]> git.ipfire.org Git - people/ms/u-boot.git/blob - common/cmd_i2c.c
448f2fedd7fae420407d2df61af5e6ec9a6e263c
[people/ms/u-boot.git] / common / cmd_i2c.c
1 /*
2 * (C) Copyright 2001
3 * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
4 *
5 * See file CREDITS for list of people who contributed to this
6 * project.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24 /*
25 * I2C Functions similar to the standard memory functions.
26 *
27 * There are several parameters in many of the commands that bear further
28 * explanations:
29 *
30 * Two of the commands (imm and imw) take a byte/word/long modifier
31 * (e.g. imm.w specifies the word-length modifier). This was done to
32 * allow manipulating word-length registers. It was not done on any other
33 * commands because it was not deemed useful.
34 *
35 * {i2c_chip} is the I2C chip address (the first byte sent on the bus).
36 * Each I2C chip on the bus has a unique address. On the I2C data bus,
37 * the address is the upper seven bits and the LSB is the "read/write"
38 * bit. Note that the {i2c_chip} address specified on the command
39 * line is not shifted up: e.g. a typical EEPROM memory chip may have
40 * an I2C address of 0x50, but the data put on the bus will be 0xA0
41 * for write and 0xA1 for read. This "non shifted" address notation
42 * matches at least half of the data sheets :-/.
43 *
44 * {addr} is the address (or offset) within the chip. Small memory
45 * chips have 8 bit addresses. Large memory chips have 16 bit
46 * addresses. Other memory chips have 9, 10, or 11 bit addresses.
47 * Many non-memory chips have multiple registers and {addr} is used
48 * as the register index. Some non-memory chips have only one register
49 * and therefore don't need any {addr} parameter.
50 *
51 * The default {addr} parameter is one byte (.1) which works well for
52 * memories and registers with 8 bits of address space.
53 *
54 * You can specify the length of the {addr} field with the optional .0,
55 * .1, or .2 modifier (similar to the .b, .w, .l modifier). If you are
56 * manipulating a single register device which doesn't use an address
57 * field, use "0.0" for the address and the ".0" length field will
58 * suppress the address in the I2C data stream. This also works for
59 * successive reads using the I2C auto-incrementing memory pointer.
60 *
61 * If you are manipulating a large memory with 2-byte addresses, use
62 * the .2 address modifier, e.g. 210.2 addresses location 528 (decimal).
63 *
64 * Then there are the unfortunate memory chips that spill the most
65 * significant 1, 2, or 3 bits of address into the chip address byte.
66 * This effectively makes one chip (logically) look like 2, 4, or
67 * 8 chips. This is handled (awkwardly) by #defining
68 * CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the
69 * {addr} field (since .1 is the default, it doesn't actually have to
70 * be specified). Examples: given a memory chip at I2C chip address
71 * 0x50, the following would happen...
72 * imd 50 0 10 display 16 bytes starting at 0x000
73 * On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd>
74 * imd 50 100 10 display 16 bytes starting at 0x100
75 * On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd>
76 * imd 50 210 10 display 16 bytes starting at 0x210
77 * On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd>
78 * This is awfully ugly. It would be nice if someone would think up
79 * a better way of handling this.
80 *
81 * Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de).
82 */
83
84 #include <common.h>
85 #include <command.h>
86 #include <environment.h>
87 #include <i2c.h>
88 #include <malloc.h>
89 #include <asm/byteorder.h>
90
91 /* Display values from last command.
92 * Memory modify remembered values are different from display memory.
93 */
94 static uchar i2c_dp_last_chip;
95 static uint i2c_dp_last_addr;
96 static uint i2c_dp_last_alen;
97 static uint i2c_dp_last_length = 0x10;
98
99 static uchar i2c_mm_last_chip;
100 static uint i2c_mm_last_addr;
101 static uint i2c_mm_last_alen;
102
103 /* If only one I2C bus is present, the list of devices to ignore when
104 * the probe command is issued is represented by a 1D array of addresses.
105 * When multiple buses are present, the list is an array of bus-address
106 * pairs. The following macros take care of this */
107
108 #if defined(CONFIG_SYS_I2C_NOPROBES)
109 #if defined(CONFIG_I2C_MULTI_BUS)
110 static struct
111 {
112 uchar bus;
113 uchar addr;
114 } i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES;
115 #define GET_BUS_NUM i2c_get_bus_num()
116 #define COMPARE_BUS(b,i) (i2c_no_probes[(i)].bus == (b))
117 #define COMPARE_ADDR(a,i) (i2c_no_probes[(i)].addr == (a))
118 #define NO_PROBE_ADDR(i) i2c_no_probes[(i)].addr
119 #else /* single bus */
120 static uchar i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES;
121 #define GET_BUS_NUM 0
122 #define COMPARE_BUS(b,i) ((b) == 0) /* Make compiler happy */
123 #define COMPARE_ADDR(a,i) (i2c_no_probes[(i)] == (a))
124 #define NO_PROBE_ADDR(i) i2c_no_probes[(i)]
125 #endif /* CONFIG_MULTI_BUS */
126
127 #define NUM_ELEMENTS_NOPROBE (sizeof(i2c_no_probes)/sizeof(i2c_no_probes[0]))
128 #endif
129
130 #if defined(CONFIG_I2C_MUX)
131 static I2C_MUX_DEVICE *i2c_mux_devices = NULL;
132 static int i2c_mux_busid = CONFIG_SYS_MAX_I2C_BUS;
133
134 DECLARE_GLOBAL_DATA_PTR;
135
136 #endif
137
138 static int
139 mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[]);
140
141 /*
142 * Syntax:
143 * imd {i2c_chip} {addr}{.0, .1, .2} {len}
144 */
145 #define DISP_LINE_LEN 16
146
147 int do_i2c_md ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
148 {
149 u_char chip;
150 uint addr, alen, length;
151 int j, nbytes, linebytes;
152
153 /* We use the last specified parameters, unless new ones are
154 * entered.
155 */
156 chip = i2c_dp_last_chip;
157 addr = i2c_dp_last_addr;
158 alen = i2c_dp_last_alen;
159 length = i2c_dp_last_length;
160
161 if (argc < 3) {
162 printf ("Usage:\n%s\n", cmdtp->usage);
163 return 1;
164 }
165
166 if ((flag & CMD_FLAG_REPEAT) == 0) {
167 /*
168 * New command specified.
169 */
170 alen = 1;
171
172 /*
173 * I2C chip address
174 */
175 chip = simple_strtoul(argv[1], NULL, 16);
176
177 /*
178 * I2C data address within the chip. This can be 1 or
179 * 2 bytes long. Some day it might be 3 bytes long :-).
