case DDR2:
1479 printf ("SDRAM access from clock (2nd highest CAS latency) 0."
1480 "%d%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
1481 break;
1482 default:
1483 printf ("SDRAM access from clock (2nd highest CAS latency) %d."
1484 "%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
1485 break;
1486 }
1487
1488 switch (type) {
1489 case DDR2:
1490 printf ("SDRAM cycle time (3rd highest CAS latency) ");
1491 print_ddr2_tcyc (data[25]);
1492 break;
1493 default:
1494 printf ("SDRAM cycle time (3rd highest CAS latency) %d."
1495 "%d ns\n", (data[25] >> 4) & 0x0F, data[25] & 0x0F);
1496 break;
1497 }
1498
1499 switch (type) {
1500 case DDR2:
1501 printf ("SDRAM access from clock (3rd highest CAS latency) 0."
1502 "%d%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
1503 break;
1504 default:
1505 printf ("SDRAM access from clock (3rd highest CAS latency) %d."
1506 "%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
1507 break;
1508 }
1509
1510 switch (type) {
1511 case DDR2:
1512 printf ("Minimum row precharge %d.%02d ns\n",
1513 (data[27] >> 2) & 0x3F, 25 * (data[27] & 0x03));
1514 break;
1515 default:
1516 printf ("Minimum row precharge %d ns\n", data[27]);
1517 break;
1518 }
1519
1520 switch (type) {
1521 case DDR2:
1522 printf ("Row active to row active min %d.%02d ns\n",
1523 (data[28] >> 2) & 0x3F, 25 * (data[28] & 0x03));
1524 break;
1525 default:
1526 printf ("Row active to row active min %d ns\n", data[28]);
1527 break;
1528 }
1529
1530 switch (type) {
1531 case DDR2:
1532 printf ("RAS to CAS delay min %d.%02d ns\n",
1533 (data[29] >> 2) & 0x3F, 25 * (data[29] & 0x03));
1534 break;
1535 default:
1536 printf ("RAS to CAS delay min %d ns\n", data[29]);
1537 break;
1538 }
1539
1540 printf ("Minimum RAS pulse width %d ns\n", data[30]);
1541
1542 switch (type) {
1543 case DDR2:
1544 puts ("Density of each row ");
1545 decode_bits (data[31], decode_row_density_DDR2, 1);
1546 putc ('\n');
1547 break;
1548 default:
1549 puts ("Density of each row ");
1550 decode_bits (data[31], decode_row_density_default, 1);
1551 putc ('\n');
1552 break;
1553 }
1554
1555 switch (type) {
1556 case DDR2:
1557 puts ("Command and Address setup ");
1558 if (data[32] >= 0xA0) {
1559 printf ("1.%d%d ns\n",
1560 ((data[32] >> 4) & 0x0F) - 10, data[32] & 0x0F);
1561 } else {
1562 printf ("0.%d%d ns\n",
1563 ((data[32] >> 4) & 0x0F), data[32] & 0x0F);
1564 }
1565 break;
1566 default:
1567 printf ("Command and Address setup %c%d.%d ns\n",
1568 (data[32] & 0x80) ? '-' : '+',
1569 (data[32] >> 4) & 0x07, data[32] & 0x0F);
1570 break;
1571 }
1572
1573 switch (type) {
1574 case DDR2:
1575 puts ("Command and Address hold ");
1576 if (data[33] >= 0xA0) {
1577 printf ("1.%d%d ns\n",
1578 ((data[33] >> 4) & 0x0F) - 10, data[33] & 0x0F);
1579 } else {
1580 printf ("0.%d%d ns\n",
1581 ((data[33] >> 4) & 0x0F), data[33] & 0x0F);
1582 }
1583 break;
1584 default:
1585 printf ("Command and Address hold %c%d.%d ns\n",
1586 (data[33] & 0x80) ? '-' : '+',
1587 (data[33] >> 4) & 0x07, data[33] & 0x0F);
1588 break;
1589 }
1590
1591 switch (type) {
