]> git.ipfire.org Git - people/ms/u-boot.git/blob - common/cmd_i2c.c
Merge with git://www.denx.de/git/u-boot.git
[people/ms/u-boot.git] / common / cmd_i2c.c
1 /*
2 * (C) Copyright 2001
3 * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
4 *
5 * See file CREDITS for list of people who contributed to this
6 * project.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21 * MA 02111-1307 USA
22 */
23
24 /*
25 * I2C Functions similar to the standard memory functions.
26 *
27 * There are several parameters in many of the commands that bear further
28 * explanations:
29 *
30 * Two of the commands (imm and imw) take a byte/word/long modifier
31 * (e.g. imm.w specifies the word-length modifier). This was done to
32 * allow manipulating word-length registers. It was not done on any other
33 * commands because it was not deemed useful.
34 *
35 * {i2c_chip} is the I2C chip address (the first byte sent on the bus).
36 * Each I2C chip on the bus has a unique address. On the I2C data bus,
37 * the address is the upper seven bits and the LSB is the "read/write"
38 * bit. Note that the {i2c_chip} address specified on the command
39 * line is not shifted up: e.g. a typical EEPROM memory chip may have
40 * an I2C address of 0x50, but the data put on the bus will be 0xA0
41 * for write and 0xA1 for read. This "non shifted" address notation
42 * matches at least half of the data sheets :-/.
43 *
44 * {addr} is the address (or offset) within the chip. Small memory
45 * chips have 8 bit addresses. Large memory chips have 16 bit
46 * addresses. Other memory chips have 9, 10, or 11 bit addresses.
47 * Many non-memory chips have multiple registers and {addr} is used
48 * as the register index. Some non-memory chips have only one register
49 * and therefore don't need any {addr} parameter.
50 *
51 * The default {addr} parameter is one byte (.1) which works well for
52 * memories and registers with 8 bits of address space.
53 *
54 * You can specify the length of the {addr} field with the optional .0,
55 * .1, or .2 modifier (similar to the .b, .w, .l modifier). If you are
56 * manipulating a single register device which doesn't use an address
57 * field, use "0.0" for the address and the ".0" length field will
58 * suppress the address in the I2C data stream. This also works for
59 * successive reads using the I2C auto-incrementing memory pointer.
60 *
61 * If you are manipulating a large memory with 2-byte addresses, use
62 * the .2 address modifier, e.g. 210.2 addresses location 528 (decimal).
63 *
64 * Then there are the unfortunate memory chips that spill the most
65 * significant 1, 2, or 3 bits of address into the chip address byte.
66 * This effectively makes one chip (logically) look like 2, 4, or
67 * 8 chips. This is handled (awkwardly) by #defining
68 * CFG_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the
69 * {addr} field (since .1 is the default, it doesn't actually have to
70 * be specified). Examples: given a memory chip at I2C chip address
71 * 0x50, the following would happen...
72 * imd 50 0 10 display 16 bytes starting at 0x000
73 * On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd>
74 * imd 50 100 10 display 16 bytes starting at 0x100
75 * On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd>
76 * imd 50 210 10 display 16 bytes starting at 0x210
77 * On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd>
78 * This is awfully ugly. It would be nice if someone would think up
79 * a better way of handling this.
80 *
81 * Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de).
82 */
83
84 #include <common.h>
85 #include <command.h>
86 #include <i2c.h>
87 #include <asm/byteorder.h>
88
89 #if (CONFIG_COMMANDS & CFG_CMD_I2C)
90
91
92 /* Display values from last command.
93 * Memory modify remembered values are different from display memory.
94 */
95 static uchar i2c_dp_last_chip;
96 static uint i2c_dp_last_addr;
97 static uint i2c_dp_last_alen;
98 static uint i2c_dp_last_length = 0x10;
99
100 static uchar i2c_mm_last_chip;
101 static uint i2c_mm_last_addr;
102 static uint i2c_mm_last_alen;
103
104 /* If only one I2C bus is present, the list of devices to ignore when
105 * the probe command is issued is represented by a 1D array of addresses.
106 * When multiple buses are present, the list is an array of bus-address
107 * pairs. The following macros take care of this */
108
109 #if defined(CFG_I2C_NOPROBES)
110 #if defined(CONFIG_I2C_MULTI_BUS)
111 static struct
112 {
113 uchar bus;
114 uchar addr;
115 } i2c_no_probes[] = CFG_I2C_NOPROBES;
116 #define GET_BUS_NUM i2c_get_bus_num()
117 #define COMPARE_BUS(b,i) (i2c_no_probes[(i)].bus == (b))
118 #define COMPARE_ADDR(a,i) (i2c_no_probes[(i)].addr == (a))
119 #define NO_PROBE_ADDR(i) i2c_no_probes[(i)].addr
120 #else /* single bus */
121 static uchar i2c_no_probes[] = CFG_I2C_NOPROBES;
122 #define GET_BUS_NUM 0
123 #define COMPARE_BUS(b,i) ((b) == 0) /* Make compiler happy */
124 #define COMPARE_ADDR(a,i) (i2c_no_probes[(i)] == (a))
125 #define NO_PROBE_ADDR(i) i2c_no_probes[(i)]
126 #endif /* CONFIG_MULTI_BUS */
127
128 #define NUM_ELEMENTS_NOPROBE (sizeof(i2c_no_probes)/sizeof(i2c_no_probes[0]))
129 #endif
130
131 static int
132 mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[]);
133 extern int cmd_get_data_size(char* arg, int default_size);
134
135 /*
136 * Syntax:
137 * imd {i2c_chip} {addr}{.0, .1, .2} {len}
138 */
139 #define DISP_LINE_LEN 16
140
141 int do_i2c_md ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
142 {
143 u_char chip;
144 uint addr, alen, length;
145 int j, nbytes, linebytes;
146
147 /* We use the last specified parameters, unless new ones are
148 * entered.
149 */
150 chip = i2c_dp_last_chip;
151 addr = i2c_dp_last_addr;
152 alen = i2c_dp_last_alen;
153 length = i2c_dp_last_length;
154
155 if (argc < 3) {
156 printf ("Usage:\n%s\n", cmdtp->usage);
157 return 1;
158 }
159
160 if ((flag & CMD_FLAG_REPEAT) == 0) {
161 /*
162 * New command specified.
163 */
164 alen = 1;
165
166 /*
167 * I2C chip address
168 */
169 chip = simple_strtoul(argv[1], NULL, 16);
170
171 /*
172 * I2C data address within the chip. This can be 1 or
173 * 2 bytes long. Some day it might be 3 bytes long :-).
174 */
175 addr = simple_strtoul(argv[2], NULL, 16);
176 alen = 1;
177 for (j = 0; j < 8; j++) {
178 if (argv[2][j] == '.') {
179 alen = argv[2][j+1] - '0';
180 if (alen > 4) {
181 printf ("Usage:\n%s\n", cmdtp->usage);
182 return 1;
183 }
184 break;
185 } else if (argv[2][j] == '\0')
186 break;
187 }
188
189 /*
190 * If another parameter, it is the length to display.
191 * Length is the number of objects, not number of bytes.
192 */
193 if (argc > 3)
194 length = simple_strtoul(argv[3], NULL, 16);
195 }
196
197 /*
198 * Print the lines.
199 *
200 * We buffer all read data, so we can make sure data is read only
201 * once.
202 */
203 nbytes = length;
204 do {
205 unsigned char linebuf[DISP_LINE_LEN];
206 unsigned char *cp;
207
208 linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
209
210 if (i2c_read(chip, addr, alen, linebuf, linebytes) != 0)
211 puts ("Error reading the chip.\n");
212 else {
213 printf("%04x:", addr);
214 cp = linebuf;
215 for (j=0; j<linebytes; j++) {
216 printf(" %02x", *cp++);
217 addr++;
218 }
219 puts (" ");
220 cp = linebuf;
221 for (j=0; j<linebytes; j++) {
222 if ((*cp < 0x20) || (*cp > 0x7e))
223 puts (".");
224 else
225 printf("%c", *cp);
226 cp++;
227 }
228 putc ('\n');
229 }
230 nbytes -= linebytes;
231 } while (nbytes > 0);
232
233 i2c_dp_last_chip = chip;
234 i2c_dp_last_addr = addr;
235 i2c_dp_last_alen = alen;
236 i2c_dp_last_length = length;
237
238 return 0;
239 }
240
241 int do_i2c_mm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
242 {
243 return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
244 }
245
246
247 int do_i2c_nm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
248 {
249 return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
250 }
251
252 /* Write (fill) memory
253 *
254 * Syntax:
255 * imw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}]
256 */
257 int do_i2c_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
258 {
259 uchar chip;
260 ulong addr;
261 uint alen;
262 uchar byte;
263 int count;
264 int j;
265
266 if ((argc < 4) || (argc > 5)) {
267 printf ("Usage:\n%s\n", cmdtp->usage);
268 return 1;
269 }
270
271 /*
272 * Chip is always specified.
273 */
274 chip = simple_strtoul(argv[1], NULL, 16);
275
276 /*
277 * Address is always specified.
278 */
279 addr = simple_strtoul(argv[2], NULL, 16);
280 alen = 1;
281 for (j = 0; j < 8; j++) {
282 if (argv[2][j] == '.') {
283 alen = argv[2][j+1] - '0';
284 if (alen > 4) {
285 printf ("Usage:\n%s\n", cmdtp->usage);
286 return 1;
287 }
288 break;
289 } else if (argv[2][j] == '\0')
290 break;
291 }
292
293 /*
294 * Value to write is always specified.
295 */
296 byte = simple_strtoul(argv[3], NULL, 16);
297
298 /*
299 * Optional count
300 */
301 if (argc == 5)
302 count = simple_strtoul(argv[4], NULL, 16);
303 else
304 count = 1;
305
306 while (count-- > 0) {
307 if (i2c_write(chip, addr++, alen, &byte, 1) != 0)
308 puts ("Error writing the chip.\n");
309 /*
310 * Wait for the write to complete. The write can take
311 * up to 10mSec (we allow a little more time).
312 *
313 * On some chips, while the write is in progress, the
314 * chip doesn't respond. This apparently isn't a
315 * universal feature so we don't take advantage of it.
316 */
317 /*
318 * No write delay with FRAM devices.
319 */
320 #if !defined(CFG_I2C_FRAM)
321 udelay(11000);
322 #endif
323
324 #if 0
325 for (timeout = 0; timeout < 10; timeout++) {
326 udelay(2000);
327 if (i2c_probe(chip) == 0)
328 break;
329 }
330 #endif
331 }
332
333 return (0);
334 }
335
336
337 /* Calculate a CRC on memory
338 *
339 * Syntax:
340 * icrc32 {i2c_chip} {addr}{.0, .1, .2} {count}
341 */
342 int do_i2c_crc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
343 {
344 uchar chip;
345 ulong addr;
346 uint alen;
347 int count;
348 uchar byte;
349 ulong crc;
350 ulong err;
351 int j;
352
353 if (argc < 4) {
354 printf ("Usage:\n%s\n", cmdtp->usage);
355 return 1;
356 }
357
358 /*
359 * Chip is always specified.
360 */
361 chip = simple_strtoul(argv[1], NULL, 16);
362
363 /*
364 * Address is always specified.
365 */
366 addr = simple_strtoul(argv[2], NULL, 16);
367 alen = 1;
368 for (j = 0; j < 8; j++) {
369 if (argv[2][j] == '.') {
370 alen = argv[2][j+1] - '0';
371 if (alen > 4) {
372 printf ("Usage:\n%s\n", cmdtp->usage);
373 return 1;
374 }
375 break;
376 } else if (argv[2][j] == '\0')
377 break;
378 }
379
380 /*
381 * Count is always specified
382 */
383 count = simple_strtoul(argv[3], NULL, 16);
384
385 printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1);
386 /*
387 * CRC a byte at a time. This is going to be slooow, but hey, the
388 * memories are small and slow too so hopefully nobody notices.
389 */
390 crc = 0;
391 err = 0;
392 while (count-- > 0) {
393 if (i2c_read(chip, addr, alen, &byte, 1) != 0)
394 err++;
395 crc = crc32 (crc, &byte, 1);
396 addr++;
397 }
398 if (err > 0)
399 puts ("Error reading the chip,\n");
400 else
401 printf ("%08lx\n", crc);
402
403 return 0;
404 }
405
406
407 /* Modify memory.
408 *
409 * Syntax:
410 * imm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
411 * inm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
412 */
413
414 static int
415 mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[])
416 {
417 uchar chip;
418 ulong addr;
419 uint alen;
420 ulong data;
421 int size = 1;
422 int nbytes;
423 int j;
424 extern char console_buffer[];
425
426 if (argc != 3) {
427 printf ("Usage:\n%s\n", cmdtp->usage);
428 return 1;
429 }
430
431 #ifdef CONFIG_BOOT_RETRY_TIME
432 reset_cmd_timeout(); /* got a good command to get here */
433 #endif
434 /*
435 * We use the last specified parameters, unless new ones are
436 * entered.
437 */
438 chip = i2c_mm_last_chip;
439 addr = i2c_mm_last_addr;
440 alen = i2c_mm_last_alen;
441
442 if ((flag & CMD_FLAG_REPEAT) == 0) {
443 /*
444 * New command specified. Check for a size specification.
445 * Defaults to byte if no or incorrect specification.
446 */
447 size = cmd_get_data_size(argv[0], 1);
448
449 /*
450 * Chip is always specified.
451 */
452 chip = simple_strtoul(argv[1], NULL, 16);
453
454 /*
455 * Address is always specified.
456 */
457 addr = simple_strtoul(argv[2], NULL, 16);
458 alen = 1;
459 for (j = 0; j < 8; j++) {
460 if (argv[2][j] == '.') {
461 alen = argv[2][j+1] - '0';
462 if (alen > 4) {
463 printf ("Usage:\n%s\n", cmdtp->usage);
464 return 1;
465 }
466 break;
467 } else if (argv[2][j] == '\0')
468 break;
469 }
470 }
471
472 /*
473 * Print the address, followed by value. Then accept input for
474 * the next value. A non-converted value exits.
475 */
476 do {
477 printf("%08lx:", addr);
478 if (i2c_read(chip, addr, alen, (uchar *)&data, size) != 0)
479 puts ("\nError reading the chip,\n");
480 else {
481 data = cpu_to_be32(data);
482 if (size == 1)
483 printf(" %02lx", (data >> 24) & 0x000000FF);
484 else if (size == 2)
485 printf(" %04lx", (data >> 16) & 0x0000FFFF);
486 else
487 printf(" %08lx", data);
488 }
489
490 nbytes = readline (" ? ");
491 if (nbytes == 0) {
492 /*
493 * <CR> pressed as only input, don't modify current
494 * location and move to next.
495 */
496 if (incrflag)
497 addr += size;
498 nbytes = size;
499 #ifdef CONFIG_BOOT_RETRY_TIME
500 reset_cmd_timeout(); /* good enough to not time out */
501 #endif
502 }
503 #ifdef CONFIG_BOOT_RETRY_TIME
504 else if (nbytes == -2)
505 break; /* timed out, exit the command */
506 #endif
507 else {
508 char *endp;
509
510 data = simple_strtoul(console_buffer, &endp, 16);
511 if (size == 1)
512 data = data << 24;
513 else if (size == 2)
514 data = data << 16;
515 data = be32_to_cpu(data);
516 nbytes = endp - console_buffer;
517 if (nbytes) {
518 #ifdef CONFIG_BOOT_RETRY_TIME
519 /*
520 * good enough to not time out
521 */
522 reset_cmd_timeout();
523 #endif
524 if (i2c_write(chip, addr, alen, (uchar *)&data, size) != 0)
525 puts ("Error writing the chip.\n");
526 #ifdef CFG_EEPROM_PAGE_WRITE_DELAY_MS
527 udelay(CFG_EEPROM_PAGE_WRITE_DELAY_MS * 1000);
528 #endif
529 if (incrflag)
530 addr += size;
531 }
532 }
533 } while (nbytes);
534
535 chip = i2c_mm_last_chip;
536 addr = i2c_mm_last_addr;
537 alen = i2c_mm_last_alen;
538
539 return 0;
540 }
541
542 /*
543 * Syntax:
544 * iprobe {addr}{.0, .1, .2}
545 */
546 int do_i2c_probe (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
547 {
548 int j;
549 #if defined(CFG_I2C_NOPROBES)
550 int k, skip;
551 uchar bus = GET_BUS_NUM;
552 #endif /* NOPROBES */
553
554 puts ("Valid chip addresses:");
555 for (j = 0; j < 128; j++) {
556 #if defined(CFG_I2C_NOPROBES)
557 skip = 0;
558 for (k=0; k < NUM_ELEMENTS_NOPROBE; k++) {
559 if (COMPARE_BUS(bus, k) && COMPARE_ADDR(j, k)) {
560 skip = 1;
561 break;
562 }
563 }
564 if (skip)
565 continue;
566 #endif
567 if (i2c_probe(j) == 0)
568 printf(" %02X", j);
569 }
570 putc ('\n');
571
572 #if defined(CFG_I2C_NOPROBES)
573 puts ("Excluded chip addresses:");
574 for (k=0; k < NUM_ELEMENTS_NOPROBE; k++) {
575 if (COMPARE_BUS(bus,k))
576 printf(" %02X", NO_PROBE_ADDR(k));
577 }
578 putc ('\n');
579 #endif
580
581 return 0;
582 }
583
584
585 /*
586 * Syntax:
587 * iloop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}]
588 * {length} - Number of bytes to read
589 * {delay} - A DECIMAL number and defaults to 1000 uSec
590 */
591 int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
592 {
593 u_char chip;
594 ulong alen;
595 uint addr;
596 uint length;
597 u_char bytes[16];
598 int delay;
599 int j;
600
601 if (argc < 3) {
602 printf ("Usage:\n%s\n", cmdtp->usage);
603 return 1;
604 }
605
606 /*
607 * Chip is always specified.
608 */
609 chip = simple_strtoul(argv[1], NULL, 16);
610
611 /*
612 * Address is always specified.
613 */
614 addr = simple_strtoul(argv[2], NULL, 16);
615 alen = 1;
616 for (j = 0; j < 8; j++) {
617 if (argv[2][j] == '.') {
618 alen = argv[2][j+1] - '0';
619 if (alen > 4) {
620 printf ("Usage:\n%s\n", cmdtp->usage);
621 return 1;
622 }
623 break;
624 } else if (argv[2][j] == '\0')
625 break;
626 }
627
628 /*
629 * Length is the number of objects, not number of bytes.
630 */
631 length = 1;
632 length = simple_strtoul(argv[3], NULL, 16);
633 if (length > sizeof(bytes))
634 length = sizeof(bytes);
635
636 /*
637 * The delay time (uSec) is optional.
638 */
639 delay = 1000;
640 if (argc > 3)
641 delay = simple_strtoul(argv[4], NULL, 10);
642 /*
643 * Run the loop...
644 */
645 while (1) {
646 if (i2c_read(chip, addr, alen, bytes, length) != 0)
647 puts ("Error reading the chip.\n");
648 udelay(delay);
649 }
650
651 /* NOTREACHED */
652 return 0;
653 }
654
655
656 /*
657 * The SDRAM command is separately configured because many
658 * (most?) embedded boards don't use SDRAM DIMMs.
659 */
660 #if (CONFIG_COMMANDS & CFG_CMD_SDRAM)
661
662 /*
663 * Syntax:
664 * sdram {i2c_chip}
665 */
666 int do_sdram ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
667 {
668 u_char chip;
669 u_char data[128];
670 u_char cksum;
671 int j;
672
673 if (argc < 2) {
674 printf ("Usage:\n%s\n", cmdtp->usage);
675 return 1;
676 }
677 /*
678 * Chip is always specified.
679 */
680 chip = simple_strtoul(argv[1], NULL, 16);
681
682 if (i2c_read(chip, 0, 1, data, sizeof(data)) != 0) {
683 puts ("No SDRAM Serial Presence Detect found.\n");
684 return 1;
685 }
686
687 cksum = 0;
688 for (j = 0; j < 63; j++) {
689 cksum += data[j];
690 }
691 if (cksum != data[63]) {
692 printf ("WARNING: Configuration data checksum failure:\n"
693 " is 0x%02x, calculated 0x%02x\n",
694 data[63], cksum);
695 }
696 printf("SPD data revision %d.%d\n",
697 (data[62] >> 4) & 0x0F, data[62] & 0x0F);
698 printf("Bytes used 0x%02X\n", data[0]);
699 printf("Serial memory size 0x%02X\n", 1 << data[1]);
700 puts ("Memory type ");
701 switch(data[2]) {
702 case 2: puts ("EDO\n"); break;
703 case 4: puts ("SDRAM\n"); break;
704 case 8: puts ("DDR2\n"); break;
705 default: puts ("unknown\n"); break;
706 }
707 puts ("Row address bits ");
708 if ((data[3] & 0x00F0) == 0)
709 printf("%d\n", data[3] & 0x0F);
710 else
711 printf("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
712 puts ("Column address bits ");
713 if ((data[4] & 0x00F0) == 0)
714 printf("%d\n", data[4] & 0x0F);
715 else
716 printf("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
717 printf("Module rows %d\n", data[5]);
718 printf("Module data width %d bits\n", (data[7] << 8) | data[6]);
719 puts ("Interface signal levels ");
720 switch(data[8]) {
721 case 0: puts ("5.0v/TTL\n"); break;
722 case 1: puts ("LVTTL\n"); break;
723 case 2: puts ("HSTL 1.5\n"); break;
724 case 3: puts ("SSTL 3.3\n"); break;
725 case 4: puts ("SSTL 2.5\n"); break;
726 case 5: puts ("SSTL 1.8\n"); break;
727 default: puts ("unknown\n"); break;
728 }
729 printf("SDRAM cycle time %d.%d nS\n",
730 (data[9] >> 4) & 0x0F, data[9] & 0x0F);
731 printf("SDRAM access time %d.%d nS\n",
732 (data[10] >> 4) & 0x0F, data[10] & 0x0F);
733 puts ("EDC configuration ");
734 switch(data[11]) {
735 case 0: puts ("None\n"); break;
736 case 1: puts ("Parity\n"); break;
737 case 2: puts ("ECC\n"); break;
738 default: puts ("unknown\n"); break;
739 }
740 if ((data[12] & 0x80) == 0)
741 puts ("No self refresh, rate ");
742 else
743 puts ("Self refresh, rate ");
744 switch(data[12] & 0x7F) {
745 case 0: puts ("15.625uS\n"); break;
746 case 1: puts ("3.9uS\n"); break;
747 case 2: puts ("7.8uS\n"); break;
748 case 3: puts ("31.3uS\n"); break;
749 case 4: puts ("62.5uS\n"); break;
750 case 5: puts ("125uS\n"); break;
751 default: puts ("unknown\n"); break;
752 }
753 printf("SDRAM width (primary) %d\n", data[13] & 0x7F);
754 if ((data[13] & 0x80) != 0) {
755 printf(" (second bank) %d\n",
756 2 * (data[13] & 0x7F));
757 }
758 if (data[14] != 0) {
759 printf("EDC width %d\n",
760 data[14] & 0x7F);
761 if ((data[14] & 0x80) != 0)
762 printf(" (second bank) %d\n",
763 2 * (data[14] & 0x7F));
764 }
765 printf("Min clock delay, back-to-back random column addresses %d\n",
766 data[15]);
767 puts ("Burst length(s) ");
768 if (data[16] & 0x80) puts (" Page");
769 if (data[16] & 0x08) puts (" 8");
770 if (data[16] & 0x04) puts (" 4");
771 if (data[16] & 0x02) puts (" 2");
772 if (data[16] & 0x01) puts (" 1");
773 putc ('\n');
774 printf("Number of banks %d\n", data[17]);
775 puts ("CAS latency(s) ");
776 if (data[18] & 0x80) puts (" TBD");
777 if (data[18] & 0x40) puts (" 7");
778 if (data[18] & 0x20) puts (" 6");
779 if (data[18] & 0x10) puts (" 5");
780 if (data[18] & 0x08) puts (" 4");
781 if (data[18] & 0x04) puts (" 3");
782 if (data[18] & 0x02) puts (" 2");
783 if (data[18] & 0x01) puts (" 1");
784 putc ('\n');
785 puts ("CS latency(s) ");
786 if (data[19] & 0x80) puts (" TBD");
787 if (data[19] & 0x40) puts (" 6");
788 if (data[19] & 0x20) puts (" 5");
789 if (data[19] & 0x10) puts (" 4");
790 if (data[19] & 0x08) puts (" 3");
791 if (data[19] & 0x04) puts (" 2");
792 if (data[19] & 0x02) puts (" 1");
793 if (data[19] & 0x01) puts (" 0");
794 putc ('\n');
795 puts ("WE latency(s) ");
796 if (data[20] & 0x80) puts (" TBD");
797 if (data[20] & 0x40) puts (" 6");
798 if (data[20] & 0x20) puts (" 5");
799 if (data[20] & 0x10) puts (" 4");
800 if (data[20] & 0x08) puts (" 3");
801 if (data[20] & 0x04) puts (" 2");
802 if (data[20] & 0x02) puts (" 1");
803 if (data[20] & 0x01) puts (" 0");
804 putc ('\n');
805 puts ("Module attributes:\n");
806 if (!data[21]) puts (" (none)\n");
807 if (data[21] & 0x80) puts (" TBD (bit 7)\n");
808 if (data[21] & 0x40) puts (" Redundant row address\n");
809 if (data[21] & 0x20) puts (" Differential clock input\n");
810 if (data[21] & 0x10) puts (" Registerd DQMB inputs\n");
811 if (data[21] & 0x08) puts (" Buffered DQMB inputs\n");
812 if (data[21] & 0x04) puts (" On-card PLL\n");
813 if (data[21] & 0x02) puts (" Registered address/control lines\n");
814 if (data[21] & 0x01) puts (" Buffered address/control lines\n");
815 puts ("Device attributes:\n");
816 if (data[22] & 0x80) puts (" TBD (bit 7)\n");
817 if (data[22] & 0x40) puts (" TBD (bit 6)\n");
818 if (data[22] & 0x20) puts (" Upper Vcc tolerance 5%\n");
819 else puts (" Upper Vcc tolerance 10%\n");
820 if (data[22] & 0x10) puts (" Lower Vcc tolerance 5%\n");
821 else puts (" Lower Vcc tolerance 10%\n");
822 if (data[22] & 0x08) puts (" Supports write1/read burst\n");
823 if (data[22] & 0x04) puts (" Supports precharge all\n");
824 if (data[22] & 0x02) puts (" Supports auto precharge\n");
825 if (data[22] & 0x01) puts (" Supports early RAS# precharge\n");
826 printf("SDRAM cycle time (2nd highest CAS latency) %d.%d nS\n",
827 (data[23] >> 4) & 0x0F, data[23] & 0x0F);
828 printf("SDRAM access from clock (2nd highest CAS latency) %d.%d nS\n",
829 (data[24] >> 4) & 0x0F, data[24] & 0x0F);
830 printf("SDRAM cycle time (3rd highest CAS latency) %d.%d nS\n",
831 (data[25] >> 4) & 0x0F, data[25] & 0x0F);
832 printf("SDRAM access from clock (3rd highest CAS latency) %d.%d nS\n",
833 (data[26] >> 4) & 0x0F, data[26] & 0x0F);
834 printf("Minimum row precharge %d nS\n", data[27]);
835 printf("Row active to row active min %d nS\n", data[28]);
836 printf("RAS to CAS delay min %d nS\n", data[29]);
837 printf("Minimum RAS pulse width %d nS\n", data[30]);
838 puts ("Density of each row ");
839 if (data[31] & 0x80) puts (" 512");
840 if (data[31] & 0x40) puts (" 256");
841 if (data[31] & 0x20) puts (" 128");
842 if (data[31] & 0x10) puts (" 64");
843 if (data[31] & 0x08) puts (" 32");
844 if (data[31] & 0x04) puts (" 16");
845 if (data[31] & 0x02) puts (" 8");
846 if (data[31] & 0x01) puts (" 4");
847 puts ("MByte\n");
848 printf("Command and Address setup %c%d.%d nS\n",
849 (data[32] & 0x80) ? '-' : '+',
850 (data[32] >> 4) & 0x07, data[32] & 0x0F);
851 printf("Command and Address hold %c%d.%d nS\n",
852 (data[33] & 0x80) ? '-' : '+',
853 (data[33] >> 4) & 0x07, data[33] & 0x0F);
854 printf("Data signal input setup %c%d.%d nS\n",
855 (data[34] & 0x80) ? '-' : '+',
856 (data[34] >> 4) & 0x07, data[34] & 0x0F);
857 printf("Data signal input hold %c%d.%d nS\n",
858 (data[35] & 0x80) ? '-' : '+',
859 (data[35] >> 4) & 0x07, data[35] & 0x0F);
860 puts ("Manufacturer's JEDEC ID ");
861 for (j = 64; j <= 71; j++)
862 printf("%02X ", data[j]);
863 putc ('\n');
864 printf("Manufacturing Location %02X\n", data[72]);
865 puts ("Manufacturer's Part Number ");
866 for (j = 73; j <= 90; j++)
867 printf("%02X ", data[j]);
868 putc ('\n');
869 printf("Revision Code %02X %02X\n", data[91], data[92]);
870 printf("Manufacturing Date %02X %02X\n", data[93], data[94]);
871 puts ("Assembly Serial Number ");
872 for (j = 95; j <= 98; j++)
873 printf("%02X ", data[j]);
874 putc ('\n');
875 printf("Speed rating PC%d\n",
876 data[126] == 0x66 ? 66 : data[126]);
877
878 return 0;
879 }
880 #endif /* CFG_CMD_SDRAM */
881
882 #if defined(CONFIG_I2C_CMD_TREE)
883 #if defined(CONFIG_I2C_MULTI_BUS)
884 int do_i2c_bus_num(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
885 {
886 int bus_idx, ret=0;
887
888 if (argc == 1)
889 /* querying current setting */
890 printf("Current bus is %d\n", i2c_get_bus_num());
891 else {
892 bus_idx = simple_strtoul(argv[1], NULL, 10);
893 printf("Setting bus to %d\n", bus_idx);
894 ret = i2c_set_bus_num(bus_idx);
895 if (ret)
896 printf("Failure changing bus number (%d)\n", ret);
897 }
898 return ret;
899 }
900 #endif /* CONFIG_I2C_MULTI_BUS */
901
902 int do_i2c_bus_speed(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
903 {
904 int speed, ret=0;
905
906 if (argc == 1)
907 /* querying current speed */
908 printf("Current bus speed=%d\n", i2c_get_bus_speed());
909 else {
910 speed = simple_strtoul(argv[1], NULL, 10);
911 printf("Setting bus speed to %d Hz\n", speed);
912 ret = i2c_set_bus_speed(speed);
913 if (ret)
914 printf("Failure changing bus speed (%d)\n", ret);
915 }
916 return ret;
917 }
918
919 int do_i2c(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
920 {
921 #if defined(CONFIG_I2C_MULTI_BUS)
922 if (!strncmp(argv[1], "de", 2))
923 return do_i2c_bus_num(cmdtp, flag, --argc, ++argv);
924 #endif /* CONFIG_I2C_MULTI_BUS */
925 if (!strncmp(argv[1], "sp", 2))
926 return do_i2c_bus_speed(cmdtp, flag, --argc, ++argv);
927 if (!strncmp(argv[1], "md", 2))
928 return do_i2c_md(cmdtp, flag, --argc, ++argv);
