]> git.ipfire.org Git - people/ms/u-boot.git/blob - common/dlmalloc.c
USB-CDC: Correct stat_req initialization
[people/ms/u-boot.git] / common / dlmalloc.c
1 #include <common.h>
2
3 #if 0 /* Moved to malloc.h */
4 /* ---------- To make a malloc.h, start cutting here ------------ */
5
6 /*
7 A version of malloc/free/realloc written by Doug Lea and released to the
8 public domain. Send questions/comments/complaints/performance data
9 to dl@cs.oswego.edu
10
11 * VERSION 2.6.6 Sun Mar 5 19:10:03 2000 Doug Lea (dl at gee)
12
13 Note: There may be an updated version of this malloc obtainable at
14 ftp://g.oswego.edu/pub/misc/malloc.c
15 Check before installing!
16
17 * Why use this malloc?
18
19 This is not the fastest, most space-conserving, most portable, or
20 most tunable malloc ever written. However it is among the fastest
21 while also being among the most space-conserving, portable and tunable.
22 Consistent balance across these factors results in a good general-purpose
23 allocator. For a high-level description, see
24 http://g.oswego.edu/dl/html/malloc.html
25
26 * Synopsis of public routines
27
28 (Much fuller descriptions are contained in the program documentation below.)
29
30 malloc(size_t n);
31 Return a pointer to a newly allocated chunk of at least n bytes, or null
32 if no space is available.
33 free(Void_t* p);
34 Release the chunk of memory pointed to by p, or no effect if p is null.
35 realloc(Void_t* p, size_t n);
36 Return a pointer to a chunk of size n that contains the same data
37 as does chunk p up to the minimum of (n, p's size) bytes, or null
38 if no space is available. The returned pointer may or may not be
39 the same as p. If p is null, equivalent to malloc. Unless the
40 #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
41 size argument of zero (re)allocates a minimum-sized chunk.
42 memalign(size_t alignment, size_t n);
43 Return a pointer to a newly allocated chunk of n bytes, aligned
44 in accord with the alignment argument, which must be a power of
45 two.
46 valloc(size_t n);
47 Equivalent to memalign(pagesize, n), where pagesize is the page
48 size of the system (or as near to this as can be figured out from
49 all the includes/defines below.)
50 pvalloc(size_t n);
51 Equivalent to valloc(minimum-page-that-holds(n)), that is,
52 round up n to nearest pagesize.
53 calloc(size_t unit, size_t quantity);
54 Returns a pointer to quantity * unit bytes, with all locations
55 set to zero.
56 cfree(Void_t* p);
57 Equivalent to free(p).
58 malloc_trim(size_t pad);
59 Release all but pad bytes of freed top-most memory back
60 to the system. Return 1 if successful, else 0.
61 malloc_usable_size(Void_t* p);
62 Report the number usable allocated bytes associated with allocated
63 chunk p. This may or may not report more bytes than were requested,
64 due to alignment and minimum size constraints.
65 malloc_stats();
66 Prints brief summary statistics.
67 mallinfo()
68 Returns (by copy) a struct containing various summary statistics.
69 mallopt(int parameter_number, int parameter_value)
70 Changes one of the tunable parameters described below. Returns
71 1 if successful in changing the parameter, else 0.
72
73 * Vital statistics:
74
75 Alignment: 8-byte
76 8 byte alignment is currently hardwired into the design. This
77 seems to suffice for all current machines and C compilers.
78
79 Assumed pointer representation: 4 or 8 bytes
80 Code for 8-byte pointers is untested by me but has worked
81 reliably by Wolfram Gloger, who contributed most of the
82 changes supporting this.
83
84 Assumed size_t representation: 4 or 8 bytes
85 Note that size_t is allowed to be 4 bytes even if pointers are 8.
86
87 Minimum overhead per allocated chunk: 4 or 8 bytes
88 Each malloced chunk has a hidden overhead of 4 bytes holding size
89 and status information.
90
91 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
92 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
93
94 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
95 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
96 needed; 4 (8) for a trailing size field
97 and 8 (16) bytes for free list pointers. Thus, the minimum
98 allocatable size is 16/24/32 bytes.
99
100 Even a request for zero bytes (i.e., malloc(0)) returns a
101 pointer to something of the minimum allocatable size.
102
103 Maximum allocated size: 4-byte size_t: 2^31 - 8 bytes
104 8-byte size_t: 2^63 - 16 bytes
105
106 It is assumed that (possibly signed) size_t bit values suffice to
107 represent chunk sizes. `Possibly signed' is due to the fact
108 that `size_t' may be defined on a system as either a signed or
109 an unsigned type. To be conservative, values that would appear
110 as negative numbers are avoided.
111 Requests for sizes with a negative sign bit when the request
112 size is treaded as a long will return null.
113
114 Maximum overhead wastage per allocated chunk: normally 15 bytes
115
116 Alignnment demands, plus the minimum allocatable size restriction
117 make the normal worst-case wastage 15 bytes (i.e., up to 15
118 more bytes will be allocated than were requested in malloc), with
119 two exceptions:
120 1. Because requests for zero bytes allocate non-zero space,
121 the worst case wastage for a request of zero bytes is 24 bytes.
122 2. For requests >= mmap_threshold that are serviced via
123 mmap(), the worst case wastage is 8 bytes plus the remainder
124 from a system page (the minimal mmap unit); typically 4096 bytes.
125
126 * Limitations
127
128 Here are some features that are NOT currently supported
129
130 * No user-definable hooks for callbacks and the like.
131 * No automated mechanism for fully checking that all accesses
132 to malloced memory stay within their bounds.
133 * No support for compaction.
134
135 * Synopsis of compile-time options:
136
137 People have reported using previous versions of this malloc on all
138 versions of Unix, sometimes by tweaking some of the defines
139 below. It has been tested most extensively on Solaris and
140 Linux. It is also reported to work on WIN32 platforms.
141 People have also reported adapting this malloc for use in
142 stand-alone embedded systems.
143
144 The implementation is in straight, hand-tuned ANSI C. Among other
145 consequences, it uses a lot of macros. Because of this, to be at
146 all usable, this code should be compiled using an optimizing compiler
147 (for example gcc -O2) that can simplify expressions and control
148 paths.
149
150 __STD_C (default: derived from C compiler defines)
151 Nonzero if using ANSI-standard C compiler, a C++ compiler, or
152 a C compiler sufficiently close to ANSI to get away with it.
153 DEBUG (default: NOT defined)
154 Define to enable debugging. Adds fairly extensive assertion-based
155 checking to help track down memory errors, but noticeably slows down
156 execution.
157 REALLOC_ZERO_BYTES_FREES (default: NOT defined)
158 Define this if you think that realloc(p, 0) should be equivalent
159 to free(p). Otherwise, since malloc returns a unique pointer for
160 malloc(0), so does realloc(p, 0).
161 HAVE_MEMCPY (default: defined)
162 Define if you are not otherwise using ANSI STD C, but still
163 have memcpy and memset in your C library and want to use them.
164 Otherwise, simple internal versions are supplied.
165 USE_MEMCPY (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
166 Define as 1 if you want the C library versions of memset and
167 memcpy called in realloc and calloc (otherwise macro versions are used).
168 At least on some platforms, the simple macro versions usually
169 outperform libc versions.
170 HAVE_MMAP (default: defined as 1)
171 Define to non-zero to optionally make malloc() use mmap() to
172 allocate very large blocks.
173 HAVE_MREMAP (default: defined as 0 unless Linux libc set)
174 Define to non-zero to optionally make realloc() use mremap() to
175 reallocate very large blocks.
176 malloc_getpagesize (default: derived from system #includes)
177 Either a constant or routine call returning the system page size.
178 HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
179 Optionally define if you are on a system with a /usr/include/malloc.h
180 that declares struct mallinfo. It is not at all necessary to
181 define this even if you do, but will ensure consistency.
182 INTERNAL_SIZE_T (default: size_t)
183 Define to a 32-bit type (probably `unsigned int') if you are on a
184 64-bit machine, yet do not want or need to allow malloc requests of
185 greater than 2^31 to be handled. This saves space, especially for
186 very small chunks.
187 INTERNAL_LINUX_C_LIB (default: NOT defined)
188 Defined only when compiled as part of Linux libc.
189 Also note that there is some odd internal name-mangling via defines
190 (for example, internally, `malloc' is named `mALLOc') needed
191 when compiling in this case. These look funny but don't otherwise
192 affect anything.
193 WIN32 (default: undefined)
194 Define this on MS win (95, nt) platforms to compile in sbrk emulation.
195 LACKS_UNISTD_H (default: undefined if not WIN32)
196 Define this if your system does not have a <unistd.h>.
197 LACKS_SYS_PARAM_H (default: undefined if not WIN32)
198 Define this if your system does not have a <sys/param.h>.
199 MORECORE (default: sbrk)
200 The name of the routine to call to obtain more memory from the system.
201 MORECORE_FAILURE (default: -1)
202 The value returned upon failure of MORECORE.
203 MORECORE_CLEARS (default 1)
204 True (1) if the routine mapped to MORECORE zeroes out memory (which
205 holds for sbrk).
206 DEFAULT_TRIM_THRESHOLD
207 DEFAULT_TOP_PAD
208 DEFAULT_MMAP_THRESHOLD
209 DEFAULT_MMAP_MAX
210 Default values of tunable parameters (described in detail below)
211 controlling interaction with host system routines (sbrk, mmap, etc).
212 These values may also be changed dynamically via mallopt(). The
213 preset defaults are those that give best performance for typical
214 programs/systems.
215 USE_DL_PREFIX (default: undefined)
216 Prefix all public routines with the string 'dl'. Useful to
217 quickly avoid procedure declaration conflicts and linker symbol
218 conflicts with existing memory allocation routines.
219
220
221 */
222
223 \f
224
225 /* Preliminaries */
226
227 #ifndef __STD_C
228 #ifdef __STDC__
229 #define __STD_C 1
230 #else
231 #if __cplusplus
232 #define __STD_C 1
233 #else
234 #define __STD_C 0
235 #endif /*__cplusplus*/
236 #endif /*__STDC__*/
237 #endif /*__STD_C*/
238
239 #ifndef Void_t
240 #if (__STD_C || defined(WIN32))
241 #define Void_t void
242 #else
243 #define Void_t char
244 #endif
245 #endif /*Void_t*/
246
247 #if __STD_C
248 #include <stddef.h> /* for size_t */
249 #else
250 #include <sys/types.h>
251 #endif
252
253 #ifdef __cplusplus
254 extern "C" {
255 #endif
256
257 #include <stdio.h> /* needed for malloc_stats */
258
259
260 /*
261 Compile-time options
262 */
263
264
265 /*
266 Debugging:
267
268 Because freed chunks may be overwritten with link fields, this
269 malloc will often die when freed memory is overwritten by user
270 programs. This can be very effective (albeit in an annoying way)
271 in helping track down dangling pointers.
272
273 If you compile with -DDEBUG, a number of assertion checks are
274 enabled that will catch more memory errors. You probably won't be
275 able to make much sense of the actual assertion errors, but they
276 should help you locate incorrectly overwritten memory. The
277 checking is fairly extensive, and will slow down execution
278 noticeably. Calling malloc_stats or mallinfo with DEBUG set will
279 attempt to check every non-mmapped allocated and free chunk in the
280 course of computing the summmaries. (By nature, mmapped regions
281 cannot be checked very much automatically.)
282
283 Setting DEBUG may also be helpful if you are trying to modify
284 this code. The assertions in the check routines spell out in more
285 detail the assumptions and invariants underlying the algorithms.
286
287 */
288
289 #ifdef DEBUG
290 #include <assert.h>
291 #else
292 #define assert(x) ((void)0)
293 #endif
294
295
296 /*
297 INTERNAL_SIZE_T is the word-size used for internal bookkeeping
298 of chunk sizes. On a 64-bit machine, you can reduce malloc
299 overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
300 at the expense of not being able to handle requests greater than
301 2^31. This limitation is hardly ever a concern; you are encouraged
302 to set this. However, the default version is the same as size_t.
303 */
304
305 #ifndef INTERNAL_SIZE_T
306 #define INTERNAL_SIZE_T size_t
307 #endif
308
309 /*
310 REALLOC_ZERO_BYTES_FREES should be set if a call to
311 realloc with zero bytes should be the same as a call to free.
312 Some people think it should. Otherwise, since this malloc
313 returns a unique pointer for malloc(0), so does realloc(p, 0).
314 */
315
316
317 /* #define REALLOC_ZERO_BYTES_FREES */
318
319
320 /*
321 WIN32 causes an emulation of sbrk to be compiled in
322 mmap-based options are not currently supported in WIN32.
323 */
324
325 /* #define WIN32 */
326 #ifdef WIN32
327 #define MORECORE wsbrk
328 #define HAVE_MMAP 0
329
330 #define LACKS_UNISTD_H
331 #define LACKS_SYS_PARAM_H
332
333 /*
334 Include 'windows.h' to get the necessary declarations for the
335 Microsoft Visual C++ data structures and routines used in the 'sbrk'
336 emulation.
