]> git.ipfire.org Git - people/ms/u-boot.git/blob - common/cmd_i2c.c
Merge branch 'master' of git://git.denx.de/u-boot-ubi
[people/ms/u-boot.git] / common / cmd_i2c.c
1 /*
2 * (C) Copyright 2009
3 * Sergey Kubushyn, himself, ksi@koi8.net
4 *
5 * Changes for unified multibus/multiadapter I2C support.
6 *
7 * (C) Copyright 2001
8 * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
9 *
10 * SPDX-License-Identifier: GPL-2.0+
11 */
12
13 /*
14 * I2C Functions similar to the standard memory functions.
15 *
16 * There are several parameters in many of the commands that bear further
17 * explanations:
18 *
19 * {i2c_chip} is the I2C chip address (the first byte sent on the bus).
20 * Each I2C chip on the bus has a unique address. On the I2C data bus,
21 * the address is the upper seven bits and the LSB is the "read/write"
22 * bit. Note that the {i2c_chip} address specified on the command
23 * line is not shifted up: e.g. a typical EEPROM memory chip may have
24 * an I2C address of 0x50, but the data put on the bus will be 0xA0
25 * for write and 0xA1 for read. This "non shifted" address notation
26 * matches at least half of the data sheets :-/.
27 *
28 * {addr} is the address (or offset) within the chip. Small memory
29 * chips have 8 bit addresses. Large memory chips have 16 bit
30 * addresses. Other memory chips have 9, 10, or 11 bit addresses.
31 * Many non-memory chips have multiple registers and {addr} is used
32 * as the register index. Some non-memory chips have only one register
33 * and therefore don't need any {addr} parameter.
34 *
35 * The default {addr} parameter is one byte (.1) which works well for
36 * memories and registers with 8 bits of address space.
37 *
38 * You can specify the length of the {addr} field with the optional .0,
39 * .1, or .2 modifier (similar to the .b, .w, .l modifier). If you are
40 * manipulating a single register device which doesn't use an address
41 * field, use "0.0" for the address and the ".0" length field will
42 * suppress the address in the I2C data stream. This also works for
43 * successive reads using the I2C auto-incrementing memory pointer.
44 *
45 * If you are manipulating a large memory with 2-byte addresses, use
46 * the .2 address modifier, e.g. 210.2 addresses location 528 (decimal).
47 *
48 * Then there are the unfortunate memory chips that spill the most
49 * significant 1, 2, or 3 bits of address into the chip address byte.
50 * This effectively makes one chip (logically) look like 2, 4, or
51 * 8 chips. This is handled (awkwardly) by #defining
52 * CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the
53 * {addr} field (since .1 is the default, it doesn't actually have to
54 * be specified). Examples: given a memory chip at I2C chip address
55 * 0x50, the following would happen...
56 * i2c md 50 0 10 display 16 bytes starting at 0x000
57 * On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd>
58 * i2c md 50 100 10 display 16 bytes starting at 0x100
59 * On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd>
60 * i2c md 50 210 10 display 16 bytes starting at 0x210
61 * On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd>
62 * This is awfully ugly. It would be nice if someone would think up
63 * a better way of handling this.
64 *
65 * Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de).
66 */
67
68 #include <common.h>
69 #include <bootretry.h>
70 #include <cli.h>
71 #include <command.h>
72 #include <dm.h>
73 #include <edid.h>
74 #include <environment.h>
75 #include <errno.h>
76 #include <i2c.h>
77 #include <malloc.h>
78 #include <asm/byteorder.h>
79 #include <linux/compiler.h>
80
81 DECLARE_GLOBAL_DATA_PTR;
82
83 /* Display values from last command.
84 * Memory modify remembered values are different from display memory.
85 */
86 static uint i2c_dp_last_chip;
87 static uint i2c_dp_last_addr;
88 static uint i2c_dp_last_alen;
89 static uint i2c_dp_last_length = 0x10;
90
91 static uint i2c_mm_last_chip;
92 static uint i2c_mm_last_addr;
93 static uint i2c_mm_last_alen;
94
95 /* If only one I2C bus is present, the list of devices to ignore when
96 * the probe command is issued is represented by a 1D array of addresses.
97 * When multiple buses are present, the list is an array of bus-address
98 * pairs. The following macros take care of this */
99
100 #if defined(CONFIG_SYS_I2C_NOPROBES)
101 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_I2C_MULTI_BUS)
102 static struct
103 {
104 uchar bus;
105 uchar addr;
106 } i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES;
107 #define GET_BUS_NUM i2c_get_bus_num()
108 #define COMPARE_BUS(b,i) (i2c_no_probes[(i)].bus == (b))
109 #define COMPARE_ADDR(a,i) (i2c_no_probes[(i)].addr == (a))
110 #define NO_PROBE_ADDR(i) i2c_no_probes[(i)].addr
111 #else /* single bus */
112 static uchar i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES;
113 #define GET_BUS_NUM 0
114 #define COMPARE_BUS(b,i) ((b) == 0) /* Make compiler happy */
115 #define COMPARE_ADDR(a,i) (i2c_no_probes[(i)] == (a))
116 #define NO_PROBE_ADDR(i) i2c_no_probes[(i)]
117 #endif /* defined(CONFIG_SYS_I2C) */
118 #endif
119
120 #define DISP_LINE_LEN 16
121
122 /*
123 * Default for driver model is to use the chip's existing address length.
124 * For legacy code, this is not stored, so we need to use a suitable
125 * default.
126 */
127 #ifdef CONFIG_DM_I2C
128 #define DEFAULT_ADDR_LEN (-1)
129 #else
130 #define DEFAULT_ADDR_LEN 1
131 #endif
132
133 #ifdef CONFIG_DM_I2C
134 static struct udevice *i2c_cur_bus;
135
136 static int cmd_i2c_set_bus_num(unsigned int busnum)
137 {
138 struct udevice *bus;
139 int ret;
140
141 ret = uclass_get_device_by_seq(UCLASS_I2C, busnum, &bus);
142 if (ret) {
143 debug("%s: No bus %d\n", __func__, busnum);
144 return ret;
145 }
146 i2c_cur_bus = bus;
147
148 return 0;
149 }
150
151 static int i2c_get_cur_bus(struct udevice **busp)
152 {
153 if (!i2c_cur_bus) {
154 puts("No I2C bus selected\n");
155 return -ENODEV;
156 }
157 *busp = i2c_cur_bus;
158
159 return 0;
160 }
161
162 static int i2c_get_cur_bus_chip(uint chip_addr, struct udevice **devp)
163 {
164 struct udevice *bus;
165 int ret;
166
167 ret = i2c_get_cur_bus(&bus);
168 if (ret)
169 return ret;
170
171 return i2c_get_chip(bus, chip_addr, 1, devp);
172 }
173
174 #endif
175
176 /**
177 * i2c_init_board() - Board-specific I2C bus init
178 *
179 * This function is the default no-op implementation of I2C bus
180 * initialization. This function can be overriden by board-specific
181 * implementation if needed.
182 */
183 __weak
184 void i2c_init_board(void)
185 {
186 }
187
188 /* TODO: Implement architecture-specific get/set functions */
189
190 /**
191 * i2c_get_bus_speed() - Return I2C bus speed
192 *
193 * This function is the default implementation of function for retrieveing
194 * the current I2C bus speed in Hz.
195 *
196 * A driver implementing runtime switching of I2C bus speed must override
197 * this function to report the speed correctly. Simple or legacy drivers
198 * can use this fallback.
199 *
200 * Returns I2C bus speed in Hz.
201 */
202 #if !defined(CONFIG_SYS_I2C) && !defined(CONFIG_DM_I2C)
203 /*
204 * TODO: Implement architecture-specific get/set functions
205 * Should go away, if we switched completely to new multibus support
206 */
207 __weak
208 unsigned int i2c_get_bus_speed(void)
209 {
210 return CONFIG_SYS_I2C_SPEED;
211 }
212
213 /**
214 * i2c_set_bus_speed() - Configure I2C bus speed
215 * @speed: Newly set speed of the I2C bus in Hz
216 *
217 * This function is the default implementation of function for setting
218 * the I2C bus speed in Hz.