929 if (!strncmp(argv[1], "mm", 2))
930 return do_i2c_mm(cmdtp, flag, --argc, ++argv);
931 if (!strncmp(argv[1], "mw", 2))
932 return do_i2c_mw(cmdtp, flag, --argc, ++argv);
933 if (!strncmp(argv[1], "nm", 2))
934 return do_i2c_nm(cmdtp, flag, --argc, ++argv);
935 if (!strncmp(argv[1], "cr", 2))
936 return do_i2c_crc(cmdtp, flag, --argc, ++argv);
937 if (!strncmp(argv[1], "pr", 2))
938 return do_i2c_probe(cmdtp, flag, --argc, ++argv);
939 if (!strncmp(argv[1], "lo", 2))
940 return do_i2c_loop(cmdtp, flag, --argc, ++argv);
941 #if (CONFIG_COMMANDS & CFG_CMD_SDRAM)
942 if (!strncmp(argv[1], "sd", 2))
943 return do_sdram(cmdtp, flag, --argc, ++argv);
944 #endif /* CFG_CMD_SDRAM */
945 else
946 printf ("Usage:\n%s\n", cmdtp->usage);
947 return 0;
948 }
949 #endif /* CONFIG_I2C_CMD_TREE */
950
951 /***************************************************/
952
953 #if defined(CONFIG_I2C_CMD_TREE)
954 U_BOOT_CMD(
955 i2c, 6, 1, do_i2c,
956 "i2c - I2C sub-system\n",
957 #if defined(CONFIG_I2C_MULTI_BUS)
958 "dev [dev] - show or set current I2C bus\n"
959 #endif /* CONFIG_I2C_MULTI_BUS */
960 "i2c speed [speed] - show or set I2C bus speed\n"
961 "i2c md chip address[.0, .1, .2] [# of objects] - read from I2C device\n"
962 "i2c mm chip address[.0, .1, .2] - write to I2C device (auto-incrementing)\n"
963 "i2c mw chip address[.0, .1, .2] value [count] - write to I2C device (fill)\n"
964 "i2c nm chip address[.0, .1, .2] - write to I2C device (constant address)\n"
965 "i2c crc32 chip address[.0, .1, .2] count - compute CRC32 checksum\n"
966 "i2c probe - show devices on the I2C bus\n"
967 "i2c loop chip address[.0, .1, .2] [# of objects] - looping read of device\n"
968 #if (CONFIG_COMMANDS & CFG_CMD_SDRAM)
969 "i2c sdram chip - print SDRAM configuration information\n"
970 #endif /* CFG_CMD_SDRAM */
971 );
972 #endif /* CONFIG_I2C_CMD_TREE */
973 U_BOOT_CMD(
974 imd, 4, 1, do_i2c_md, \
975 "imd - i2c memory display\n", \
976 "chip address[.0, .1, .2] [# of objects]\n - i2c memory display\n" \
977 );
978
979 U_BOOT_CMD(
980 imm, 3, 1, do_i2c_mm,
981 "imm - i2c memory modify (auto-incrementing)\n",
982 "chip address[.0, .1, .2]\n"
983 " - memory modify, auto increment address\n"
984 );
985 U_BOOT_CMD(
986 inm, 3, 1, do_i2c_nm,
987 "inm - memory modify (constant address)\n",
988 "chip address[.0, .1, .2]\n - memory modify, read and keep address\n"
989 );
990
991 U_BOOT_CMD(
992 imw, 5, 1, do_i2c_mw,
993 "imw - memory write (fill)\n",
994 "chip address[.0, .1, .2] value [count]\n - memory write (fill)\n"
995 );
996
997 U_BOOT_CMD(
998 icrc32, 5, 1, do_i2c_crc,
999 "icrc32 - checksum calculation\n",
1000 "chip address[.0, .1, .2] count\n - compute CRC32 checksum\n"
1001 );
1002
1003 U_BOOT_CMD(
1004 iprobe, 1, 1, do_i2c_probe,
1005 "iprobe - probe to discover valid I2C chip addresses\n",
1006 "\n -discover valid I2C chip addresses\n"
1007 );
1008
1009 /*
1010 * Require full name for "iloop" because it is an infinite loop!
1011 */
1012 U_BOOT_CMD(
1013 iloop, 5, 1, do_i2c_loop,
1014 "iloop - infinite loop on address range\n",
1015 "chip address[.0, .1, .2] [# of objects]\n"
1016 " - loop, reading a set of addresses\n"
1017 );
1018
1019 #if (CONFIG_COMMANDS & CFG_CMD_SDRAM)
1020 U_BOOT_CMD(
1021 isdram, 2, 1, do_sdram,
1022 "isdram - print SDRAM configuration information\n",
1023 "chip\n - print SDRAM configuration information\n"
1024 " (valid chip values 50..57)\n"
1025 );
1026 #endif
1027
1028 #endif /* CFG_CMD_I2C */