337
338 Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft
339 Visual C++ header files are included.
340 */
341 #define WIN32_LEAN_AND_MEAN
342 #include <windows.h>
343 #endif
344
345
346 /*
347 HAVE_MEMCPY should be defined if you are not otherwise using
348 ANSI STD C, but still have memcpy and memset in your C library
349 and want to use them in calloc and realloc. Otherwise simple
350 macro versions are defined here.
351
352 USE_MEMCPY should be defined as 1 if you actually want to
353 have memset and memcpy called. People report that the macro
354 versions are often enough faster than libc versions on many
355 systems that it is better to use them.
356
357 */
358
359 #define HAVE_MEMCPY
360
361 #ifndef USE_MEMCPY
362 #ifdef HAVE_MEMCPY
363 #define USE_MEMCPY 1
364 #else
365 #define USE_MEMCPY 0
366 #endif
367 #endif
368
369 #if (__STD_C || defined(HAVE_MEMCPY))
370
371 #if __STD_C
372 void* memset(void*, int, size_t);
373 void* memcpy(void*, const void*, size_t);
374 #else
375 #ifdef WIN32
376 /* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */
377 /* 'windows.h' */
378 #else
379 Void_t* memset();
380 Void_t* memcpy();
381 #endif
382 #endif
383 #endif
384
385 #if USE_MEMCPY
386
387 /* The following macros are only invoked with (2n+1)-multiples of
388 INTERNAL_SIZE_T units, with a positive integer n. This is exploited
389 for fast inline execution when n is small. */
390
391 #define MALLOC_ZERO(charp, nbytes) \
392 do { \
393 INTERNAL_SIZE_T mzsz = (nbytes); \
394 if(mzsz <= 9*sizeof(mzsz)) { \
395 INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp); \
396 if(mzsz >= 5*sizeof(mzsz)) { *mz++ = 0; \
397 *mz++ = 0; \
398 if(mzsz >= 7*sizeof(mzsz)) { *mz++ = 0; \
399 *mz++ = 0; \
400 if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0; \
401 *mz++ = 0; }}} \
402 *mz++ = 0; \
403 *mz++ = 0; \
404 *mz = 0; \
405 } else memset((charp), 0, mzsz); \
406 } while(0)
407
408 #define MALLOC_COPY(dest,src,nbytes) \
409 do { \
410 INTERNAL_SIZE_T mcsz = (nbytes); \
411 if(mcsz <= 9*sizeof(mcsz)) { \
412 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src); \
413 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest); \
414 if(mcsz >= 5*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
415 *mcdst++ = *mcsrc++; \
416 if(mcsz >= 7*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
417 *mcdst++ = *mcsrc++; \
418 if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
419 *mcdst++ = *mcsrc++; }}} \
420 *mcdst++ = *mcsrc++; \
421 *mcdst++ = *mcsrc++; \
422 *mcdst = *mcsrc ; \
423 } else memcpy(dest, src, mcsz); \
424 } while(0)
425
426 #else /* !USE_MEMCPY */
427
428 /* Use Duff's device for good zeroing/copying performance. */
429
430 #define MALLOC_ZERO(charp, nbytes) \
431 do { \
432 INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \
433 long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \
434 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
435 switch (mctmp) { \
436 case 0: for(;;) { *mzp++ = 0; \
437 case 7: *mzp++ = 0; \
438 case 6: *mzp++ = 0; \
439 case 5: *mzp++ = 0; \
440 case 4: *mzp++ = 0; \
441 case 3: *mzp++ = 0; \
442 case 2: *mzp++ = 0; \
443 case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \
444 } \
445 } while(0)
446
447 #define MALLOC_COPY(dest,src,nbytes) \
448 do { \
449 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \
450 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \
451 long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \
452 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
453 switch (mctmp) { \
454 case 0: for(;;) { *mcdst++ = *mcsrc++; \
455 case 7: *mcdst++ = *mcsrc++; \
456 case 6: *mcdst++ = *mcsrc++; \
457 case 5: *mcdst++ = *mcsrc++; \
458 case 4: *mcdst++ = *mcsrc++; \
459 case 3: *mcdst++ = *mcsrc++; \
460 case 2: *mcdst++ = *mcsrc++; \
461 case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \
462 } \
463 } while(0)
464
465 #endif
466
467
468 /*
469 Define HAVE_MMAP to optionally make malloc() use mmap() to
470 allocate very large blocks. These will be returned to the
471 operating system immediately after a free().
472 */
473
474 #ifndef HAVE_MMAP
475 #define HAVE_MMAP 1
476 #endif
477
478 /*
479 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
480 large blocks. This is currently only possible on Linux with
481 kernel versions newer than 1.3.77.
482 */
483
484 #ifndef HAVE_MREMAP
485 #ifdef INTERNAL_LINUX_C_LIB
486 #define HAVE_MREMAP 1
487 #else
488 #define HAVE_MREMAP 0
489 #endif
490 #endif
491
492 #if HAVE_MMAP
493
494 #include <unistd.h>
495 #include <fcntl.h>
496 #include <sys/mman.h>
497
498 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
499 #define MAP_ANONYMOUS MAP_ANON
500 #endif
501
502 #endif /* HAVE_MMAP */
503
504 /*
505 Access to system page size. To the extent possible, this malloc
506 manages memory from the system in page-size units.
507
508 The following mechanics for getpagesize were adapted from
509 bsd/gnu getpagesize.h
510 */
511
512 #ifndef LACKS_UNISTD_H
513 # include <unistd.h>
514 #endif
515
516 #ifndef malloc_getpagesize
517 # ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
518 # ifndef _SC_PAGE_SIZE
519 # define _SC_PAGE_SIZE _SC_PAGESIZE
520 # endif
521 # endif
522 # ifdef _SC_PAGE_SIZE
523 # define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
524 # else
525 # if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
526 extern size_t getpagesize();
527 # define malloc_getpagesize getpagesize()
528 # else
529 # ifdef WIN32
530 # define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */
531 # else
532 # ifndef LACKS_SYS_PARAM_H
533 # include <sys/param.h>
534 # endif
535 # ifdef EXEC_PAGESIZE
536 # define malloc_getpagesize EXEC_PAGESIZE
537 # else
538 # ifdef NBPG
539 # ifndef CLSIZE
540 # define malloc_getpagesize NBPG
541 # else
542 # define malloc_getpagesize (NBPG * CLSIZE)
543 # endif
544 # else
545 # ifdef NBPC
546 # define malloc_getpagesize NBPC
547 # else
548 # ifdef PAGESIZE
549 # define malloc_getpagesize PAGESIZE
550 # else
551 # define malloc_getpagesize (4096) /* just guess */
552 # endif
553 # endif
554 # endif
555 # endif
556 # endif
557 # endif
558 # endif
559 #endif
560
561
562 /*
563
564 This version of malloc supports the standard SVID/XPG mallinfo
565 routine that returns a struct containing the same kind of
566 information you can get from malloc_stats. It should work on
567 any SVID/XPG compliant system that has a /usr/include/malloc.h
568 defining struct mallinfo. (If you'd like to install such a thing
569 yourself, cut out the preliminary declarations as described above
570 and below and save them in a malloc.h file. But there's no
571 compelling reason to bother to do this.)
572
573 The main declaration needed is the mallinfo struct that is returned
574 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
575 bunch of fields, most of which are not even meaningful in this
576 version of malloc. Some of these fields are are instead filled by
577 mallinfo() with other numbers that might possibly be of interest.
578
579 HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
580 /usr/include/malloc.h file that includes a declaration of struct
581 mallinfo. If so, it is included; else an SVID2/XPG2 compliant
582 version is declared below. These must be precisely the same for
583 mallinfo() to work.
584
585 */
586
587 /* #define HAVE_USR_INCLUDE_MALLOC_H */
588
589 #if HAVE_USR_INCLUDE_MALLOC_H
590 #include "/usr/include/malloc.h"
591 #else
592
593 /* SVID2/XPG mallinfo structure */
594
595 struct mallinfo {
596 int arena; /* total space allocated from system */
597 int ordblks; /* number of non-inuse chunks */
598 int smblks; /* unused -- always zero */
599 int hblks; /* number of mmapped regions */
600 int hblkhd; /* total space in mmapped regions */
601 int usmblks; /* unused -- always zero */
602 int fsmblks; /* unused -- always zero */
603 int uordblks; /* total allocated space */
604 int fordblks; /* total non-inuse space */
605 int keepcost; /* top-most, releasable (via malloc_trim) space */
606 };
607
608 /* SVID2/XPG mallopt options */
609
610 #define M_MXFAST 1 /* UNUSED in this malloc */
611 #define M_NLBLKS 2 /* UNUSED in this malloc */
612 #define M_GRAIN 3 /* UNUSED in this malloc */
613 #define M_KEEP 4 /* UNUSED in this malloc */
614
615 #endif
616
617 /* mallopt options that actually do something */
618
619 #define M_TRIM_THRESHOLD -1
620 #define M_TOP_PAD -2
621 #define M_MMAP_THRESHOLD -3
622 #define M_MMAP_MAX -4
623
624
625 #ifndef DEFAULT_TRIM_THRESHOLD
626 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
627 #endif
628
629 /*
630 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
631 to keep before releasing via malloc_trim in free().
632
633 Automatic trimming is mainly useful in long-lived programs.
634 Because trimming via sbrk can be slow on some systems, and can
635 sometimes be wasteful (in cases where programs immediately
636 afterward allocate more large chunks) the value should be high
637 enough so that your overall system performance would improve by
638 releasing.
639
640 The trim threshold and the mmap control parameters (see below)
641 can be traded off with one another. Trimming and mmapping are
642 two different ways of releasing unused memory back to the
643 system. Between these two, it is often possible to keep
644 system-level demands of a long-lived program down to a bare
645 minimum. For example, in one test suite of sessions measuring
646 the XF86 X server on Linux, using a trim threshold of 128K and a
647 mmap threshold of 192K led to near-minimal long term resource
648 consumption.
649
650 If you are using this malloc in a long-lived program, it should
651 pay to experiment with these values. As a rough guide, you
652 might set to a value close to the average size of a process
653 (program) running on your system. Releasing this much memory
654 would allow such a process to run in memory. Generally, it's
655 worth it to tune for trimming rather tham memory mapping when a
656 program undergoes phases where several large chunks are
657 allocated and released in ways that can reuse each other's
658 storage, perhaps mixed with phases where there are no such
659 chunks at all. And in well-behaved long-lived programs,
660 controlling release of large blocks via trimming versus mapping
661 is usually faster.
662
663 However, in most programs, these parameters serve mainly as
664 protection against the system-level effects of carrying around
665 massive amounts of unneeded memory. Since frequent calls to
666 sbrk, mmap, and munmap otherwise degrade performance, the default
667 parameters are set to relatively high values that serve only as
668 safeguards.
669
670 The default trim value is high enough to cause trimming only in
671 fairly extreme (by current memory consumption standards) cases.
672 It must be greater than page size to have any useful effect. To
673 disable trimming completely, you can set to (unsigned long)(-1);
674
675
676 */
677
678
679 #ifndef DEFAULT_TOP_PAD
680 #define DEFAULT_TOP_PAD (0)
681 #endif
682
683 /*
684 M_TOP_PAD is the amount of extra `padding' space to allocate or
685 retain whenever sbrk is called. It is used in two ways internally:
686
687 * When sbrk is called to extend the top of the arena to satisfy
688 a new malloc request, this much padding is added to the sbrk
689 request.
690
691 * When malloc_trim is called automatically from free(),
692 it is used as the `pad' argument.
693
694 In both cases, the actual amount of padding is rounded
695 so that the end of the arena is always a system page boundary.
696
697 The main reason for using padding is to avoid calling sbrk so
698 often. Having even a small pad greatly reduces the likelihood
699 that nearly every malloc request during program start-up (or
700 after trimming) will invoke sbrk, which needlessly wastes
701 time.
702
703 Automatic rounding-up to page-size units is normally sufficient
704 to avoid measurable overhead, so the default is 0. However, in
705 systems where sbrk is relatively slow, it can pay to increase
706 this value, at the expense of carrying around more memory than
707 the program needs.
708
709 */
710
711
712 #ifndef DEFAULT_MMAP_THRESHOLD
713 #define DEFAULT_MMAP_THRESHOLD (128 * 1024)
714 #endif
715
716 /*
717
718 M_MMAP_THRESHOLD is the request size threshold for using mmap()
719 to service a request. Requests of at least this size that cannot
720 be allocated using already-existing space will be serviced via mmap.
721 (If enough normal freed space already exists it is used instead.)
722
723 Using mmap segregates relatively large chunks of memory so that
724 they can be individually obtained and released from the host
725 system. A request serviced through mmap is never reused by any
726 other request (at least not directly; the system may just so
727 happen to remap successive requests to the same locations).
728
729 Segregating space in this way has the benefit that mmapped space
730 can ALWAYS be individually released back to the system, which
731 helps keep the system level memory demands of a long-lived
732 program low. Mapped memory can never become `locked' between
733 other chunks, as can happen with normally allocated chunks, which
734 menas that even trimming via malloc_trim would not release them.