219 *
220 * A driver implementing runtime switching of I2C bus speed must override
221 * this function to report the speed correctly. Simple or legacy drivers
222 * can use this fallback.
223 *
224 * Returns zero on success, negative value on error.
225 */
226 __weak
227 int i2c_set_bus_speed(unsigned int speed)
228 {
229 if (speed != CONFIG_SYS_I2C_SPEED)
230 return -1;
231
232 return 0;
233 }
234 #endif
235
236 /**
237 * get_alen() - Small parser helper function to get address length
238 *
239 * Returns the address length.
240 */
241 static uint get_alen(char *arg, int default_len)
242 {
243 int j;
244 int alen;
245
246 alen = default_len;
247 for (j = 0; j < 8; j++) {
248 if (arg[j] == '.') {
249 alen = arg[j+1] - '0';
250 break;
251 } else if (arg[j] == '\0')
252 break;
253 }
254 return alen;
255 }
256
257 enum i2c_err_op {
258 I2C_ERR_READ,
259 I2C_ERR_WRITE,
260 };
261
262 static int i2c_report_err(int ret, enum i2c_err_op op)
263 {
264 printf("Error %s the chip: %d\n",
265 op == I2C_ERR_READ ? "reading" : "writing", ret);
266
267 return CMD_RET_FAILURE;
268 }
269
270 /**
271 * do_i2c_read() - Handle the "i2c read" command-line command
272 * @cmdtp: Command data struct pointer
273 * @flag: Command flag
274 * @argc: Command-line argument count
275 * @argv: Array of command-line arguments
276 *
277 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
278 * on error.
279 *
280 * Syntax:
281 * i2c read {i2c_chip} {devaddr}{.0, .1, .2} {len} {memaddr}
282 */
283 static int do_i2c_read ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
284 {
285 uint chip;
286 uint devaddr, length;
287 int alen;
288 u_char *memaddr;
289 int ret;
290 #ifdef CONFIG_DM_I2C
291 struct udevice *dev;
292 #endif
293
294 if (argc != 5)
295 return CMD_RET_USAGE;
296
297 /*
298 * I2C chip address
299 */
300 chip = simple_strtoul(argv[1], NULL, 16);
301
302 /*
303 * I2C data address within the chip. This can be 1 or
304 * 2 bytes long. Some day it might be 3 bytes long :-).
305 */
306 devaddr = simple_strtoul(argv[2], NULL, 16);
307 alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
308 if (alen > 3)
309 return CMD_RET_USAGE;
310
311 /*
312 * Length is the number of objects, not number of bytes.
313 */
314 length = simple_strtoul(argv[3], NULL, 16);
315
316 /*
317 * memaddr is the address where to store things in memory
318 */
319 memaddr = (u_char *)simple_strtoul(argv[4], NULL, 16);
320
321 #ifdef CONFIG_DM_I2C
322 ret = i2c_get_cur_bus_chip(chip, &dev);
323 if (!ret && alen != -1)
324 ret = i2c_set_chip_offset_len(dev, alen);
325 if (!ret)
326 ret = dm_i2c_read(dev, devaddr, memaddr, length);
327 #else
328 ret = i2c_read(chip, devaddr, alen, memaddr, length);
329 #endif
330 if (ret)
331 return i2c_report_err(ret, I2C_ERR_READ);
332
333 return 0;
334 }
335
336 static int do_i2c_write(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
337 {
338 uint chip;
339 uint devaddr, length;
340 int alen;
341 u_char *memaddr;
342 int ret;
343 #ifdef CONFIG_DM_I2C
344 struct udevice *dev;
345 #endif
346
347 if (argc != 5)
348 return cmd_usage(cmdtp);
349
350 /*
351 * memaddr is the address where to store things in memory
352 */
353 memaddr = (u_char *)simple_strtoul(argv[1], NULL, 16);
354
355 /*
356 * I2C chip address
357 */
358 chip = simple_strtoul(argv[2], NULL, 16);
359
360 /*
361 * I2C data address within the chip. This can be 1 or
362 * 2 bytes long. Some day it might be 3 bytes long :-).
363 */
364 devaddr = simple_strtoul(argv[3], NULL, 16);
365 alen = get_alen(argv[3], DEFAULT_ADDR_LEN);
366 if (alen > 3)
367 return cmd_usage(cmdtp);
368
369 /*
370 * Length is the number of objects, not number of bytes.
371 */
372 length = simple_strtoul(argv[4], NULL, 16);
373
374 #ifdef CONFIG_DM_I2C
375 ret = i2c_get_cur_bus_chip(chip, &dev);
376 if (!ret && alen != -1)
377 ret = i2c_set_chip_offset_len(dev, alen);
378 if (ret)
379 return i2c_report_err(ret, I2C_ERR_WRITE);
380 #endif
381
382 while (length-- > 0) {
383 #ifdef CONFIG_DM_I2C
384 ret = dm_i2c_write(dev, devaddr++, memaddr++, 1);
385 #else
386 ret = i2c_write(chip, devaddr++, alen, memaddr++, 1);
387 #endif
388 if (ret)
389 return i2c_report_err(ret, I2C_ERR_WRITE);
390 /*
391 * No write delay with FRAM devices.
392 */
393 #if !defined(CONFIG_SYS_I2C_FRAM)
394 udelay(11000);
395 #endif
396 }
397 return 0;
398 }
399
400 #ifdef CONFIG_DM_I2C
401 static int do_i2c_flags(cmd_tbl_t *cmdtp, int flag, int argc,
402 char *const argv[])
403 {
404 struct udevice *dev;
405 uint flags;
406 int chip;
407 int ret;
408
409 if (argc < 2)
410 return CMD_RET_USAGE;
411
412 chip = simple_strtoul(argv[1], NULL, 16);
413 ret = i2c_get_cur_bus_chip(chip, &dev);
414 if (ret)
415 return i2c_report_err(ret, I2C_ERR_READ);
416
417 if (argc > 2) {
418 flags = simple_strtoul(argv[2], NULL, 16);
419 ret = i2c_set_chip_flags(dev, flags);
420 } else {
421 ret = i2c_get_chip_flags(dev, &flags);
422 if (!ret)
423 printf("%x\n", flags);
424 }
425 if (ret)
426 return i2c_report_err(ret, I2C_ERR_READ);
427
428 return 0;
429 }
430 #endif
431
432 /**
433 * do_i2c_md() - Handle the "i2c md" command-line command
434 * @cmdtp: Command data struct pointer
435 * @flag: Command flag
436 * @argc: Command-line argument count
437 * @argv: Array of command-line arguments
438 *
439 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
440 * on error.
441 *
442 * Syntax:
443 * i2c md {i2c_chip} {addr}{.0, .1, .2} {len}
444 */
445 static int do_i2c_md ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
446 {
447 uint chip;
448 uint addr, length;
449 int alen;
450 int j, nbytes, linebytes;
451 int ret;
452 #ifdef CONFIG_DM_I2C
453 struct udevice *dev;
454 #endif
455
456 /* We use the last specified parameters, unless new ones are
457 * entered.
458 */
459 chip = i2c_dp_last_chip;
460 addr = i2c_dp_last_addr;
461 alen = i2c_dp_last_alen;
462 length = i2c_dp_last_length;
463
464 if (argc < 3)
465 return CMD_RET_USAGE;
466
467 if ((flag & CMD_FLAG_REPEAT) == 0) {
468 /*
469 * New command specified.
470 */
471
472 /*
473 * I2C chip address
474 */
475 chip = simple_strtoul(argv[1], NULL, 16);
476
477 /*
478 * I2C data address within the chip. This can be 1 or
479 * 2 bytes long. Some day it might be 3 bytes long :-).
480 */
481 addr = simple_strtoul(argv[2], NULL, 16);
482 alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
483 if (alen > 3)
484 return CMD_RET_USAGE;
485
486 /*
487 * If another parameter, it is the length to display.
488 * Length is the number of objects, not number of bytes.