1592 case DDR2:
1593 printf ("Data signal input setup 0.%d%d ns\n",
1594 (data[34] >> 4) & 0x0F, data[34] & 0x0F);
1595 break;
1596 default:
1597 printf ("Data signal input setup %c%d.%d ns\n",
1598 (data[34] & 0x80) ? '-' : '+',
1599 (data[34] >> 4) & 0x07, data[34] & 0x0F);
1600 break;
1601 }
1602
1603 switch (type) {
1604 case DDR2:
1605 printf ("Data signal input hold 0.%d%d ns\n",
1606 (data[35] >> 4) & 0x0F, data[35] & 0x0F);
1607 break;
1608 default:
1609 printf ("Data signal input hold %c%d.%d ns\n",
1610 (data[35] & 0x80) ? '-' : '+',
1611 (data[35] >> 4) & 0x07, data[35] & 0x0F);
1612 break;
1613 }
1614
1615 puts ("Manufacturer's JEDEC ID ");
1616 for (j = 64; j <= 71; j++)
1617 printf ("%02X ", data[j]);
1618 putc ('\n');
1619 printf ("Manufacturing Location %02X\n", data[72]);
1620 puts ("Manufacturer's Part Number ");
1621 for (j = 73; j <= 90; j++)
1622 printf ("%02X ", data[j]);
1623 putc ('\n');
1624 printf ("Revision Code %02X %02X\n", data[91], data[92]);
1625 printf ("Manufacturing Date %02X %02X\n", data[93], data[94]);
1626 puts ("Assembly Serial Number ");
1627 for (j = 95; j <= 98; j++)
1628 printf ("%02X ", data[j]);
1629 putc ('\n');
1630
1631 if (DDR2 != type) {
1632 printf ("Speed rating PC%d\n",
1633 data[126] == 0x66 ? 66 : data[126]);
1634 }
1635 return 0;
1636 }
1637 #endif
1638
1639 /*
1640 * Syntax:
1641 * i2c edid {i2c_chip}
1642 */
1643 #if defined(CONFIG_I2C_EDID)
1644 int do_edid(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
1645 {
1646 uint chip;
1647 struct edid1_info edid;
1648 int ret;
1649 #ifdef CONFIG_DM_I2C
1650 struct udevice *dev;
1651 #endif
1652
1653 if (argc < 2) {
1654 cmd_usage(cmdtp);
1655 return 1;
1656 }
1657
1658 chip = simple_strtoul(argv[1], NULL, 16);
1659 #ifdef CONFIG_DM_I2C
1660 ret = i2c_get_cur_bus_chip(chip, &dev);
1661 if (!ret)
1662 ret = dm_i2c_read(dev, 0, (uchar *)&edid, sizeof(edid));
1663 #else
1664 ret = i2c_read(chip, 0, 1, (uchar *)&edid, sizeof(edid));
1665 #endif
1666 if (ret)
1667 return i2c_report_err(ret, I2C_ERR_READ);
1668
1669 if (edid_check_info(&edid)) {
1670 puts("Content isn't valid EDID.\n");
1671 return 1;
1672 }
1673
1674 edid_print_info(&edid);
1675 return 0;
1676
1677 }
1678 #endif /* CONFIG_I2C_EDID */
1679
1680 #ifdef CONFIG_DM_I2C
1681 static void show_bus(struct udevice *bus)
1682 {
1683 struct udevice *dev;
1684
1685 printf("Bus %d:\t%s", bus->req_seq, bus->name);
1686 if (device_active(bus))
1687 printf(" (active %d)", bus->seq);
1688 printf("\n");
1689 for (device_find_first_child(bus, &dev);
1690 dev;
1691 device_find_next_child(&dev)) {
1692 struct dm_i2c_chip *chip = dev_get_parent_platdata(dev);
1693
1694 printf(" %02x: %s, offset len %x, flags %x\n",
1695 chip->chip_addr, dev->name, chip->offset_len,
1696 chip->flags);
1697 }
1698 }
1699 #endif
1700
1701 /**
1702 * do_i2c_show_bus() - Handle the "i2c bus" command-line command
1703 * @cmdtp: Command data struct pointer
1704 * @flag: Command flag
1705 * @argc: Command-line argument count
1706 * @argv: Array of command-line arguments
1707 *
1708 * Returns zero always.
