]> git.ipfire.org Git - people/ms/u-boot.git/blob - common/cmd_i2c.c
Add support for multiple I2C buses
[people/ms/u-boot.git] / common / cmd_i2c.c
1 /*
2 * (C) Copyright 2001
3 * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
4 *
5 * See file CREDITS for list of people who contributed to this
6 * project.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24 /*
25 * I2C Functions similar to the standard memory functions.
26 *
27 * There are several parameters in many of the commands that bear further
28 * explanations:
29 *
30 * Two of the commands (imm and imw) take a byte/word/long modifier
31 * (e.g. imm.w specifies the word-length modifier). This was done to
32 * allow manipulating word-length registers. It was not done on any other
33 * commands because it was not deemed useful.
34 *
35 * {i2c_chip} is the I2C chip address (the first byte sent on the bus).
36 * Each I2C chip on the bus has a unique address. On the I2C data bus,
37 * the address is the upper seven bits and the LSB is the "read/write"
38 * bit. Note that the {i2c_chip} address specified on the command
39 * line is not shifted up: e.g. a typical EEPROM memory chip may have
40 * an I2C address of 0x50, but the data put on the bus will be 0xA0
41 * for write and 0xA1 for read. This "non shifted" address notation
42 * matches at least half of the data sheets :-/.
43 *
44 * {addr} is the address (or offset) within the chip. Small memory
45 * chips have 8 bit addresses. Large memory chips have 16 bit
46 * addresses. Other memory chips have 9, 10, or 11 bit addresses.
47 * Many non-memory chips have multiple registers and {addr} is used
48 * as the register index. Some non-memory chips have only one register
49 * and therefore don't need any {addr} parameter.
50 *
51 * The default {addr} parameter is one byte (.1) which works well for
52 * memories and registers with 8 bits of address space.
53 *
54 * You can specify the length of the {addr} field with the optional .0,
55 * .1, or .2 modifier (similar to the .b, .w, .l modifier). If you are
56 * manipulating a single register device which doesn't use an address
57 * field, use "0.0" for the address and the ".0" length field will
58 * suppress the address in the I2C data stream. This also works for
59 * successive reads using the I2C auto-incrementing memory pointer.
60 *
61 * If you are manipulating a large memory with 2-byte addresses, use
62 * the .2 address modifier, e.g. 210.2 addresses location 528 (decimal).
63 *
64 * Then there are the unfortunate memory chips that spill the most
65 * significant 1, 2, or 3 bits of address into the chip address byte.
66 * This effectively makes one chip (logically) look like 2, 4, or
67 * 8 chips. This is handled (awkwardly) by #defining
68 * CFG_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the
69 * {addr} field (since .1 is the default, it doesn't actually have to
70 * be specified). Examples: given a memory chip at I2C chip address
71 * 0x50, the following would happen...
72 * imd 50 0 10 display 16 bytes starting at 0x000
73 * On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd>
74 * imd 50 100 10 display 16 bytes starting at 0x100
75 * On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd>
76 * imd 50 210 10 display 16 bytes starting at 0x210
77 * On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd>
78 * This is awfully ugly. It would be nice if someone would think up
79 * a better way of handling this.
80 *
81 * Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de).
82 */
83
84 #include <common.h>
85 #include <command.h>
86 #include <i2c.h>
87 #include <asm/byteorder.h>
88
89 #if (CONFIG_COMMANDS & CFG_CMD_I2C)
90
91
92 /* Display values from last command.
93 * Memory modify remembered values are different from display memory.
94 */
95 static uchar i2c_dp_last_chip;
96 static uint i2c_dp_last_addr;
97 static uint i2c_dp_last_alen;
98 static uint i2c_dp_last_length = 0x10;
99
100 static uchar i2c_mm_last_chip;
101 static uint i2c_mm_last_addr;
102 static uint i2c_mm_last_alen;
103
104 /* If only one I2C bus is present, the list of devices to ignore when
105 * the probe command is issued is represented by a 1D array of addresses.