735
736 However, it has the disadvantages that:
737
738 1. The space cannot be reclaimed, consolidated, and then
739 used to service later requests, as happens with normal chunks.
740 2. It can lead to more wastage because of mmap page alignment
741 requirements
742 3. It causes malloc performance to be more dependent on host
743 system memory management support routines which may vary in
744 implementation quality and may impose arbitrary
745 limitations. Generally, servicing a request via normal
746 malloc steps is faster than going through a system's mmap.
747
748 All together, these considerations should lead you to use mmap
749 only for relatively large requests.
750
751
752 */
753
754
755 #ifndef DEFAULT_MMAP_MAX
756 #if HAVE_MMAP
757 #define DEFAULT_MMAP_MAX (64)
758 #else
759 #define DEFAULT_MMAP_MAX (0)
760 #endif
761 #endif
762
763 /*
764 M_MMAP_MAX is the maximum number of requests to simultaneously
765 service using mmap. This parameter exists because:
766
767 1. Some systems have a limited number of internal tables for
768 use by mmap.
769 2. In most systems, overreliance on mmap can degrade overall
770 performance.
771 3. If a program allocates many large regions, it is probably
772 better off using normal sbrk-based allocation routines that
773 can reclaim and reallocate normal heap memory. Using a
774 small value allows transition into this mode after the
775 first few allocations.
776
777 Setting to 0 disables all use of mmap. If HAVE_MMAP is not set,
778 the default value is 0, and attempts to set it to non-zero values
779 in mallopt will fail.
780 */
781
782
783 /*
784 USE_DL_PREFIX will prefix all public routines with the string 'dl'.
785 Useful to quickly avoid procedure declaration conflicts and linker
786 symbol conflicts with existing memory allocation routines.
787
788 */
789
790 /* #define USE_DL_PREFIX */
791
792
793 /*
794
795 Special defines for linux libc
796
797 Except when compiled using these special defines for Linux libc
798 using weak aliases, this malloc is NOT designed to work in
799 multithreaded applications. No semaphores or other concurrency
800 control are provided to ensure that multiple malloc or free calls
801 don't run at the same time, which could be disasterous. A single
802 semaphore could be used across malloc, realloc, and free (which is
803 essentially the effect of the linux weak alias approach). It would
804 be hard to obtain finer granularity.
805
806 */
807
808
809 #ifdef INTERNAL_LINUX_C_LIB
810
811 #if __STD_C
812
813 Void_t * __default_morecore_init (ptrdiff_t);
814 Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init;
815
816 #else
817
818 Void_t * __default_morecore_init ();
819 Void_t *(*__morecore)() = __default_morecore_init;
820
821 #endif
822
823 #define MORECORE (*__morecore)
824 #define MORECORE_FAILURE 0
825 #define MORECORE_CLEARS 1
826
827 #else /* INTERNAL_LINUX_C_LIB */
828
829 #if __STD_C
830 extern Void_t* sbrk(ptrdiff_t);
831 #else
832 extern Void_t* sbrk();
833 #endif
834
835 #ifndef MORECORE
836 #define MORECORE sbrk
837 #endif
838
839 #ifndef MORECORE_FAILURE
840 #define MORECORE_FAILURE -1
841 #endif
842
843 #ifndef MORECORE_CLEARS
844 #define MORECORE_CLEARS 1
845 #endif
846
847 #endif /* INTERNAL_LINUX_C_LIB */
848
849 #if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__)
850
851 #define cALLOc __libc_calloc
852 #define fREe __libc_free
853 #define mALLOc __libc_malloc
854 #define mEMALIGn __libc_memalign
855 #define rEALLOc __libc_realloc
856 #define vALLOc __libc_valloc
857 #define pvALLOc __libc_pvalloc
858 #define mALLINFo __libc_mallinfo
859 #define mALLOPt __libc_mallopt
860
861 #pragma weak calloc = __libc_calloc
862 #pragma weak free = __libc_free
863 #pragma weak cfree = __libc_free
864 #pragma weak malloc = __libc_malloc
865 #pragma weak memalign = __libc_memalign
866 #pragma weak realloc = __libc_realloc
867 #pragma weak valloc = __libc_valloc
868 #pragma weak pvalloc = __libc_pvalloc
869 #pragma weak mallinfo = __libc_mallinfo
870 #pragma weak mallopt = __libc_mallopt
871
872 #else
873
874 #ifdef USE_DL_PREFIX
875 #define cALLOc dlcalloc
876 #define fREe dlfree
877 #define mALLOc dlmalloc
878 #define mEMALIGn dlmemalign
879 #define rEALLOc dlrealloc
880 #define vALLOc dlvalloc
881 #define pvALLOc dlpvalloc
882 #define mALLINFo dlmallinfo
883 #define mALLOPt dlmallopt
884 #else /* USE_DL_PREFIX */
885 #define cALLOc calloc
886 #define fREe free
887 #define mALLOc malloc
888 #define mEMALIGn memalign
889 #define rEALLOc realloc
890 #define vALLOc valloc
891 #define pvALLOc pvalloc
892 #define mALLINFo mallinfo
893 #define mALLOPt mallopt
894 #endif /* USE_DL_PREFIX */
895
896 #endif
897
898 /* Public routines */
899
900 #if __STD_C
901
902 Void_t* mALLOc(size_t);
903 void fREe(Void_t*);
904 Void_t* rEALLOc(Void_t*, size_t);
905 Void_t* mEMALIGn(size_t, size_t);
906 Void_t* vALLOc(size_t);
907 Void_t* pvALLOc(size_t);
908 Void_t* cALLOc(size_t, size_t);
909 void cfree(Void_t*);
910 int malloc_trim(size_t);
911 size_t malloc_usable_size(Void_t*);
912 void malloc_stats();
913 int mALLOPt(int, int);
914 struct mallinfo mALLINFo(void);
915 #else
916 Void_t* mALLOc();
917 void fREe();
918 Void_t* rEALLOc();
919 Void_t* mEMALIGn();
920 Void_t* vALLOc();
921 Void_t* pvALLOc();
922 Void_t* cALLOc();
923 void cfree();
924 int malloc_trim();
925 size_t malloc_usable_size();
926 void malloc_stats();
927 int mALLOPt();
928 struct mallinfo mALLINFo();
929 #endif
930
931
932 #ifdef __cplusplus
933 }; /* end of extern "C" */
934 #endif
935
936 /* ---------- To make a malloc.h, end cutting here ------------ */
937 #endif /* 0 */ /* Moved to malloc.h */
938
939 #include <malloc.h>
940 #ifdef DEBUG
941 #if __STD_C
942 static void malloc_update_mallinfo (void);
943 void malloc_stats (void);
944 #else
945 static void malloc_update_mallinfo ();
946 void malloc_stats();
947 #endif
948 #endif /* DEBUG */
949
950 DECLARE_GLOBAL_DATA_PTR;
951
952 /*
953 Emulation of sbrk for WIN32
954 All code within the ifdef WIN32 is untested by me.
955
956 Thanks to Martin Fong and others for supplying this.
957 */
958
959
960 #ifdef WIN32
961
962 #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
963 ~(malloc_getpagesize-1))
964 #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
965
966 /* resrve 64MB to insure large contiguous space */
967 #define RESERVED_SIZE (1024*1024*64)
968 #define NEXT_SIZE (2048*1024)
969 #define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
970
971 struct GmListElement;
972 typedef struct GmListElement GmListElement;
973
974 struct GmListElement
975 {
976 GmListElement* next;
977 void* base;
978 };
979
980 static GmListElement* head = 0;
981 static unsigned int gNextAddress = 0;
982 static unsigned int gAddressBase = 0;
983 static unsigned int gAllocatedSize = 0;
984
985 static
986 GmListElement* makeGmListElement (void* bas)
987 {
988 GmListElement* this;
989 this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
990 assert (this);
991 if (this)
992 {
993 this->base = bas;
994 this->next = head;
995 head = this;
996 }
997 return this;
998 }
999
1000 void gcleanup ()
1001 {
1002 BOOL rval;
1003 assert ( (head == NULL) || (head->base == (void*)gAddressBase));
1004 if (gAddressBase && (gNextAddress - gAddressBase))
1005 {
1006 rval = VirtualFree ((void*)gAddressBase,
1007 gNextAddress - gAddressBase,
1008 MEM_DECOMMIT);
1009 assert (rval);
1010 }
1011 while (head)
1012 {
1013 GmListElement* next = head->next;
1014 rval = VirtualFree (head->base, 0, MEM_RELEASE);
1015 assert (rval);
1016 LocalFree (head);
1017 head = next;
1018 }
1019 }
1020
1021 static
1022 void* findRegion (void* start_address, unsigned long size)
1023 {
1024 MEMORY_BASIC_INFORMATION info;
1025 if (size >= TOP_MEMORY) return NULL;
1026
1027 while ((unsigned long)start_address + size < TOP_MEMORY)
1028 {
1029 VirtualQuery (start_address, &info, sizeof (info));
1030 if ((info.State == MEM_FREE) && (info.RegionSize >= size))
1031 return start_address;
1032 else
1033 {
1034 /* Requested region is not available so see if the */
1035 /* next region is available. Set 'start_address' */
1036 /* to the next region and call 'VirtualQuery()' */
1037 /* again. */
1038
1039 start_address = (char*)info.BaseAddress + info.RegionSize;
1040
1041 /* Make sure we start looking for the next region */
1042 /* on the *next* 64K boundary. Otherwise, even if */
1043 /* the new region is free according to */
1044 /* 'VirtualQuery()', the subsequent call to */
1045 /* 'VirtualAlloc()' (which follows the call to */
1046 /* this routine in 'wsbrk()') will round *down* */
1047 /* the requested address to a 64K boundary which */
1048 /* we already know is an address in the */
1049 /* unavailable region. Thus, the subsequent call */
1050 /* to 'VirtualAlloc()' will fail and bring us back */
1051 /* here, causing us to go into an infinite loop. */
1052
1053 start_address =
1054 (void *) AlignPage64K((unsigned long) start_address);
1055 }
1056 }
1057 return NULL;
1058
1059 }
1060
1061
1062 void* wsbrk (long size)
1063 {
1064 void* tmp;
1065 if (size > 0)
1066 {
1067 if (gAddressBase == 0)
1068 {
1069 gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
1070 gNextAddress = gAddressBase =
1071 (unsigned int)VirtualAlloc (NULL, gAllocatedSize,
1072 MEM_RESERVE, PAGE_NOACCESS);
1073 } else if (AlignPage (gNextAddress + size) > (gAddressBase +
1074 gAllocatedSize))
1075 {
1076 long new_size = max (NEXT_SIZE, AlignPage (size));
1077 void* new_address = (void*)(gAddressBase+gAllocatedSize);
1078 do
1079 {
1080 new_address = findRegion (new_address, new_size);
1081
1082 if (new_address == 0)
1083 return (void*)-1;
1084
1085 gAddressBase = gNextAddress =
1086 (unsigned int)VirtualAlloc (new_address, new_size,
1087 MEM_RESERVE, PAGE_NOACCESS);
1088 /* repeat in case of race condition */
1089 /* The region that we found has been snagged */
1090 /* by another thread */
1091 }
1092 while (gAddressBase == 0);
1093
1094 assert (new_address == (void*)gAddressBase);
1095
1096 gAllocatedSize = new_size;
1097
1098 if (!makeGmListElement ((void*)gAddressBase))
1099 return (void*)-1;
1100 }
1101 if ((size + gNextAddress) > AlignPage (gNextAddress))
1102 {
1103 void* res;
1104 res = VirtualAlloc ((void*)AlignPage (gNextAddress),
1105 (size + gNextAddress -
1106 AlignPage (gNextAddress)),
1107 MEM_COMMIT, PAGE_READWRITE);
1108 if (res == 0)
1109 return (void*)-1;
1110 }
1111 tmp = (void*)gNextAddress;
1112 gNextAddress = (unsigned int)tmp + size;
1113 return tmp;
1114 }
1115 else if (size < 0)
1116 {
1117 unsigned int alignedGoal = AlignPage (gNextAddress + size);
1118 /* Trim by releasing the virtual memory */
1119 if (alignedGoal >= gAddressBase)
1120 {
1121 VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
1122 MEM_DECOMMIT);
1123 gNextAddress = gNextAddress + size;
1124 return (void*)gNextAddress;
1125 }
1126 else
1127 {
1128 VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
1129 MEM_DECOMMIT);
1130 gNextAddress = gAddressBase;
1131 return (void*)-1;
1132 }
1133 }
1134 else
1135 {
1136 return (void*)gNextAddress;
1137 }
1138 }
1139
1140 #endif
1141
1142 \f
1143
1144 /*
1145 Type declarations
1146 */
1147
1148
1149 struct malloc_chunk
1150 {
1151 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
1152 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
1153 struct malloc_chunk* fd; /* double links -- used only if free. */
1154 struct malloc_chunk* bk;
1155 };
1156
1157 typedef struct malloc_chunk* mchunkptr;
1158
1159 /*
1160
1161 malloc_chunk details:
1162
1163 (The following includes lightly edited explanations by Colin Plumb.)