1709 */
1710 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_DM_I2C)
1711 static int do_i2c_show_bus(cmd_tbl_t *cmdtp, int flag, int argc,
1712 char * const argv[])
1713 {
1714 if (argc == 1) {
1715 /* show all busses */
1716 #ifdef CONFIG_DM_I2C
1717 struct udevice *bus;
1718 struct uclass *uc;
1719 int ret;
1720
1721 ret = uclass_get(UCLASS_I2C, &uc);
1722 if (ret)
1723 return CMD_RET_FAILURE;
1724 uclass_foreach_dev(bus, uc)
1725 show_bus(bus);
1726 #else
1727 int i;
1728
1729 for (i = 0; i < CONFIG_SYS_NUM_I2C_BUSES; i++) {
1730 printf("Bus %d:\t%s", i, I2C_ADAP_NR(i)->name);
1731 #ifndef CONFIG_SYS_I2C_DIRECT_BUS
1732 int j;
1733
1734 for (j = 0; j < CONFIG_SYS_I2C_MAX_HOPS; j++) {
1735 if (i2c_bus[i].next_hop[j].chip == 0)
1736 break;
1737 printf("->%s@0x%2x:%d",
1738 i2c_bus[i].next_hop[j].mux.name,
1739 i2c_bus[i].next_hop[j].chip,
1740 i2c_bus[i].next_hop[j].channel);
1741 }
1742 #endif
1743 printf("\n");
1744 }
1745 #endif
1746 } else {
1747 int i;
1748
1749 /* show specific bus */
1750 i = simple_strtoul(argv[1], NULL, 10);
1751 #ifdef CONFIG_DM_I2C
1752 struct udevice *bus;
1753 int ret;
1754
1755 ret = uclass_get_device_by_seq(UCLASS_I2C, i, &bus);
1756 if (ret) {
1757 printf("Invalid bus %d: err=%d\n", i, ret);
1758 return CMD_RET_FAILURE;
1759 }
1760 show_bus(bus);
1761 #else
1762 if (i >= CONFIG_SYS_NUM_I2C_BUSES) {
1763 printf("Invalid bus %d\n", i);
1764 return -1;
1765 }
1766 printf("Bus %d:\t%s", i, I2C_ADAP_NR(i)->name);
1767 #ifndef CONFIG_SYS_I2C_DIRECT_BUS
1768 int j;
1769 for (j = 0; j < CONFIG_SYS_I2C_MAX_HOPS; j++) {
1770 if (i2c_bus[i].next_hop[j].chip == 0)
1771 break;
1772 printf("->%s@0x%2x:%d",
1773 i2c_bus[i].next_hop[j].mux.name,
1774 i2c_bus[i].next_hop[j].chip,
1775 i2c_bus[i].next_hop[j].channel);
1776 }
1777 #endif
1778 printf("\n");
1779 #endif
1780 }
1781
1782 return 0;
1783 }
1784 #endif
1785
1786 /**
1787 * do_i2c_bus_num() - Handle the "i2c dev" command-line command
1788 * @cmdtp: Command data struct pointer
1789 * @flag: Command flag
1790 * @argc: Command-line argument count
1791 * @argv: Array of command-line arguments
1792 *
1793 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1794 * on error.
1795 */
1796 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_I2C_MULTI_BUS) || \
1797 defined(CONFIG_DM_I2C)
1798 static int do_i2c_bus_num(cmd_tbl_t *cmdtp, int flag, int argc,
1799 char * const argv[])
1800 {
1801 int ret = 0;
1802 int bus_no;
1803
1804 if (argc == 1) {
1805 /* querying current setting */
1806 #ifdef CONFIG_DM_I2C
1807 struct udevice *bus;
1808
1809 if (!i2c_get_cur_bus(&bus))
1810 bus_no = bus->seq;
1811 else
1812 bus_no = -1;
1813 #else
1814 bus_no = i2c_get_bus_num();
1815 #endif
1816 printf("Current bus is %d\n", bus_no);
1817 } else {
1818 bus_no = simple_strtoul(argv[1], NULL, 10);
1819 #if defined(CONFIG_SYS_I2C)
1820 if (bus_no >= CONFIG_SYS_NUM_I2C_BUSES) {
1821 printf("Invalid bus %d\n", bus_no);
1822 return -1;
1823 }
1824 #endif
1825 printf("Setting bus to %d\n", bus_no);
1826 #ifdef CONFIG_DM_I2C
1827 ret = cmd_i2c_set_bus_num(bus_no);
1828 #else
1829 ret = i2c_set_bus_num(bus_no);
1830 #endif
1831 if (ret)
1832 printf("Failure changing bus number (%d)\n", ret);
1833 }
1834
1835 return ret ? CMD_RET_FAILURE : 0;
1836 }
1837 #endif /* defined(CONFIG_SYS_I2C) */
1838
1839 /**
1840 * do_i2c_bus_speed() - Handle the "i2c speed" command-line command
1841 * @cmdtp: Command data struct pointer
1842 * @flag: Command flag
1843 * @argc: Command-line argument count
1844 * @argv: Array of command-line arguments
1845 *
1846 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1847 * on error.
1848 */
1849 static int do_i2c_bus_speed(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1850 {
1851 int speed, ret=0;
1852
1853 #ifdef CONFIG_DM_I2C
1854 struct udevice *bus;
1855
1856 if (i2c_get_cur_bus(&bus))
1857 return 1;
1858 #endif
1859 if (argc == 1) {
1860 #ifdef CONFIG_DM_I2C
1861 speed = dm_i2c_get_bus_speed(bus);
1862 #else
1863 speed = i2c_get_bus_speed();
1864 #endif
1865 /* querying current speed */
1866 printf("Current bus speed=%d\n", speed);
1867 } else {
1868 speed = simple_strtoul(argv[1], NULL, 10);
1869 printf("Setting bus speed to %d Hz\n", speed);
1870 #ifdef CONFIG_DM_I2C
1871 ret = dm_i2c_set_bus_speed(bus, speed);
1872 #else
1873 ret = i2c_set_bus_speed(speed);
1874 #endif
1875 if (ret)
1876 printf("Failure changing bus speed (%d)\n", ret);
1877 }
1878
1879 return ret ? CMD_RET_FAILURE : 0;
1880 }
1881
1882 /**
1883 * do_i2c_mm() - Handle the "i2c mm" command-line command
1884 * @cmdtp: Command data struct pointer
1885 * @flag: Command flag
1886 * @argc: Command-line argument count
1887 * @argv: Array of command-line arguments
1888 *
1889 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1890 * on error.
1891 */
1892 static int do_i2c_mm(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1893 {
1894 return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
1895 }
1896
1897 /**
1898 * do_i2c_nm() - Handle the "i2c nm" command-line command
1899 * @cmdtp: Command data struct pointer
1900 * @flag: Command flag
1901 * @argc: Command-line argument count
1902 * @argv: Array of command-line arguments
1903 *
1904 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1905 * on error.
1906 */
1907 static int do_i2c_nm(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1908 {
1909 return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
1910 }
1911
1912 /**
1913 * do_i2c_reset() - Handle the "i2c reset" command-line command
1914 * @cmdtp: Command data struct pointer
1915 * @flag: Command flag
1916 * @argc: Command-line argument count
1917 * @argv: Array of command-line arguments
1918 *
1919 * Returns zero always.
1920 */
1921 static int do_i2c_reset(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1922 {
1923 #if defined(CONFIG_DM_I2C)
1924 struct udevice *bus;
1925
1926 if (i2c_get_cur_bus(&bus))
1927 return CMD_RET_FAILURE;
1928 if (i2c_deblock(bus)) {
1929 printf("Error: Not supported by the driver\n");
1930 return CMD_RET_FAILURE;
1931 }
1932 #elif defined(CONFIG_SYS_I2C)
1933 i2c_init(I2C_ADAP->speed, I2C_ADAP->slaveaddr);
1934 #else
1935 i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
1936 #endif
1937 return 0;
1938 }
1939
1940 static cmd_tbl_t cmd_i2c_sub[] = {
1941 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_DM_I2C)
1942 U_BOOT_CMD_MKENT(bus, 1, 1, do_i2c_show_bus, "", ""),
1943 #endif
1944 U_BOOT_CMD_MKENT(crc32, 3, 1, do_i2c_crc, "", ""),
1945 #if defined(CONFIG_SYS_I2C) || \
1946 defined(CONFIG_I2C_MULTI_BUS) || defined(CONFIG_DM_I2C)
1947 U_BOOT_CMD_MKENT(dev, 1, 1, do_i2c_bus_num, "", ""),
1948 #endif /* CONFIG_I2C_MULTI_BUS */
1949 #if defined(CONFIG_I2C_EDID)
1950 U_BOOT_CMD_MKENT(edid, 1, 1, do_edid, "", ""),
1951 #endif /* CONFIG_I2C_EDID */
1952 U_BOOT_CMD_MKENT(loop, 3, 1, do_i2c_loop, "", ""),
1953 U_BOOT_CMD_MKENT(md, 3, 1, do_i2c_md, "", ""),
1954 U_BOOT_CMD_MKENT(mm, 2, 1, do_i2c_mm, "", ""),
1955 U_BOOT_CMD_MKENT(mw, 3, 1, do_i2c_mw, "", ""),
1956 U_BOOT_CMD_MKENT(nm, 2, 1, do_i2c_nm, "", ""),