106 * When multiple buses are present, the list is an array of bus-address
107 * pairs. The following macros take care of this */
108
109 #if defined(CFG_I2C_NOPROBES)
110 #if defined(CONFIG_I2C_MULTI_BUS)
111 static struct
112 {
113 uchar bus;
114 uchar addr;
115 } i2c_no_probes[] = CFG_I2C_NOPROBES;
116 #define GET_BUS_NUM i2c_get_bus_num()
117 #define COMPARE_BUS(b,i) (i2c_no_probes[(i)].bus == (b))
118 #define COMPARE_ADDR(a,i) (i2c_no_probes[(i)].addr == (a))
119 #define NO_PROBE_ADDR(i) i2c_no_probes[(i)].addr
120 #else /* single bus */
121 static uchar i2c_no_probes[] = CFG_I2C_NOPROBES;
122 #define GET_BUS_NUM 0
123 #define COMPARE_BUS(b,i) ((b) == 0) /* Make compiler happy */
124 #define COMPARE_ADDR(a,i) (i2c_no_probes[(i)] == (a))
125 #define NO_PROBE_ADDR(i) i2c_no_probes[(i)]
126 #endif /* CONFIG_MULTI_BUS */
127
128 #define NUM_ELEMENTS_NOPROBE (sizeof(i2c_no_probes)/sizeof(i2c_no_probes[0]))
129 #endif
130
131 static int
132 mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[]);
133 extern int cmd_get_data_size(char* arg, int default_size);
134
135 /*
136 * Syntax:
137 * imd {i2c_chip} {addr}{.0, .1, .2} {len}
138 */
139 #define DISP_LINE_LEN 16
140
141 int do_i2c_md ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
142 {
143 u_char chip;
144 uint addr, alen, length;
145 int j, nbytes, linebytes;
146
147 /* We use the last specified parameters, unless new ones are
148 * entered.
149 */
150 chip = i2c_dp_last_chip;
151 addr = i2c_dp_last_addr;
152 alen = i2c_dp_last_alen;
153 length = i2c_dp_last_length;
154
155 if (argc < 3) {
156 printf ("Usage:\n%s\n", cmdtp->usage);
157 return 1;
158 }
159
160 if ((flag & CMD_FLAG_REPEAT) == 0) {
161 /*
162 * New command specified.
163 */
164 alen = 1;
165
166 /*
167 * I2C chip address
168 */
169 chip = simple_strtoul(argv[1], NULL, 16);
170
171 /*
172 * I2C data address within the chip. This can be 1 or
173 * 2 bytes long. Some day it might be 3 bytes long :-).
174 */
175 addr = simple_strtoul(argv[2], NULL, 16);
176 alen = 1;
177 for(j = 0; j < 8; j++) {
178 if (argv[2][j] == '.') {
179 alen = argv[2][j+1] - '0';
180 if (alen > 4) {
181 printf ("Usage:\n%s\n", cmdtp->usage);
182 return 1;
183 }
184 break;
185 } else if (argv[2][j] == '\0') {
186 break;
187 }
188 }
189
190 /*
191 * If another parameter, it is the length to display.
192 * Length is the number of objects, not number of bytes.
193 */
194 if (argc > 3)
195 length = simple_strtoul(argv[3], NULL, 16);
196 }
197
198 /*
199 * Print the lines.
200 *
201 * We buffer all read data, so we can make sure data is read only
202 * once.
203 */
204 nbytes = length;
205 do {
206 unsigned char linebuf[DISP_LINE_LEN];
207 unsigned char *cp;
208
209 linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
210
211 if(i2c_read(chip, addr, alen, linebuf, linebytes) != 0) {
212 puts ("Error reading the chip.\n");
213 } else {
214 printf("%04x:", addr);
215 cp = linebuf;
216 for (j=0; j<linebytes; j++) {
217 printf(" %02x", *cp++);
218 addr++;
219 }
220 puts (" ");
221 cp = linebuf;
222 for (j=0; j<linebytes; j++) {
223 if ((*cp < 0x20) || (*cp > 0x7e))
224 puts (".");
225 else
226 printf("%c", *cp);
227 cp++;
228 }
229 putc ('\n');
230 }
231 nbytes -= linebytes;
232 } while (nbytes > 0);
233
234 i2c_dp_last_chip = chip;
235 i2c_dp_last_addr = addr;
236 i2c_dp_last_alen = alen;
237 i2c_dp_last_length = length;
238
239 return 0;
240 }
241
242 int do_i2c_mm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
243 {
244 return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
245 }
246
247
248 int do_i2c_nm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
249 {
250 return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
251 }
252
253 /* Write (fill) memory
254 *
255 * Syntax:
256 * imw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}]
257 */
258 int do_i2c_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
259 {
260 uchar chip;
261 ulong addr;
262 uint alen;
263 uchar byte;
264 int count;
265 int j;
266
267 if ((argc < 4) || (argc > 5)) {
268 printf ("Usage:\n%s\n", cmdtp->usage);
269 return 1;
270 }
271
272 /*
273 * Chip is always specified.
274 */
275 chip = simple_strtoul(argv[1], NULL, 16);
276
277 /*
278 * Address is always specified.
279 */
280 addr = simple_strtoul(argv[2], NULL, 16);
281 alen = 1;
282 for(j = 0; j < 8; j++) {
283 if (argv[2][j] == '.') {
284 alen = argv[2][j+1] - '0';
285 if(alen > 4) {
286 printf ("Usage:\n%s\n", cmdtp->usage);
287 return 1;
288 }
289 break;
290 } else if (argv[2][j] == '\0') {
291 break;
292 }
293 }
294
295 /*
296 * Value to write is always specified.