1164
1165 Chunks of memory are maintained using a `boundary tag' method as
1166 described in e.g., Knuth or Standish. (See the paper by Paul
1167 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1168 survey of such techniques.) Sizes of free chunks are stored both
1169 in the front of each chunk and at the end. This makes
1170 consolidating fragmented chunks into bigger chunks very fast. The
1171 size fields also hold bits representing whether chunks are free or
1172 in use.
1173
1174 An allocated chunk looks like this:
1175
1176
1177 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1178 | Size of previous chunk, if allocated | |
1179 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1180 | Size of chunk, in bytes |P|
1181 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1182 | User data starts here... .
1183 . .
1184 . (malloc_usable_space() bytes) .
1185 . |
1186 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1187 | Size of chunk |
1188 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1189
1190
1191 Where "chunk" is the front of the chunk for the purpose of most of
1192 the malloc code, but "mem" is the pointer that is returned to the
1193 user. "Nextchunk" is the beginning of the next contiguous chunk.
1194
1195 Chunks always begin on even word boundries, so the mem portion
1196 (which is returned to the user) is also on an even word boundary, and
1197 thus double-word aligned.
1198
1199 Free chunks are stored in circular doubly-linked lists, and look like this:
1200
1201 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1202 | Size of previous chunk |
1203 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1204 `head:' | Size of chunk, in bytes |P|
1205 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1206 | Forward pointer to next chunk in list |
1207 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1208 | Back pointer to previous chunk in list |
1209 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1210 | Unused space (may be 0 bytes long) .
1211 . .
1212 . |
1213 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1214 `foot:' | Size of chunk, in bytes |
1215 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1216
1217 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1218 chunk size (which is always a multiple of two words), is an in-use
1219 bit for the *previous* chunk. If that bit is *clear*, then the
1220 word before the current chunk size contains the previous chunk
1221 size, and can be used to find the front of the previous chunk.
1222 (The very first chunk allocated always has this bit set,
1223 preventing access to non-existent (or non-owned) memory.)
1224
1225 Note that the `foot' of the current chunk is actually represented
1226 as the prev_size of the NEXT chunk. (This makes it easier to
1227 deal with alignments etc).
1228
1229 The two exceptions to all this are
1230
1231 1. The special chunk `top', which doesn't bother using the
1232 trailing size field since there is no
1233 next contiguous chunk that would have to index off it. (After
1234 initialization, `top' is forced to always exist. If it would
1235 become less than MINSIZE bytes long, it is replenished via
1236 malloc_extend_top.)
1237
1238 2. Chunks allocated via mmap, which have the second-lowest-order
1239 bit (IS_MMAPPED) set in their size fields. Because they are
1240 never merged or traversed from any other chunk, they have no
1241 foot size or inuse information.
1242
1243 Available chunks are kept in any of several places (all declared below):
1244
1245 * `av': An array of chunks serving as bin headers for consolidated
1246 chunks. Each bin is doubly linked. The bins are approximately
1247 proportionally (log) spaced. There are a lot of these bins
1248 (128). This may look excessive, but works very well in
1249 practice. All procedures maintain the invariant that no
1250 consolidated chunk physically borders another one. Chunks in
1251 bins are kept in size order, with ties going to the
1252 approximately least recently used chunk.
1253
1254 The chunks in each bin are maintained in decreasing sorted order by
1255 size. This is irrelevant for the small bins, which all contain
1256 the same-sized chunks, but facilitates best-fit allocation for
1257 larger chunks. (These lists are just sequential. Keeping them in
1258 order almost never requires enough traversal to warrant using
1259 fancier ordered data structures.) Chunks of the same size are
1260 linked with the most recently freed at the front, and allocations
1261 are taken from the back. This results in LRU or FIFO allocation
1262 order, which tends to give each chunk an equal opportunity to be
1263 consolidated with adjacent freed chunks, resulting in larger free
1264 chunks and less fragmentation.
1265
1266 * `top': The top-most available chunk (i.e., the one bordering the
1267 end of available memory) is treated specially. It is never
1268 included in any bin, is used only if no other chunk is
1269 available, and is released back to the system if it is very
1270 large (see M_TRIM_THRESHOLD).
1271
1272 * `last_remainder': A bin holding only the remainder of the
1273 most recently split (non-top) chunk. This bin is checked
1274 before other non-fitting chunks, so as to provide better
1275 locality for runs of sequentially allocated chunks.
1276
1277 * Implicitly, through the host system's memory mapping tables.
1278 If supported, requests greater than a threshold are usually
1279 serviced via calls to mmap, and then later released via munmap.
1280
1281 */
1282 \f
1283 /* sizes, alignments */
1284
1285 #define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
1286 #define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ)
1287 #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
1288 #define MINSIZE (sizeof(struct malloc_chunk))
1289
1290 /* conversion from malloc headers to user pointers, and back */
1291
1292 #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
1293 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1294
1295 /* pad request bytes into a usable size */
1296
1297 #define request2size(req) \
1298 (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
1299 (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
1300 (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
1301
1302 /* Check if m has acceptable alignment */
1303
1304 #define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
1305
1306
1307 \f
1308
1309 /*
1310 Physical chunk operations
1311 */
1312
1313
1314 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1315
1316 #define PREV_INUSE 0x1
1317
1318 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1319
1320 #define IS_MMAPPED 0x2
1321
1322 /* Bits to mask off when extracting size */
1323
1324 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
1325
1326
1327 /* Ptr to next physical malloc_chunk. */
1328
1329 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
1330
1331 /* Ptr to previous physical malloc_chunk */
1332
1333 #define prev_chunk(p)\
1334 ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
1335
1336
1337 /* Treat space at ptr + offset as a chunk */
1338
1339 #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
1340
1341
1342 \f
1343
1344 /*
1345 Dealing with use bits
1346 */
1347
1348 /* extract p's inuse bit */
1349
1350 #define inuse(p)\
1351 ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
1352
1353 /* extract inuse bit of previous chunk */
1354
1355 #define prev_inuse(p) ((p)->size & PREV_INUSE)
1356
1357 /* check for mmap()'ed chunk */
1358
1359 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1360
1361 /* set/clear chunk as in use without otherwise disturbing */
1362
1363 #define set_inuse(p)\
1364 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
1365
1366 #define clear_inuse(p)\
1367 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
1368
1369 /* check/set/clear inuse bits in known places */
1370
1371 #define inuse_bit_at_offset(p, s)\
1372 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
1373
1374 #define set_inuse_bit_at_offset(p, s)\
1375 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
1376
1377 #define clear_inuse_bit_at_offset(p, s)\
1378 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
1379
1380
1381 \f
1382
1383 /*
1384 Dealing with size fields
1385 */
1386
1387 /* Get size, ignoring use bits */
1388
1389 #define chunksize(p) ((p)->size & ~(SIZE_BITS))
1390
1391 /* Set size at head, without disturbing its use bit */
1392
1393 #define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s)))
1394
1395 /* Set size/use ignoring previous bits in header */
1396
1397 #define set_head(p, s) ((p)->size = (s))
1398
1399 /* Set size at footer (only when chunk is not in use) */
1400
1401 #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
1402
1403
1404 \f
1405
1406
1407 /*
1408 Bins
1409
1410 The bins, `av_' are an array of pairs of pointers serving as the
1411 heads of (initially empty) doubly-linked lists of chunks, laid out
1412 in a way so that each pair can be treated as if it were in a
1413 malloc_chunk. (This way, the fd/bk offsets for linking bin heads
1414 and chunks are the same).
1415
1416 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1417 8 bytes apart. Larger bins are approximately logarithmically
1418 spaced. (See the table below.) The `av_' array is never mentioned
1419 directly in the code, but instead via bin access macros.
1420
1421 Bin layout:
1422
1423 64 bins of size 8
1424 32 bins of size 64
1425 16 bins of size 512
1426 8 bins of size 4096
1427 4 bins of size 32768
1428 2 bins of size 262144
1429 1 bin of size what's left
1430
1431 There is actually a little bit of slop in the numbers in bin_index
1432 for the sake of speed. This makes no difference elsewhere.
1433
1434 The special chunks `top' and `last_remainder' get their own bins,
1435 (this is implemented via yet more trickery with the av_ array),
1436 although `top' is never properly linked to its bin since it is
1437 always handled specially.
1438
1439 */
1440
1441 #define NAV 128 /* number of bins */
1442
1443 typedef struct malloc_chunk* mbinptr;
1444
1445 /* access macros */
1446
1447 #define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
1448 #define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
1449 #define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
1450
1451 /*
1452 The first 2 bins are never indexed. The corresponding av_ cells are instead
1453 used for bookkeeping. This is not to save space, but to simplify
1454 indexing, maintain locality, and avoid some initialization tests.
1455 */
1456
1457 #define top (av_[2]) /* The topmost chunk */
1458 #define last_remainder (bin_at(1)) /* remainder from last split */
1459
1460
1461 /*
1462 Because top initially points to its own bin with initial
1463 zero size, thus forcing extension on the first malloc request,
1464 we avoid having any special code in malloc to check whether
1465 it even exists yet. But we still need to in malloc_extend_top.
1466 */
1467
1468 #define initial_top ((mchunkptr)(bin_at(0)))
1469
1470 /* Helper macro to initialize bins */
1471
1472 #define IAV(i) bin_at(i), bin_at(i)
1473
1474 static mbinptr av_[NAV * 2 + 2] = {
1475 0, 0,
1476 IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7),
1477 IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15),
1478 IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23),
1479 IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31),
1480 IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39),
1481 IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47),
1482 IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55),
1483 IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63),
1484 IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71),
1485 IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79),
1486 IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87),
1487 IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95),
1488 IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103),
1489 IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
1490 IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
1491 IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
1492 };
1493
1494 #ifndef CONFIG_RELOC_FIXUP_WORKS
1495 void malloc_bin_reloc (void)
1496 {
1497 unsigned long *p = (unsigned long *)(&av_[2]);
1498 int i;
1499 for (i=2; i<(sizeof(av_)/sizeof(mbinptr)); ++i) {
1500 *p++ += gd->reloc_off;
1501 }
1502 }
1503 #endif
1504
1505 ulong mem_malloc_start = 0;
1506 ulong mem_malloc_end = 0;
1507 ulong mem_malloc_brk = 0;
1508
1509 void *sbrk(ptrdiff_t increment)
1510 {
1511 ulong old = mem_malloc_brk;
1512 ulong new = old + increment;
1513
1514 if ((new < mem_malloc_start) || (new > mem_malloc_end))
1515 return (void *)MORECORE_FAILURE;
1516
1517 mem_malloc_brk = new;
1518
1519 return (void *)old;
1520 }
1521
1522 void mem_malloc_init(ulong start, ulong size)
1523 {
1524 mem_malloc_start = start;
1525 mem_malloc_end = start + size;
1526 mem_malloc_brk = start;
1527
1528 memset((void *)mem_malloc_start, 0, size);
1529 }
1530
1531 /* field-extraction macros */
1532
1533 #define first(b) ((b)->fd)
1534 #define last(b) ((b)->bk)
1535
1536 /*
1537 Indexing into bins
1538 */
1539
1540 #define bin_index(sz) \
1541 (((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \
1542 ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \
1543 ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \
1544 ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \
1545 ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \
1546 ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
1547 126)
1548 /*
1549 bins for chunks < 512 are all spaced 8 bytes apart, and hold
1550 identically sized chunks. This is exploited in malloc.
1551 */
1552
1553 #define MAX_SMALLBIN 63
1554 #define MAX_SMALLBIN_SIZE 512
1555 #define SMALLBIN_WIDTH 8
1556
1557 #define smallbin_index(sz) (((unsigned long)(sz)) >> 3)
1558
1559 /*
1560 Requests are `small' if both the corresponding and the next bin are small
1561 */
1562
1563 #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
1564
1565 \f
1566
1567 /*
1568 To help compensate for the large number of bins, a one-level index
1569 structure is used for bin-by-bin searching. `binblocks' is a
1570 one-word bitvector recording whether groups of BINBLOCKWIDTH bins
1571 have any (possibly) non-empty bins, so they can be skipped over
1572 all at once during during traversals. The bits are NOT always
1573 cleared as soon as all bins in a block are empty, but instead only
1574 when all are noticed to be empty during traversal in malloc.
1575 */
1576
1577 #define BINBLOCKWIDTH 4 /* bins per block */
1578
1579 #define binblocks_r ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */
1580 #define binblocks_w (av_[1])
1581
1582 /* bin<->block macros */
1583
1584 #define idx2binblock(ix) ((unsigned)1 << (ix / BINBLOCKWIDTH))
1585 #define mark_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii)))
1586 #define clear_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii))))
1587
1588
1589 \f
1590
1591
1592 /* Other static bookkeeping data */
1593
1594 /* variables holding tunable values */
1595
1596 static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD;
1597 static unsigned long top_pad = DEFAULT_TOP_PAD;
1598 static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX;
1599 static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD;
1600
1601 /* The first value returned from sbrk */
1602 static char* sbrk_base = (char*)(-1);
1603
1604 /* The maximum memory obtained from system via sbrk */
1605 static unsigned long max_sbrked_mem = 0;
1606
1607 /* The maximum via either sbrk or mmap */
1608 static unsigned long max_total_mem = 0;
1609
1610 /* internal working copy of mallinfo */
1611 static struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
1612
1613 /* The total memory obtained from system via sbrk */
1614 #define sbrked_mem (current_mallinfo.arena)
1615
1616 /* Tracking mmaps */
1617
1618 #ifdef DEBUG
1619 static unsigned int n_mmaps = 0;
1620 #endif /* DEBUG */
1621 static unsigned long mmapped_mem = 0;
1622 #if HAVE_MMAP
1623 static unsigned int max_n_mmaps = 0;
1624 static unsigned long max_mmapped_mem = 0;
1625 #endif
1626
1627 \f
1628
1629 /*
1630 Debugging support
1631 */
1632
1633 #ifdef DEBUG
1634
1635
1636 /*
1637 These routines make a number of assertions about the states
1638 of data structures that should be true at all times. If any
1639 are not true, it's very likely that a user program has somehow
1640 trashed memory. (It's also possible that there is a coding error
1641 in malloc. In which case, please report it!)
1642 */
1643
1644 #if __STD_C
1645 static void do_check_chunk(mchunkptr p)
1646 #else
1647 static void do_check_chunk(p) mchunkptr p;
1648 #endif
1649 {
1650 #if 0 /* causes warnings because assert() is off */
1651 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1652 #endif /* 0 */
1653
1654 /* No checkable chunk is mmapped */
1655 assert(!chunk_is_mmapped(p));
1656
1657 /* Check for legal address ... */
1658 assert((char*)p >= sbrk_base);
1659 if (p != top)
1660 assert((char*)p + sz <= (char*)top);
1661 else
1662 assert((char*)p + sz <= sbrk_base + sbrked_mem);
1663
1664 }
1665
1666
1667 #if __STD_C
1668 static void do_check_free_chunk(mchunkptr p)
1669 #else
1670 static void do_check_free_chunk(p) mchunkptr p;
1671 #endif
1672 {
1673 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1674 #if 0 /* causes warnings because assert() is off */
1675 mchunkptr next = chunk_at_offset(p, sz);
1676 #endif /* 0 */
1677
1678 do_check_chunk(p);
1679
1680 /* Check whether it claims to be free ... */
1681 assert(!inuse(p));
1682
1683 /* Unless a special marker, must have OK fields */
1684 if ((long)sz >= (long)MINSIZE)
1685 {
1686 assert((sz & MALLOC_ALIGN_MASK) == 0);
1687 assert(aligned_OK(chunk2mem(p)));
1688 /* ... matching footer field */
1689 assert(next->prev_size == sz);
1690 /* ... and is fully consolidated */
1691 assert(prev_inuse(p));
1692 assert (next == top || inuse(next));
1693
1694 /* ... and has minimally sane links */
1695 assert(p->fd->bk == p);
1696 assert(p->bk->fd == p);
1697 }
1698 else /* markers are always of size SIZE_SZ */
1699 assert(sz == SIZE_SZ);
1700 }
1701
1702 #if __STD_C
1703 static void do_check_inuse_chunk(mchunkptr p)
1704 #else
1705 static void do_check_inuse_chunk(p) mchunkptr p;
1706 #endif
1707 {
1708 mchunkptr next = next_chunk(p);
1709 do_check_chunk(p);
1710
1711 /* Check whether it claims to be in use ... */
1712 assert(inuse(p));
1713
1714 /* ... and is surrounded by OK chunks.
1715 Since more things can be checked with free chunks than inuse ones,
1716 if an inuse chunk borders them and debug is on, it's worth doing them.
1717 */
1718 if (!prev_inuse(p))
1719 {
1720 mchunkptr prv = prev_chunk(p);
1721 assert(next_chunk(prv) == p);
1722 do_check_free_chunk(prv);
1723 }
1724 if (next == top)
1725 {
1726 assert(prev_inuse(next));
1727 assert(chunksize(next) >= MINSIZE);
1728 }
1729 else if (!inuse(next))
1730 do_check_free_chunk(next);
1731
1732 }
1733
1734 #if __STD_C
1735 static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
1736 #else
1737 static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
1738 #endif
1739 {
1740 #if 0 /* causes warnings because assert() is off */
1741 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1742 long room = sz - s;
1743 #endif /* 0 */
1744
1745 do_check_inuse_chunk(p);
1746
1747 /* Legal size ... */
1748 assert((long)sz >= (long)MINSIZE);
1749 assert((sz & MALLOC_ALIGN_MASK) == 0);
1750 assert(room >= 0);
1751 assert(room < (long)MINSIZE);
1752
1753 /* ... and alignment */
1754 assert(aligned_OK(chunk2mem(p)));
1755
1756
1757 /* ... and was allocated at front of an available chunk */
1758 assert(prev_inuse(p));
1759
1760 }
1761
1762
1763 #define check_free_chunk(P) do_check_free_chunk(P)
1764 #define check_inuse_chunk(P) do_check_inuse_chunk(P)
1765 #define check_chunk(P) do_check_chunk(P)
1766 #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
1767 #else
1768 #define check_free_chunk(P)
1769 #define check_inuse_chunk(P)
1770 #define check_chunk(P)
1771 #define check_malloced_chunk(P,N)
1772 #endif
1773
1774 \f
1775
1776 /*
1777 Macro-based internal utilities
1778 */
1779
1780
1781 /*
1782 Linking chunks in bin lists.
1783 Call these only with variables, not arbitrary expressions, as arguments.
1784 */
1785
1786 /*
1787 Place chunk p of size s in its bin, in size order,
1788 putting it ahead of others of same size.
1789 */
1790
1791
1792 #define frontlink(P, S, IDX, BK, FD) \
1793 { \
1794 if (S < MAX_SMALLBIN_SIZE) \
1795 { \
1796 IDX = smallbin_index(S); \
1797 mark_binblock(IDX); \
1798 BK = bin_at(IDX); \
1799 FD = BK->fd; \
1800 P->bk = BK; \
1801 P->fd = FD; \
1802 FD->bk = BK->fd = P; \
1803 } \
1804 else \
1805 { \
1806 IDX = bin_index(S); \
1807 BK = bin_at(IDX); \
1808 FD = BK->fd; \
1809 if (FD == BK) mark_binblock(IDX); \
1810 else \
1811 { \
1812 while (FD != BK && S < chunksize(FD)) FD = FD->fd; \
1813 BK = FD->bk; \
1814 } \
1815 P->bk = BK; \
1816 P->fd = FD; \
1817 FD->bk = BK->fd = P; \
1818 } \
1819 }
1820
1821
1822 /* take a chunk off a list */
1823
1824 #define unlink(P, BK, FD) \
1825 { \
1826 BK = P->bk; \
1827 FD = P->fd; \
1828 FD->bk = BK; \
1829 BK->fd = FD; \
1830 } \
1831
1832 /* Place p as the last remainder */
1833
1834 #define link_last_remainder(P) \
1835 { \
1836 last_remainder->fd = last_remainder->bk = P; \
1837 P->fd = P->bk = last_remainder; \
1838 }
1839
1840 /* Clear the last_remainder bin */
1841
1842 #define clear_last_remainder \
1843 (last_remainder->fd = last_remainder->bk = last_remainder)
1844
1845
1846 \f
1847
1848
1849 /* Routines dealing with mmap(). */
1850
1851 #if HAVE_MMAP
1852
1853 #if __STD_C
1854 static mchunkptr mmap_chunk(size_t size)
1855 #else
1856 static mchunkptr mmap_chunk(size) size_t size;
1857 #endif
1858 {
1859 size_t page_mask = malloc_getpagesize - 1;
1860 mchunkptr p;
1861
1862 #ifndef MAP_ANONYMOUS
1863 static int fd = -1;
1864 #endif
1865
1866 if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
1867
1868 /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
1869 * there is no following chunk whose prev_size field could be used.
1870 */
1871 size = (size + SIZE_SZ + page_mask) & ~page_mask;
1872
1873 #ifdef MAP_ANONYMOUS
1874 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
1875 MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1876 #else /* !MAP_ANONYMOUS */
1877 if (fd < 0)
1878 {
1879 fd = open("/dev/zero", O_RDWR);
1880 if(fd < 0) return 0;
1881 }
1882 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
1883 #endif
1884
1885 if(p == (mchunkptr)-1) return 0;
1886
1887 n_mmaps++;
1888 if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
1889
1890 /* We demand that eight bytes into a page must be 8-byte aligned. */
1891 assert(aligned_OK(chunk2mem(p)));
1892
1893 /* The offset to the start of the mmapped region is stored
1894 * in the prev_size field of the chunk; normally it is zero,
1895 * but that can be changed in memalign().
1896 */
1897 p->prev_size = 0;
1898 set_head(p, size|IS_MMAPPED);
1899
1900 mmapped_mem += size;
1901 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1902 max_mmapped_mem = mmapped_mem;
1903 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1904 max_total_mem = mmapped_mem + sbrked_mem;
1905 return p;
1906 }
1907
1908 #if __STD_C
1909 static void munmap_chunk(mchunkptr p)
1910 #else
1911 static void munmap_chunk(p) mchunkptr p;
1912 #endif
1913 {
1914 INTERNAL_SIZE_T size = chunksize(p);
1915 int ret;
1916
1917 assert (chunk_is_mmapped(p));
1918 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1919 assert((n_mmaps > 0));
1920 assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1921
1922 n_mmaps--;
1923 mmapped_mem -= (size + p->prev_size);
1924
1925 ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1926
1927 /* munmap returns non-zero on failure */
1928 assert(ret == 0);
1929 }
1930
1931 #if HAVE_MREMAP
1932
1933 #if __STD_C
1934 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1935 #else
1936 static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1937 #endif
1938 {
1939 size_t page_mask = malloc_getpagesize - 1;
1940 INTERNAL_SIZE_T offset = p->prev_size;
1941 INTERNAL_SIZE_T size = chunksize(p);
1942 char *cp;
1943
1944 assert (chunk_is_mmapped(p));
1945 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1946 assert((n_mmaps > 0));
1947 assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1948
1949 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1950 new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1951
1952 cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1953
1954 if (cp == (char *)-1) return 0;
1955
1956 p = (mchunkptr)(cp + offset);
1957
1958 assert(aligned_OK(chunk2mem(p)));
1959
1960 assert((p->prev_size == offset));
1961 set_head(p, (new_size - offset)|IS_MMAPPED);
1962
1963 mmapped_mem -= size + offset;
1964 mmapped_mem += new_size;
1965 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1966 max_mmapped_mem = mmapped_mem;
1967 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1968 max_total_mem = mmapped_mem + sbrked_mem;
1969 return p;
1970 }
1971
1972 #endif /* HAVE_MREMAP */
1973
1974 #endif /* HAVE_MMAP */
1975
1976
1977 \f
1978
1979 /*
1980 Extend the top-most chunk by obtaining memory from system.
1981 Main interface to sbrk (but see also malloc_trim).
1982 */
1983
1984 #if __STD_C
1985 static void malloc_extend_top(INTERNAL_SIZE_T nb)
1986 #else
1987 static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1988 #endif
1989 {
1990 char* brk; /* return value from sbrk */
1991 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1992 INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */
1993 char* new_brk; /* return of 2nd sbrk call */
1994 INTERNAL_SIZE_T top_size; /* new size of top chunk */
1995
1996 mchunkptr old_top = top; /* Record state of old top */
1997 INTERNAL_SIZE_T old_top_size = chunksize(old_top);
1998 char* old_end = (char*)(chunk_at_offset(old_top, old_top_size));
1999
2000 /* Pad request with top_pad plus minimal overhead */
2001
2002 INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE;
2003 unsigned long pagesz = malloc_getpagesize;
2004
2005 /* If not the first time through, round to preserve page boundary */
2006 /* Otherwise, we need to correct to a page size below anyway. */
2007 /* (We also correct below if an intervening foreign sbrk call.) */
2008
2009 if (sbrk_base != (char*)(-1))
2010 sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
2011
2012 brk = (char*)(MORECORE (sbrk_size));
2013
2014 /* Fail if sbrk failed or if a foreign sbrk call killed our space */
2015 if (brk == (char*)(MORECORE_FAILURE) ||
2016 (brk < old_end && old_top != initial_top))
2017 return;
2018
2019 sbrked_mem += sbrk_size;
2020
2021 if (brk == old_end) /* can just add bytes to current top */
2022 {
2023 top_size = sbrk_size + old_top_size;
2024 set_head(top, top_size | PREV_INUSE);
2025 }
2026 else
2027 {
2028 if (sbrk_base == (char*)(-1)) /* First time through. Record base */
2029 sbrk_base = brk;
2030 else /* Someone else called sbrk(). Count those bytes as sbrked_mem. */
2031 sbrked_mem += brk - (char*)old_end;
2032
2033 /* Guarantee alignment of first new chunk made from this space */
2034 front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
2035 if (front_misalign > 0)
2036 {
2037 correction = (MALLOC_ALIGNMENT) - front_misalign;
2038 brk += correction;
2039 }
2040 else
2041 correction = 0;
2042
2043 /* Guarantee the next brk will be at a page boundary */
2044
2045 correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
2046 ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
2047
2048 /* Allocate correction */
2049 new_brk = (char*)(MORECORE (correction));
2050 if (new_brk == (char*)(MORECORE_FAILURE)) return;
2051
2052 sbrked_mem += correction;
2053
2054 top = (mchunkptr)brk;
2055 top_size = new_brk - brk + correction;
2056 set_head(top, top_size | PREV_INUSE);
2057
2058 if (old_top != initial_top)
2059 {
2060
2061 /* There must have been an intervening foreign sbrk call. */
2062 /* A double fencepost is necessary to prevent consolidation */
2063
2064 /* If not enough space to do this, then user did something very wrong */
2065 if (old_top_size < MINSIZE)
2066 {
2067 set_head(top, PREV_INUSE); /* will force null return from malloc */
2068 return;
2069 }
2070
2071 /* Also keep size a multiple of MALLOC_ALIGNMENT */
2072 old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
2073 set_head_size(old_top, old_top_size);
2074 chunk_at_offset(old_top, old_top_size )->size =
2075 SIZE_SZ|PREV_INUSE;
2076 chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
2077 SIZE_SZ|PREV_INUSE;
2078 /* If possible, release the rest. */
2079 if (old_top_size >= MINSIZE)
2080 fREe(chunk2mem(old_top));
2081 }
2082 }
2083
2084 if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
2085 max_sbrked_mem = sbrked_mem;
2086 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
2087 max_total_mem = mmapped_mem + sbrked_mem;
2088
2089 /* We always land on a page boundary */
2090 assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
2091 }
2092
2093
2094 \f
2095
2096 /* Main public routines */
2097
2098
2099 /*
2100 Malloc Algorthim:
2101
2102 The requested size is first converted into a usable form, `nb'.
2103 This currently means to add 4 bytes overhead plus possibly more to
2104 obtain 8-byte alignment and/or to obtain a size of at least
2105 MINSIZE (currently 16 bytes), the smallest allocatable size.
2106 (All fits are considered `exact' if they are within MINSIZE bytes.)
2107
2108 From there, the first successful of the following steps is taken:
2109
2110 1. The bin corresponding to the request size is scanned, and if
2111 a chunk of exactly the right size is found, it is taken.
2112
2113 2. The most recently remaindered chunk is used if it is big
2114 enough. This is a form of (roving) first fit, used only in
2115 the absence of exact fits. Runs of consecutive requests use
2116 the remainder of the chunk used for the previous such request
2117 whenever possible. This limited use of a first-fit style
2118 allocation strategy tends to give contiguous chunks
2119 coextensive lifetimes, which improves locality and can reduce
2120 fragmentation in the long run.
2121
2122 3. Other bins are scanned in increasing size order, using a
2123 chunk big enough to fulfill the request, and splitting off
2124 any remainder. This search is strictly by best-fit; i.e.,
2125 the smallest (with ties going to approximately the least
2126 recently used) chunk that fits is selected.
2127
2128 4. If large enough, the chunk bordering the end of memory
2129 (`top') is split off. (This use of `top' is in accord with
2130 the best-fit search rule. In effect, `top' is treated as
2131 larger (and thus less well fitting) than any other available
2132 chunk since it can be extended to be as large as necessary
2133 (up to system limitations).
2134
2135 5. If the request size meets the mmap threshold and the
2136 system supports mmap, and there are few enough currently
2137 allocated mmapped regions, and a call to mmap succeeds,
2138 the request is allocated via direct memory mapping.
2139
2140 6. Otherwise, the top of memory is extended by
2141 obtaining more space from the system (normally using sbrk,
2142 but definable to anything else via the MORECORE macro).
2143 Memory is gathered from the system (in system page-sized
2144 units) in a way that allows chunks obtained across different
2145 sbrk calls to be consolidated, but does not require
2146 contiguous memory. Thus, it should be safe to intersperse
2147 mallocs with other sbrk calls.
2148
2149
2150 All allocations are made from the the `lowest' part of any found
2151 chunk. (The implementation invariant is that prev_inuse is
2152 always true of any allocated chunk; i.e., that each allocated
2153 chunk borders either a previously allocated and still in-use chunk,
2154 or the base of its memory arena.)
2155
2156 */
2157
2158 #if __STD_C
2159 Void_t* mALLOc(size_t bytes)
2160 #else
2161 Void_t* mALLOc(bytes) size_t bytes;
2162 #endif
2163 {
2164 mchunkptr victim; /* inspected/selected chunk */
2165 INTERNAL_SIZE_T victim_size; /* its size */
2166 int idx; /* index for bin traversal */
2167 mbinptr bin; /* associated bin */
2168 mchunkptr remainder; /* remainder from a split */
2169 long remainder_size; /* its size */
2170 int remainder_index; /* its bin index */
2171 unsigned long block; /* block traverser bit */
2172 int startidx; /* first bin of a traversed block */
2173 mchunkptr fwd; /* misc temp for linking */
2174 mchunkptr bck; /* misc temp for linking */
2175 mbinptr q; /* misc temp */
2176
2177 INTERNAL_SIZE_T nb;
2178
2179 /* check if mem_malloc_init() was run */
2180 if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) {
2181 /* not initialized yet */
2182 return 0;
2183 }
2184
2185 if ((long)bytes < 0) return 0;
2186
2187 nb = request2size(bytes); /* padded request size; */
2188
2189 /* Check for exact match in a bin */
2190
2191 if (is_small_request(nb)) /* Faster version for small requests */
2192 {
2193 idx = smallbin_index(nb);
2194
2195 /* No traversal or size check necessary for small bins. */
2196
2197 q = bin_at(idx);
2198 victim = last(q);
2199
2200 /* Also scan the next one, since it would have a remainder < MINSIZE */
2201 if (victim == q)
2202 {
2203 q = next_bin(q);
2204 victim = last(q);
2205 }
2206 if (victim != q)
2207 {
2208 victim_size = chunksize(victim);
2209 unlink(victim, bck, fwd);
2210 set_inuse_bit_at_offset(victim, victim_size);
2211 check_malloced_chunk(victim, nb);
2212 return chunk2mem(victim);
2213 }
2214
2215 idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
2216
2217 }
2218 else
2219 {
2220 idx = bin_index(nb);
2221 bin = bin_at(idx);
2222
2223 for (victim = last(bin); victim != bin; victim = victim->bk)
2224 {
2225 victim_size = chunksize(victim);
2226 remainder_size = victim_size - nb;
2227
2228 if (remainder_size >= (long)MINSIZE) /* too big */
2229 {
2230 --idx; /* adjust to rescan below after checking last remainder */
2231 break;
2232 }
2233
2234 else if (remainder_size >= 0) /* exact fit */
2235 {
2236 unlink(victim, bck, fwd);
2237 set_inuse_bit_at_offset(victim, victim_size);
2238 check_malloced_chunk(victim, nb);
2239 return chunk2mem(victim);
2240 }
2241 }
2242
2243 ++idx;
2244
2245 }
2246
2247 /* Try to use the last split-off remainder */
2248
2249 if ( (victim = last_remainder->fd) != last_remainder)
2250 {
2251 victim_size = chunksize(victim);
2252 remainder_size = victim_size - nb;
2253
2254 if (remainder_size >= (long)MINSIZE) /* re-split */
2255 {
2256 remainder = chunk_at_offset(victim, nb);
2257 set_head(victim, nb | PREV_INUSE);
2258 link_last_remainder(remainder);
2259 set_head(remainder, remainder_size | PREV_INUSE);
2260 set_foot(remainder, remainder_size);
2261 check_malloced_chunk(victim, nb);
2262 return chunk2mem(victim);
2263 }
2264
2265 clear_last_remainder;
2266
2267 if (remainder_size >= 0) /* exhaust */
2268 {
2269 set_inuse_bit_at_offset(victim, victim_size);
2270 check_malloced_chunk(victim, nb);
2271 return chunk2mem(victim);
2272 }
2273
2274 /* Else place in bin */
2275
2276 frontlink(victim, victim_size, remainder_index, bck, fwd);
2277 }
2278
2279 /*
2280 If there are any possibly nonempty big-enough blocks,
2281 search for best fitting chunk by scanning bins in blockwidth units.
2282 */
2283
2284 if ( (block = idx2binblock(idx)) <= binblocks_r)
2285 {
2286
2287 /* Get to the first marked block */
2288
2289 if ( (block & binblocks_r) == 0)
2290 {
2291 /* force to an even block boundary */
2292 idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
2293 block <<= 1;
2294 while ((block & binblocks_r) == 0)
2295 {
2296 idx += BINBLOCKWIDTH;
2297 block <<= 1;
2298 }
2299 }
2300
2301 /* For each possibly nonempty block ... */
2302 for (;;)
2303 {
2304 startidx = idx; /* (track incomplete blocks) */
2305 q = bin = bin_at(idx);
2306
2307 /* For each bin in this block ... */
2308 do
2309 {
2310 /* Find and use first big enough chunk ... */
2311
2312 for (victim = last(bin); victim != bin; victim = victim->bk)
2313 {
2314 victim_size = chunksize(victim);
2315 remainder_size = victim_size - nb;
2316
2317 if (remainder_size >= (long)MINSIZE) /* split */
2318 {
2319 remainder = chunk_at_offset(victim, nb);
2320 set_head(victim, nb | PREV_INUSE);
2321 unlink(victim, bck, fwd);
2322 link_last_remainder(remainder);
2323 set_head(remainder, remainder_size | PREV_INUSE);
2324 set_foot(remainder, remainder_size);
2325 check_malloced_chunk(victim, nb);
2326 return chunk2mem(victim);
2327 }
2328
2329 else if (remainder_size >= 0) /* take */
2330 {
2331 set_inuse_bit_at_offset(victim, victim_size);
2332 unlink(victim, bck, fwd);
2333 check_malloced_chunk(victim, nb);
2334 return chunk2mem(victim);
2335 }
2336
2337 }
2338
2339 bin = next_bin(bin);
2340
2341 } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
2342
2343 /* Clear out the block bit. */
2344
2345 do /* Possibly backtrack to try to clear a partial block */
2346 {
2347 if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
2348 {
2349 av_[1] = (mbinptr)(binblocks_r & ~block);
2350 break;
2351 }
2352 --startidx;
2353 q = prev_bin(q);
2354 } while (first(q) == q);
2355
2356 /* Get to the next possibly nonempty block */
2357
2358 if ( (block <<= 1) <= binblocks_r && (block != 0) )
2359 {
2360 while ((block & binblocks_r) == 0)
2361 {
2362 idx += BINBLOCKWIDTH;
2363 block <<= 1;
2364 }
2365 }
2366 else
2367 break;
2368 }
2369 }
2370
2371
2372 /* Try to use top chunk */
2373
2374 /* Require that there be a remainder, ensuring top always exists */
2375 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2376 {
2377
2378 #if HAVE_MMAP
2379 /* If big and would otherwise need to extend, try to use mmap instead */
2380 if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
2381 (victim = mmap_chunk(nb)) != 0)
2382 return chunk2mem(victim);
2383 #endif
2384
2385 /* Try to extend */
2386 malloc_extend_top(nb);
2387 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2388 return 0; /* propagate failure */
2389 }
2390
2391 victim = top;
2392 set_head(victim, nb | PREV_INUSE);
2393 top = chunk_at_offset(victim, nb);
2394 set_head(top, remainder_size | PREV_INUSE);
2395 check_malloced_chunk(victim, nb);
2396 return chunk2mem(victim);
2397
2398 }
2399
2400
2401 \f
2402
2403 /*
2404
2405 free() algorithm :
2406
2407 cases:
2408
2409 1. free(0) has no effect.
2410
2411 2. If the chunk was allocated via mmap, it is release via munmap().
2412
2413 3. If a returned chunk borders the current high end of memory,
2414 it is consolidated into the top, and if the total unused
2415 topmost memory exceeds the trim threshold, malloc_trim is
2416 called.
2417
2418 4. Other chunks are consolidated as they arrive, and
2419 placed in corresponding bins. (This includes the case of
2420 consolidating with the current `last_remainder').
2421
2422 */
2423
2424
2425 #if __STD_C
2426 void fREe(Void_t* mem)
2427 #else
2428 void fREe(mem) Void_t* mem;
2429 #endif
2430 {
2431 mchunkptr p; /* chunk corresponding to mem */
2432 INTERNAL_SIZE_T hd; /* its head field */
2433 INTERNAL_SIZE_T sz; /* its size */
2434 int idx; /* its bin index */
2435 mchunkptr next; /* next contiguous chunk */
2436 INTERNAL_SIZE_T nextsz; /* its size */
2437 INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
2438 mchunkptr bck; /* misc temp for linking */
2439 mchunkptr fwd; /* misc temp for linking */
2440 int islr; /* track whether merging with last_remainder */
2441
2442 if (mem == 0) /* free(0) has no effect */
2443 return;
2444
2445 p = mem2chunk(mem);
2446 hd = p->size;
2447
2448 #if HAVE_MMAP
2449 if (hd & IS_MMAPPED) /* release mmapped memory. */
2450 {
2451 munmap_chunk(p);
2452 return;
2453 }
2454 #endif
2455
2456 check_inuse_chunk(p);
2457
2458 sz = hd & ~PREV_INUSE;
2459 next = chunk_at_offset(p, sz);
2460 nextsz = chunksize(next);
2461
2462 if (next == top) /* merge with top */
2463 {
2464 sz += nextsz;
2465
2466 if (!(hd & PREV_INUSE)) /* consolidate backward */
2467 {
2468 prevsz = p->prev_size;
2469 p = chunk_at_offset(p, -((long) prevsz));
2470 sz += prevsz;
2471 unlink(p, bck, fwd);
2472 }
2473
2474 set_head(p, sz | PREV_INUSE);
2475 top = p;
2476 if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
2477 malloc_trim(top_pad);
2478 return;
2479 }
2480
2481 set_head(next, nextsz); /* clear inuse bit */
2482
2483 islr = 0;
2484
2485 if (!(hd & PREV_INUSE)) /* consolidate backward */
2486 {
2487 prevsz = p->prev_size;
2488 p = chunk_at_offset(p, -((long) prevsz));
2489 sz += prevsz;
2490
2491 if (p->fd == last_remainder) /* keep as last_remainder */
2492 islr = 1;
2493 else
2494 unlink(p, bck, fwd);
2495 }
2496
2497 if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */
2498 {
2499 sz += nextsz;
2500
2501 if (!islr && next->fd == last_remainder) /* re-insert last_remainder */
2502 {
2503 islr = 1;
2504 link_last_remainder(p);
2505 }
2506 else
2507 unlink(next, bck, fwd);
2508 }
2509
2510
2511 set_head(p, sz | PREV_INUSE);
2512 set_foot(p, sz);
2513 if (!islr)
2514 frontlink(p, sz, idx, bck, fwd);
2515 }
2516
2517
2518 \f
2519
2520
2521 /*
2522
2523 Realloc algorithm:
2524
2525 Chunks that were obtained via mmap cannot be extended or shrunk
2526 unless HAVE_MREMAP is defined, in which case mremap is used.
2527 Otherwise, if their reallocation is for additional space, they are
2528 copied. If for less, they are just left alone.
2529
2530 Otherwise, if the reallocation is for additional space, and the
2531 chunk can be extended, it is, else a malloc-copy-free sequence is
2532 taken. There are several different ways that a chunk could be
2533 extended. All are tried:
2534
2535 * Extending forward into following adjacent free chunk.
2536 * Shifting backwards, joining preceding adjacent space
2537 * Both shifting backwards and extending forward.
2538 * Extending into newly sbrked space
2539
2540 Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
2541 size argument of zero (re)allocates a minimum-sized chunk.
2542
2543 If the reallocation is for less space, and the new request is for
2544 a `small' (<512 bytes) size, then the newly unused space is lopped
2545 off and freed.
2546
2547 The old unix realloc convention of allowing the last-free'd chunk
2548 to be used as an argument to realloc is no longer supported.
2549 I don't know of any programs still relying on this feature,
2550 and allowing it would also allow too many other incorrect
2551 usages of realloc to be sensible.
2552
2553
2554 */
2555
2556
2557 #if __STD_C
2558 Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
2559 #else
2560 Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
2561 #endif
2562 {
2563 INTERNAL_SIZE_T nb; /* padded request size */
2564
2565 mchunkptr oldp; /* chunk corresponding to oldmem */
2566 INTERNAL_SIZE_T oldsize; /* its size */
2567
2568 mchunkptr newp; /* chunk to return */
2569 INTERNAL_SIZE_T newsize; /* its size */
2570 Void_t* newmem; /* corresponding user mem */
2571
2572 mchunkptr next; /* next contiguous chunk after oldp */
2573 INTERNAL_SIZE_T nextsize; /* its size */
2574
2575 mchunkptr prev; /* previous contiguous chunk before oldp */
2576 INTERNAL_SIZE_T prevsize; /* its size */
2577
2578 mchunkptr remainder; /* holds split off extra space from newp */
2579 INTERNAL_SIZE_T remainder_size; /* its size */
2580
2581 mchunkptr bck; /* misc temp for linking */
2582 mchunkptr fwd; /* misc temp for linking */
2583
2584 #ifdef REALLOC_ZERO_BYTES_FREES
2585 if (bytes == 0) { fREe(oldmem); return 0; }
2586 #endif
2587
2588 if ((long)bytes < 0) return 0;
2589
2590 /* realloc of null is supposed to be same as malloc */
2591 if (oldmem == 0) return mALLOc(bytes);
2592
2593 newp = oldp = mem2chunk(oldmem);
2594 newsize = oldsize = chunksize(oldp);
2595
2596
2597 nb = request2size(bytes);
2598
2599 #if HAVE_MMAP
2600 if (chunk_is_mmapped(oldp))
2601 {
2602 #if HAVE_MREMAP
2603 newp = mremap_chunk(oldp, nb);
2604 if(newp) return chunk2mem(newp);
2605 #endif
2606 /* Note the extra SIZE_SZ overhead. */
2607 if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
2608 /* Must alloc, copy, free. */
2609 newmem = mALLOc(bytes);
2610 if (newmem == 0) return 0; /* propagate failure */
2611 MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
2612 munmap_chunk(oldp);
2613 return newmem;
2614 }
2615 #endif
2616
2617 check_inuse_chunk(oldp);
2618
2619 if ((long)(oldsize) < (long)(nb))
2620 {
2621
2622 /* Try expanding forward */
2623
2624 next = chunk_at_offset(oldp, oldsize);
2625 if (next == top || !inuse(next))
2626 {
2627 nextsize = chunksize(next);
2628
2629 /* Forward into top only if a remainder */
2630 if (next == top)
2631 {
2632 if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
2633 {
2634 newsize += nextsize;
2635 top = chunk_at_offset(oldp, nb);
2636 set_head(top, (newsize - nb) | PREV_INUSE);
2637 set_head_size(oldp, nb);
2638 return chunk2mem(oldp);
2639 }
2640 }
2641
2642 /* Forward into next chunk */
2643 else if (((long)(nextsize + newsize) >= (long)(nb)))
2644 {
2645 unlink(next, bck, fwd);
2646 newsize += nextsize;
2647 goto split;
2648 }
2649 }
2650 else
2651 {
2652 next = 0;
2653 nextsize = 0;
2654 }
2655
2656 /* Try shifting backwards. */
2657
2658 if (!prev_inuse(oldp))
2659 {
2660 prev = prev_chunk(oldp);
2661 prevsize = chunksize(prev);
2662
2663 /* try forward + backward first to save a later consolidation */
2664
2665 if (next != 0)
2666 {
2667 /* into top */
2668 if (next == top)
2669 {
2670 if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
2671 {
2672 unlink(prev, bck, fwd);
2673 newp = prev;
2674 newsize += prevsize + nextsize;
2675 newmem = chunk2mem(newp);
2676 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2677 top = chunk_at_offset(newp, nb);
2678 set_head(top, (newsize - nb) | PREV_INUSE);
2679 set_head_size(newp, nb);
2680 return newmem;
2681 }
2682 }
2683
2684 /* into next chunk */
2685 else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
2686 {
2687 unlink(next, bck, fwd);
2688 unlink(prev, bck, fwd);
2689 newp = prev;
2690 newsize += nextsize + prevsize;
2691 newmem = chunk2mem(newp);
2692 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2693 goto split;
2694 }
2695 }
2696
2697 /* backward only */
2698 if (prev != 0 && (long)(prevsize + newsize) >= (long)nb)
2699 {
2700 unlink(prev, bck, fwd);
2701 newp = prev;
2702 newsize += prevsize;
2703 newmem = chunk2mem(newp);
2704 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2705 goto split;
2706 }
2707 }
2708
2709 /* Must allocate */
2710
2711 newmem = mALLOc (bytes);
2712
2713 if (newmem == 0) /* propagate failure */
2714 return 0;
2715
2716 /* Avoid copy if newp is next chunk after oldp. */
2717 /* (This can only happen when new chunk is sbrk'ed.) */
2718
2719 if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
2720 {
2721 newsize += chunksize(newp);
2722 newp = oldp;
2723 goto split;
2724 }
2725
2726 /* Otherwise copy, free, and exit */
2727 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2728 fREe(oldmem);
2729 return newmem;
2730 }
2731
2732
2733 split: /* split off extra room in old or expanded chunk */
2734
2735 if (newsize - nb >= MINSIZE) /* split off remainder */
2736 {
2737 remainder = chunk_at_offset(newp, nb);
2738 remainder_size = newsize - nb;
2739 set_head_size(newp, nb);
2740 set_head(remainder, remainder_size | PREV_INUSE);
2741 set_inuse_bit_at_offset(remainder, remainder_size);
2742 fREe(chunk2mem(remainder)); /* let free() deal with it */
2743 }
2744 else
2745 {
2746 set_head_size(newp, newsize);
2747 set_inuse_bit_at_offset(newp, newsize);
2748 }
2749
2750 check_inuse_chunk(newp);
2751 return chunk2mem(newp);
2752 }
2753
2754
2755 \f
2756
2757 /*
2758
2759 memalign algorithm:
2760
2761 memalign requests more than enough space from malloc, finds a spot
2762 within that chunk that meets the alignment request, and then
2763 possibly frees the leading and trailing space.
2764
2765 The alignment argument must be a power of two. This property is not
2766 checked by memalign, so misuse may result in random runtime errors.
2767
2768 8-byte alignment is guaranteed by normal malloc calls, so don't
2769 bother calling memalign with an argument of 8 or less.
2770
2771 Overreliance on memalign is a sure way to fragment space.
2772
2773 */
2774
2775
2776 #if __STD_C
2777 Void_t* mEMALIGn(size_t alignment, size_t bytes)
2778 #else
2779 Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
2780 #endif
2781 {
2782 INTERNAL_SIZE_T nb; /* padded request size */
2783 char* m; /* memory returned by malloc call */
2784 mchunkptr p; /* corresponding chunk */
2785 char* brk; /* alignment point within p */
2786 mchunkptr newp; /* chunk to return */
2787 INTERNAL_SIZE_T newsize; /* its size */
2788 INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */
2789 mchunkptr remainder; /* spare room at end to split off */
2790 long remainder_size; /* its size */
2791
2792 if ((long)bytes < 0) return 0;
2793
2794 /* If need less alignment than we give anyway, just relay to malloc */
2795
2796 if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
2797
2798 /* Otherwise, ensure that it is at least a minimum chunk size */
2799
2800 if (alignment < MINSIZE) alignment = MINSIZE;
2801
2802 /* Call malloc with worst case padding to hit alignment. */
2803
2804 nb = request2size(bytes);
2805 m = (char*)(mALLOc(nb + alignment + MINSIZE));
2806
2807 if (m == 0) return 0; /* propagate failure */
2808
2809 p = mem2chunk(m);
2810
2811 if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
2812 {
2813 #if HAVE_MMAP
2814 if(chunk_is_mmapped(p))
2815 return chunk2mem(p); /* nothing more to do */
2816 #endif
2817 }
2818 else /* misaligned */
2819 {
2820 /*
2821 Find an aligned spot inside chunk.
2822 Since we need to give back leading space in a chunk of at
2823 least MINSIZE, if the first calculation places us at
2824 a spot with less than MINSIZE leader, we can move to the
2825 next aligned spot -- we've allocated enough total room so that
2826 this is always possible.
2827 */
2828
2829 brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
2830 if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
2831
2832 newp = (mchunkptr)brk;
2833 leadsize = brk - (char*)(p);
2834 newsize = chunksize(p) - leadsize;
2835
2836 #if HAVE_MMAP
2837 if(chunk_is_mmapped(p))
2838 {
2839 newp->prev_size = p->prev_size + leadsize;
2840 set_head(newp, newsize|IS_MMAPPED);
2841 return chunk2mem(newp);
2842 }
2843 #endif
2844
2845 /* give back leader, use the rest */
2846
2847 set_head(newp, newsize | PREV_INUSE);
2848 set_inuse_bit_at_offset(newp, newsize);
2849 set_head_size(p, leadsize);
2850 fREe(chunk2mem(p));
2851 p = newp;
2852
2853 assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
2854 }
2855
2856 /* Also give back spare room at the end */
2857
2858 remainder_size = chunksize(p) - nb;
2859
2860 if (remainder_size >= (long)MINSIZE)
2861 {
2862 remainder = chunk_at_offset(p, nb);
2863 set_head(remainder, remainder_size | PREV_INUSE);
2864 set_head_size(p, nb);
2865 fREe(chunk2mem(remainder));
2866 }
2867
2868 check_inuse_chunk(p);
2869 return chunk2mem(p);
2870
2871 }
2872
2873 \f
2874
2875
2876 /*
2877 valloc just invokes memalign with alignment argument equal
2878 to the page size of the system (or as near to this as can
2879 be figured out from all the includes/defines above.)
2880 */
2881
2882 #if __STD_C
2883 Void_t* vALLOc(size_t bytes)
2884 #else
2885 Void_t* vALLOc(bytes) size_t bytes;
2886 #endif
2887 {
2888 return mEMALIGn (malloc_getpagesize, bytes);
2889 }
2890
2891 /*
2892 pvalloc just invokes valloc for the nearest pagesize
2893 that will accommodate request
2894 */
2895
2896
2897 #if __STD_C
2898 Void_t* pvALLOc(size_t bytes)
2899 #else
2900 Void_t* pvALLOc(bytes) size_t bytes;
2901 #endif
2902 {
2903 size_t pagesize = malloc_getpagesize;
2904 return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2905 }
2906
2907 /*
2908
2909 calloc calls malloc, then zeroes out the allocated chunk.
2910
2911 */
2912
2913 #if __STD_C
2914 Void_t* cALLOc(size_t n, size_t elem_size)
2915 #else
2916 Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
2917 #endif
2918 {
2919 mchunkptr p;
2920 INTERNAL_SIZE_T csz;
2921
2922 INTERNAL_SIZE_T sz = n * elem_size;
2923
2924
2925 /* check if expand_top called, in which case don't need to clear */
2926 #if MORECORE_CLEARS
2927 mchunkptr oldtop = top;
2928 INTERNAL_SIZE_T oldtopsize = chunksize(top);
2929 #endif
2930 Void_t* mem = mALLOc (sz);
2931
2932 if ((long)n < 0) return 0;
2933
2934 if (mem == 0)
2935 return 0;
2936 else
2937 {
2938 p = mem2chunk(mem);
2939
2940 /* Two optional cases in which clearing not necessary */
2941
2942
2943 #if HAVE_MMAP
2944 if (chunk_is_mmapped(p)) return mem;
2945 #endif
2946
2947 csz = chunksize(p);
2948
2949 #if MORECORE_CLEARS
2950 if (p == oldtop && csz > oldtopsize)
2951 {
2952 /* clear only the bytes from non-freshly-sbrked memory */
2953 csz = oldtopsize;
2954 }
2955 #endif
2956
2957 MALLOC_ZERO(mem, csz - SIZE_SZ);
2958 return mem;
2959 }
2960 }
2961
2962 /*
2963
2964 cfree just calls free. It is needed/defined on some systems
2965 that pair it with calloc, presumably for odd historical reasons.
2966
2967 */
2968
2969 #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
2970 #if __STD_C
2971 void cfree(Void_t *mem)
2972 #else
2973 void cfree(mem) Void_t *mem;
2974 #endif
2975 {
2976 fREe(mem);
2977 }
2978 #endif
2979
2980 \f
2981
2982 /*
2983
2984 Malloc_trim gives memory back to the system (via negative
2985 arguments to sbrk) if there is unused memory at the `high' end of
2986 the malloc pool. You can call this after freeing large blocks of
2987 memory to potentially reduce the system-level memory requirements
2988 of a program. However, it cannot guarantee to reduce memory. Under
2989 some allocation patterns, some large free blocks of memory will be
2990 locked between two used chunks, so they cannot be given back to
2991 the system.
2992
2993 The `pad' argument to malloc_trim represents the amount of free
2994 trailing space to leave untrimmed. If this argument is zero,
2995 only the minimum amount of memory to maintain internal data
2996 structures will be left (one page or less). Non-zero arguments
2997 can be supplied to maintain enough trailing space to service
2998 future expected allocations without having to re-obtain memory
2999 from the system.
3000
3001 Malloc_trim returns 1 if it actually released any memory, else 0.
3002
3003 */
3004
3005 #if __STD_C
3006 int malloc_trim(size_t pad)
3007 #else
3008 int malloc_trim(pad) size_t pad;
3009 #endif
3010 {
3011 long top_size; /* Amount of top-most memory */
3012 long extra; /* Amount to release */
3013 char* current_brk; /* address returned by pre-check sbrk call */
3014 char* new_brk; /* address returned by negative sbrk call */
3015
3016 unsigned long pagesz = malloc_getpagesize;
3017
3018 top_size = chunksize(top);
3019 extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
3020
3021 if (extra < (long)pagesz) /* Not enough memory to release */
3022 return 0;
3023
3024 else
3025 {
3026 /* Test to make sure no one else called sbrk */
3027 current_brk = (char*)(MORECORE (0));
3028 if (current_brk != (char*)(top) + top_size)
3029 return 0; /* Apparently we don't own memory; must fail */
3030
3031 else
3032 {
3033 new_brk = (char*)(MORECORE (-extra));
3034
3035 if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
3036 {
3037 /* Try to figure out what we have */
3038 current_brk = (char*)(MORECORE (0));
3039 top_size = current_brk - (char*)top;
3040 if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
3041 {
3042 sbrked_mem = current_brk - sbrk_base;
3043 set_head(top, top_size | PREV_INUSE);
3044 }
3045 check_chunk(top);
3046 return 0;
3047 }
3048
3049 else
3050 {
3051 /* Success. Adjust top accordingly. */
3052 set_head(top, (top_size - extra) | PREV_INUSE);
3053 sbrked_mem -= extra;
3054 check_chunk(top);
3055 return 1;
3056 }
3057 }
3058 }
3059 }
3060
3061 \f
3062
3063 /*
3064 malloc_usable_size:
3065
3066 This routine tells you how many bytes you can actually use in an
3067 allocated chunk, which may be more than you requested (although
3068 often not). You can use this many bytes without worrying about
3069 overwriting other allocated objects. Not a particularly great
3070 programming practice, but still sometimes useful.
3071
3072 */
3073
3074 #if __STD_C
3075 size_t malloc_usable_size(Void_t* mem)
3076 #else
3077 size_t malloc_usable_size(mem) Void_t* mem;
3078 #endif
3079 {
3080 mchunkptr p;
3081 if (mem == 0)
3082 return 0;
3083 else
3084 {
3085 p = mem2chunk(mem);
3086 if(!chunk_is_mmapped(p))
3087 {
3088 if (!inuse(p)) return 0;
3089 check_inuse_chunk(p);
3090 return chunksize(p) - SIZE_SZ;
3091 }
3092 return chunksize(p) - 2*SIZE_SZ;
3093 }
3094 }
3095
3096
3097 \f
3098
3099 /* Utility to update current_mallinfo for malloc_stats and mallinfo() */
3100
3101 #ifdef DEBUG
3102 static void malloc_update_mallinfo()
3103 {
3104 int i;
3105 mbinptr b;
3106 mchunkptr p;
3107 #ifdef DEBUG
3108 mchunkptr q;
3109 #endif
3110
3111 INTERNAL_SIZE_T avail = chunksize(top);
3112 int navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
3113
3114 for (i = 1; i < NAV; ++i)
3115 {
3116 b = bin_at(i);
3117 for (p = last(b); p != b; p = p->bk)
3118 {
3119 #ifdef DEBUG
3120 check_free_chunk(p);
3121 for (q = next_chunk(p);
3122 q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
3123 q = next_chunk(q))
3124 check_inuse_chunk(q);
3125 #endif
3126 avail += chunksize(p);
3127 navail++;
3128 }
3129 }
3130
3131 current_mallinfo.ordblks = navail;
3132 current_mallinfo.uordblks = sbrked_mem - avail;
3133 current_mallinfo.fordblks = avail;
3134 current_mallinfo.hblks = n_mmaps;
3135 current_mallinfo.hblkhd = mmapped_mem;
3136 current_mallinfo.keepcost = chunksize(top);
3137
3138 }
3139 #endif /* DEBUG */
3140
3141 \f
3142
3143 /*
3144
3145 malloc_stats:
3146
3147 Prints on the amount of space obtain from the system (both
3148 via sbrk and mmap), the maximum amount (which may be more than
3149 current if malloc_trim and/or munmap got called), the maximum
3150 number of simultaneous mmap regions used, and the current number
3151 of bytes allocated via malloc (or realloc, etc) but not yet
3152 freed. (Note that this is the number of bytes allocated, not the
3153 number requested. It will be larger than the number requested
3154 because of alignment and bookkeeping overhead.)
3155
3156 */
3157
3158 #ifdef DEBUG
3159 void malloc_stats()
3160 {
3161 malloc_update_mallinfo();
3162 printf("max system bytes = %10u\n",
3163 (unsigned int)(max_total_mem));
3164 printf("system bytes = %10u\n",
3165 (unsigned int)(sbrked_mem + mmapped_mem));
3166 printf("in use bytes = %10u\n",
3167 (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
3168 #if HAVE_MMAP
3169 printf("max mmap regions = %10u\n",
3170 (unsigned int)max_n_mmaps);
3171 #endif
3172 }
3173 #endif /* DEBUG */
3174
3175 /*
3176 mallinfo returns a copy of updated current mallinfo.
3177 */
3178
3179 #ifdef DEBUG
3180 struct mallinfo mALLINFo()
3181 {
3182 malloc_update_mallinfo();
3183 return current_mallinfo;
3184 }
3185 #endif /* DEBUG */
3186
3187
3188 \f
3189
3190 /*
3191 mallopt:
3192
3193 mallopt is the general SVID/XPG interface to tunable parameters.
3194 The format is to provide a (parameter-number, parameter-value) pair.
3195 mallopt then sets the corresponding parameter to the argument
3196 value if it can (i.e., so long as the value is meaningful),
3197 and returns 1 if successful else 0.
3198
3199 See descriptions of tunable parameters above.
3200
3201 */
3202
3203 #if __STD_C
3204 int mALLOPt(int param_number, int value)
3205 #else
3206 int mALLOPt(param_number, value) int param_number; int value;
3207 #endif
3208 {
3209 switch(param_number)
3210 {
3211 case M_TRIM_THRESHOLD:
3212 trim_threshold = value; return 1;
3213 case M_TOP_PAD:
3214 top_pad = value; return 1;
3215 case M_MMAP_THRESHOLD:
3216 mmap_threshold = value; return 1;
3217 case M_MMAP_MAX:
3218 #if HAVE_MMAP
3219 n_mmaps_max = value; return 1;
3220 #else
3221 if (value != 0) return 0; else n_mmaps_max = value; return 1;
3222 #endif
3223
3224 default:
3225 return 0;
3226 }
3227 }
3228
3229 /*
3230
3231 History:
3232
3233 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
3234 * return null for negative arguments
3235 * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
3236 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
3237 (e.g. WIN32 platforms)
3238 * Cleanup up header file inclusion for WIN32 platforms
3239 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
3240 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
3241 memory allocation routines
3242 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
3243 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
3244 usage of 'assert' in non-WIN32 code
3245 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
3246 avoid infinite loop
3247 * Always call 'fREe()' rather than 'free()'
3248
3249 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
3250 * Fixed ordering problem with boundary-stamping
3251
3252 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
3253 * Added pvalloc, as recommended by H.J. Liu
3254 * Added 64bit pointer support mainly from Wolfram Gloger
3255 * Added anonymously donated WIN32 sbrk emulation
3256 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
3257 * malloc_extend_top: fix mask error that caused wastage after
3258 foreign sbrks
3259 * Add linux mremap support code from HJ Liu
3260
3261 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
3262 * Integrated most documentation with the code.
3263 * Add support for mmap, with help from
3264 Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3265 * Use last_remainder in more cases.
3266 * Pack bins using idea from colin@nyx10.cs.du.edu
3267 * Use ordered bins instead of best-fit threshhold
3268 * Eliminate block-local decls to simplify tracing and debugging.
3269 * Support another case of realloc via move into top
3270 * Fix error occuring when initial sbrk_base not word-aligned.
3271 * Rely on page size for units instead of SBRK_UNIT to
3272 avoid surprises about sbrk alignment conventions.
3273 * Add mallinfo, mallopt. Thanks to Raymond Nijssen
3274 (raymond@es.ele.tue.nl) for the suggestion.
3275 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
3276 * More precautions for cases where other routines call sbrk,
3277 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3278 * Added macros etc., allowing use in linux libc from
3279 H.J. Lu (hjl@gnu.ai.mit.edu)
3280 * Inverted this history list
3281
3282 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
3283 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
3284 * Removed all preallocation code since under current scheme
3285 the work required to undo bad preallocations exceeds
3286 the work saved in good cases for most test programs.
3287 * No longer use return list or unconsolidated bins since
3288 no scheme using them consistently outperforms those that don't
3289 given above changes.
3290 * Use best fit for very large chunks to prevent some worst-cases.
3291 * Added some support for debugging
3292
3293 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
3294 * Removed footers when chunks are in use. Thanks to
3295 Paul Wilson (wilson@cs.texas.edu) for the suggestion.
3296
3297 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
3298 * Added malloc_trim, with help from Wolfram Gloger
3299 (wmglo@Dent.MED.Uni-Muenchen.DE).
3300
3301 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
3302
3303 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
3304 * realloc: try to expand in both directions
3305 * malloc: swap order of clean-bin strategy;
3306 * realloc: only conditionally expand backwards
3307 * Try not to scavenge used bins
3308 * Use bin counts as a guide to preallocation
3309 * Occasionally bin return list chunks in first scan
3310 * