]> git.ipfire.org Git - people/ms/u-boot.git/blob - common/cmd_i2c.c
d714658d7f548fc7089e184e6fd8f63c6322a80c
[people/ms/u-boot.git] / common / cmd_i2c.c
1 /*
2 * (C) Copyright 2009
3 * Sergey Kubushyn, himself, ksi@koi8.net
4 *
5 * Changes for unified multibus/multiadapter I2C support.
6 *
7 * (C) Copyright 2001
8 * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
9 *
10 * SPDX-License-Identifier: GPL-2.0+
11 */
12
13 /*
14 * I2C Functions similar to the standard memory functions.
15 *
16 * There are several parameters in many of the commands that bear further
17 * explanations:
18 *
19 * {i2c_chip} is the I2C chip address (the first byte sent on the bus).
20 * Each I2C chip on the bus has a unique address. On the I2C data bus,
21 * the address is the upper seven bits and the LSB is the "read/write"
22 * bit. Note that the {i2c_chip} address specified on the command
23 * line is not shifted up: e.g. a typical EEPROM memory chip may have
24 * an I2C address of 0x50, but the data put on the bus will be 0xA0
25 * for write and 0xA1 for read. This "non shifted" address notation
26 * matches at least half of the data sheets :-/.
27 *
28 * {addr} is the address (or offset) within the chip. Small memory
29 * chips have 8 bit addresses. Large memory chips have 16 bit
30 * addresses. Other memory chips have 9, 10, or 11 bit addresses.
31 * Many non-memory chips have multiple registers and {addr} is used
32 * as the register index. Some non-memory chips have only one register
33 * and therefore don't need any {addr} parameter.
34 *
35 * The default {addr} parameter is one byte (.1) which works well for
36 * memories and registers with 8 bits of address space.
37 *
38 * You can specify the length of the {addr} field with the optional .0,
39 * .1, or .2 modifier (similar to the .b, .w, .l modifier). If you are
40 * manipulating a single register device which doesn't use an address
41 * field, use "0.0" for the address and the ".0" length field will
42 * suppress the address in the I2C data stream. This also works for
43 * successive reads using the I2C auto-incrementing memory pointer.
44 *
45 * If you are manipulating a large memory with 2-byte addresses, use
46 * the .2 address modifier, e.g. 210.2 addresses location 528 (decimal).
47 *
48 * Then there are the unfortunate memory chips that spill the most
49 * significant 1, 2, or 3 bits of address into the chip address byte.
50 * This effectively makes one chip (logically) look like 2, 4, or
51 * 8 chips. This is handled (awkwardly) by #defining
52 * CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the
53 * {addr} field (since .1 is the default, it doesn't actually have to
54 * be specified). Examples: given a memory chip at I2C chip address
55 * 0x50, the following would happen...
56 * i2c md 50 0 10 display 16 bytes starting at 0x000
57 * On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd>
58 * i2c md 50 100 10 display 16 bytes starting at 0x100
59 * On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd>
60 * i2c md 50 210 10 display 16 bytes starting at 0x210
61 * On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd>
62 * This is awfully ugly. It would be nice if someone would think up
63 * a better way of handling this.
64 *
65 * Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de).
66 */
67
68 #include <common.h>
69 #include <bootretry.h>
70 #include <cli.h>
71 #include <command.h>
72 #include <edid.h>
73 #include <environment.h>
74 #include <i2c.h>
75 #include <malloc.h>
76 #include <asm/byteorder.h>
77 #include <linux/compiler.h>
78
79 DECLARE_GLOBAL_DATA_PTR;
80
81 /* Display values from last command.
82 * Memory modify remembered values are different from display memory.
83 */
84 static uchar i2c_dp_last_chip;
85 static uint i2c_dp_last_addr;
86 static uint i2c_dp_last_alen;
87 static uint i2c_dp_last_length = 0x10;
88
89 static uchar i2c_mm_last_chip;
90 static uint i2c_mm_last_addr;
91 static uint i2c_mm_last_alen;
92
93 /* If only one I2C bus is present, the list of devices to ignore when
94 * the probe command is issued is represented by a 1D array of addresses.
95 * When multiple buses are present, the list is an array of bus-address
96 * pairs. The following macros take care of this */
97
98 #if defined(CONFIG_SYS_I2C_NOPROBES)
99 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_I2C_MULTI_BUS)
100 static struct
101 {
102 uchar bus;
103 uchar addr;
104 } i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES;
105 #define GET_BUS_NUM i2c_get_bus_num()
106 #define COMPARE_BUS(b,i) (i2c_no_probes[(i)].bus == (b))
107 #define COMPARE_ADDR(a,i) (i2c_no_probes[(i)].addr == (a))
108 #define NO_PROBE_ADDR(i) i2c_no_probes[(i)].addr
109 #else /* single bus */
110 static uchar i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES;
111 #define GET_BUS_NUM 0
112 #define COMPARE_BUS(b,i) ((b) == 0) /* Make compiler happy */
113 #define COMPARE_ADDR(a,i) (i2c_no_probes[(i)] == (a))
114 #define NO_PROBE_ADDR(i) i2c_no_probes[(i)]
115 #endif /* defined(CONFIG_SYS_I2C) */
116 #endif
117
118 #define DISP_LINE_LEN 16
119
120 /**
121 * i2c_init_board() - Board-specific I2C bus init
122 *
123 * This function is the default no-op implementation of I2C bus
124 * initialization. This function can be overriden by board-specific
125 * implementation if needed.
126 */
127 __weak
128 void i2c_init_board(void)
129 {
130 }
131
132 /* TODO: Implement architecture-specific get/set functions */
133
134 /**
135 * i2c_get_bus_speed() - Return I2C bus speed
136 *
137 * This function is the default implementation of function for retrieveing
138 * the current I2C bus speed in Hz.
139 *
140 * A driver implementing runtime switching of I2C bus speed must override
141 * this function to report the speed correctly. Simple or legacy drivers
142 * can use this fallback.
143 *
144 * Returns I2C bus speed in Hz.
145 */
146 #if !defined(CONFIG_SYS_I2C)
147 /*
148 * TODO: Implement architecture-specific get/set functions
149 * Should go away, if we switched completely to new multibus support
150 */
151 __weak
152 unsigned int i2c_get_bus_speed(void)
153 {
154 return CONFIG_SYS_I2C_SPEED;
155 }
156
157 /**
158 * i2c_set_bus_speed() - Configure I2C bus speed
159 * @speed: Newly set speed of the I2C bus in Hz
160 *
161 * This function is the default implementation of function for setting
162 * the I2C bus speed in Hz.
163 *
164 * A driver implementing runtime switching of I2C bus speed must override
165 * this function to report the speed correctly. Simple or legacy drivers
166 * can use this fallback.
167 *
168 * Returns zero on success, negative value on error.
169 */
170 __weak
171 int i2c_set_bus_speed(unsigned int speed)
172 {
173 if (speed != CONFIG_SYS_I2C_SPEED)
174 return -1;
175
176 return 0;
177 }
178 #endif
179
180 /**
181 * get_alen() - Small parser helper function to get address length
182 *
183 * Returns the address length.
184 */
185 static uint get_alen(char *arg)
186 {
187 int j;
188 int alen;
189
190 alen = 1;
191 for (j = 0; j < 8; j++) {
192 if (arg[j] == '.') {
193 alen = arg[j+1] - '0';
194 break;
195 } else if (arg[j] == '\0')
196 break;
197 }
198 return alen;
199 }
200
201 /**
202 * do_i2c_read() - Handle the "i2c read" command-line command
203 * @cmdtp: Command data struct pointer
204 * @flag: Command flag
205 * @argc: Command-line argument count
206 * @argv: Array of command-line arguments
207 *
208 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
209 * on error.
210 *
211 * Syntax:
212 * i2c read {i2c_chip} {devaddr}{.0, .1, .2} {len} {memaddr}
213 */
214 static int do_i2c_read ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
215 {
216 u_char chip;
217 uint devaddr, alen, length;
218 u_char *memaddr;
219
220 if (argc != 5)
221 return CMD_RET_USAGE;
222
223 /*
224 * I2C chip address
225 */
226 chip = simple_strtoul(argv[1], NULL, 16);
227
228 /*
229 * I2C data address within the chip. This can be 1 or
230 * 2 bytes long. Some day it might be 3 bytes long :-).
231 */
232 devaddr = simple_strtoul(argv[2], NULL, 16);
233 alen = get_alen(argv[2]);
234 if (alen > 3)
235 return CMD_RET_USAGE;
236
237 /*
238 * Length is the number of objects, not number of bytes.
239 */
240 length = simple_strtoul(argv[3], NULL, 16);
241
242 /*
243 * memaddr is the address where to store things in memory
244 */
245 memaddr = (u_char *)simple_strtoul(argv[4], NULL, 16);
246
247 if (i2c_read(chip, devaddr, alen, memaddr, length) != 0) {
248 puts ("Error reading the chip.\n");
249 return 1;
250 }
251 return 0;
252 }
253
254 static int do_i2c_write(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
255 {
256 u_char chip;
257 uint devaddr, alen, length;
258 u_char *memaddr;
259
260 if (argc != 5)
261 return cmd_usage(cmdtp);
262
263 /*
264 * memaddr is the address where to store things in memory
265 */
266 memaddr = (u_char *)simple_strtoul(argv[1], NULL, 16);
267
268 /*
269 * I2C chip address
270 */
271 chip = simple_strtoul(argv[2], NULL, 16);
272
273 /*
274 * I2C data address within the chip. This can be 1 or
275 * 2 bytes long. Some day it might be 3 bytes long :-).
276 */
277 devaddr = simple_strtoul(argv[3], NULL, 16);
278 alen = get_alen(argv[3]);
279 if (alen > 3)
280 return cmd_usage(cmdtp);
281
282 /*
283 * Length is the number of objects, not number of bytes.
284 */
285 length = simple_strtoul(argv[4], NULL, 16);
286
287 while (length-- > 0) {
288 if (i2c_write(chip, devaddr++, alen, memaddr++, 1) != 0) {
289 puts("Error writing to the chip.\n");
290 return 1;
291 }
292 /*
293 * No write delay with FRAM devices.
294 */
295 #if !defined(CONFIG_SYS_I2C_FRAM)
296 udelay(11000);
297 #endif
298 }
299 return 0;
300 }
301
302 /**
303 * do_i2c_md() - Handle the "i2c md" command-line command
304 * @cmdtp: Command data struct pointer
305 * @flag: Command flag
306 * @argc: Command-line argument count
307 * @argv: Array of command-line arguments
308 *
309 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
310 * on error.
311 *
312 * Syntax:
313 * i2c md {i2c_chip} {addr}{.0, .1, .2} {len}
314 */
315 static int do_i2c_md ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
316 {
317 u_char chip;
318 uint addr, alen, length;
319 int j, nbytes, linebytes;
320
321 /* We use the last specified parameters, unless new ones are
322 * entered.
323 */
324 chip = i2c_dp_last_chip;
325 addr = i2c_dp_last_addr;
326 alen = i2c_dp_last_alen;
327 length = i2c_dp_last_length;
328
329 if (argc < 3)
330 return CMD_RET_USAGE;
331
332 if ((flag & CMD_FLAG_REPEAT) == 0) {
333 /*
334 * New command specified.
335 */
336
337 /*
338 * I2C chip address
339 */
340 chip = simple_strtoul(argv[1], NULL, 16);
341
342 /*
343 * I2C data address within the chip. This can be 1 or
344 * 2 bytes long. Some day it might be 3 bytes long :-).
345 */
346 addr = simple_strtoul(argv[2], NULL, 16);
347 alen = get_alen(argv[2]);
348 if (alen > 3)
349 return CMD_RET_USAGE;
350
351 /*
352 * If another parameter, it is the length to display.
353 * Length is the number of objects, not number of bytes.
354 */
355 if (argc > 3)
356 length = simple_strtoul(argv[3], NULL, 16);
357 }
358
359 /*
360 * Print the lines.
361 *
362 * We buffer all read data, so we can make sure data is read only
363 * once.
364 */
365 nbytes = length;
366 do {
367 unsigned char linebuf[DISP_LINE_LEN];
368 unsigned char *cp;
369
370 linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
371
372 if (i2c_read(chip, addr, alen, linebuf, linebytes) != 0)
373 puts ("Error reading the chip.\n");
374 else {
375 printf("%04x:", addr);
376 cp = linebuf;
377 for (j=0; j<linebytes; j++) {
378 printf(" %02x", *cp++);
379 addr++;
380 }
381 puts (" ");
382 cp = linebuf;
383 for (j=0; j<linebytes; j++) {
384 if ((*cp < 0x20) || (*cp > 0x7e))
385 puts (".");
386 else
387 printf("%c", *cp);
388 cp++;
389 }
390 putc ('\n');
391 }
392 nbytes -= linebytes;
393 } while (nbytes > 0);
394
395 i2c_dp_last_chip = chip;
396 i2c_dp_last_addr = addr;
397 i2c_dp_last_alen = alen;
398 i2c_dp_last_length = length;
399
400 return 0;
401 }
402
403 /**
404 * do_i2c_mw() - Handle the "i2c mw" command-line command
405 * @cmdtp: Command data struct pointer
406 * @flag: Command flag
407 * @argc: Command-line argument count
408 * @argv: Array of command-line arguments
409 *
410 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
411 * on error.
412 *
413 * Syntax:
414 * i2c mw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}]
415 */
416 static int do_i2c_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
417 {
418 uchar chip;
419 ulong addr;
420 uint alen;
421 uchar byte;
422 int count;
423
424 if ((argc < 4) || (argc > 5))
425 return CMD_RET_USAGE;
426
427 /*
428 * Chip is always specified.
429 */
430 chip = simple_strtoul(argv[1], NULL, 16);
431
432 /*
433 * Address is always specified.
434 */
435 addr = simple_strtoul(argv[2], NULL, 16);
436 alen = get_alen(argv[2]);
437 if (alen > 3)
438 return CMD_RET_USAGE;
439
440 /*
441 * Value to write is always specified.
442 */
443 byte = simple_strtoul(argv[3], NULL, 16);
444
445 /*
446 * Optional count
447 */
448 if (argc == 5)
449 count = simple_strtoul(argv[4], NULL, 16);
450 else
451 count = 1;
452
453 while (count-- > 0) {
454 if (i2c_write(chip, addr++, alen, &byte, 1) != 0)
455 puts ("Error writing the chip.\n");
456 /*
457 * Wait for the write to complete. The write can take
458 * up to 10mSec (we allow a little more time).
459 */
460 /*
461 * No write delay with FRAM devices.
462 */
463 #if !defined(CONFIG_SYS_I2C_FRAM)
464 udelay(11000);
465 #endif
466 }
467
468 return 0;
469 }
470
471 /**
472 * do_i2c_crc() - Handle the "i2c crc32" command-line command
473 * @cmdtp: Command data struct pointer
474 * @flag: Command flag
475 * @argc: Command-line argument count
476 * @argv: Array of command-line arguments
477 *
478 * Calculate a CRC on memory
479 *
480 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
481 * on error.
482 *
483 * Syntax:
484 * i2c crc32 {i2c_chip} {addr}{.0, .1, .2} {count}
485 */
486 static int do_i2c_crc (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
487 {
488 uchar chip;
489 ulong addr;
490 uint alen;
491 int count;
492 uchar byte;
493 ulong crc;
494 ulong err;
495
496 if (argc < 4)
497 return CMD_RET_USAGE;
498
499 /*
500 * Chip is always specified.
501 */
502 chip = simple_strtoul(argv[1], NULL, 16);
503
504 /*
505 * Address is always specified.
506 */
507 addr = simple_strtoul(argv[2], NULL, 16);
508 alen = get_alen(argv[2]);
509 if (alen > 3)
510 return CMD_RET_USAGE;
511
512 /*
513 * Count is always specified
514 */
515 count = simple_strtoul(argv[3], NULL, 16);
516
517 printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1);
518 /*
519 * CRC a byte at a time. This is going to be slooow, but hey, the
520 * memories are small and slow too so hopefully nobody notices.
521 */
522 crc = 0;
523 err = 0;
524 while (count-- > 0) {
525 if (i2c_read(chip, addr, alen, &byte, 1) != 0)
526 err++;
527 crc = crc32 (crc, &byte, 1);
528 addr++;
529 }
530 if (err > 0)
531 puts ("Error reading the chip,\n");
532 else
533 printf ("%08lx\n", crc);
534
535 return 0;
536 }
537
538 /**
539 * mod_i2c_mem() - Handle the "i2c mm" and "i2c nm" command-line command
540 * @cmdtp: Command data struct pointer
541 * @flag: Command flag
542 * @argc: Command-line argument count
543 * @argv: Array of command-line arguments
544 *
545 * Modify memory.
546 *
547 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
548 * on error.
549 *
550 * Syntax:
551 * i2c mm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
552 * i2c nm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
553 */
554 static int
555 mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char * const argv[])
556 {
557 uchar chip;
558 ulong addr;
559 uint alen;
560 ulong data;
561 int size = 1;
562 int nbytes;
563
564 if (argc != 3)
565 return CMD_RET_USAGE;
566
567 bootretry_reset_cmd_timeout(); /* got a good command to get here */
568 /*
569 * We use the last specified parameters, unless new ones are
570 * entered.
571 */
572 chip = i2c_mm_last_chip;
573 addr = i2c_mm_last_addr;
574 alen = i2c_mm_last_alen;
575
576 if ((flag & CMD_FLAG_REPEAT) == 0) {
577 /*
578 * New command specified. Check for a size specification.
579 * Defaults to byte if no or incorrect specification.
580 */
581 size = cmd_get_data_size(argv[0], 1);
582
583 /*
584 * Chip is always specified.
585 */
586 chip = simple_strtoul(argv[1], NULL, 16);
587
588 /*
589 * Address is always specified.
590 */
591 addr = simple_strtoul(argv[2], NULL, 16);
592 alen = get_alen(argv[2]);
593 if (alen > 3)
594 return CMD_RET_USAGE;
595 }
596
597 /*
598 * Print the address, followed by value. Then accept input for
599 * the next value. A non-converted value exits.
600 */
601 do {
602 printf("%08lx:", addr);
603 if (i2c_read(chip, addr, alen, (uchar *)&data, size) != 0)
604 puts ("\nError reading the chip,\n");
605 else {
606 data = cpu_to_be32(data);
607 if (size == 1)
608 printf(" %02lx", (data >> 24) & 0x000000FF);
609 else if (size == 2)
610 printf(" %04lx", (data >> 16) & 0x0000FFFF);
611 else
612 printf(" %08lx", data);
613 }
614
615 nbytes = cli_readline(" ? ");
616 if (nbytes == 0) {
617 /*
618 * <CR> pressed as only input, don't modify current
619 * location and move to next.
620 */
621 if (incrflag)
622 addr += size;
623 nbytes = size;
624 /* good enough to not time out */
625 bootretry_reset_cmd_timeout();
626 }
627 #ifdef CONFIG_BOOT_RETRY_TIME
628 else if (nbytes == -2)
629 break; /* timed out, exit the command */
630 #endif
631 else {
632 char *endp;
633
634 data = simple_strtoul(console_buffer, &endp, 16);
635 if (size == 1)
636 data = data << 24;
637 else if (size == 2)
638 data = data << 16;
639 data = be32_to_cpu(data);
640 nbytes = endp - console_buffer;
641 if (nbytes) {
642 /*
643 * good enough to not time out
644 */
645 bootretry_reset_cmd_timeout();
646 if (i2c_write(chip, addr, alen, (uchar *)&data, size) != 0)
647 puts ("Error writing the chip.\n");
648 #ifdef CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS
649 udelay(CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS * 1000);
650 #endif
651 if (incrflag)
652 addr += size;
653 }
654 }
655 } while (nbytes);
656
657 i2c_mm_last_chip = chip;
658 i2c_mm_last_addr = addr;
659 i2c_mm_last_alen = alen;
660
661 return 0;
662 }
663
664 /**
665 * do_i2c_probe() - Handle the "i2c probe" command-line command
666 * @cmdtp: Command data struct pointer
667 * @flag: Command flag
668 * @argc: Command-line argument count
669 * @argv: Array of command-line arguments
670 *
671 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
672 * on error.
673 *
674 * Syntax:
675 * i2c probe {addr}
676 *
677 * Returns zero (success) if one or more I2C devices was found
678 */
679 static int do_i2c_probe (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
680 {
681 int j;
682 int addr = -1;
683 int found = 0;
684 #if defined(CONFIG_SYS_I2C_NOPROBES)
685 int k, skip;
686 unsigned int bus = GET_BUS_NUM;
687 #endif /* NOPROBES */
688
689 if (argc == 2)
690 addr = simple_strtol(argv[1], 0, 16);
691
692 puts ("Valid chip addresses:");
693 for (j = 0; j < 128; j++) {
694 if ((0 <= addr) && (j != addr))
695 continue;
696
697 #if defined(CONFIG_SYS_I2C_NOPROBES)
698 skip = 0;
699 for (k = 0; k < ARRAY_SIZE(i2c_no_probes); k++) {
700 if (COMPARE_BUS(bus, k) && COMPARE_ADDR(j, k)) {
701 skip = 1;
702 break;
703 }
704 }
705 if (skip)
706 continue;
707 #endif
708 if (i2c_probe(j) == 0) {
709 printf(" %02X", j);
710 found++;
711 }
712 }
713 putc ('\n');
714
715 #if defined(CONFIG_SYS_I2C_NOPROBES)
716 puts ("Excluded chip addresses:");
717 for (k = 0; k < ARRAY_SIZE(i2c_no_probes); k++) {
718 if (COMPARE_BUS(bus,k))
719 printf(" %02X", NO_PROBE_ADDR(k));
720 }
721 putc ('\n');
722 #endif
723
724 return (0 == found);
725 }
726
727 /**
728 * do_i2c_loop() - Handle the "i2c loop" command-line command
729 * @cmdtp: Command data struct pointer
730 * @flag: Command flag
731 * @argc: Command-line argument count
732 * @argv: Array of command-line arguments
733 *
734 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
735 * on error.
736 *
737 * Syntax:
738 * i2c loop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}]
739 * {length} - Number of bytes to read
740 * {delay} - A DECIMAL number and defaults to 1000 uSec
741 */
742 static int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
743 {
744 u_char chip;
745 ulong alen;
746 uint addr;
747 uint length;
748 u_char bytes[16];
749 int delay;
750
751 if (argc < 3)
752 return CMD_RET_USAGE;
753
754 /*
755 * Chip is always specified.
756 */
757 chip = simple_strtoul(argv[1], NULL, 16);
758
759 /*
760 * Address is always specified.
761 */
762 addr = simple_strtoul(argv[2], NULL, 16);
763 alen = get_alen(argv[2]);
764 if (alen > 3)
765 return CMD_RET_USAGE;
766
767 /*
768 * Length is the number of objects, not number of bytes.
769 */
770 length = 1;
771 length = simple_strtoul(argv[3], NULL, 16);
772 if (length > sizeof(bytes))
773 length = sizeof(bytes);
774
775 /*
776 * The delay time (uSec) is optional.
777 */
778 delay = 1000;
779 if (argc > 3)
780 delay = simple_strtoul(argv[4], NULL, 10);
781 /*
782 * Run the loop...
783 */
784 while (1) {
785 if (i2c_read(chip, addr, alen, bytes, length) != 0)
786 puts ("Error reading the chip.\n");
787 udelay(delay);
788 }
789
790 /* NOTREACHED */
791 return 0;
792 }
793
794 /*
795 * The SDRAM command is separately configured because many
796 * (most?) embedded boards don't use SDRAM DIMMs.
797 *
798 * FIXME: Document and probably move elsewhere!
799 */
800 #if defined(CONFIG_CMD_SDRAM)
801 static void print_ddr2_tcyc (u_char const b)
802 {
803 printf ("%d.", (b >> 4) & 0x0F);
804 switch (b & 0x0F) {
805 case 0x0:
806 case 0x1:
807 case 0x2:
808 case 0x3:
809 case 0x4:
810 case 0x5:
811 case 0x6:
812 case 0x7:
813 case 0x8:
814 case 0x9:
815 printf ("%d ns\n", b & 0x0F);
816 break;
817 case 0xA:
818 puts ("25 ns\n");
819 break;
820 case 0xB:
821 puts ("33 ns\n");
822 break;
823 case 0xC:
824 puts ("66 ns\n");
825 break;
826 case 0xD:
827 puts ("75 ns\n");
828 break;
829 default:
830 puts ("?? ns\n");
831 break;
832 }
833 }
834
835 static void decode_bits (u_char const b, char const *str[], int const do_once)
836 {
837 u_char mask;
838
839 for (mask = 0x80; mask != 0x00; mask >>= 1, ++str) {
840 if (b & mask) {
841 puts (*str);
842 if (do_once)
843 return;
844 }
845 }
846 }
847
848 /*
849 * Syntax:
850 * i2c sdram {i2c_chip}
851 */
852 static int do_sdram (cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
853 {
854 enum { unknown, EDO, SDRAM, DDR2 } type;
855
856 u_char chip;
857 u_char data[128];
858 u_char cksum;
859 int j;
860
861 static const char *decode_CAS_DDR2[] = {
862 " TBD", " 6", " 5", " 4", " 3", " 2", " TBD", " TBD"
863 };
864
865 static const char *decode_CAS_default[] = {
866 " TBD", " 7", " 6", " 5", " 4", " 3", " 2", " 1"
867 };
868
869 static const char *decode_CS_WE_default[] = {
870 " TBD", " 6", " 5", " 4", " 3", " 2", " 1", " 0"
871 };
872
873 static const char *decode_byte21_default[] = {
874 " TBD (bit 7)\n",
875 " Redundant row address\n",
876 " Differential clock input\n",
877 " Registerd DQMB inputs\n",
878 " Buffered DQMB inputs\n",
879 " On-card PLL\n",
880 " Registered address/control lines\n",
881 " Buffered address/control lines\n"
882 };
883
884 static const char *decode_byte22_DDR2[] = {
885 " TBD (bit 7)\n",
886 " TBD (bit 6)\n",
887 " TBD (bit 5)\n",
888 " TBD (bit 4)\n",
889 " TBD (bit 3)\n",
890 " Supports partial array self refresh\n",
891 " Supports 50 ohm ODT\n",
892 " Supports weak driver\n"
893 };
894
895 static const char *decode_row_density_DDR2[] = {
896 "512 MiB", "256 MiB", "128 MiB", "16 GiB",
897 "8 GiB", "4 GiB", "2 GiB", "1 GiB"
898 };
899
900 static const char *decode_row_density_default[] = {
901 "512 MiB", "256 MiB", "128 MiB", "64 MiB",
902 "32 MiB", "16 MiB", "8 MiB", "4 MiB"
903 };
904
905 if (argc < 2)
906 return CMD_RET_USAGE;
907
908 /*
909 * Chip is always specified.
910 */
911 chip = simple_strtoul (argv[1], NULL, 16);
912
913 if (i2c_read (chip, 0, 1, data, sizeof (data)) != 0) {
914 puts ("No SDRAM Serial Presence Detect found.\n");
915 return 1;
916 }
917
918 cksum = 0;
919 for (j = 0; j < 63; j++) {
920 cksum += data[j];
921 }
922 if (cksum != data[63]) {
923 printf ("WARNING: Configuration data checksum failure:\n"
924 " is 0x%02x, calculated 0x%02x\n", data[63], cksum);
925 }
926 printf ("SPD data revision %d.%d\n",
927 (data[62] >> 4) & 0x0F, data[62] & 0x0F);
928 printf ("Bytes used 0x%02X\n", data[0]);
929 printf ("Serial memory size 0x%02X\n", 1 << data[1]);
930
931 puts ("Memory type ");
932 switch (data[2]) {
933 case 2:
934 type = EDO;
935 puts ("EDO\n");
936 break;
937 case 4:
938 type = SDRAM;
939 puts ("SDRAM\n");
940 break;
941 case 8:
942 type = DDR2;
943 puts ("DDR2\n");
944 break;
945 default:
946 type = unknown;
947 puts ("unknown\n");
948 break;
949 }
950
951 puts ("Row address bits ");
952 if ((data[3] & 0x00F0) == 0)
953 printf ("%d\n", data[3] & 0x0F);
954 else
955 printf ("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
956
957 puts ("Column address bits ");
958 if ((data[4] & 0x00F0) == 0)
959 printf ("%d\n", data[4] & 0x0F);
960 else
961 printf ("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
962
963 switch (type) {
964 case DDR2:
965 printf ("Number of ranks %d\n",
966 (data[5] & 0x07) + 1);
967 break;
968 default:
969 printf ("Module rows %d\n", data[5]);
970 break;
971 }
972
973 switch (type) {
974 case DDR2:
975 printf ("Module data width %d bits\n", data[6]);
976 break;
977 default:
978 printf ("Module data width %d bits\n",
979 (data[7] << 8) | data[6]);
980 break;
981 }
982
983 puts ("Interface signal levels ");
984 switch(data[8]) {
985 case 0: puts ("TTL 5.0 V\n"); break;
986 case 1: puts ("LVTTL\n"); break;
987 case 2: puts ("HSTL 1.5 V\n"); break;
988 case 3: puts ("SSTL 3.3 V\n"); break;
989 case 4: puts ("SSTL 2.5 V\n"); break;
990 case 5: puts ("SSTL 1.8 V\n"); break;
991 default: puts ("unknown\n"); break;
992 }
993
994 switch (type) {
995 case DDR2:
996 printf ("SDRAM cycle time ");
997 print_ddr2_tcyc (data[9]);
998 break;
999 default:
1000 printf ("SDRAM cycle time %d.%d ns\n",
1001 (data[9] >> 4) & 0x0F, data[9] & 0x0F);
1002 break;
1003 }
1004
1005 switch (type) {
1006 case DDR2:
1007 printf ("SDRAM access time 0.%d%d ns\n",
1008 (data[10] >> 4) & 0x0F, data[10] & 0x0F);
1009 break;
1010 default:
1011 printf ("SDRAM access time %d.%d ns\n",
1012 (data[10] >> 4) & 0x0F, data[10] & 0x0F);
1013 break;
1014 }
1015
1016 puts ("EDC configuration ");
1017 switch (data[11]) {
1018 case 0: puts ("None\n"); break;
1019 case 1: puts ("Parity\n"); break;
1020 case 2: puts ("ECC\n"); break;
1021 default: puts ("unknown\n"); break;
1022 }
1023
1024 if ((data[12] & 0x80) == 0)
1025 puts ("No self refresh, rate ");
1026 else
1027 puts ("Self refresh, rate ");
1028
1029 switch(data[12] & 0x7F) {
1030 case 0: puts ("15.625 us\n"); break;
1031 case 1: puts ("3.9 us\n"); break;
1032 case 2: puts ("7.8 us\n"); break;
1033 case 3: puts ("31.3 us\n"); break;
1034 case 4: puts ("62.5 us\n"); break;
1035 case 5: puts ("125 us\n"); break;
1036 default: puts ("unknown\n"); break;
1037 }
1038
1039 switch (type) {
1040 case DDR2:
1041 printf ("SDRAM width (primary) %d\n", data[13]);
1042 break;
1043 default:
1044 printf ("SDRAM width (primary) %d\n", data[13] & 0x7F);
1045 if ((data[13] & 0x80) != 0) {
1046 printf (" (second bank) %d\n",
1047 2 * (data[13] & 0x7F));
1048 }
1049 break;
1050 }
1051
1052 switch (type) {
1053 case DDR2:
1054 if (data[14] != 0)
1055 printf ("EDC width %d\n", data[14]);
1056 break;
1057 default:
1058 if (data[14] != 0) {
1059 printf ("EDC width %d\n",
1060 data[14] & 0x7F);
1061
1062 if ((data[14] & 0x80) != 0) {
1063 printf (" (second bank) %d\n",
1064 2 * (data[14] & 0x7F));
1065 }
1066 }
1067 break;
1068 }
1069
1070 if (DDR2 != type) {
1071 printf ("Min clock delay, back-to-back random column addresses "
1072 "%d\n", data[15]);
1073 }
1074
1075 puts ("Burst length(s) ");
1076 if (data[16] & 0x80) puts (" Page");
1077 if (data[16] & 0x08) puts (" 8");
1078 if (data[16] & 0x04) puts (" 4");
1079 if (data[16] & 0x02) puts (" 2");
1080 if (data[16] & 0x01) puts (" 1");
1081 putc ('\n');
1082 printf ("Number of banks %d\n", data[17]);
1083
1084 switch (type) {
1085 case DDR2:
1086 puts ("CAS latency(s) ");
1087 decode_bits (data[18], decode_CAS_DDR2, 0);
1088 putc ('\n');
1089 break;
1090 default:
1091 puts ("CAS latency(s) ");
1092 decode_bits (data[18], decode_CAS_default, 0);
1093 putc ('\n');
1094 break;
1095 }
1096
1097 if (DDR2 != type) {
1098 puts ("CS latency(s) ");
1099 decode_bits (data[19], decode_CS_WE_default, 0);
1100 putc ('\n');
1101 }
1102
1103 if (DDR2 != type) {
1104 puts ("WE latency(s) ");
1105 decode_bits (data[20], decode_CS_WE_default, 0);
1106 putc ('\n');
1107 }
1108
1109 switch (type) {
1110 case DDR2:
1111 puts ("Module attributes:\n");
1112 if (data[21] & 0x80)
1113 puts (" TBD (bit 7)\n");
1114 if (data[21] & 0x40)
1115 puts (" Analysis probe installed\n");
1116 if (data[21] & 0x20)
1117 puts (" TBD (bit 5)\n");
1118 if (data[21] & 0x10)
1119 puts (" FET switch external enable\n");
1120 printf (" %d PLLs on DIMM\n", (data[21] >> 2) & 0x03);
1121 if (data[20] & 0x11) {
1122 printf (" %d active registers on DIMM\n",
1123 (data[21] & 0x03) + 1);
1124 }
1125 break;
1126 default:
1127 puts ("Module attributes:\n");
1128 if (!data[21])
1129 puts (" (none)\n");
1130 else
1131 decode_bits (data[21], decode_byte21_default, 0);
1132 break;
1133 }
1134
1135 switch (type) {
1136 case DDR2:
1137 decode_bits (data[22], decode_byte22_DDR2, 0);
1138 break;
1139 default:
1140 puts ("Device attributes:\n");
1141 if (data[22] & 0x80) puts (" TBD (bit 7)\n");
1142 if (data[22] & 0x40) puts (" TBD (bit 6)\n");
1143 if (data[22] & 0x20) puts (" Upper Vcc tolerance 5%\n");
1144 else puts (" Upper Vcc tolerance 10%\n");
1145 if (data[22] & 0x10) puts (" Lower Vcc tolerance 5%\n");
1146 else puts (" Lower Vcc tolerance 10%\n");
1147 if (data[22] & 0x08) puts (" Supports write1/read burst\n");
1148 if (data[22] & 0x04) puts (" Supports precharge all\n");
1149 if (data[22] & 0x02) puts (" Supports auto precharge\n");
1150 if (data[22] & 0x01) puts (" Supports early RAS# precharge\n");
1151 break;
1152 }
1153
1154 switch (type) {
1155 case DDR2:
1156 printf ("SDRAM cycle time (2nd highest CAS latency) ");
1157 print_ddr2_tcyc (data[23]);
1158 break;
1159 default:
1160 printf ("SDRAM cycle time (2nd highest CAS latency) %d."
1161 "%d ns\n", (data[23] >> 4) & 0x0F, data[23] & 0x0F);
1162 break;
1163 }
1164
1165 switch (type) {
1166 case DDR2:
1167 printf ("SDRAM access from clock (2nd highest CAS latency) 0."
1168 "%d%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
1169 break;
1170 default:
1171 printf ("SDRAM access from clock (2nd highest CAS latency) %d."
1172 "%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
1173 break;
1174 }
1175
1176 switch (type) {
1177 case DDR2:
1178 printf ("SDRAM cycle time (3rd highest CAS latency) ");
1179 print_ddr2_tcyc (data[25]);
1180 break;
1181 default:
1182 printf ("SDRAM cycle time (3rd highest CAS latency) %d."
1183 "%d ns\n", (data[25] >> 4) & 0x0F, data[25] & 0x0F);
1184 break;
1185 }
1186
1187 switch (type) {
1188 case DDR2:
1189 printf ("SDRAM access from clock (3rd highest CAS latency) 0."
1190 "%d%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
1191 break;
1192 default:
1193 printf ("SDRAM access from clock (3rd highest CAS latency) %d."
1194 "%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
1195 break;
1196 }
1197
1198 switch (type) {
1199 case DDR2:
1200 printf ("Minimum row precharge %d.%02d ns\n",
1201 (data[27] >> 2) & 0x3F, 25 * (data[27] & 0x03));
1202 break;
1203 default:
1204 printf ("Minimum row precharge %d ns\n", data[27]);
1205 break;
1206 }
1207
1208 switch (type) {
1209 case DDR2:
1210 printf ("Row active to row active min %d.%02d ns\n",
1211 (data[28] >> 2) & 0x3F, 25 * (data[28] & 0x03));
1212 break;
1213 default:
1214 printf ("Row active to row active min %d ns\n", data[28]);
1215 break;
1216 }
1217
1218 switch (type) {
1219 case DDR2:
1220 printf ("RAS to CAS delay min %d.%02d ns\n",
1221 (data[29] >> 2) & 0x3F, 25 * (data[29] & 0x03));
1222 break;
1223 default:
1224 printf ("RAS to CAS delay min %d ns\n", data[29]);
1225 break;
1226 }
1227
1228 printf ("Minimum RAS pulse width %d ns\n", data[30]);
1229
1230 switch (type) {
1231 case DDR2:
1232 puts ("Density of each row ");
1233 decode_bits (data[31], decode_row_density_DDR2, 1);
1234 putc ('\n');
1235 break;
1236 default:
1237 puts ("Density of each row ");
1238 decode_bits (data[31], decode_row_density_default, 1);
1239 putc ('\n');
1240 break;
1241 }
1242
1243 switch (type) {
1244 case DDR2:
1245 puts ("Command and Address setup ");
1246 if (data[32] >= 0xA0) {
1247 printf ("1.%d%d ns\n",
1248 ((data[32] >> 4) & 0x0F) - 10, data[32] & 0x0F);
1249 } else {
1250 printf ("0.%d%d ns\n",
1251 ((data[32] >> 4) & 0x0F), data[32] & 0x0F);
1252 }
1253 break;
1254 default:
1255 printf ("Command and Address setup %c%d.%d ns\n",
1256 (data[32] & 0x80) ? '-' : '+',
1257 (data[32] >> 4) & 0x07, data[32] & 0x0F);
1258 break;
1259 }
1260
1261 switch (type) {
1262 case DDR2:
1263 puts ("Command and Address hold ");
1264 if (data[33] >= 0xA0) {
1265 printf ("1.%d%d ns\n",
1266 ((data[33] >> 4) & 0x0F) - 10, data[33] & 0x0F);
1267 } else {
1268 printf ("0.%d%d ns\n",
1269 ((data[33] >> 4) & 0x0F), data[33] & 0x0F);
1270 }
1271 break;
1272 default:
1273 printf ("Command and Address hold %c%d.%d ns\n",
1274 (data[33] & 0x80) ? '-' : '+',
1275 (data[33] >> 4) & 0x07, data[33] & 0x0F);
1276 break;
1277 }
1278
1279 switch (type) {
1280 case DDR2:
1281 printf ("Data signal input setup 0.%d%d ns\n",
1282 (data[34] >> 4) & 0x0F, data[34] & 0x0F);
1283 break;
1284 default:
1285 printf ("Data signal input setup %c%d.%d ns\n",
1286 (data[34] & 0x80) ? '-' : '+',
1287 (data[34] >> 4) & 0x07, data[34] & 0x0F);
1288 break;
1289 }
1290
1291 switch (type) {
1292 case DDR2:
1293 printf ("Data signal input hold 0.%d%d ns\n",
1294 (data[35] >> 4) & 0x0F, data[35] & 0x0F);
1295 break;
1296 default:
1297 printf ("Data signal input hold %c%d.%d ns\n",
1298 (data[35] & 0x80) ? '-' : '+',
1299 (data[35] >> 4) & 0x07, data[35] & 0x0F);
1300 break;
1301 }
1302
1303 puts ("Manufacturer's JEDEC ID ");
1304 for (j = 64; j <= 71; j++)
1305 printf ("%02X ", data[j]);
1306 putc ('\n');
1307 printf ("Manufacturing Location %02X\n", data[72]);
1308 puts ("Manufacturer's Part Number ");
1309 for (j = 73; j <= 90; j++)
1310 printf ("%02X ", data[j]);
1311 putc ('\n');
1312 printf ("Revision Code %02X %02X\n", data[91], data[92]);
1313 printf ("Manufacturing Date %02X %02X\n", data[93], data[94]);
1314 puts ("Assembly Serial Number ");
1315 for (j = 95; j <= 98; j++)
1316 printf ("%02X ", data[j]);
1317 putc ('\n');
1318
1319 if (DDR2 != type) {
1320 printf ("Speed rating PC%d\n",
1321 data[126] == 0x66 ? 66 : data[126]);
1322 }
1323 return 0;
1324 }
1325 #endif
1326
1327 /*
1328 * Syntax:
1329 * i2c edid {i2c_chip}
1330 */
1331 #if defined(CONFIG_I2C_EDID)
1332 int do_edid(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
1333 {
1334 u_char chip;
1335 struct edid1_info edid;
1336
1337 if (argc < 2) {
1338 cmd_usage(cmdtp);
1339 return 1;
1340 }
1341
1342 chip = simple_strtoul(argv[1], NULL, 16);
1343 if (i2c_read(chip, 0, 1, (uchar *)&edid, sizeof(edid)) != 0) {
1344 puts("Error reading EDID content.\n");
1345 return 1;
1346 }
1347
1348 if (edid_check_info(&edid)) {
1349 puts("Content isn't valid EDID.\n");
1350 return 1;
1351 }
1352
1353 edid_print_info(&edid);
1354 return 0;
1355
1356 }
1357 #endif /* CONFIG_I2C_EDID */
1358
1359 /**
1360 * do_i2c_show_bus() - Handle the "i2c bus" command-line command
1361 * @cmdtp: Command data struct pointer
1362 * @flag: Command flag
1363 * @argc: Command-line argument count
1364 * @argv: Array of command-line arguments
1365 *
1366 * Returns zero always.
1367 */
1368 #if defined(CONFIG_SYS_I2C)
1369 int do_i2c_show_bus(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
1370 {
1371 int i;
1372 #ifndef CONFIG_SYS_I2C_DIRECT_BUS
1373 int j;
1374 #endif
1375
1376 if (argc == 1) {
1377 /* show all busses */
1378 for (i = 0; i < CONFIG_SYS_NUM_I2C_BUSES; i++) {
1379 printf("Bus %d:\t%s", i, I2C_ADAP_NR(i)->name);
1380 #ifndef CONFIG_SYS_I2C_DIRECT_BUS
1381 for (j = 0; j < CONFIG_SYS_I2C_MAX_HOPS; j++) {
1382 if (i2c_bus[i].next_hop[j].chip == 0)
1383 break;
1384 printf("->%s@0x%2x:%d",
1385 i2c_bus[i].next_hop[j].mux.name,
1386 i2c_bus[i].next_hop[j].chip,
1387 i2c_bus[i].next_hop[j].channel);
1388 }
1389 #endif
1390 printf("\n");
1391 }
1392 } else {
1393 /* show specific bus */
1394 i = simple_strtoul(argv[1], NULL, 10);
1395 if (i >= CONFIG_SYS_NUM_I2C_BUSES) {
1396 printf("Invalid bus %d\n", i);
1397 return -1;
1398 }
1399 printf("Bus %d:\t%s", i, I2C_ADAP_NR(i)->name);
1400 #ifndef CONFIG_SYS_I2C_DIRECT_BUS
1401 for (j = 0; j < CONFIG_SYS_I2C_MAX_HOPS; j++) {
1402 if (i2c_bus[i].next_hop[j].chip == 0)
1403 break;
1404 printf("->%s@0x%2x:%d",
1405 i2c_bus[i].next_hop[j].mux.name,
1406 i2c_bus[i].next_hop[j].chip,
1407 i2c_bus[i].next_hop[j].channel);
1408 }
1409 #endif
1410 printf("\n");
1411 }
1412
1413 return 0;
1414 }
1415 #endif
1416
1417 /**
1418 * do_i2c_bus_num() - Handle the "i2c dev" command-line command
1419 * @cmdtp: Command data struct pointer
1420 * @flag: Command flag
1421 * @argc: Command-line argument count
1422 * @argv: Array of command-line arguments
1423 *
1424 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1425 * on error.
1426 */
1427 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_I2C_MULTI_BUS)
1428 int do_i2c_bus_num(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
1429 {
1430 int ret = 0;
1431 unsigned int bus_no;
1432
1433 if (argc == 1)
1434 /* querying current setting */
1435 printf("Current bus is %d\n", i2c_get_bus_num());
1436 else {
1437 bus_no = simple_strtoul(argv[1], NULL, 10);
1438 #if defined(CONFIG_SYS_I2C)
1439 if (bus_no >= CONFIG_SYS_NUM_I2C_BUSES) {
1440 printf("Invalid bus %d\n", bus_no);
1441 return -1;
1442 }
1443 #endif
1444 printf("Setting bus to %d\n", bus_no);
1445 ret = i2c_set_bus_num(bus_no);
1446 if (ret)
1447 printf("Failure changing bus number (%d)\n", ret);
1448 }
1449 return ret;
1450 }
1451 #endif /* defined(CONFIG_SYS_I2C) */
1452
1453 /**
1454 * do_i2c_bus_speed() - Handle the "i2c speed" command-line command
1455 * @cmdtp: Command data struct pointer
1456 * @flag: Command flag
1457 * @argc: Command-line argument count
1458 * @argv: Array of command-line arguments
1459 *
1460 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1461 * on error.
1462 */
1463 static int do_i2c_bus_speed(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1464 {
1465 int speed, ret=0;
1466
1467 if (argc == 1)
1468 /* querying current speed */
1469 printf("Current bus speed=%d\n", i2c_get_bus_speed());
1470 else {
1471 speed = simple_strtoul(argv[1], NULL, 10);
1472 printf("Setting bus speed to %d Hz\n", speed);
1473 ret = i2c_set_bus_speed(speed);
1474 if (ret)
1475 printf("Failure changing bus speed (%d)\n", ret);
1476 }
1477 return ret;
1478 }
1479
1480 /**
1481 * do_i2c_mm() - Handle the "i2c mm" command-line command
1482 * @cmdtp: Command data struct pointer
1483 * @flag: Command flag
1484 * @argc: Command-line argument count
1485 * @argv: Array of command-line arguments
1486 *
1487 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1488 * on error.
1489 */
1490 static int do_i2c_mm(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1491 {
1492 return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
1493 }
1494
1495 /**
1496 * do_i2c_nm() - Handle the "i2c nm" command-line command
1497 * @cmdtp: Command data struct pointer
1498 * @flag: Command flag
1499 * @argc: Command-line argument count
1500 * @argv: Array of command-line arguments
1501 *
1502 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1503 * on error.
1504 */
1505 static int do_i2c_nm(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1506 {
1507 return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
1508 }
1509
1510 /**
1511 * do_i2c_reset() - Handle the "i2c reset" command-line command
1512 * @cmdtp: Command data struct pointer
1513 * @flag: Command flag
1514 * @argc: Command-line argument count
1515 * @argv: Array of command-line arguments
1516 *
1517 * Returns zero always.
1518 */
1519 static int do_i2c_reset(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1520 {
1521 #if defined(CONFIG_SYS_I2C)
1522 i2c_init(I2C_ADAP->speed, I2C_ADAP->slaveaddr);
1523 #else
1524 i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
1525 #endif
1526 return 0;
1527 }
1528
1529 static cmd_tbl_t cmd_i2c_sub[] = {
1530 #if defined(CONFIG_SYS_I2C)
1531 U_BOOT_CMD_MKENT(bus, 1, 1, do_i2c_show_bus, "", ""),
1532 #endif
1533 U_BOOT_CMD_MKENT(crc32, 3, 1, do_i2c_crc, "", ""),
1534 #if defined(CONFIG_SYS_I2C) || \
1535 defined(CONFIG_I2C_MULTI_BUS)
1536 U_BOOT_CMD_MKENT(dev, 1, 1, do_i2c_bus_num, "", ""),
1537 #endif /* CONFIG_I2C_MULTI_BUS */
1538 #if defined(CONFIG_I2C_EDID)
1539 U_BOOT_CMD_MKENT(edid, 1, 1, do_edid, "", ""),
1540 #endif /* CONFIG_I2C_EDID */
1541 U_BOOT_CMD_MKENT(loop, 3, 1, do_i2c_loop, "", ""),
1542 U_BOOT_CMD_MKENT(md, 3, 1, do_i2c_md, "", ""),
1543 U_BOOT_CMD_MKENT(mm, 2, 1, do_i2c_mm, "", ""),
1544 U_BOOT_CMD_MKENT(mw, 3, 1, do_i2c_mw, "", ""),
1545 U_BOOT_CMD_MKENT(nm, 2, 1, do_i2c_nm, "", ""),
1546 U_BOOT_CMD_MKENT(probe, 0, 1, do_i2c_probe, "", ""),
1547 U_BOOT_CMD_MKENT(read, 5, 1, do_i2c_read, "", ""),
1548 U_BOOT_CMD_MKENT(write, 5, 0, do_i2c_write, "", ""),
1549 U_BOOT_CMD_MKENT(reset, 0, 1, do_i2c_reset, "", ""),
1550 #if defined(CONFIG_CMD_SDRAM)
1551 U_BOOT_CMD_MKENT(sdram, 1, 1, do_sdram, "", ""),
1552 #endif
1553 U_BOOT_CMD_MKENT(speed, 1, 1, do_i2c_bus_speed, "", ""),
1554 };
1555
1556 #ifdef CONFIG_NEEDS_MANUAL_RELOC
1557 void i2c_reloc(void) {
1558 fixup_cmdtable(cmd_i2c_sub, ARRAY_SIZE(cmd_i2c_sub));
1559 }
1560 #endif
1561
1562 /**
1563 * do_i2c() - Handle the "i2c" command-line command
1564 * @cmdtp: Command data struct pointer
1565 * @flag: Command flag
1566 * @argc: Command-line argument count
1567 * @argv: Array of command-line arguments
1568 *
1569 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1570 * on error.
1571 */
1572 static int do_i2c(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1573 {
1574 cmd_tbl_t *c;
1575
1576 if (argc < 2)
1577 return CMD_RET_USAGE;
1578
1579 /* Strip off leading 'i2c' command argument */
1580 argc--;
1581 argv++;
1582
1583 c = find_cmd_tbl(argv[0], &cmd_i2c_sub[0], ARRAY_SIZE(cmd_i2c_sub));
1584
1585 if (c)
1586 return c->cmd(cmdtp, flag, argc, argv);
1587 else
1588 return CMD_RET_USAGE;
1589 }
1590
1591 /***************************************************/
1592 #ifdef CONFIG_SYS_LONGHELP
1593 static char i2c_help_text[] =
1594 #if defined(CONFIG_SYS_I2C)
1595 "bus [muxtype:muxaddr:muxchannel] - show I2C bus info\n"
1596 #endif
1597 "crc32 chip address[.0, .1, .2] count - compute CRC32 checksum\n"
1598 #if defined(CONFIG_SYS_I2C) || \
1599 defined(CONFIG_I2C_MULTI_BUS)
1600 "i2c dev [dev] - show or set current I2C bus\n"
1601 #endif /* CONFIG_I2C_MULTI_BUS */
1602 #if defined(CONFIG_I2C_EDID)
1603 "i2c edid chip - print EDID configuration information\n"
1604 #endif /* CONFIG_I2C_EDID */
1605 "i2c loop chip address[.0, .1, .2] [# of objects] - looping read of device\n"
1606 "i2c md chip address[.0, .1, .2] [# of objects] - read from I2C device\n"
1607 "i2c mm chip address[.0, .1, .2] - write to I2C device (auto-incrementing)\n"
1608 "i2c mw chip address[.0, .1, .2] value [count] - write to I2C device (fill)\n"
1609 "i2c nm chip address[.0, .1, .2] - write to I2C device (constant address)\n"
1610 "i2c probe [address] - test for and show device(s) on the I2C bus\n"
1611 "i2c read chip address[.0, .1, .2] length memaddress - read to memory \n"
1612 "i2c write memaddress chip address[.0, .1, .2] length - write memory to i2c\n"
1613 "i2c reset - re-init the I2C Controller\n"
1614 #if defined(CONFIG_CMD_SDRAM)
1615 "i2c sdram chip - print SDRAM configuration information\n"
1616 #endif
1617 "i2c speed [speed] - show or set I2C bus speed";
1618 #endif
1619
1620 U_BOOT_CMD(
1621 i2c, 6, 1, do_i2c,
1622 "I2C sub-system",
1623 i2c_help_text
1624 );