297 */
298 byte = simple_strtoul(argv[3], NULL, 16);
299
300 /*
301 * Optional count
302 */
303 if(argc == 5) {
304 count = simple_strtoul(argv[4], NULL, 16);
305 } else {
306 count = 1;
307 }
308
309 while (count-- > 0) {
310 if(i2c_write(chip, addr++, alen, &byte, 1) != 0) {
311 puts ("Error writing the chip.\n");
312 }
313 /*
314 * Wait for the write to complete. The write can take
315 * up to 10mSec (we allow a little more time).
316 *
317 * On some chips, while the write is in progress, the
318 * chip doesn't respond. This apparently isn't a
319 * universal feature so we don't take advantage of it.
320 */
321 /*
322 * No write delay with FRAM devices.
323 */
324 #if !defined(CFG_I2C_FRAM)
325 udelay(11000);
326 #endif
327
328 #if 0
329 for(timeout = 0; timeout < 10; timeout++) {
330 udelay(2000);
331 if(i2c_probe(chip) == 0)
332 break;
333 }
334 #endif
335 }
336
337 return (0);
338 }
339
340
341 /* Calculate a CRC on memory
342 *
343 * Syntax:
344 * icrc32 {i2c_chip} {addr}{.0, .1, .2} {count}
345 */
346 int do_i2c_crc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
347 {
348 uchar chip;
349 ulong addr;
350 uint alen;
351 int count;
352 uchar byte;
353 ulong crc;
354 ulong err;
355 int j;
356
357 if (argc < 4) {
358 printf ("Usage:\n%s\n", cmdtp->usage);
359 return 1;
360 }
361
362 /*
363 * Chip is always specified.
364 */
365 chip = simple_strtoul(argv[1], NULL, 16);
366
367 /*
368 * Address is always specified.
369 */
370 addr = simple_strtoul(argv[2], NULL, 16);
371 alen = 1;
372 for(j = 0; j < 8; j++) {
373 if (argv[2][j] == '.') {
374 alen = argv[2][j+1] - '0';
375 if(alen > 4) {
376 printf ("Usage:\n%s\n", cmdtp->usage);
377 return 1;
378 }
379 break;
380 } else if (argv[2][j] == '\0') {
381 break;
382 }
383 }
384
385 /*
386 * Count is always specified
387 */
388 count = simple_strtoul(argv[3], NULL, 16);
389
390 printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1);
391 /*
392 * CRC a byte at a time. This is going to be slooow, but hey, the
393 * memories are small and slow too so hopefully nobody notices.
394 */
395 crc = 0;
396 err = 0;
397 while(count-- > 0) {
398 if(i2c_read(chip, addr, alen, &byte, 1) != 0) {
399 err++;
400 }
401 crc = crc32 (crc, &byte, 1);
402 addr++;
403 }
404 if(err > 0)
405 {
406 puts ("Error reading the chip,\n");
407 } else {
408 printf ("%08lx\n", crc);
409 }
410
411 return 0;
412 }
413
414
415 /* Modify memory.
416 *
417 * Syntax:
418 * imm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
419 * inm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
420 */
421
422 static int
423 mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[])
424 {
425 uchar chip;
426 ulong addr;
427 uint alen;
428 ulong data;
429 int size = 1;
430 int nbytes;
431 int j;
432 extern char console_buffer[];
433
434 if (argc != 3) {
435 printf ("Usage:\n%s\n", cmdtp->usage);
436 return 1;
437 }
438
439 #ifdef CONFIG_BOOT_RETRY_TIME
440 reset_cmd_timeout(); /* got a good command to get here */
441 #endif
442 /*
443 * We use the last specified parameters, unless new ones are
444 * entered.
445 */
446 chip = i2c_mm_last_chip;
447 addr = i2c_mm_last_addr;
448 alen = i2c_mm_last_alen;
449
450 if ((flag & CMD_FLAG_REPEAT) == 0) {
451 /*
452 * New command specified. Check for a size specification.
453 * Defaults to byte if no or incorrect specification.
454 */
455 size = cmd_get_data_size(argv[0], 1);
456
457 /*
458 * Chip is always specified.
459 */
460 chip = simple_strtoul(argv[1], NULL, 16);
461
462 /*
463 * Address is always specified.
464 */
465 addr = simple_strtoul(argv[2], NULL, 16);
466 alen = 1;
467 for(j = 0; j < 8; j++) {
468 if (argv[2][j] == '.') {
469 alen = argv[2][j+1] - '0';
470 if(alen > 4) {
471 printf ("Usage:\n%s\n", cmdtp->usage);
472 return 1;
473 }
474 break;
475 } else if (argv[2][j] == '\0') {
476 break;
477 }
478 }
479 }
480
481 /*
482 * Print the address, followed by value. Then accept input for
483 * the next value. A non-converted value exits.