180 */
181 addr = simple_strtoul(argv[2], NULL, 16);
182 alen = 1;
183 for (j = 0; j < 8; j++) {
184 if (argv[2][j] == '.') {
185 alen = argv[2][j+1] - '0';
186 if (alen > 4) {
187 printf ("Usage:\n%s\n", cmdtp->usage);
188 return 1;
189 }
190 break;
191 } else if (argv[2][j] == '\0')
192 break;
193 }
194
195 /*
196 * If another parameter, it is the length to display.
197 * Length is the number of objects, not number of bytes.
198 */
199 if (argc > 3)
200 length = simple_strtoul(argv[3], NULL, 16);
201 }
202
203 /*
204 * Print the lines.
205 *
206 * We buffer all read data, so we can make sure data is read only
207 * once.
208 */
209 nbytes = length;
210 do {
211 unsigned char linebuf[DISP_LINE_LEN];
212 unsigned char *cp;
213
214 linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
215
216 if (i2c_read(chip, addr, alen, linebuf, linebytes) != 0)
217 puts ("Error reading the chip.\n");
218 else {
219 printf("%04x:", addr);
220 cp = linebuf;
221 for (j=0; j<linebytes; j++) {
222 printf(" %02x", *cp++);
223 addr++;
224 }
225 puts (" ");
226 cp = linebuf;
227 for (j=0; j<linebytes; j++) {
228 if ((*cp < 0x20) || (*cp > 0x7e))
229 puts (".");
230 else
231 printf("%c", *cp);
232 cp++;
233 }
234 putc ('\n');
235 }
236 nbytes -= linebytes;
237 } while (nbytes > 0);
238
239 i2c_dp_last_chip = chip;
240 i2c_dp_last_addr = addr;
241 i2c_dp_last_alen = alen;
242 i2c_dp_last_length = length;
243
244 return 0;
245 }
246
247 int do_i2c_mm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
248 {
249 return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
250 }
251
252 int do_i2c_nm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
253 {
254 return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
255 }
256
257 /* Write (fill) memory
258 *
259 * Syntax:
260 * imw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}]
261 */
262 int do_i2c_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
263 {
264 uchar chip;
265 ulong addr;
266 uint alen;
267 uchar byte;
268 int count;
269 int j;
270
271 if ((argc < 4) || (argc > 5)) {
272 printf ("Usage:\n%s\n", cmdtp->usage);
273 return 1;
274 }
275
276 /*
277 * Chip is always specified.
278 */
279 chip = simple_strtoul(argv[1], NULL, 16);
280
281 /*
282 * Address is always specified.
283 */
284 addr = simple_strtoul(argv[2], NULL, 16);
285 alen = 1;
286 for (j = 0; j < 8; j++) {
287 if (argv[2][j] == '.') {
288 alen = argv[2][j+1] - '0';
289 if (alen > 4) {
290 printf ("Usage:\n%s\n", cmdtp->usage);
291 return 1;
292 }
293 break;
294 } else if (argv[2][j] == '\0')
295 break;
296 }
297
298 /*
299 * Value to write is always specified.
300 */
301 byte = simple_strtoul(argv[3], NULL, 16);
302
303 /*
304 * Optional count
305 */
306 if (argc == 5)
307 count = simple_strtoul(argv[4], NULL, 16);
308 else
309 count = 1;
310
311 while (count-- > 0) {
312 if (i2c_write(chip, addr++, alen, &byte, 1) != 0)
313 puts ("Error writing the chip.\n");
314 /*
315 * Wait for the write to complete. The write can take
316 * up to 10mSec (we allow a little more time).
317 *
318 * On some chips, while the write is in progress, the
319 * chip doesn't respond. This apparently isn't a
320 * universal feature so we don't take advantage of it.
321 */
322 /*
323 * No write delay with FRAM devices.
324 */
325 #if !defined(CONFIG_SYS_I2C_FRAM)
326 udelay(11000);
327 #endif
328
329 #if 0
330 for (timeout = 0; timeout < 10; timeout++) {
331 udelay(2000);
332 if (i2c_probe(chip) == 0)
333 break;
334 }
335 #endif
336 }
337
338 return (0);
339 }
340
341 /* Calculate a CRC on memory
342 *
343 * Syntax:
344 * icrc32 {i2c_chip} {addr}{.0, .1, .2} {count}
345 */
346 int do_i2c_crc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
347 {
348 uchar chip;
349 ulong addr;
350 uint alen;
351 int count;
352 uchar byte;
353 ulong crc;
354 ulong err;
355 int j;
356
357 if (argc < 4) {
358 printf ("Usage:\n%s\n", cmdtp->usage);
359 return 1;
360 }
361
362 /*
363 * Chip is always specified.
364 */
365 chip = simple_strtoul(argv[1], NULL, 16);
366
367 /*
368 * Address is always specified.
369 */
370 addr = simple_strtoul(argv[2], NULL, 16);
371 alen = 1;
372 for (j = 0; j < 8; j++) {
373 if (argv[2][j] == '.') {
374 alen = argv[2][j+1] - '0';
375 if (alen > 4) {
376 printf ("Usage:\n%s\n", cmdtp->usage);
377 return 1;
378 }
379 break;
380 } else if (argv[2][j] == '\0')
381 break;
382 }
383
384 /*
385 * Count is always specified
386 */
387 count = simple_strtoul(argv[3], NULL, 16);
388
389 printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1);
390 /*
391 * CRC a byte at a time. This is going to be slooow, but hey, the
392 * memories are small and slow too so hopefully nobody notices.
393 */
394 crc = 0;
395 err = 0;
396 while (count-- > 0) {
397 if (i2c_read(chip, addr, alen, &byte, 1) != 0)
398 err++;
399 crc = crc32 (crc, &byte, 1);
400 addr++;
401 }
402 if (err > 0)
403 puts ("Error reading the chip,\n");
404 else
405 printf ("%08lx\n", crc);
406
407 return 0;
408 }
409
410 /* Modify memory.
411 *
412 * Syntax:
413 * imm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
414 * inm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
415 */
416
417 static int
418 mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[])
419 {
420 uchar chip;
421 ulong addr;
422 uint alen;
423 ulong data;
424 int size = 1;
425 int nbytes;
426 int j;
427 extern char console_buffer[];
428
429 if (argc != 3) {
430 printf ("Usage:\n%s\n", cmdtp->usage);
431 return 1;
432 }
433
434 #ifdef CONFIG_BOOT_RETRY_TIME
435 reset_cmd_timeout(); /* got a good command to get here */
436 #endif
437 /*
438 * We use the last specified parameters, unless new ones are
439 * entered.