1957 U_BOOT_CMD_MKENT(probe, 0, 1, do_i2c_probe, "", ""),
1958 U_BOOT_CMD_MKENT(read, 5, 1, do_i2c_read, "", ""),
1959 U_BOOT_CMD_MKENT(write, 6, 0, do_i2c_write, "", ""),
1960 #ifdef CONFIG_DM_I2C
1961 U_BOOT_CMD_MKENT(flags, 2, 1, do_i2c_flags, "", ""),
1962 U_BOOT_CMD_MKENT(olen, 2, 1, do_i2c_olen, "", ""),
1963 #endif
1964 U_BOOT_CMD_MKENT(reset, 0, 1, do_i2c_reset, "", ""),
1965 #if defined(CONFIG_CMD_SDRAM)
1966 U_BOOT_CMD_MKENT(sdram, 1, 1, do_sdram, "", ""),
1967 #endif
1968 U_BOOT_CMD_MKENT(speed, 1, 1, do_i2c_bus_speed, "", ""),
1969 };
1970
1971 static __maybe_unused void i2c_reloc(void)
1972 {
1973 static int relocated;
1974
1975 if (!relocated) {
1976 fixup_cmdtable(cmd_i2c_sub, ARRAY_SIZE(cmd_i2c_sub));
1977 relocated = 1;
1978 };
1979 }
1980
1981 /**
1982 * do_i2c() - Handle the "i2c" command-line command
1983 * @cmdtp: Command data struct pointer
1984 * @flag: Command flag
1985 * @argc: Command-line argument count
1986 * @argv: Array of command-line arguments
1987 *
1988 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1989 * on error.
1990 */
1991 static int do_i2c(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1992 {
1993 cmd_tbl_t *c;
1994
1995 #ifdef CONFIG_NEEDS_MANUAL_RELOC
1996 i2c_reloc();
1997 #endif
1998
1999 if (argc < 2)
2000 return CMD_RET_USAGE;
2001
2002 /* Strip off leading 'i2c' command argument */
2003 argc--;
2004 argv++;
2005
2006 c = find_cmd_tbl(argv[0], &cmd_i2c_sub[0], ARRAY_SIZE(cmd_i2c_sub));
2007
2008 if (c)
2009 return c->cmd(cmdtp, flag, argc, argv);
2010 else
2011 return CMD_RET_USAGE;
2012 }
2013
2014 /***************************************************/
2015 #ifdef CONFIG_SYS_LONGHELP
2016 static char i2c_help_text[] =
2017 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_DM_I2C)
2018 "bus [muxtype:muxaddr:muxchannel] - show I2C bus info\n"
2019 #endif
2020 "crc32 chip address[.0, .1, .2] count - compute CRC32 checksum\n"
2021 #if defined(CONFIG_SYS_I2C) || \
2022 defined(CONFIG_I2C_MULTI_BUS) || defined(CONFIG_DM_I2C)
2023 "i2c dev [dev] - show or set current I2C bus\n"
2024 #endif /* CONFIG_I2C_MULTI_BUS */
2025 #if defined(CONFIG_I2C_EDID)
2026 "i2c edid chip - print EDID configuration information\n"
2027 #endif /* CONFIG_I2C_EDID */
2028 "i2c loop chip address[.0, .1, .2] [# of objects] - looping read of device\n"
2029 "i2c md chip address[.0, .1, .2] [# of objects] - read from I2C device\n"
2030 "i2c mm chip address[.0, .1, .2] - write to I2C device (auto-incrementing)\n"
2031 "i2c mw chip address[.0, .1, .2] value [count] - write to I2C device (fill)\n"
2032 "i2c nm chip address[.0, .1, .2] - write to I2C device (constant address)\n"
2033 "i2c probe [address] - test for and show device(s) on the I2C bus\n"
2034 "i2c read chip address[.0, .1, .2] length memaddress - read to memory\n"
2035 "i2c write memaddress chip address[.0, .1, .2] length [-s] - write memory\n"
2036 " to I2C; the -s option selects bulk write in a single transaction\n"
2037 #ifdef CONFIG_DM_I2C
2038 "i2c flags chip [flags] - set or get chip flags\n"
2039 "i2c olen chip [offset_length] - set or get chip offset length\n"
2040 #endif
2041 "i2c reset - re-init the I2C Controller\n"
2042 #if defined(CONFIG_CMD_SDRAM)
2043 "i2c sdram chip - print SDRAM configuration information\n"
2044 #endif
2045 "i2c speed [speed] - show or set I2C bus speed";
2046 #endif
2047
2048 U_BOOT_CMD(
2049 i2c, 7, 1, do_i2c,
2050 "I2C sub-system",
2051 i2c_help_text
2052 );