484 */
485 do {
486 printf("%08lx:", addr);
487 if(i2c_read(chip, addr, alen, (uchar *)&data, size) != 0) {
488 puts ("\nError reading the chip,\n");
489 } else {
490 data = cpu_to_be32(data);
491 if(size == 1) {
492 printf(" %02lx", (data >> 24) & 0x000000FF);
493 } else if(size == 2) {
494 printf(" %04lx", (data >> 16) & 0x0000FFFF);
495 } else {
496 printf(" %08lx", data);
497 }
498 }
499
500 nbytes = readline (" ? ");
501 if (nbytes == 0) {
502 /*
503 * <CR> pressed as only input, don't modify current
504 * location and move to next.
505 */
506 if (incrflag)
507 addr += size;
508 nbytes = size;
509 #ifdef CONFIG_BOOT_RETRY_TIME
510 reset_cmd_timeout(); /* good enough to not time out */
511 #endif
512 }
513 #ifdef CONFIG_BOOT_RETRY_TIME
514 else if (nbytes == -2) {
515 break; /* timed out, exit the command */
516 }
517 #endif
518 else {
519 char *endp;
520
521 data = simple_strtoul(console_buffer, &endp, 16);
522 if(size == 1) {
523 data = data << 24;
524 } else if(size == 2) {
525 data = data << 16;
526 }
527 data = be32_to_cpu(data);
528 nbytes = endp - console_buffer;
529 if (nbytes) {
530 #ifdef CONFIG_BOOT_RETRY_TIME
531 /*
532 * good enough to not time out
533 */
534 reset_cmd_timeout();
535 #endif
536 if(i2c_write(chip, addr, alen, (uchar *)&data, size) != 0) {
537 puts ("Error writing the chip.\n");
538 }
539 #ifdef CFG_EEPROM_PAGE_WRITE_DELAY_MS
540 udelay(CFG_EEPROM_PAGE_WRITE_DELAY_MS * 1000);
541 #endif
542 if (incrflag)
543 addr += size;
544 }
545 }
546 } while (nbytes);
547
548 chip = i2c_mm_last_chip;
549 addr = i2c_mm_last_addr;
550 alen = i2c_mm_last_alen;
551
552 return 0;
553 }
554
555 /*
556 * Syntax:
557 * iprobe {addr}{.0, .1, .2}
558 */
559 int do_i2c_probe (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
560 {
561 int j;
562 #if defined(CFG_I2C_NOPROBES)
563 int k, skip;
564 uchar bus = GET_BUS_NUM;
565 #endif /* NOPROBES */
566
567 puts ("Valid chip addresses:");
568 for(j = 0; j < 128; j++) {
569 #if defined(CFG_I2C_NOPROBES)
570 skip = 0;
571 for(k=0; k < NUM_ELEMENTS_NOPROBE; k++)
572 {
573 if(COMPARE_BUS(bus, k) && COMPARE_ADDR(j, k))
574 {
575 skip = 1;
576 break;
577 }
578 }
579 if (skip)
580 continue;
581 #endif
582 if(i2c_probe(j) == 0) {
583 printf(" %02X", j);
584 }
585 }
586 putc ('\n');
587
588 #if defined(CFG_I2C_NOPROBES)
589 puts ("Excluded chip addresses:");
590 for(k=0; k < NUM_ELEMENTS_NOPROBE; k++)
591 {
592 if(COMPARE_BUS(bus,k))
593 printf(" %02X", NO_PROBE_ADDR(k));
594 }
595 putc ('\n');
596 #endif
597
598 return 0;
599 }
600
601
602 /*
603 * Syntax:
604 * iloop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}]
605 * {length} - Number of bytes to read
606 * {delay} - A DECIMAL number and defaults to 1000 uSec
607 */
608 int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
609 {
610 u_char chip;
611 ulong alen;
612 uint addr;
613 uint length;
614 u_char bytes[16];
615 int delay;
616 int j;
617
618 if (argc < 3) {
619 printf ("Usage:\n%s\n", cmdtp->usage);
620 return 1;
621 }
622
623 /*
624 * Chip is always specified.
625 */
626 chip = simple_strtoul(argv[1], NULL, 16);
627
628 /*
629 * Address is always specified.
630 */
631 addr = simple_strtoul(argv[2], NULL, 16);
632 alen = 1;
633 for(j = 0; j < 8; j++) {
634 if (argv[2][j] == '.') {
635 alen = argv[2][j+1] - '0';
636 if (alen > 4) {
637 printf ("Usage:\n%s\n", cmdtp->usage);
638 return 1;
639 }
640 break;
641 } else if (argv[2][j] == '\0') {
642 break;
643 }
644 }
645
646 /*
647 * Length is the number of objects, not number of bytes.