440 */
441 chip = i2c_mm_last_chip;
442 addr = i2c_mm_last_addr;
443 alen = i2c_mm_last_alen;
444
445 if ((flag & CMD_FLAG_REPEAT) == 0) {
446 /*
447 * New command specified. Check for a size specification.
448 * Defaults to byte if no or incorrect specification.
449 */
450 size = cmd_get_data_size(argv[0], 1);
451
452 /*
453 * Chip is always specified.
454 */
455 chip = simple_strtoul(argv[1], NULL, 16);
456
457 /*
458 * Address is always specified.
459 */
460 addr = simple_strtoul(argv[2], NULL, 16);
461 alen = 1;
462 for (j = 0; j < 8; j++) {
463 if (argv[2][j] == '.') {
464 alen = argv[2][j+1] - '0';
465 if (alen > 4) {
466 printf ("Usage:\n%s\n", cmdtp->usage);
467 return 1;
468 }
469 break;
470 } else if (argv[2][j] == '\0')
471 break;
472 }
473 }
474
475 /*
476 * Print the address, followed by value. Then accept input for
477 * the next value. A non-converted value exits.
478 */
479 do {
480 printf("%08lx:", addr);
481 if (i2c_read(chip, addr, alen, (uchar *)&data, size) != 0)
482 puts ("\nError reading the chip,\n");
483 else {
484 data = cpu_to_be32(data);
485 if (size == 1)
486 printf(" %02lx", (data >> 24) & 0x000000FF);
487 else if (size == 2)
488 printf(" %04lx", (data >> 16) & 0x0000FFFF);
489 else
490 printf(" %08lx", data);
491 }
492
493 nbytes = readline (" ? ");
494 if (nbytes == 0) {
495 /*
496 * <CR> pressed as only input, don't modify current
497 * location and move to next.
498 */
499 if (incrflag)
500 addr += size;
501 nbytes = size;
502 #ifdef CONFIG_BOOT_RETRY_TIME
503 reset_cmd_timeout(); /* good enough to not time out */
504 #endif
505 }
506 #ifdef CONFIG_BOOT_RETRY_TIME
507 else if (nbytes == -2)
508 break; /* timed out, exit the command */
509 #endif
510 else {
511 char *endp;
512
513 data = simple_strtoul(console_buffer, &endp, 16);
514 if (size == 1)
515 data = data << 24;
516 else if (size == 2)
517 data = data << 16;
518 data = be32_to_cpu(data);
519 nbytes = endp - console_buffer;
520 if (nbytes) {
521 #ifdef CONFIG_BOOT_RETRY_TIME
522 /*
523 * good enough to not time out
524 */
525 reset_cmd_timeout();
526 #endif
527 if (i2c_write(chip, addr, alen, (uchar *)&data, size) != 0)
528 puts ("Error writing the chip.\n");
529 #ifdef CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS
530 udelay(CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS * 1000);
531 #endif
532 if (incrflag)
533 addr += size;
534 }
535 }
536 } while (nbytes);
537
538 i2c_mm_last_chip = chip;
539 i2c_mm_last_addr = addr;
540 i2c_mm_last_alen = alen;
541
542 return 0;
543 }
544
545 /*
546 * Syntax:
547 * iprobe {addr}{.0, .1, .2}
548 */
549 int do_i2c_probe (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
550 {
551 int j;
552 #if defined(CONFIG_SYS_I2C_NOPROBES)
553 int k, skip;
554 uchar bus = GET_BUS_NUM;
555 #endif /* NOPROBES */
556
557 puts ("Valid chip addresses:");
558 for (j = 0; j < 128; j++) {
559 #if defined(CONFIG_SYS_I2C_NOPROBES)
560 skip = 0;
561 for (k=0; k < NUM_ELEMENTS_NOPROBE; k++) {
562 if (COMPARE_BUS(bus, k) && COMPARE_ADDR(j, k)) {
563 skip = 1;
564 break;
565 }
566 }
567 if (skip)
568 continue;
569 #endif
570 if (i2c_probe(j) == 0)
571 printf(" %02X", j);
572 }
573 putc ('\n');
574
575 #if defined(CONFIG_SYS_I2C_NOPROBES)
576 puts ("Excluded chip addresses:");
577 for (k=0; k < NUM_ELEMENTS_NOPROBE; k++) {
578 if (COMPARE_BUS(bus,k))
579 printf(" %02X", NO_PROBE_ADDR(k));
580 }
581 putc ('\n');
582 #endif
583
584 return 0;
585 }
586
587 /*
588 * Syntax:
589 * iloop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}]
590 * {length} - Number of bytes to read
591 * {delay} - A DECIMAL number and defaults to 1000 uSec
592 */
593 int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
594 {
595 u_char chip;
596 ulong alen;
597 uint addr;
598 uint length;
599 u_char bytes[16];
600 int delay;
601 int j;
602
603 if (argc < 3) {
604 printf ("Usage:\n%s\n", cmdtp->usage);
605 return 1;
606 }
607
608 /*
609 * Chip is always specified.
610 */
611 chip = simple_strtoul(argv[1], NULL, 16);
612
613 /*
614 * Address is always specified.
615 */
616 addr = simple_strtoul(argv[2], NULL, 16);
617 alen = 1;
618 for (j = 0; j < 8; j++) {
619 if (argv[2][j] == '.') {
620 alen = argv[2][j+1] - '0';
621 if (alen > 4) {
622 printf ("Usage:\n%s\n", cmdtp->usage);
623 return 1;
624 }
625 break;
626 } else if (argv[2][j] == '\0')
627 break;
628 }
629
630 /*
631 * Length is the number of objects, not number of bytes.
632 */
633 length = 1;
634 length = simple_strtoul(argv[3], NULL, 16);
635 if (length > sizeof(bytes))
636 length = sizeof(bytes);
637
638 /*
639 * The delay time (uSec) is optional.
640 */
641 delay = 1000;
642 if (argc > 3)
643 delay = simple_strtoul(argv[4], NULL, 10);
644 /*
645 * Run the loop...
646 */
647 while (1) {
648 if (i2c_read(chip, addr, alen, bytes, length) != 0)
649 puts ("Error reading the chip.\n");
650 udelay(delay);
651 }
652
653 /* NOTREACHED */
654 return 0;
655 }
656
657 /*
658 * The SDRAM command is separately configured because many
659 * (most?) embedded boards don't use SDRAM DIMMs.