489 */
490 if (argc > 3)
491 length = simple_strtoul(argv[3], NULL, 16);
492 }
493
494 #ifdef CONFIG_DM_I2C
495 ret = i2c_get_cur_bus_chip(chip, &dev);
496 if (!ret && alen != -1)
497 ret = i2c_set_chip_offset_len(dev, alen);
498 if (ret)
499 return i2c_report_err(ret, I2C_ERR_READ);
500 #endif
501
502 /*
503 * Print the lines.
504 *
505 * We buffer all read data, so we can make sure data is read only
506 * once.
507 */
508 nbytes = length;
509 do {
510 unsigned char linebuf[DISP_LINE_LEN];
511 unsigned char *cp;
512
513 linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
514
515 #ifdef CONFIG_DM_I2C
516 ret = dm_i2c_read(dev, addr, linebuf, linebytes);
517 #else
518 ret = i2c_read(chip, addr, alen, linebuf, linebytes);
519 #endif
520 if (ret)
521 i2c_report_err(ret, I2C_ERR_READ);
522 else {
523 printf("%04x:", addr);
524 cp = linebuf;
525 for (j=0; j<linebytes; j++) {
526 printf(" %02x", *cp++);
527 addr++;
528 }
529 puts (" ");
530 cp = linebuf;
531 for (j=0; j<linebytes; j++) {
532 if ((*cp < 0x20) || (*cp > 0x7e))
533 puts (".");
534 else
535 printf("%c", *cp);
536 cp++;
537 }
538 putc ('\n');
539 }
540 nbytes -= linebytes;
541 } while (nbytes > 0);
542
543 i2c_dp_last_chip = chip;
544 i2c_dp_last_addr = addr;
545 i2c_dp_last_alen = alen;
546 i2c_dp_last_length = length;
547
548 return 0;
549 }
550
551 /**
552 * do_i2c_mw() - Handle the "i2c mw" command-line command
553 * @cmdtp: Command data struct pointer
554 * @flag: Command flag
555 * @argc: Command-line argument count
556 * @argv: Array of command-line arguments
557 *
558 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
559 * on error.
560 *
561 * Syntax:
562 * i2c mw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}]
563 */
564 static int do_i2c_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
565 {
566 uint chip;
567 ulong addr;
568 int alen;
569 uchar byte;
570 int count;
571 int ret;
572 #ifdef CONFIG_DM_I2C
573 struct udevice *dev;
574 #endif
575
576 if ((argc < 4) || (argc > 5))
577 return CMD_RET_USAGE;
578
579 /*
580 * Chip is always specified.
581 */
582 chip = simple_strtoul(argv[1], NULL, 16);
583
584 /*
585 * Address is always specified.
586 */
587 addr = simple_strtoul(argv[2], NULL, 16);
588 alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
589 if (alen > 3)
590 return CMD_RET_USAGE;
591
592 #ifdef CONFIG_DM_I2C
593 ret = i2c_get_cur_bus_chip(chip, &dev);
594 if (!ret && alen != -1)
595 ret = i2c_set_chip_offset_len(dev, alen);
596 if (ret)
597 return i2c_report_err(ret, I2C_ERR_WRITE);
598 #endif
599 /*
600 * Value to write is always specified.
601 */
602 byte = simple_strtoul(argv[3], NULL, 16);
603
604 /*
605 * Optional count
606 */
607 if (argc == 5)
608 count = simple_strtoul(argv[4], NULL, 16);
609 else
610 count = 1;
611
612 while (count-- > 0) {
613 #ifdef CONFIG_DM_I2C
614 ret = dm_i2c_write(dev, addr++, &byte, 1);
615 #else
616 ret = i2c_write(chip, addr++, alen, &byte, 1);
617 #endif
618 if (ret)
619 i2c_report_err(ret, I2C_ERR_WRITE);
620 /*
621 * Wait for the write to complete. The write can take
622 * up to 10mSec (we allow a little more time).
623 */
624 /*
625 * No write delay with FRAM devices.
626 */
627 #if !defined(CONFIG_SYS_I2C_FRAM)
628 udelay(11000);
629 #endif
630 }
631
632 return 0;
633 }
634
635 /**
636 * do_i2c_crc() - Handle the "i2c crc32" command-line command
637 * @cmdtp: Command data struct pointer
638 * @flag: Command flag
639 * @argc: Command-line argument count
640 * @argv: Array of command-line arguments
641 *
642 * Calculate a CRC on memory
643 *
644 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
645 * on error.
646 *
647 * Syntax:
648 * i2c crc32 {i2c_chip} {addr}{.0, .1, .2} {count}
649 */
650 static int do_i2c_crc (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
651 {
652 uint chip;
653 ulong addr;
654 int alen;
655 int count;
656 uchar byte;
657 ulong crc;
658 ulong err;
659 int ret = 0;
660 #ifdef CONFIG_DM_I2C
661 struct udevice *dev;
662 #endif
663
664 if (argc < 4)
665 return CMD_RET_USAGE;
666
667 /*
668 * Chip is always specified.
669 */
670 chip = simple_strtoul(argv[1], NULL, 16);
671
672 /*
673 * Address is always specified.
674 */
675 addr = simple_strtoul(argv[2], NULL, 16);
676 alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
677 if (alen > 3)
678 return CMD_RET_USAGE;
679
680 #ifdef CONFIG_DM_I2C
681 ret = i2c_get_cur_bus_chip(chip, &dev);
682 if (!ret && alen != -1)
683 ret = i2c_set_chip_offset_len(dev, alen);
684 if (ret)
685 return i2c_report_err(ret, I2C_ERR_READ);
686 #endif
687 /*
688 * Count is always specified
689 */
690 count = simple_strtoul(argv[3], NULL, 16);
691
692 printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1);
693 /*
694 * CRC a byte at a time. This is going to be slooow, but hey, the
695 * memories are small and slow too so hopefully nobody notices.
696 */
697 crc = 0;
698 err = 0;
699 while (count-- > 0) {
700 #ifdef CONFIG_DM_I2C
701 ret = dm_i2c_read(dev, addr, &byte, 1);
702 #else
703 ret = i2c_read(chip, addr, alen, &byte, 1);
704 #endif
705 if (ret)
706 err++;
707 crc = crc32 (crc, &byte, 1);
708 addr++;
709 }
710 if (err > 0)
711 i2c_report_err(ret, I2C_ERR_READ);
712 else
713 printf ("%08lx\n", crc);
714
715 return 0;
716 }
717
718 /**
719 * mod_i2c_mem() - Handle the "i2c mm" and "i2c nm" command-line command
720 * @cmdtp: Command data struct pointer
721 * @flag: Command flag
722 * @argc: Command-line argument count
723 * @argv: Array of command-line arguments
724 *
725 * Modify memory.
726 *
727 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
728 * on error.
729 *
730 * Syntax:
731 * i2c mm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
732 * i2c nm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
733 */
734 static int
735 mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char * const argv[])
736 {
737 uint chip;
738 ulong addr;
739 int alen;
740 ulong data;
741 int size = 1;
742 int nbytes;
743 int ret;
744 #ifdef CONFIG_DM_I2C
745 struct udevice *dev;
746 #endif
747
748 if (argc != 3)
749 return CMD_RET_USAGE;
750
751 bootretry_reset_cmd_timeout(); /* got a good command to get here */
752 /*
753 * We use the last specified parameters, unless new ones are
754 * entered.
755 */
756 chip = i2c_mm_last_chip;
757 addr = i2c_mm_last_addr;
758 alen = i2c_mm_last_alen;
759
760 if ((flag & CMD_FLAG_REPEAT) == 0) {
761 /*
762 * New command specified. Check for a size specification.
763 * Defaults to byte if no or incorrect specification.
764 */
765 size = cmd_get_data_size(argv[0], 1);
766
767 /*
768 * Chip is always specified.
769 */
770 chip = simple_strtoul(argv[1], NULL, 16);
771
772 /*
773 * Address is always specified.
774 */
775 addr = simple_strtoul(argv[2], NULL, 16);
776 alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
777 if (alen > 3)
778 return CMD_RET_USAGE;
779 }
780
781 #ifdef CONFIG_DM_I2C
782 ret = i2c_get_cur_bus_chip(chip, &dev);
783 if (!ret && alen != -1)
784 ret = i2c_set_chip_offset_len(dev, alen);
785 if (ret)
786 return i2c_report_err(ret, I2C_ERR_WRITE);
787 #endif
788
789 /*
790 * Print the address, followed by value. Then accept input for
791 * the next value. A non-converted value exits.
792 */
793 do {
794 printf("%08lx:", addr);
795 #ifdef CONFIG_DM_I2C
796 ret = dm_i2c_read(dev, addr, (uchar *)&data, size);
797 #else
798 ret = i2c_read(chip, addr, alen, (uchar *)&data, size);
799 #endif
800 if (ret)
801 i2c_report_err(ret, I2C_ERR_READ);
802 else {
803 data = cpu_to_be32(data);
804 if (size == 1)
805 printf(" %02lx", (data >> 24) & 0x000000FF);
806 else if (size == 2)
807 printf(" %04lx", (data >> 16) & 0x0000FFFF);
808 else
809 printf(" %08lx", data);
810 }
811
812 nbytes = cli_readline(" ? ");
813 if (nbytes == 0) {
814 /*
815 * <CR> pressed as only input, don't modify current
816 * location and move to next.
817 */
818 if (incrflag)
819 addr += size;
820 nbytes = size;
821 /* good enough to not time out */
822 bootretry_reset_cmd_timeout();
823 }
824 #ifdef CONFIG_BOOT_RETRY_TIME
825 else if (nbytes == -2)
826 break; /* timed out, exit the command */
827 #endif
828 else {
829 char *endp;
830
831 data = simple_strtoul(console_buffer, &endp, 16);
832 if (size == 1)
833 data = data << 24;
834 else if (size == 2)
835 data = data << 16;
836 data = be32_to_cpu(data);
837 nbytes = endp - console_buffer;
838 if (nbytes) {
839 /*
840 * good enough to not time out
841 */
842 bootretry_reset_cmd_timeout();
843 #ifdef CONFIG_DM_I2C
844 ret = dm_i2c_write(dev, addr, (uchar *)&data,
845 size);
846 #else
847 ret = i2c_write(chip, addr, alen,
848 (uchar *)&data, size);
849 #endif
850 if (ret)
851 i2c_report_err(ret, I2C_ERR_WRITE);
852 #ifdef CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS
853 udelay(CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS * 1000);
854 #endif
855 if (incrflag)
856 addr += size;
857 }
858 }
859 } while (nbytes);
860
861 i2c_mm_last_chip = chip;
862 i2c_mm_last_addr = addr;
863 i2c_mm_last_alen = alen;
864
865 return 0;
866 }
867
868 /**
869 * do_i2c_probe() - Handle the "i2c probe" command-line command
870 * @cmdtp: Command data struct pointer
871 * @flag: Command flag
872 * @argc: Command-line argument count
873 * @argv: Array of command-line arguments
874 *
875 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
876 * on error.
877 *
878 * Syntax:
879 * i2c probe {addr}
880 *
881 * Returns zero (success) if one or more I2C devices was found
882 */
883 static int do_i2c_probe (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
884 {
885 int j;
886 int addr = -1;
887 int found = 0;
888 #if defined(CONFIG_SYS_I2C_NOPROBES)
889 int k, skip;
890 unsigned int bus = GET_BUS_NUM;
891 #endif /* NOPROBES */
892 int ret;
893 #ifdef CONFIG_DM_I2C
894 struct udevice *bus, *dev;
895
896 if (i2c_get_cur_bus(&bus))
897 return CMD_RET_FAILURE;
898 #endif
899
900 if (argc == 2)
901 addr = simple_strtol(argv[1], 0, 16);
902
903 puts ("Valid chip addresses:");
904 for (j = 0; j < 128; j++) {
905 if ((0 <= addr) && (j != addr))
906 continue;
907
908 #if defined(CONFIG_SYS_I2C_NOPROBES)
909 skip = 0;
910 for (k = 0; k < ARRAY_SIZE(i2c_no_probes); k++) {
911 if (COMPARE_BUS(bus, k) && COMPARE_ADDR(j, k)) {
912 skip = 1;
913 break;
914 }
915 }
916 if (skip)
917 continue;
918 #endif
919 #ifdef CONFIG_DM_I2C
920 ret = dm_i2c_probe(bus, j, 0, &dev);
921 #else
922 ret = i2c_probe(j);
923 #endif
924 if (ret == 0) {
925 printf(" %02X", j);
926 found++;
927 }
928 }
929 putc ('\n');
930
931 #if defined(CONFIG_SYS_I2C_NOPROBES)
932 puts ("Excluded chip addresses:");
933 for (k = 0; k < ARRAY_SIZE(i2c_no_probes); k++) {
934 if (COMPARE_BUS(bus,k))
935 printf(" %02X", NO_PROBE_ADDR(k));
936 }
937 putc ('\n');
938 #endif
939
940 return (0 == found);
941 }
942
943 /**
944 * do_i2c_loop() - Handle the "i2c loop" command-line command
945 * @cmdtp: Command data struct pointer
946 * @flag: Command flag
947 * @argc: Command-line argument count
948 * @argv: Array of command-line arguments
949 *
950 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
951 * on error.
952 *
953 * Syntax:
954 * i2c loop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}]
955 * {length} - Number of bytes to read
956 * {delay} - A DECIMAL number and defaults to 1000 uSec
957 */
958 static int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
959 {
960 uint chip;
961 int alen;
962 uint addr;
963 uint length;
964 u_char bytes[16];
965 int delay;
966 int ret;
967 #ifdef CONFIG_DM_I2C
968 struct udevice *dev;
969 #endif
970
971 if (argc < 3)
972 return CMD_RET_USAGE;
973
974 /*
975 * Chip is always specified.
976 */
977 chip = simple_strtoul(argv[1], NULL, 16);
978
979 /*
980 * Address is always specified.
981 */
982 addr = simple_strtoul(argv[2], NULL, 16);
983 alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
984 if (alen > 3)
985 return CMD_RET_USAGE;
986 #ifdef CONFIG_DM_I2C
987 ret = i2c_get_cur_bus_chip(chip, &dev);
988 if (!ret && alen != -1)
989 ret = i2c_set_chip_offset_len(dev, alen);
990 if (ret)
991 return i2c_report_err(ret, I2C_ERR_WRITE);
992 #endif
993
994 /*
995 * Length is the number of objects, not number of bytes.
996 */
997 length = 1;
998 length = simple_strtoul(argv[3], NULL, 16);
999 if (length > sizeof(bytes))
1000 length = sizeof(bytes);
1001
1002 /*
1003 * The delay time (uSec) is optional.
1004 */
1005 delay = 1000;
1006 if (argc > 3)
1007 delay = simple_strtoul(argv[4], NULL, 10);
1008 /*
1009 * Run the loop...
1010 */
1011 while (1) {
1012 #ifdef CONFIG_DM_I2C
1013 ret = dm_i2c_read(dev, addr, bytes, length);
1014 #else
1015 ret = i2c_read(chip, addr, alen, bytes, length);
1016 #endif
1017 if (ret)
1018 i2c_report_err(ret, I2C_ERR_READ);
1019 udelay(delay);
1020 }
1021
1022 /* NOTREACHED */
1023 return 0;
1024 }
1025
1026 /*
1027 * The SDRAM command is separately configured because many
1028 * (most?) embedded boards don't use SDRAM DIMMs.
1029 *
1030 * FIXME: Document and probably move elsewhere!
1031 */
1032 #if defined(CONFIG_CMD_SDRAM)
1033 static void print_ddr2_tcyc (u_char const b)
1034 {
1035 printf ("%d.", (b >> 4) & 0x0F);
1036 switch (b & 0x0F) {
1037 case 0x0:
1038 case 0x1:
1039 case 0x2:
1040 case 0x3:
1041 case 0x4:
1042 case 0x5:
1043 case 0x6:
1044 case 0x7:
1045 case 0x8:
1046 case 0x9:
1047 printf ("%d ns\n", b & 0x0F);
1048 break;
1049 case 0xA:
1050 puts ("25 ns\n");
1051 break;
1052 case 0xB:
1053 puts ("33 ns\n");
1054 break;
1055 case 0xC:
1056 puts ("66 ns\n");
1057 break;
1058 case 0xD:
1059 puts ("75 ns\n");
1060 break;
1061 default:
1062 puts ("?? ns\n");
1063 break;
1064 }
1065 }
1066
1067 static void decode_bits (u_char const b, char const *str[], int const do_once)
1068 {
1069 u_char mask;
1070
1071 for (mask = 0x80; mask != 0x00; mask >>= 1, ++str) {
1072 if (b & mask) {
1073 puts (*str);
1074 if (do_once)
1075 return;
1076 }
1077 }
1078 }
1079
1080 /*
1081 * Syntax:
1082 * i2c sdram {i2c_chip}
1083 */
1084 static int do_sdram (cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1085 {
1086 enum { unknown, EDO, SDRAM, DDR2 } type;
1087
1088 uint chip;
1089 u_char data[128];
1090 u_char cksum;
1091 int j;
1092
1093 static const char *decode_CAS_DDR2[] = {
1094 " TBD", " 6", " 5", " 4", " 3", " 2", " TBD", " TBD"
1095 };
1096
1097 static const char *decode_CAS_default[] = {
1098 " TBD", " 7", " 6", " 5", " 4", " 3", " 2", " 1"
1099 };
1100
1101 static const char *decode_CS_WE_default[] = {
1102 " TBD", " 6", " 5", " 4", " 3", " 2", " 1", " 0"
1103 };
1104
1105 static const char *decode_byte21_default[] = {
1106 " TBD (bit 7)\n",
1107 " Redundant row address\n",
1108 " Differential clock input\n",
1109 " Registerd DQMB inputs\n",
1110 " Buffered DQMB inputs\n",
1111 " On-card PLL\n",
1112 " Registered address/control lines\n",
1113 " Buffered address/control lines\n"
1114 };
1115
1116 static const char *decode_byte22_DDR2[] = {
1117 " TBD (bit 7)\n",
1118 " TBD (bit 6)\n",
1119 " TBD (bit 5)\n",
1120 " TBD (bit 4)\n",
1121 " TBD (bit 3)\n",
1122 " Supports partial array self refresh\n",
1123 " Supports 50 ohm ODT\n",
1124 " Supports weak driver\n"
1125 };
1126
1127 static const char *decode_row_density_DDR2[] = {
1128 "512 MiB", "256 MiB", "128 MiB", "16 GiB",
1129 "8 GiB", "4 GiB", "2 GiB", "1 GiB"
1130 };
1131
1132 static const char *decode_row_density_default[] = {
1133 "512 MiB", "256 MiB", "128 MiB", "64 MiB",
1134 "32 MiB", "16 MiB", "8 MiB", "4 MiB"
1135 };
1136
1137 if (argc < 2)
1138 return CMD_RET_USAGE;
1139
1140 /*
1141 * Chip is always specified.
1142 */
1143 chip = simple_strtoul (argv[1], NULL, 16);
1144
1145 if (i2c_read (chip, 0, 1, data, sizeof (data)) != 0) {
1146 puts ("No SDRAM Serial Presence Detect found.\n");
1147 return 1;
1148 }
1149
1150 cksum = 0;
1151 for (j = 0; j < 63; j++) {
1152 cksum += data[j];
1153 }
1154 if (cksum != data[63]) {
1155 printf ("WARNING: Configuration data checksum failure:\n"
1156 " is 0x%02x, calculated 0x%02x\n", data[63], cksum);
1157 }
1158 printf ("SPD data revision %d.%d\n",
1159 (data[62] >> 4) & 0x0F, data[62] & 0x0F);
1160 printf ("Bytes used 0x%02X\n", data[0]);
1161 printf ("Serial memory size 0x%02X\n", 1 << data[1]);
1162
1163 puts ("Memory type ");
1164 switch (data[2]) {
1165 case 2:
1166 type = EDO;
1167 puts ("EDO\n");
1168 break;
1169 case 4:
1170 type = SDRAM;
1171 puts ("SDRAM\n");
1172 break;
1173 case 8:
1174 type = DDR2;
1175 puts ("DDR2\n");
1176 break;
1177 default:
1178 type = unknown;
1179 puts ("unknown\n");
1180 break;
1181 }
1182
1183 puts ("Row address bits ");
1184 if ((data[3] & 0x00F0) == 0)
1185 printf ("%d\n", data[3] & 0x0F);
1186 else
1187 printf ("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
1188
1189 puts ("Column address bits ");
1190 if ((data[4] & 0x00F0) == 0)
1191 printf ("%d\n", data[4] & 0x0F);
1192 else
1193 printf ("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
1194
1195 switch (type) {
1196 case DDR2:
1197 printf ("Number of ranks %d\n",
1198 (data[5] & 0x07) + 1);
1199 break;
1200 default:
1201 printf ("Module rows %d\n", data[5]);
1202 break;
1203 }
1204
1205 switch (type) {
1206 case DDR2:
1207 printf ("Module data width %d bits\n", data[6]);
1208 break;
1209 default:
1210 printf ("Module data width %d bits\n",
1211 (data[7] << 8) | data[6]);
1212 break;
1213 }
1214
1215 puts ("Interface signal levels ");
1216 switch(data[8]) {
1217 case 0: puts ("TTL 5.0 V\n"); break;
1218 case 1: puts ("LVTTL\n"); break;
1219 case 2: puts ("HSTL 1.5 V\n"); break;
1220 case 3: puts ("SSTL 3.3 V\n"); break;
1221 case 4: puts ("SSTL 2.5 V\n"); break;
1222 case 5: puts ("SSTL 1.8 V\n"); break;
1223 default: puts ("unknown\n"); break;
1224 }
1225
1226 switch (type) {
1227 case DDR2:
1228 printf ("SDRAM cycle time ");
1229 print_ddr2_tcyc (data[9]);
1230 break;
1231 default:
1232 printf ("SDRAM cycle time %d.%d ns\n",
1233 (data[9] >> 4) & 0x0F, data[9] & 0x0F);
1234 break;
1235 }
1236
1237 switch (type) {
1238 case DDR2:
1239 printf ("SDRAM access time 0.%d%d ns\n",
1240 (data[10] >> 4) & 0x0F, data[10] & 0x0F);
1241 break;
1242 default:
1243 printf ("SDRAM access time %d.%d ns\n",
1244 (data[10] >> 4) & 0x0F, data[10] & 0x0F);
1245 break;
1246 }
1247
1248 puts ("EDC configuration ");
1249 switch (data[11]) {
1250 case 0: puts ("None\n"); break;
1251 case 1: puts ("Parity\n"); break;
1252 case 2: puts ("ECC\n"); break;
1253 default: puts ("unknown\n"); break;
1254 }
1255
1256 if ((data[12] & 0x80) == 0)
1257 puts ("No self refresh, rate ");
1258 else
1259 puts ("Self refresh, rate ");
1260
1261 switch(data[12] & 0x7F) {
1262 case 0: puts ("15.625 us\n"); break;
1263 case 1: puts ("3.9 us\n"); break;
1264 case 2: puts ("7.8 us\n"); break;
1265 case 3: puts ("31.3 us\n"); break;
1266 case 4: puts ("62.5 us\n"); break;
1267 case 5: puts ("125 us\n"); break;
1268 default: puts ("unknown\n"); break;
1269 }
1270
1271 switch (type) {
1272 case DDR2:
1273 printf ("SDRAM width (primary) %d\n", data[13]);
1274 break;
1275 default:
1276 printf ("SDRAM width (primary) %d\n", data[13] & 0x7F);
1277 if ((data[13] & 0x80) != 0) {
1278 printf (" (second bank) %d\n",
1279 2 * (data[13] & 0x7F));
1280 }
1281 break;
1282 }
1283
1284 switch (type) {
1285 case DDR2:
1286 if (data[14] != 0)
1287 printf ("EDC width %d\n", data[14]);
1288 break;
1289 default:
1290 if (data[14] != 0) {
1291 printf ("EDC width %d\n",
1292 data[14] & 0x7F);
1293
1294 if ((data[14] & 0x80) != 0) {
1295 printf (" (second bank) %d\n",
1296 2 * (data[14] & 0x7F));
1297 }
1298 }
1299 break;
1300 }
1301
1302 if (DDR2 != type) {
1303 printf ("Min clock delay, back-to-back random column addresses "
1304 "%d\n", data[15]);
1305 }
1306
1307 puts ("Burst length(s) ");
1308 if (data[16] & 0x80) puts (" Page");
1309 if (data[16] & 0x08) puts (" 8");
1310 if (data[16] & 0x04) puts (" 4");
1311 if (data[16] & 0x02) puts (" 2");
1312 if (data[16] & 0x01) puts (" 1");
1313 putc ('\n');
1314 printf ("Number of banks %d\n", data[17]);
1315
1316 switch (type) {
1317 case DDR2:
1318 puts ("CAS latency(s) ");
1319 decode_bits (data[18], decode_CAS_DDR2, 0);
1320 putc ('\n');
1321 break;
1322 default:
1323 puts ("CAS latency(s) ");
1324 decode_bits (data[18], decode_CAS_default, 0);
1325 putc ('\n');
1326 break;
1327 }
1328
1329 if (DDR2 != type) {
1330 puts ("CS latency(s) ");
1331 decode_bits (data[19], decode_CS_WE_default, 0);
1332 putc ('\n');
1333 }
1334
1335 if (DDR2 != type) {
1336 puts ("WE latency(s) ");
1337 decode_bits (data[20], decode_CS_WE_default, 0);
1338 putc ('\n');
1339 }
1340
1341 switch (type) {
1342 case DDR2:
1343 puts ("Module attributes:\n");
1344 if (data[21] & 0x80)
1345 puts (" TBD (bit 7)\n");
1346 if (data[21] & 0x40)
1347 puts (" Analysis probe installed\n");
1348 if (data[21] & 0x20)
1349 puts (" TBD (bit 5)\n");
1350 if (data[21] & 0x10)
1351 puts (" FET switch external enable\n");
1352 printf (" %d PLLs on DIMM\n", (data[21] >> 2) & 0x03);
1353 if (data[20] & 0x11) {
1354 printf (" %d active registers on DIMM\n",
1355 (data[21] & 0x03) + 1);
1356 }
1357 break;
1358 default:
1359 puts ("Module attributes:\n");
1360 if (!data[21])
1361 puts (" (none)\n");
1362 else
1363 decode_bits (data[21], decode_byte21_default, 0);
1364 break;
1365 }
1366
1367 switch (type) {
1368 case DDR2:
1369 decode_bits (data[22], decode_byte22_DDR2, 0);
1370 break;
1371 default:
1372 puts ("Device attributes:\n");
1373 if (data[22] & 0x80) puts (" TBD (bit 7)\n");
1374 if (data[22] & 0x40) puts (" TBD (bit 6)\n");
1375 if (data[22] & 0x20) puts (" Upper Vcc tolerance 5%\n");
1376 else puts (" Upper Vcc tolerance 10%\n");
1377 if (data[22] & 0x10) puts (" Lower Vcc tolerance 5%\n");
1378 else puts (" Lower Vcc tolerance 10%\n");
1379 if (data[22] & 0x08) puts (" Supports write1/read burst\n");
1380 if (data[22] & 0x04) puts (" Supports precharge all\n");
1381 if (data[22] & 0x02) puts (" Supports auto precharge\n");
1382 if (data[22] & 0x01) puts (" Supports early RAS# precharge\n");
1383 break;
1384 }
1385
1386 switch (type) {
1387 case DDR2:
1388 printf ("SDRAM cycle time (2nd highest CAS latency) ");
1389 print_ddr2_tcyc (data[23]);
1390 break;
1391 default:
1392 printf ("SDRAM cycle time (2nd highest CAS latency) %d."
1393 "%d ns\n", (data[23] >> 4) & 0x0F, data[23] & 0x0F);
1394 break;
1395 }
1396
1397 switch (type) {
1398 case DDR2:
1399 printf ("SDRAM access from clock (2nd highest CAS latency) 0."
1400 "%d%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
1401 break;
1402 default:
1403 printf ("SDRAM access from clock (2nd highest CAS latency) %d."
1404 "%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
1405 break;
1406 }
1407
1408 switch (type) {
1409 case DDR2:
1410 printf ("SDRAM cycle time (3rd highest CAS latency) ");
1411 print_ddr2_tcyc (data[25]);
1412 break;
1413 default:
1414 printf ("SDRAM cycle time (3rd highest CAS latency) %d."
1415 "%d ns\n", (data[25] >> 4) & 0x0F, data[25] & 0x0F);
1416 break;
1417 }
1418
1419 switch (type) {
1420 case DDR2:
1421 printf ("SDRAM access from clock (3rd highest CAS latency) 0."
1422 "%d%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
1423 break;
1424 default:
1425 printf ("SDRAM access from clock (3rd highest CAS latency) %d."
1426 "%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
1427 break;
1428 }
1429
1430 switch (type) {
1431 case DDR2:
1432 printf ("Minimum row precharge %d.%02d ns\n",
1433 (data[27] >> 2) & 0x3F, 25 * (data[27] & 0x03));
1434 break;
1435 default:
1436 printf ("Minimum row precharge %d ns\n", data[27]);
1437 break;
1438 }
1439
1440 switch (type) {
1441 case DDR2:
1442 printf ("Row active to row active min %d.%02d ns\n",
1443 (data[28] >> 2) & 0x3F, 25 * (data[28] & 0x03));
1444 break;
1445 default:
1446 printf ("Row active to row active min %d ns\n", data[28]);
1447 break;
1448 }
1449
1450 switch (type) {
1451 case DDR2:
1452 printf ("RAS to CAS delay min %d.%02d ns\n",
1453 (data[29] >> 2) & 0x3F, 25 * (data[29] & 0x03));
1454 break;
1455 default:
1456 printf ("RAS to CAS delay min %d ns\n", data[29]);
1457 break;
1458 }
1459
1460 printf ("Minimum RAS pulse width %d ns\n", data[30]);
1461
1462 switch (type) {
1463 case DDR2:
1464 puts ("Density of each row ");
1465 decode_bits (data[31], decode_row_density_DDR2, 1);
1466 putc ('\n');
1467 break;
1468 default:
1469 puts ("Density of each row ");
1470 decode_bits (data[31], decode_row_density_default, 1);
1471 putc ('\n');
1472 break;
1473 }
1474
1475 switch (type) {
1476 case DDR2:
1477 puts ("Command and Address setup ");
1478 if (data[32] >= 0xA0) {
1479 printf ("1.%d%d ns\n",
1480 ((data[32] >> 4) & 0x0F) - 10, data[32] & 0x0F);
1481 } else {
1482 printf ("0.%d%d ns\n",
1483 ((data[32] >> 4) & 0x0F), data[32] & 0x0F);
1484 }
1485 break;
1486 default:
1487 printf ("Command and Address setup %c%d.%d ns\n",
1488 (data[32] & 0x80) ? '-' : '+',
1489 (data[32] >> 4) & 0x07, data[32] & 0x0F);
1490 break;
1491 }
1492
1493 switch (type) {
1494 case DDR2:
1495 puts ("Command and Address hold ");
1496 if (data[33] >= 0xA0) {
1497 printf ("1.%d%d ns\n",
1498 ((data[33] >> 4) & 0x0F) - 10, data[33] & 0x0F);
1499 } else {
1500 printf ("0.%d%d ns\n",
1501 ((data[33] >> 4) & 0x0F), data[33] & 0x0F);
1502 }
1503 break;
1504 default:
1505 printf ("Command and Address hold %c%d.%d ns\n",
1506 (data[33] & 0x80) ? '-' : '+',
1507 (data[33] >> 4) & 0x07, data[33] & 0x0F);
1508 break;
1509 }
1510
1511 switch (type) {
1512 case DDR2:
1513 printf ("Data signal input setup 0.%d%d ns\n",
1514 (data[34] >> 4) & 0x0F, data[34] & 0x0F);
1515 break;
1516 default:
1517 printf ("Data signal input setup %c%d.%d ns\n",
1518 (data[34] & 0x80) ? '-' : '+',
1519 (data[34] >> 4) & 0x07, data[34] & 0x0F);
1520 break;
1521 }
1522
1523 switch (type) {
1524 case DDR2:
1525 printf ("Data signal input hold 0.%d%d ns\n",
1526 (data[35] >> 4) & 0x0F, data[35] & 0x0F);
1527 break;
1528 default:
1529 printf ("Data signal input hold %c%d.%d ns\n",
1530 (data[35] & 0x80) ? '-' : '+',
1531 (data[35] >> 4) & 0x07, data[35] & 0x0F);
1532 break;
1533 }
1534
1535 puts ("Manufacturer's JEDEC ID ");
1536 for (j = 64; j <= 71; j++)
1537 printf ("%02X ", data[j]);
1538 putc ('\n');
1539 printf ("Manufacturing Location %02X\n", data[72]);
1540 puts ("Manufacturer's Part Number ");
1541 for (j = 73; j <= 90; j++)
1542 printf ("%02X ", data[j]);
1543 putc ('\n');
1544 printf ("Revision Code %02X %02X\n", data[91], data[92]);
1545 printf ("Manufacturing Date %02X %02X\n", data[93], data[94]);
1546 puts ("Assembly Serial Number ");
1547 for (j = 95; j <= 98; j++)
1548 printf ("%02X ", data[j]);
1549 putc ('\n');
1550
1551 if (DDR2 != type) {
1552 printf ("Speed rating PC%d\n",
1553 data[126] == 0x66 ? 66 : data[126]);
1554 }
1555 return 0;
1556 }
1557 #endif
1558
1559 /*
1560 * Syntax:
1561 * i2c edid {i2c_chip}
1562 */
1563 #if defined(CONFIG_I2C_EDID)
1564 int do_edid(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
1565 {
1566 uint chip;
1567 struct edid1_info edid;
1568 int ret;
1569 #ifdef CONFIG_DM_I2C
1570 struct udevice *dev;
1571 #endif
1572
1573 if (argc < 2) {
1574 cmd_usage(cmdtp);
1575 return 1;
1576 }
1577
1578 chip = simple_strtoul(argv[1], NULL, 16);
1579 #ifdef CONFIG_DM_I2C
1580 ret = i2c_get_cur_bus_chip(chip, &dev);
1581 if (!ret)
1582 ret = dm_i2c_read(dev, 0, (uchar *)&edid, sizeof(edid));
1583 #else
1584 ret = i2c_read(chip, 0, 1, (uchar *)&edid, sizeof(edid));
1585 #endif
1586 if (ret)
1587 return i2c_report_err(ret, I2C_ERR_READ);
1588
1589 if (edid_check_info(&edid)) {
1590 puts("Content isn't valid EDID.\n");
1591 return 1;
1592 }
1593
1594 edid_print_info(&edid);
1595 return 0;
1596
1597 }
1598 #endif /* CONFIG_I2C_EDID */
1599
1600 /**
1601 * do_i2c_show_bus() - Handle the "i2c bus" command-line command
1602 * @cmdtp: Command data struct pointer
1603 * @flag: Command flag
1604 * @argc: Command-line argument count
1605 * @argv: Array of command-line arguments
1606 *
1607 * Returns zero always.
1608 */
1609 #if defined(CONFIG_SYS_I2C)
1610 static int do_i2c_show_bus(cmd_tbl_t *cmdtp, int flag, int argc,
1611 char * const argv[])
1612 {
1613 int i;
1614 #ifndef CONFIG_SYS_I2C_DIRECT_BUS
1615 int j;
1616 #endif
1617
1618 if (argc == 1) {
1619 /* show all busses */
1620 for (i = 0; i < CONFIG_SYS_NUM_I2C_BUSES; i++) {
1621 printf("Bus %d:\t%s", i, I2C_ADAP_NR(i)->name);
1622 #ifndef CONFIG_SYS_I2C_DIRECT_BUS
1623 for (j = 0; j < CONFIG_SYS_I2C_MAX_HOPS; j++) {
1624 if (i2c_bus[i].next_hop[j].chip == 0)
1625 break;
1626 printf("->%s@0x%2x:%d",
1627 i2c_bus[i].next_hop[j].mux.name,
1628 i2c_bus[i].next_hop[j].chip,
1629 i2c_bus[i].next_hop[j].channel);
1630 }
1631 #endif
1632 printf("\n");
1633 }
1634 } else {
1635 /* show specific bus */
1636 i = simple_strtoul(argv[1], NULL, 10);
1637 if (i >= CONFIG_SYS_NUM_I2C_BUSES) {
1638 printf("Invalid bus %d\n", i);
1639 return -1;
1640 }
1641 printf("Bus %d:\t%s", i, I2C_ADAP_NR(i)->name);
1642 #ifndef CONFIG_SYS_I2C_DIRECT_BUS
1643 for (j = 0; j < CONFIG_SYS_I2C_MAX_HOPS; j++) {
1644 if (i2c_bus[i].next_hop[j].chip == 0)
1645 break;
1646 printf("->%s@0x%2x:%d",
1647 i2c_bus[i].next_hop[j].mux.name,
1648 i2c_bus[i].next_hop[j].chip,
1649 i2c_bus[i].next_hop[j].channel);
1650 }
1651 #endif
1652 printf("\n");
1653 }
1654
1655 return 0;
1656 }
1657 #endif
1658
1659 /**
1660 * do_i2c_bus_num() - Handle the "i2c dev" command-line command
1661 * @cmdtp: Command data struct pointer
1662 * @flag: Command flag
1663 * @argc: Command-line argument count
1664 * @argv: Array of command-line arguments
1665 *
1666 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1667 * on error.
1668 */
1669 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_I2C_MULTI_BUS) || \
1670 defined(CONFIG_DM_I2C)
1671 static int do_i2c_bus_num(cmd_tbl_t *cmdtp, int flag, int argc,
1672 char * const argv[])
1673 {
1674 int ret = 0;
1675 int bus_no;
1676
1677 if (argc == 1) {
1678 /* querying current setting */
1679 #ifdef CONFIG_DM_I2C
1680 struct udevice *bus;
1681
1682 if (!i2c_get_cur_bus(&bus))
1683 bus_no = bus->seq;
1684 else
1685 bus_no = -1;
1686 #else
1687 bus_no = i2c_get_bus_num();
1688 #endif
1689 printf("Current bus is %d\n", bus_no);
1690 } else {
1691 bus_no = simple_strtoul(argv[1], NULL, 10);
1692 #if defined(CONFIG_SYS_I2C)
1693 if (bus_no >= CONFIG_SYS_NUM_I2C_BUSES) {
1694 printf("Invalid bus %d\n", bus_no);
1695 return -1;
1696 }
1697 #endif
1698 printf("Setting bus to %d\n", bus_no);
1699 #ifdef CONFIG_DM_I2C
1700 ret = cmd_i2c_set_bus_num(bus_no);
1701 #else
1702 ret = i2c_set_bus_num(bus_no);
1703 #endif
1704 if (ret)
1705 printf("Failure changing bus number (%d)\n", ret);
1706 }
1707 return ret;
1708 }
1709 #endif /* defined(CONFIG_SYS_I2C) */
1710
1711 /**
1712 * do_i2c_bus_speed() - Handle the "i2c speed" command-line command
1713 * @cmdtp: Command data struct pointer
1714 * @flag: Command flag
1715 * @argc: Command-line argument count
1716 * @argv: Array of command-line arguments
1717 *
1718 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1719 * on error.
1720 */
1721 static int do_i2c_bus_speed(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1722 {
1723 int speed, ret=0;
1724
1725 #ifdef CONFIG_DM_I2C
1726 struct udevice *bus;
1727
1728 if (i2c_get_cur_bus(&bus))
1729 return 1;
1730 #endif
1731 if (argc == 1) {
1732 #ifdef CONFIG_DM_I2C
1733 speed = i2c_get_bus_speed(bus);
1734 #else
1735 speed = i2c_get_bus_speed();
1736 #endif
1737 /* querying current speed */
1738 printf("Current bus speed=%d\n", speed);
1739 } else {
1740 speed = simple_strtoul(argv[1], NULL, 10);
1741 printf("Setting bus speed to %d Hz\n", speed);
1742 #ifdef CONFIG_DM_I2C
1743 ret = i2c_set_bus_speed(bus, speed);
1744 #else
1745 ret = i2c_set_bus_speed(speed);
1746 #endif
1747 if (ret)
1748 printf("Failure changing bus speed (%d)\n", ret);
1749 }
1750 return ret;
1751 }
1752
1753 /**
1754 * do_i2c_mm() - Handle the "i2c mm" command-line command
1755 * @cmdtp: Command data struct pointer
1756 * @flag: Command flag
1757 * @argc: Command-line argument count
1758 * @argv: Array of command-line arguments
1759 *
1760 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1761 * on error.
1762 */
1763 static int do_i2c_mm(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1764 {
1765 return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
1766 }
1767
1768 /**
1769 * do_i2c_nm() - Handle the "i2c nm" command-line command
1770 * @cmdtp: Command data struct pointer
1771 * @flag: Command flag
1772 * @argc: Command-line argument count
1773 * @argv: Array of command-line arguments
1774 *
1775 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1776 * on error.
1777 */
1778 static int do_i2c_nm(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1779 {
1780 return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
1781 }
1782
1783 /**
1784 * do_i2c_reset() - Handle the "i2c reset" command-line command
1785 * @cmdtp: Command data struct pointer
1786 * @flag: Command flag
1787 * @argc: Command-line argument count
1788 * @argv: Array of command-line arguments
1789 *
1790 * Returns zero always.
1791 */
1792 static int do_i2c_reset(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1793 {
1794 #if defined(CONFIG_DM_I2C)
1795 struct udevice *bus;
1796
1797 if (i2c_get_cur_bus(&bus))
1798 return CMD_RET_FAILURE;
1799 if (i2c_deblock(bus)) {
1800 printf("Error: Not supported by the driver\n");
1801 return CMD_RET_FAILURE;
1802 }
1803 #elif defined(CONFIG_SYS_I2C)
1804 i2c_init(I2C_ADAP->speed, I2C_ADAP->slaveaddr);
1805 #else
1806 i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
1807 #endif
1808 return 0;
1809 }
1810
1811 static cmd_tbl_t cmd_i2c_sub[] = {
1812 #if defined(CONFIG_SYS_I2C)
1813 U_BOOT_CMD_MKENT(bus, 1, 1, do_i2c_show_bus, "", ""),
1814 #endif
1815 U_BOOT_CMD_MKENT(crc32, 3, 1, do_i2c_crc, "", ""),
1816 #if defined(CONFIG_SYS_I2C) || \
1817 defined(CONFIG_I2C_MULTI_BUS) || defined(CONFIG_DM_I2C)
1818 U_BOOT_CMD_MKENT(dev, 1, 1, do_i2c_bus_num, "", ""),
1819 #endif /* CONFIG_I2C_MULTI_BUS */
1820 #if defined(CONFIG_I2C_EDID)
1821 U_BOOT_CMD_MKENT(edid, 1, 1, do_edid, "", ""),
1822 #endif /* CONFIG_I2C_EDID */
1823 U_BOOT_CMD_MKENT(loop, 3, 1, do_i2c_loop, "", ""),
1824 U_BOOT_CMD_MKENT(md, 3, 1, do_i2c_md, "", ""),
1825 U_BOOT_CMD_MKENT(mm, 2, 1, do_i2c_mm, "", ""),
1826 U_BOOT_CMD_MKENT(mw, 3, 1, do_i2c_mw, "", ""),
1827 U_BOOT_CMD_MKENT(nm, 2, 1, do_i2c_nm, "", ""),
1828 U_BOOT_CMD_MKENT(probe, 0, 1, do_i2c_probe, "", ""),
1829 U_BOOT_CMD_MKENT(read, 5, 1, do_i2c_read, "", ""),
1830 U_BOOT_CMD_MKENT(write, 5, 0, do_i2c_write, "", ""),
1831 #ifdef CONFIG_DM_I2C
1832 U_BOOT_CMD_MKENT(flags, 2, 1, do_i2c_flags, "", ""),
1833 #endif
1834 U_BOOT_CMD_MKENT(reset, 0, 1, do_i2c_reset, "", ""),
1835 #if defined(CONFIG_CMD_SDRAM)
1836 U_BOOT_CMD_MKENT(sdram, 1, 1, do_sdram, "", ""),
1837 #endif
1838 U_BOOT_CMD_MKENT(speed, 1, 1, do_i2c_bus_speed, "", ""),
1839 };
1840
1841 #ifdef CONFIG_NEEDS_MANUAL_RELOC
1842 void i2c_reloc(void) {
1843 fixup_cmdtable(cmd_i2c_sub, ARRAY_SIZE(cmd_i2c_sub));
1844 }
1845 #endif
1846
1847 /**
1848 * do_i2c() - Handle the "i2c" command-line command
1849 * @cmdtp: Command data struct pointer
1850 * @flag: Command flag
1851 * @argc: Command-line argument count
1852 * @argv: Array of command-line arguments
1853 *
1854 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1855 * on error.
1856 */
1857 static int do_i2c(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1858 {
1859 cmd_tbl_t *c;
1860
1861 if (argc < 2)
1862 return CMD_RET_USAGE;
1863
1864 /* Strip off leading 'i2c' command argument */
1865 argc--;
1866 argv++;
1867
1868 c = find_cmd_tbl(argv[0], &cmd_i2c_sub[0], ARRAY_SIZE(cmd_i2c_sub));
1869
1870 if (c)
1871 return c->cmd(cmdtp, flag, argc, argv);
1872 else
1873 return CMD_RET_USAGE;
1874 }
1875
1876 /***************************************************/
1877 #ifdef CONFIG_SYS_LONGHELP
1878 static char i2c_help_text[] =
1879 #if defined(CONFIG_SYS_I2C)
1880 "bus [muxtype:muxaddr:muxchannel] - show I2C bus info\n"
1881 #endif
1882 "crc32 chip address[.0, .1, .2] count - compute CRC32 checksum\n"
1883 #if defined(CONFIG_SYS_I2C) || \
1884 defined(CONFIG_I2C_MULTI_BUS) || defined(CONFIG_DM_I2C)
1885 "i2c dev [dev] - show or set current I2C bus\n"
1886 #endif /* CONFIG_I2C_MULTI_BUS */
1887 #if defined(CONFIG_I2C_EDID)
1888 "i2c edid chip - print EDID configuration information\n"
1889 #endif /* CONFIG_I2C_EDID */
1890 "i2c loop chip address[.0, .1, .2] [# of objects] - looping read of device\n"
1891 "i2c md chip address[.0, .1, .2] [# of objects] - read from I2C device\n"
1892 "i2c mm chip address[.0, .1, .2] - write to I2C device (auto-incrementing)\n"
1893 "i2c mw chip address[.0, .1, .2] value [count] - write to I2C device (fill)\n"
1894 "i2c nm chip address[.0, .1, .2] - write to I2C device (constant address)\n"
1895 "i2c probe [address] - test for and show device(s) on the I2C bus\n"
1896 "i2c read chip address[.0, .1, .2] length memaddress - read to memory\n"
1897 "i2c write memaddress chip address[.0, .1, .2] length - write memory to i2c\n"
1898 #ifdef CONFIG_DM_I2C
1899 "i2c flags chip [flags] - set or get chip flags\n"
1900 #endif
1901 "i2c reset - re-init the I2C Controller\n"
1902 #if defined(CONFIG_CMD_SDRAM)
1903 "i2c sdram chip - print SDRAM configuration information\n"
1904 #endif
1905 "i2c speed [speed] - show or set I2C bus speed";
1906 #endif
1907
1908 U_BOOT_CMD(
1909 i2c, 6, 1, do_i2c,
1910 "I2C sub-system",
1911 i2c_help_text
1912 );