648 */
649 length = 1;
650 length = simple_strtoul(argv[3], NULL, 16);
651 if(length > sizeof(bytes)) {
652 length = sizeof(bytes);
653 }
654
655 /*
656 * The delay time (uSec) is optional.
657 */
658 delay = 1000;
659 if (argc > 3) {
660 delay = simple_strtoul(argv[4], NULL, 10);
661 }
662 /*
663 * Run the loop...
664 */
665 while(1) {
666 if(i2c_read(chip, addr, alen, bytes, length) != 0) {
667 puts ("Error reading the chip.\n");
668 }
669 udelay(delay);
670 }
671
672 /* NOTREACHED */
673 return 0;
674 }
675
676
677 /*
678 * The SDRAM command is separately configured because many
679 * (most?) embedded boards don't use SDRAM DIMMs.
680 */
681 #if (CONFIG_COMMANDS & CFG_CMD_SDRAM)
682
683 /*
684 * Syntax:
685 * sdram {i2c_chip}
686 */
687 int do_sdram ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
688 {
689 u_char chip;
690 u_char data[128];
691 u_char cksum;
692 int j;
693
694 if (argc < 2) {
695 printf ("Usage:\n%s\n", cmdtp->usage);
696 return 1;
697 }
698 /*
699 * Chip is always specified.
700 */
701 chip = simple_strtoul(argv[1], NULL, 16);
702
703 if(i2c_read(chip, 0, 1, data, sizeof(data)) != 0) {
704 puts ("No SDRAM Serial Presence Detect found.\n");
705 return 1;
706 }
707
708 cksum = 0;
709 for (j = 0; j < 63; j++) {
710 cksum += data[j];
711 }
712 if(cksum != data[63]) {
713 printf ("WARNING: Configuration data checksum failure:\n"
714 " is 0x%02x, calculated 0x%02x\n",
715 data[63], cksum);
716 }
717 printf("SPD data revision %d.%d\n",
718 (data[62] >> 4) & 0x0F, data[62] & 0x0F);
719 printf("Bytes used 0x%02X\n", data[0]);
720 printf("Serial memory size 0x%02X\n", 1 << data[1]);
721 puts ("Memory type ");
722 switch(data[2]) {
723 case 2: puts ("EDO\n"); break;
724 case 4: puts ("SDRAM\n"); break;
725 default: puts ("unknown\n"); break;
726 }
727 puts ("Row address bits ");
728 if((data[3] & 0x00F0) == 0) {
729 printf("%d\n", data[3] & 0x0F);
730 } else {
731 printf("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
732 }
733 puts ("Column address bits ");
734 if((data[4] & 0x00F0) == 0) {
735 printf("%d\n", data[4] & 0x0F);
736 } else {
737 printf("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
738 }
739 printf("Module rows %d\n", data[5]);
740 printf("Module data width %d bits\n", (data[7] << 8) | data[6]);
741 puts ("Interface signal levels ");
742 switch(data[8]) {
743 case 0: puts ("5.0v/TTL\n"); break;
744 case 1: puts ("LVTTL\n"); break;
745 case 2: puts ("HSTL 1.5\n"); break;
746 case 3: puts ("SSTL 3.3\n"); break;
747 case 4: puts ("SSTL 2.5\n"); break;
748 default: puts ("unknown\n"); break;
749 }
750 printf("SDRAM cycle time %d.%d nS\n",
751 (data[9] >> 4) & 0x0F, data[9] & 0x0F);
752 printf("SDRAM access time %d.%d nS\n",
753 (data[10] >> 4) & 0x0F, data[10] & 0x0F);
754 puts ("EDC configuration ");
755 switch(data[11]) {
756 case 0: puts ("None\n"); break;
757 case 1: puts ("Parity\n"); break;
758 case 2: puts ("ECC\n"); break;
759 default: puts ("unknown\n"); break;
760 }
761 if((data[12] & 0x80) == 0) {
762 puts ("No self refresh, rate ");
763 } else {
764 puts ("Self refresh, rate ");
765 }
766 switch(data[12] & 0x7F) {
767 case 0: puts ("15.625uS\n"); break;
768 case 1: puts ("3.9uS\n"); break;
769 case 2: puts ("7.8uS\n"); break;
770 case 3: puts ("31.3uS\n"); break;
771 case 4: puts ("62.5uS\n"); break;
772 case 5: puts ("125uS\n"); break;
773 default: puts ("unknown\n"); break;
774 }
775 printf("SDRAM width (primary) %d\n", data[13] & 0x7F);
776 if((data[13] & 0x80) != 0) {
777 printf(" (second bank) %d\n",
778 2 * (data[13] & 0x7F));
779 }
780 if(data[14] != 0) {
781 printf("EDC width %d\n",
782 data[14] & 0x7F);
783 if((data[14] & 0x80) != 0) {
784 printf(" (second bank) %d\n",
785 2 * (data[14] & 0x7F));
786 }
787 }
788 printf("Min clock delay, back-to-back random column addresses %d\n",
789 data[15]);
790 puts ("Burst length(s) ");
791 if (data[16] & 0x80) puts (" Page");
792 if (data[16] & 0x08) puts (" 8");
793 if (data[16] & 0x04) puts (" 4");
794 if (data[16] & 0x02) puts (" 2");
795 if (data[16] & 0x01) puts (" 1");
796 putc ('\n');
797 printf("Number of banks %d\n", data[17]);
798 puts ("CAS latency(s) ");
799 if (data[18] & 0x80) puts (" TBD");
800 if (data[18] & 0x40) puts (" 7");
801 if (data[18] & 0x20) puts (" 6");
802 if (data[18] & 0x10) puts (" 5");
803 if (data[18] & 0x08) puts (" 4");
804 if (data[18] & 0x04) puts (" 3");
805 if (data[18] & 0x02) puts (" 2");
806 if (data[18] & 0x01) puts (" 1");
807 putc ('\n');
808 puts ("CS latency(s) ");
809 if (data[19] & 0x80) puts (" TBD");
810 if (data[19] & 0x40) puts (" 6");
811 if (data[19] & 0x20) puts (" 5");
812 if (data[19] & 0x10) puts (" 4");
813 if (data[19] & 0x08) puts (" 3");
814 if (data[19] & 0x04) puts (" 2");
815 if (data[19] & 0x02) puts (" 1");
816 if (data[19] & 0x01) puts (" 0");
817 putc ('\n');
818 puts ("WE latency(s) ");
819 if (data[20] & 0x80) puts (" TBD");
820 if (data[20] & 0x40) puts (" 6");
821 if (data[20] & 0x20) puts (" 5");
822 if (data[20] & 0x10) puts (" 4");
823 if (data[20] & 0x08) puts (" 3");
824 if (data[20] & 0x04) puts (" 2");
825 if (data[20] & 0x02) puts (" 1");
826 if (data[20] & 0x01) puts (" 0");
827 putc ('\n');
828 puts ("Module attributes:\n");
829 if (!data[21]) puts (" (none)\n");
830 if (data[21] & 0x80) puts (" TBD (bit 7)\n");
831 if (data[21] & 0x40) puts (" Redundant row address\n");
832 if (data[21] & 0x20) puts (" Differential clock input\n");
833 if (data[21] & 0x10) puts (" Registerd DQMB inputs\n");
834 if (data[21] & 0x08) puts (" Buffered DQMB inputs\n");
835 if (data[21] & 0x04) puts (" On-card PLL\n");
836 if (data[21] & 0x02) puts (" Registered address/control lines\n");
837 if (data[21] & 0x01) puts (" Buffered address/control lines\n");
838 puts ("Device attributes:\n");
839 if (data[22] & 0x80) puts (" TBD (bit 7)\n");
840 if (data[22] & 0x40) puts (" TBD (bit 6)\n");
841 if (data[22] & 0x20) puts (" Upper Vcc tolerance 5%\n");
842 else puts (" Upper Vcc tolerance 10%\n");
843 if (data[22] & 0x10) puts (" Lower Vcc tolerance 5%\n");
844 else puts (" Lower Vcc tolerance 10%\n");
845 if (data[22] & 0x08) puts (" Supports write1/read burst\n");
846 if (data[22] & 0x04) puts (" Supports precharge all\n");
847 if (data[22] & 0x02) puts (" Supports auto precharge\n");
848 if (data[22] & 0x01) puts (" Supports early RAS# precharge\n");
849 printf("SDRAM cycle time (2nd highest CAS latency) %d.%d nS\n",
850 (data[23] >> 4) & 0x0F, data[23] & 0x0F);
851 printf("SDRAM access from clock (2nd highest CAS latency) %d.%d nS\n",
852 (data[24] >> 4) & 0x0F, data[24] & 0x0F);
853 printf("SDRAM cycle time (3rd highest CAS latency) %d.%d nS\n",
854 (data[25] >> 4) & 0x0F, data[25] & 0x0F);
855 printf("SDRAM access from clock (3rd highest CAS latency) %d.%d nS\n",
856 (data[26] >> 4) & 0x0F, data[26] & 0x0F);
857 printf("Minimum row precharge %d nS\n", data[27]);
858 printf("Row active to row active min %d nS\n", data[28]);
859 printf("RAS to CAS delay min %d nS\n", data[29]);
860 printf("Minimum RAS pulse width %d nS\n", data[30]);
861 puts ("Density of each row ");
862 if (data[31] & 0x80) puts (" 512");
863 if (data[31] & 0x40) puts (" 256");
864 if (data[31] & 0x20) puts (" 128");
865 if (data[31] & 0x10) puts (" 64");
866 if (data[31] & 0x08) puts (" 32");
867 if (data[31] & 0x04) puts (" 16");
868 if (data[31] & 0x02) puts (" 8");
869 if (data[31] & 0x01) puts (" 4");
870 puts ("MByte\n");
871 printf("Command and Address setup %c%d.%d nS\n",
872 (data[32] & 0x80) ? '-' : '+',
873 (data[32] >> 4) & 0x07, data[32] & 0x0F);
874 printf("Command and Address hold %c%d.%d nS\n",
875 (data[33] & 0x80) ? '-' : '+',
876 (data[33] >> 4) & 0x07, data[33] & 0x0F);
877 printf("Data signal input setup %c%d.%d nS\n",
878 (data[34] & 0x80) ? '-' : '+',
879 (data[34] >> 4) & 0x07, data[34] & 0x0F);
880 printf("Data signal input hold %c%d.%d nS\n",
881 (data[35] & 0x80) ? '-' : '+',
882 (data[35] >> 4) & 0x07, data[35] & 0x0F);
883 puts ("Manufacturer's JEDEC ID ");
884 for(j = 64; j <= 71; j++)
885 printf("%02X ", data[j]);
886 putc ('\n');
887 printf("Manufacturing Location %02X\n", data[72]);
888 puts ("Manufacturer's Part Number ");
889 for(j = 73; j <= 90; j++)
890 printf("%02X ", data[j]);
891 putc ('\n');
892 printf("Revision Code %02X %02X\n", data[91], data[92]);
893 printf("Manufacturing Date %02X %02X\n", data[93], data[94]);
894 puts ("Assembly Serial Number ");
895 for(j = 95; j <= 98; j++)
896 printf("%02X ", data[j]);
897 putc ('\n');
898 printf("Speed rating PC%d\n",
899 data[126] == 0x66 ? 66 : data[126]);
900
901 return 0;
902 }
903 #endif /* CFG_CMD_SDRAM */
904
905 #if defined(CONFIG_I2C_CMD_TREE)
906 #if defined(CONFIG_I2C_MULTI_BUS)
907 int do_i2c_bus_num(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
908 {
909 int bus_idx, ret=0;
910
911 if (argc == 1) /* querying current setting */
912 {
913 printf("Current bus is %d\n", i2c_get_bus_num());
914 }
915 else
916 {
917 bus_idx = simple_strtoul(argv[1], NULL, 10);
918 printf("Setting bus to %d\n", bus_idx);
919 ret = i2c_set_bus_num(bus_idx);
920 if(ret)
921 {
922 printf("Failure changing bus number (%d)\n", ret);
923 }
924 }
925 return ret;
926 }
927 #endif /* CONFIG_I2C_MULTI_BUS */
928
929 int do_i2c_bus_speed(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
930 {
931 int speed, ret=0;
932
933 if (argc == 1) /* querying current speed */
934 {
935 printf("Current bus speed=%d\n", i2c_get_bus_speed());
936 }
937 else
938 {
939 speed = simple_strtoul(argv[1], NULL, 10);
940 printf("Setting bus speed to %d Hz\n", speed);
941 ret = i2c_set_bus_speed(speed);
942 if(ret)
943 {
944 printf("Failure changing bus speed (%d)\n", ret);
945 }
946 }
947 return ret;
948 }
949
950 int do_i2c(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
951 {
952 #if defined(CONFIG_I2C_MULTI_BUS)
953 if(!strncmp(argv[1], "de", 2))
954 {
955 return do_i2c_bus_num(cmdtp, flag, --argc, ++argv);
956 }
957 #endif /* CONFIG_I2C_MULTI_BUS */
958 if(!strncmp(argv[1], "sp", 2))
959 {
960 return do_i2c_bus_speed(cmdtp, flag, --argc, ++argv);
961 }
962 if(!strncmp(argv[1], "md", 2))
963 {
964 return do_i2c_md(cmdtp, flag, --argc, ++argv);
965 }
966 if(!strncmp(argv[1], "mm", 2))
967 {
968 return do_i2c_mm(cmdtp, flag, --argc, ++argv);
969 }
970 if(!strncmp(argv[1], "mw", 2))
971 {
972 return do_i2c_mw(cmdtp, flag, --argc, ++argv);
973 }
974 if(!strncmp(argv[1], "nm", 2))
975 {
976 return do_i2c_nm(cmdtp, flag, --argc, ++argv);
977 }
978 if(!strncmp(argv[1], "cr", 2))
979 {
980 return do_i2c_crc(cmdtp, flag, --argc, ++argv);
981 }
982 if(!strncmp(argv[1], "pr", 2))
983 {
984 return do_i2c_probe(cmdtp, flag, --argc, ++argv);
985 }
986 if(!strncmp(argv[1], "lo", 2))
987 {
988 return do_i2c_loop(cmdtp, flag, --argc, ++argv);
989 }
990 #if (CONFIG_COMMANDS & CFG_CMD_SDRAM)
991 if(!strncmp(argv[1], "sd", 2))
992 {
993 return do_sdram(cmdtp, flag, --argc, ++argv);
994 }
995 #endif /* CFG_CMD_SDRAM */
996 else
997 {
998 printf ("Usage:\n%s\n", cmdtp->usage);
999 }
1000 return 0;
1001 }
1002 #endif /* CONFIG_I2C_CMD_TREE */
1003
1004 /***************************************************/
1005
1006 U_BOOT_CMD(
1007 imd, 4, 1, do_i2c_md, \
1008 "imd - i2c memory display\n", \
1009 "chip address[.0, .1, .2] [# of objects]\n - i2c memory display\n" \
1010 );
1011
1012 U_BOOT_CMD(
1013 imm, 3, 1, do_i2c_mm,
1014 "imm - i2c memory modify (auto-incrementing)\n",
1015 "chip address[.0, .1, .2]\n"
1016 " - memory modify, auto increment address\n"
1017 );
1018 U_BOOT_CMD(
1019 inm, 3, 1, do_i2c_nm,
1020 "inm - memory modify (constant address)\n",
1021 "chip address[.0, .1, .2]\n - memory modify, read and keep address\n"
1022 );
1023
1024 U_BOOT_CMD(
1025 imw, 5, 1, do_i2c_mw,
1026 "imw - memory write (fill)\n",
1027 "chip address[.0, .1, .2] value [count]\n - memory write (fill)\n"
1028 );
1029
1030 U_BOOT_CMD(
1031 icrc32, 5, 1, do_i2c_crc,
1032 "icrc32 - checksum calculation\n",
1033 "chip address[.0, .1, .2] count\n - compute CRC32 checksum\n"
1034 );
1035
1036 U_BOOT_CMD(
1037 iprobe, 1, 1, do_i2c_probe,
1038 "iprobe - probe to discover valid I2C chip addresses\n",
1039 "\n -discover valid I2C chip addresses\n"
1040 );
1041
1042 /*
1043 * Require full name for "iloop" because it is an infinite loop!
1044 */
1045 U_BOOT_CMD(
1046 iloop, 5, 1, do_i2c_loop,
1047 "iloop - infinite loop on address range\n",
1048 "chip address[.0, .1, .2] [# of objects]\n"
1049 " - loop, reading a set of addresses\n"
1050 );
1051
1052 #if (CONFIG_COMMANDS & CFG_CMD_SDRAM)
1053 U_BOOT_CMD(
1054 isdram, 2, 1, do_sdram,
1055 "isdram - print SDRAM configuration information\n",
1056 "chip\n - print SDRAM configuration information\n"
1057 " (valid chip values 50..57)\n"
1058 );
1059 #endif
1060
1061 #if defined(CONFIG_I2C_CMD_TREE)
1062 U_BOOT_CMD(
1063 i2c, 6, 1, do_i2c,
1064 "i2c - I2C sub-system\n",
1065 #if defined(CONFIG_I2C_MULTI_BUS)
1066 "dev [dev] - show or set current I2C bus\n"
1067 #endif /* CONFIG_I2C_MULTI_BUS */
1068 "i2c speed [speed] - show or set I2C bus speed\n"
1069 "i2c md chip address[.0, .1, .2] [# of objects] - read from I2C device\n"
1070 "i2c mm chip address[.0, .1, .2] - write to I2C device (auto-incrementing)\n"
1071 "i2c mw chip address[.0, .1, .2] value [count] - write to I2C device (fill)\n"
1072 "i2c nm chip address[.0, .1, .2] - write to I2C device (constant address)\n"
1073 "i2c crc32 chip address[.0, .1, .2] count - compute CRC32 checksum\n"
1074 "i2c probe - show devices on the I2C bus\n"
1075 "i2c loop chip address[.0, .1, .2] [# of objects] - looping read of device\n"
1076 #if (CONFIG_COMMANDS & CFG_CMD_SDRAM)
1077 "i2c sdram chip - print SDRAM configuration information\n"
1078 #endif /* CFG_CMD_SDRAM */
1079 );
1080 #endif /* CONFIG_I2C_CMD_TREE */
1081
1082 #endif /* CFG_CMD_I2C */