660 */
661 #if defined(CONFIG_CMD_SDRAM)
662 static void print_ddr2_tcyc (u_char const b)
663 {
664 printf ("%d.", (b >> 4) & 0x0F);
665 switch (b & 0x0F) {
666 case 0x0:
667 case 0x1:
668 case 0x2:
669 case 0x3:
670 case 0x4:
671 case 0x5:
672 case 0x6:
673 case 0x7:
674 case 0x8:
675 case 0x9:
676 printf ("%d ns\n", b & 0x0F);
677 break;
678 case 0xA:
679 puts ("25 ns\n");
680 break;
681 case 0xB:
682 puts ("33 ns\n");
683 break;
684 case 0xC:
685 puts ("66 ns\n");
686 break;
687 case 0xD:
688 puts ("75 ns\n");
689 break;
690 default:
691 puts ("?? ns\n");
692 break;
693 }
694 }
695
696 static void decode_bits (u_char const b, char const *str[], int const do_once)
697 {
698 u_char mask;
699
700 for (mask = 0x80; mask != 0x00; mask >>= 1, ++str) {
701 if (b & mask) {
702 puts (*str);
703 if (do_once)
704 return;
705 }
706 }
707 }
708
709 /*
710 * Syntax:
711 * sdram {i2c_chip}
712 */
713 int do_sdram (cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
714 {
715 enum { unknown, EDO, SDRAM, DDR2 } type;
716
717 u_char chip;
718 u_char data[128];
719 u_char cksum;
720 int j;
721
722 static const char *decode_CAS_DDR2[] = {
723 " TBD", " 6", " 5", " 4", " 3", " 2", " TBD", " TBD"
724 };
725
726 static const char *decode_CAS_default[] = {
727 " TBD", " 7", " 6", " 5", " 4", " 3", " 2", " 1"
728 };
729
730 static const char *decode_CS_WE_default[] = {
731 " TBD", " 6", " 5", " 4", " 3", " 2", " 1", " 0"
732 };
733
734 static const char *decode_byte21_default[] = {
735 " TBD (bit 7)\n",
736 " Redundant row address\n",
737 " Differential clock input\n",
738 " Registerd DQMB inputs\n",
739 " Buffered DQMB inputs\n",
740 " On-card PLL\n",
741 " Registered address/control lines\n",
742 " Buffered address/control lines\n"
743 };
744
745 static const char *decode_byte22_DDR2[] = {
746 " TBD (bit 7)\n",
747 " TBD (bit 6)\n",
748 " TBD (bit 5)\n",
749 " TBD (bit 4)\n",
750 " TBD (bit 3)\n",
751 " Supports partial array self refresh\n",
752 " Supports 50 ohm ODT\n",
753 " Supports weak driver\n"
754 };
755
756 static const char *decode_row_density_DDR2[] = {
757 "512 MiB", "256 MiB", "128 MiB", "16 GiB",
758 "8 GiB", "4 GiB", "2 GiB", "1 GiB"
759 };
760
761 static const char *decode_row_density_default[] = {
762 "512 MiB", "256 MiB", "128 MiB", "64 MiB",
763 "32 MiB", "16 MiB", "8 MiB", "4 MiB"
764 };
765
766 if (argc < 2) {
767 printf ("Usage:\n%s\n", cmdtp->usage);
768 return 1;
769 }
770 /*
771 * Chip is always specified.
772 */
773 chip = simple_strtoul (argv[1], NULL, 16);
774
775 if (i2c_read (chip, 0, 1, data, sizeof (data)) != 0) {
776 puts ("No SDRAM Serial Presence Detect found.\n");
777 return 1;
778 }
779
780 cksum = 0;
781 for (j = 0; j < 63; j++) {
782 cksum += data[j];
783 }
784 if (cksum != data[63]) {
785 printf ("WARNING: Configuration data checksum failure:\n"
786 " is 0x%02x, calculated 0x%02x\n", data[63], cksum);
787 }
788 printf ("SPD data revision %d.%d\n",
789 (data[62] >> 4) & 0x0F, data[62] & 0x0F);
790 printf ("Bytes used 0x%02X\n", data[0]);
791 printf ("Serial memory size 0x%02X\n", 1 << data[1]);
792
793 puts ("Memory type ");
794 switch (data[2]) {
795 case 2:
796 type = EDO;
797 puts ("EDO\n");
798 break;
799 case 4:
800 type = SDRAM;
801 puts ("SDRAM\n");
802 break;
803 case 8:
804 type = DDR2;
805 puts ("DDR2\n");
806 break;
807 default:
808 type = unknown;
809 puts ("unknown\n");
810 break;
811 }
812
813 puts ("Row address bits ");
814 if ((data[3] & 0x00F0) == 0)
815 printf ("%d\n", data[3] & 0x0F);
816 else
817 printf ("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
818
819 puts ("Column address bits ");
820 if ((data[4] & 0x00F0) == 0)
821 printf ("%d\n", data[4] & 0x0F);
822 else
823 printf ("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
824
825 switch (type) {
826 case DDR2:
827 printf ("Number of ranks %d\n",
828 (data[5] & 0x07) + 1);
829 break;
830 default:
831 printf ("Module rows %d\n", data[5]);
832 break;
833 }
834
835 switch (type) {
836 case DDR2:
837 printf ("Module data width %d bits\n", data[6]);
838 break;
839 default:
840 printf ("Module data width %d bits\n",
841 (data[7] << 8) | data[6]);
842 break;
843 }
844
845 puts ("Interface signal levels ");
846 switch(data[8]) {
847 case 0: puts ("TTL 5.0 V\n"); break;
848 case 1: puts ("LVTTL\n"); break;
849 case 2: puts ("HSTL 1.5 V\n"); break;
850 case 3: puts ("SSTL 3.3 V\n"); break;
851 case 4: puts ("SSTL 2.5 V\n"); break;
852 case 5: puts ("SSTL 1.8 V\n"); break;
853 default: puts ("unknown\n"); break;
854 }
855
856 switch (type) {
857 case DDR2:
858 printf ("SDRAM cycle time ");
859 print_ddr2_tcyc (data[9]);
860 break;
861 default:
862 printf ("SDRAM cycle time %d.%d ns\n",
863 (data[9] >> 4) & 0x0F, data[9] & 0x0F);
864 break;
865 }
866
867 switch (type) {
868 case DDR2:
869 printf ("SDRAM access time 0.%d%d ns\n",
870 (data[10] >> 4) & 0x0F, data[10] & 0x0F);
871 break;
872 default:
873 printf ("SDRAM access time %d.%d ns\n",
874 (data[10] >> 4) & 0x0F, data[10] & 0x0F);
875 break;
876 }
877
878 puts ("EDC configuration ");
879 switch (data[11]) {
880 case 0: puts ("None\n"); break;
881 case 1: puts ("Parity\n"); break;
882 case 2: puts ("ECC\n"); break;
883 default: puts ("unknown\n"); break;
884 }
885
886 if ((data[12] & 0x80) == 0)
887 puts ("No self refresh, rate ");
888 else
889 puts ("Self refresh, rate ");
890
891 switch(data[12] & 0x7F) {
892 case 0: puts ("15.625 us\n"); break;
893 case 1: puts ("3.9 us\n"); break;
894 case 2: puts ("7.8 us\n"); break;
895 case 3: puts ("31.3 us\n"); break;
896 case 4: puts ("62.5 us\n"); break;
897 case 5: puts ("125 us\n"); break;
898 default: puts ("unknown\n"); break;
899 }
900
901 switch (type) {
902 case DDR2:
903 printf ("SDRAM width (primary) %d\n", data[13]);
904 break;
905 default:
906 printf ("SDRAM width (primary) %d\n", data[13] & 0x7F);
907 if ((data[13] & 0x80) != 0) {
908 printf (" (second bank) %d\n",
909 2 * (data[13] & 0x7F));
910 }
911 break;
912 }
913
914 switch (type) {
915 case DDR2:
916 if (data[14] != 0)
917 printf ("EDC width %d\n", data[14]);
918 break;
919 default:
920 if (data[14] != 0) {
921 printf ("EDC width %d\n",
922 data[14] & 0x7F);
923
924 if ((data[14] & 0x80) != 0) {
925 printf (" (second bank) %d\n",
926 2 * (data[14] & 0x7F));
927 }
928 }
929 break;
930 }
931
932 if (DDR2 != type) {
933 printf ("Min clock delay, back-to-back random column addresses "
934 "%d\n", data[15]);
935 }
936
937 puts ("Burst length(s) ");
938 if (data[16] & 0x80) puts (" Page");
939 if (data[16] & 0x08) puts (" 8");
940 if (data[16] & 0x04) puts (" 4");
941 if (data[16] & 0x02) puts (" 2");
942 if (data[16] & 0x01) puts (" 1");
943 putc ('\n');
944 printf ("Number of banks %d\n", data[17]);
945
946 switch (type) {
947 case DDR2:
948 puts ("CAS latency(s) ");
949 decode_bits (data[18], decode_CAS_DDR2, 0);
950 putc ('\n');
951 break;
952 default:
953 puts ("CAS latency(s) ");
954 decode_bits (data[18], decode_CAS_default, 0);
955 putc ('\n');
956 break;
957 }
958
959 if (DDR2 != type) {
960 puts ("CS latency(s) ");
961 decode_bits (data[19], decode_CS_WE_default, 0);
962 putc ('\n');
963 }
964
965 if (DDR2 != type) {
966 puts ("WE latency(s) ");
967 decode_bits (data[20], decode_CS_WE_default, 0);
968 putc ('\n');
969 }
970
971 switch (type) {
972 case DDR2:
973 puts ("Module attributes:\n");
974 if (data[21] & 0x80)
975 puts (" TBD (bit 7)\n");
976 if (data[21] & 0x40)
977 puts (" Analysis probe installed\n");
978 if (data[21] & 0x20)
979 puts (" TBD (bit 5)\n");
980 if (data[21] & 0x10)
981 puts (" FET switch external enable\n");
982 printf (" %d PLLs on DIMM\n", (data[21] >> 2) & 0x03);
983 if (data[20] & 0x11) {
984 printf (" %d active registers on DIMM\n",
985 (data[21] & 0x03) + 1);
986 }
987 break;
988 default:
989 puts ("Module attributes:\n");
990 if (!data[21])
991 puts (" (none)\n");
992 else
993 decode_bits (data[21], decode_byte21_default, 0);
994 break;
995 }
996
997 switch (type) {
998 case DDR2:
999 decode_bits (data[22], decode_byte22_DDR2, 0);
1000 break;
1001 default:
1002 puts ("Device attributes:\n");
1003 if (data[22] & 0x80) puts (" TBD (bit 7)\n");
1004 if (data[22] & 0x40) puts (" TBD (bit 6)\n");
1005 if (data[22] & 0x20) puts (" Upper Vcc tolerance 5%\n");
1006 else puts (" Upper Vcc tolerance 10%\n");
1007 if (data[22] & 0x10) puts (" Lower Vcc tolerance 5%\n");
1008 else puts (" Lower Vcc tolerance 10%\n");
1009 if (data[22] & 0x08) puts (" Supports write1/read burst\n");
1010 if (data[22] & 0x04) puts (" Supports precharge all\n");
1011 if (data[22] & 0x02) puts (" Supports auto precharge\n");
1012 if (data[22] & 0x01) puts (" Supports early RAS# precharge\n");
1013 break;
1014 }
1015
1016 switch (type) {
1017 case DDR2:
1018 printf ("SDRAM cycle time (2nd highest CAS latency) ");
1019 print_ddr2_tcyc (data[23]);
1020 break;
1021 default:
1022 printf ("SDRAM cycle time (2nd highest CAS latency) %d."
1023 "%d ns\n", (data[23] >> 4) & 0x0F, data[23] & 0x0F);
1024 break;
1025 }
1026
1027 switch (type) {
1028 case DDR2:
1029 printf ("SDRAM access from clock (2nd highest CAS latency) 0."
1030 "%d%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
1031 break;
1032 default:
1033 printf ("SDRAM access from clock (2nd highest CAS latency) %d."
1034 "%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
1035 break;
1036 }
1037
1038 switch (type) {
1039 case DDR2:
1040 printf ("SDRAM cycle time (3rd highest CAS latency) ");
1041 print_ddr2_tcyc (data[25]);
1042 break;
1043 default:
1044 printf ("SDRAM cycle time (3rd highest CAS latency) %d."
1045 "%d ns\n", (data[25] >> 4) & 0x0F, data[25] & 0x0F);
1046 break;
1047 }
1048
1049 switch (type) {
1050 case DDR2:
1051 printf ("SDRAM access from clock (3rd highest CAS latency) 0."
1052 "%d%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
1053 break;
1054 default:
1055 printf ("SDRAM access from clock (3rd highest CAS latency) %d."
1056 "%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
1057 break;
1058 }
1059
1060 switch (type) {
1061 case DDR2:
1062 printf ("Minimum row precharge %d.%02d ns\n",
1063 (data[27] >> 2) & 0x3F, 25 * (data[27] & 0x03));
1064 break;
1065 default:
1066 printf ("Minimum row precharge %d ns\n", data[27]);
1067 break;
1068 }
1069
1070 switch (type) {
1071 case DDR2:
1072 printf ("Row active to row active min %d.%02d ns\n",
1073 (data[28] >> 2) & 0x3F, 25 * (data[28] & 0x03));
1074 break;
1075 default:
1076 printf ("Row active to row active min %d ns\n", data[28]);
1077 break;
1078 }
1079
1080 switch (type) {
1081 case DDR2:
1082 printf ("RAS to CAS delay min %d.%02d ns\n",
1083 (data[29] >> 2) & 0x3F, 25 * (data[29] & 0x03));
1084 break;
1085 default:
1086 printf ("RAS to CAS delay min %d ns\n", data[29]);
1087 break;
1088 }
1089
1090 printf ("Minimum RAS pulse width %d ns\n", data[30]);
1091
1092 switch (type) {
1093 case DDR2:
1094 puts ("Density of each row ");
1095 decode_bits (data[31], decode_row_density_DDR2, 1);
1096 putc ('\n');
1097 break;
1098 default:
1099 puts ("Density of each row ");
1100 decode_bits (data[31], decode_row_density_default, 1);
1101 putc ('\n');
1102 break;
1103 }
1104
1105 switch (type) {
1106 case DDR2:
1107 puts ("Command and Address setup ");
1108 if (data[32] >= 0xA0) {
1109 printf ("1.%d%d ns\n",
1110 ((data[32] >> 4) & 0x0F) - 10, data[32] & 0x0F);
1111 } else {
1112 printf ("0.%d%d ns\n",
1113 ((data[32] >> 4) & 0x0F), data[32] & 0x0F);
1114 }
1115 break;
1116 default:
1117 printf ("Command and Address setup %c%d.%d ns\n",
1118 (data[32] & 0x80) ? '-' : '+',
1119 (data[32] >> 4) & 0x07, data[32] & 0x0F);
1120 break;
1121 }
1122
1123 switch (type) {
1124 case DDR2:
1125 puts ("Command and Address hold ");
1126 if (data[33] >= 0xA0) {
1127 printf ("1.%d%d ns\n",
1128 ((data[33] >> 4) & 0x0F) - 10, data[33] & 0x0F);
1129 } else {
1130 printf ("0.%d%d ns\n",
1131 ((data[33] >> 4) & 0x0F), data[33] & 0x0F);
1132 }
1133 break;
1134 default:
1135 printf ("Command and Address hold %c%d.%d ns\n",
1136 (data[33] & 0x80) ? '-' : '+',
1137 (data[33] >> 4) & 0x07, data[33] & 0x0F);
1138 break;
1139 }
1140
1141 switch (type) {
1142 case DDR2:
1143 printf ("Data signal input setup 0.%d%d ns\n",
1144 (data[34] >> 4) & 0x0F, data[34] & 0x0F);
1145 break;
1146 default:
1147 printf ("Data signal input setup %c%d.%d ns\n",
1148 (data[34] & 0x80) ? '-' : '+',
1149 (data[34] >> 4) & 0x07, data[34] & 0x0F);
1150 break;
1151 }
1152
1153 switch (type) {
1154 case DDR2:
1155 printf ("Data signal input hold 0.%d%d ns\n",
1156 (data[35] >> 4) & 0x0F, data[35] & 0x0F);
1157 break;
1158 default:
1159 printf ("Data signal input hold %c%d.%d ns\n",
1160 (data[35] & 0x80) ? '-' : '+',
1161 (data[35] >> 4) & 0x07, data[35] & 0x0F);
1162 break;
1163 }
1164
1165 puts ("Manufacturer's JEDEC ID ");
1166 for (j = 64; j <= 71; j++)
1167 printf ("%02X ", data[j]);
1168 putc ('\n');
1169 printf ("Manufacturing Location %02X\n", data[72]);
1170 puts ("Manufacturer's Part Number ");
1171 for (j = 73; j <= 90; j++)
1172 printf ("%02X ", data[j]);
1173 putc ('\n');
1174 printf ("Revision Code %02X %02X\n", data[91], data[92]);
1175 printf ("Manufacturing Date %02X %02X\n", data[93], data[94]);
1176 puts ("Assembly Serial Number ");
1177 for (j = 95; j <= 98; j++)
1178 printf ("%02X ", data[j]);
1179 putc ('\n');
1180
1181 if (DDR2 != type) {
1182 printf ("Speed rating PC%d\n",
1183 data[126] == 0x66 ? 66 : data[126]);
1184 }
1185 return 0;
1186 }
1187 #endif
1188
1189 #if defined(CONFIG_I2C_CMD_TREE)
1190 int do_i2c_reset(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
1191 {
1192 i2c_init (CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
1193 return 0;
1194 }
1195
1196 #if defined(CONFIG_I2C_MUX)
1197 int do_i2c_add_bus(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
1198 {
1199 int ret=0;
1200
1201 if (argc == 1) {
1202 /* show all busses */
1203 I2C_MUX *mux;
1204 I2C_MUX_DEVICE *device = i2c_mux_devices;
1205
1206 printf ("Busses reached over muxes:\n");
1207 while (device != NULL) {
1208 printf ("Bus ID: %x\n", device->busid);
1209 printf (" reached over Mux(es):\n");
1210 mux = device->mux;
1211 while (mux != NULL) {
1212 printf (" %s@%x ch: %x\n", mux->name, mux->chip, mux->channel);
1213 mux = mux->next;
1214 }
1215 device = device->next;
1216 }
1217 } else {
1218 I2C_MUX_DEVICE *dev;
1219
1220 dev = i2c_mux_ident_muxstring ((uchar *)argv[1]);
1221 ret = 0;
1222 }
1223 return ret;
1224 }
1225 #endif /* CONFIG_I2C_MUX */
1226
1227 #if defined(CONFIG_I2C_MULTI_BUS)
1228 int do_i2c_bus_num(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
1229 {
1230 int bus_idx, ret=0;
1231
1232 if (argc == 1)
1233 /* querying current setting */
1234 printf("Current bus is %d\n", i2c_get_bus_num());
1235 else {
1236 bus_idx = simple_strtoul(argv[1], NULL, 10);
1237 printf("Setting bus to %d\n", bus_idx);
1238 ret = i2c_set_bus_num(bus_idx);
1239 if (ret)
1240 printf("Failure changing bus number (%d)\n", ret);
1241 }
1242 return ret;
1243 }
1244 #endif /* CONFIG_I2C_MULTI_BUS */
1245
1246 int do_i2c_bus_speed(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
1247 {
1248 int speed, ret=0;
1249
1250 if (argc == 1)
1251 /* querying current speed */
1252 printf("Current bus speed=%d\n", i2c_get_bus_speed());
1253 else {
1254 speed = simple_strtoul(argv[1], NULL, 10);
1255 printf("Setting bus speed to %d Hz\n", speed);
1256 ret = i2c_set_bus_speed(speed);
1257 if (ret)
1258 printf("Failure changing bus speed (%d)\n", ret);
1259 }
1260 return ret;
1261 }
1262
1263 int do_i2c(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
1264 {
1265 #if defined(CONFIG_I2C_MUX)
1266 if (!strncmp(argv[1], "bu", 2))
1267 return do_i2c_add_bus(cmdtp, flag, --argc, ++argv);
1268 #endif /* CONFIG_I2C_MUX */
1269 if (!strncmp(argv[1], "sp", 2))
1270 return do_i2c_bus_speed(cmdtp, flag, --argc, ++argv);
1271 #if defined(CONFIG_I2C_MULTI_BUS)
1272 if (!strncmp(argv[1], "de", 2))
1273 return do_i2c_bus_num(cmdtp, flag, --argc, ++argv);
1274 #endif /* CONFIG_I2C_MULTI_BUS */
1275 if (!strncmp(argv[1], "md", 2))
1276 return do_i2c_md(cmdtp, flag, --argc, ++argv);
1277 if (!strncmp(argv[1], "mm", 2))
1278 return do_i2c_mm(cmdtp, flag, --argc, ++argv);
1279 if (!strncmp(argv[1], "mw", 2))
1280 return do_i2c_mw(cmdtp, flag, --argc, ++argv);
1281 if (!strncmp(argv[1], "nm", 2))
1282 return do_i2c_nm(cmdtp, flag, --argc, ++argv);
1283 if (!strncmp(argv[1], "cr", 2))
1284 return do_i2c_crc(cmdtp, flag, --argc, ++argv);
1285 if (!strncmp(argv[1], "pr", 2))
1286 return do_i2c_probe(cmdtp, flag, --argc, ++argv);
1287 if (!strncmp(argv[1], "re", 2))
1288 return do_i2c_reset(cmdtp, flag, --argc, ++argv);
1289 if (!strncmp(argv[1], "lo", 2))
1290 return do_i2c_loop(cmdtp, flag, --argc, ++argv);
1291 #if defined(CONFIG_CMD_SDRAM)
1292 if (!strncmp(argv[1], "sd", 2))
1293 return do_sdram(cmdtp, flag, --argc, ++argv);
1294 #endif
1295 else
1296 printf ("Usage:\n%s\n", cmdtp->usage);
1297 return 0;
1298 }
1299 #endif /* CONFIG_I2C_CMD_TREE */
1300
1301 /***************************************************/
1302
1303 #if defined(CONFIG_I2C_CMD_TREE)
1304 U_BOOT_CMD(
1305 i2c, 6, 1, do_i2c,
1306 "i2c - I2C sub-system\n",
1307 #if defined(CONFIG_I2C_MUX)
1308 "bus [muxtype:muxaddr:muxchannel] - add a new bus reached over muxes.\n"
1309 #endif /* CONFIG_I2C_MUX */
1310 "speed [speed] - show or set I2C bus speed\n"
1311 #if defined(CONFIG_I2C_MULTI_BUS)
1312 "i2c dev [dev] - show or set current I2C bus\n"
1313 #endif /* CONFIG_I2C_MULTI_BUS */
1314 "i2c md chip address[.0, .1, .2] [# of objects] - read from I2C device\n"
1315 "i2c mm chip address[.0, .1, .2] - write to I2C device (auto-incrementing)\n"
1316 "i2c mw chip address[.0, .1, .2] value [count] - write to I2C device (fill)\n"
1317 "i2c nm chip address[.0, .1, .2] - write to I2C device (constant address)\n"
1318 "i2c crc32 chip address[.0, .1, .2] count - compute CRC32 checksum\n"
1319 "i2c probe - show devices on the I2C bus\n"
1320 "i2c reset - re-init the I2C Controller\n"
1321 "i2c loop chip address[.0, .1, .2] [# of objects] - looping read of device\n"
1322 #if defined(CONFIG_CMD_SDRAM)
1323 "i2c sdram chip - print SDRAM configuration information\n"
1324 #endif
1325 );
1326 #endif /* CONFIG_I2C_CMD_TREE */
1327 U_BOOT_CMD(
1328 imd, 4, 1, do_i2c_md, \
1329 "imd - i2c memory display\n", \
1330 "chip address[.0, .1, .2] [# of objects]\n - i2c memory display\n" \
1331 );
1332
1333 U_BOOT_CMD(
1334 imm, 3, 1, do_i2c_mm,
1335 "imm - i2c memory modify (auto-incrementing)\n",
1336 "chip address[.0, .1, .2]\n"
1337 " - memory modify, auto increment address\n"
1338 );
1339 U_BOOT_CMD(
1340 inm, 3, 1, do_i2c_nm,
1341 "inm - memory modify (constant address)\n",
1342 "chip address[.0, .1, .2]\n - memory modify, read and keep address\n"
1343 );
1344
1345 U_BOOT_CMD(
1346 imw, 5, 1, do_i2c_mw,
1347 "imw - memory write (fill)\n",
1348 "chip address[.0, .1, .2] value [count]\n - memory write (fill)\n"
1349 );
1350
1351 U_BOOT_CMD(
1352 icrc32, 5, 1, do_i2c_crc,
1353 "icrc32 - checksum calculation\n",
1354 "chip address[.0, .1, .2] count\n - compute CRC32 checksum\n"
1355 );
1356
1357 U_BOOT_CMD(
1358 iprobe, 1, 1, do_i2c_probe,
1359 "iprobe - probe to discover valid I2C chip addresses\n",
1360 "\n -discover valid I2C chip addresses\n"
1361 );
1362
1363 /*
1364 * Require full name for "iloop" because it is an infinite loop!
1365 */
1366 U_BOOT_CMD(
1367 iloop, 5, 1, do_i2c_loop,
1368 "iloop - infinite loop on address range\n",
1369 "chip address[.0, .1, .2] [# of objects]\n"
1370 " - loop, reading a set of addresses\n"
1371 );
1372
1373 #if defined(CONFIG_CMD_SDRAM)
1374 U_BOOT_CMD(
1375 isdram, 2, 1, do_sdram,
1376 "isdram - print SDRAM configuration information\n",
1377 "chip\n - print SDRAM configuration information\n"
1378 " (valid chip values 50..57)\n"
1379 );
1380 #endif
1381
1382 #if defined(CONFIG_I2C_MUX)
1383
1384 int i2c_mux_add_device(I2C_MUX_DEVICE *dev)
1385 {
1386 I2C_MUX_DEVICE *devtmp = i2c_mux_devices;
1387
1388 if (i2c_mux_devices == NULL) {
1389 i2c_mux_devices = dev;
1390 return 0;
1391 }
1392 while (devtmp->next != NULL)
1393 devtmp = devtmp->next;
1394
1395 devtmp->next = dev;
1396 return 0;
1397 }
1398
1399 I2C_MUX_DEVICE *i2c_mux_search_device(int id)
1400 {
1401 I2C_MUX_DEVICE *device = i2c_mux_devices;
1402
1403 while (device != NULL) {
1404 if (device->busid == id)
1405 return device;
1406 device = device->next;
1407 }
1408 return NULL;
1409 }
1410
1411 /* searches in the buf from *pos the next ':'.
1412 * returns:
1413 * 0 if found (with *pos = where)
1414 * < 0 if an error occured
1415 * > 0 if the end of buf is reached
1416 */
1417 static int i2c_mux_search_next (int *pos, uchar *buf, int len)
1418 {
1419 while ((buf[*pos] != ':') && (*pos < len)) {
1420 *pos += 1;
1421 }
1422 if (*pos >= len)
1423 return 1;
1424 if (buf[*pos] != ':')
1425 return -1;
1426 return 0;
1427 }
1428
1429 static int i2c_mux_get_busid (void)
1430 {
1431 int tmp = i2c_mux_busid;
1432
1433 i2c_mux_busid ++;
1434 return tmp;
1435 }
1436
1437 /* Analyses a Muxstring and sends immediately the
1438 Commands to the Muxes. Runs from Flash.
1439 */
1440 int i2c_mux_ident_muxstring_f (uchar *buf)
1441 {
1442 int pos = 0;
1443 int oldpos;
1444 int ret = 0;
1445 int len = strlen((char *)buf);
1446 int chip;
1447 uchar channel;
1448 int was = 0;
1449
1450 while (ret == 0) {
1451 oldpos = pos;
1452 /* search name */
1453 ret = i2c_mux_search_next(&pos, buf, len);
1454 if (ret != 0)
1455 printf ("ERROR\n");
1456 /* search address */
1457 pos ++;
1458 oldpos = pos;
1459 ret = i2c_mux_search_next(&pos, buf, len);
1460 if (ret != 0)
1461 printf ("ERROR\n");
1462 buf[pos] = 0;
1463 chip = simple_strtoul((char *)&buf[oldpos], NULL, 16);
1464 buf[pos] = ':';
1465 /* search channel */
1466 pos ++;
1467 oldpos = pos;
1468 ret = i2c_mux_search_next(&pos, buf, len);
1469 if (ret < 0)
1470 printf ("ERROR\n");
1471 was = 0;
1472 if (buf[pos] != 0) {
1473 buf[pos] = 0;
1474 was = 1;
1475 }
1476 channel = simple_strtoul((char *)&buf[oldpos], NULL, 16);
1477 if (was)
1478 buf[pos] = ':';
1479 if (i2c_write(chip, 0, 0, &channel, 1) != 0) {
1480 printf ("Error setting Mux: chip:%x channel: \
1481 %x\n", chip, channel);
1482 return -1;
1483 }
1484 pos ++;
1485 oldpos = pos;
1486
1487 }
1488
1489 return 0;
1490 }
1491
1492 /* Analyses a Muxstring and if this String is correct
1493 * adds a new I2C Bus.
1494 */
1495 I2C_MUX_DEVICE *i2c_mux_ident_muxstring (uchar *buf)
1496 {
1497 I2C_MUX_DEVICE *device;
1498 I2C_MUX *mux;
1499 int pos = 0;
1500 int oldpos;
1501 int ret = 0;
1502 int len = strlen((char *)buf);
1503 int was = 0;
1504
1505 device = (I2C_MUX_DEVICE *)malloc (sizeof(I2C_MUX_DEVICE));
1506 device->mux = NULL;
1507 device->busid = i2c_mux_get_busid ();
1508 device->next = NULL;
1509 while (ret == 0) {
1510 mux = (I2C_MUX *)malloc (sizeof(I2C_MUX));
1511 mux->next = NULL;
1512 /* search name of mux */
1513 oldpos = pos;
1514 ret = i2c_mux_search_next(&pos, buf, len);
1515 if (ret != 0)
1516 printf ("%s no name.\n", __FUNCTION__);
1517 mux->name = (char *)malloc (pos - oldpos + 1);
1518 memcpy (mux->name, &buf[oldpos], pos - oldpos);
1519 mux->name[pos - oldpos] = 0;
1520 /* search address */
1521 pos ++;
1522 oldpos = pos;
1523 ret = i2c_mux_search_next(&pos, buf, len);
1524 if (ret != 0)
1525 printf ("%s no mux address.\n", __FUNCTION__);
1526 buf[pos] = 0;
1527 mux->chip = simple_strtoul((char *)&buf[oldpos], NULL, 16);
1528 buf[pos] = ':';
1529 /* search channel */
1530 pos ++;
1531 oldpos = pos;
1532 ret = i2c_mux_search_next(&pos, buf, len);
1533 if (ret < 0)
1534 printf ("%s no mux channel.\n", __FUNCTION__);
1535 was = 0;
1536 if (buf[pos] != 0) {
1537 buf[pos] = 0;
1538 was = 1;
1539 }
1540 mux->channel = simple_strtoul((char *)&buf[oldpos], NULL, 16);
1541 if (was)
1542 buf[pos] = ':';
1543 if (device->mux == NULL)
1544 device->mux = mux;
1545 else {
1546 I2C_MUX *muxtmp = device->mux;
1547 while (muxtmp->next != NULL) {
1548 muxtmp = muxtmp->next;
1549 }
1550 muxtmp->next = mux;
1551 }
1552 pos ++;
1553 oldpos = pos;
1554 }
1555 if (ret > 0) {
1556 /* Add Device */
1557 i2c_mux_add_device (device);
1558 return device;
1559 }
1560
1561 return NULL;
1562 }
1563
1564 int i2x_mux_select_mux(int bus)
1565 {
1566 I2C_MUX_DEVICE *dev;
1567 I2C_MUX *mux;
1568
1569 if ((gd->flags & GD_FLG_RELOC) != GD_FLG_RELOC) {
1570 /* select Default Mux Bus */
1571 #if defined(CONFIG_SYS_I2C_IVM_BUS)
1572 i2c_mux_ident_muxstring_f ((uchar *)CONFIG_SYS_I2C_IVM_BUS);
1573 #else
1574 {
1575 unsigned char *buf;
1576 buf = (unsigned char *) getenv("EEprom_ivm");
1577 if (buf != NULL)
1578 i2c_mux_ident_muxstring_f (buf);
1579 }
1580 #endif
1581 return 0;
1582 }
1583 dev = i2c_mux_search_device(bus);
1584 if (dev == NULL)
1585 return -1;
1586
1587 mux = dev->mux;
1588 while (mux != NULL) {
1589 if (i2c_write(mux->chip, 0, 0, &mux->channel, 1) != 0) {
1590 printf ("Error setting Mux: chip:%x channel: \
1591 %x\n", mux->chip, mux->channel);
1592 return -1;
1593 }
1594 mux = mux->next;
1595 }
1596 return 0;
1597 }
1598 #endif /* CONFIG_I2C_MUX */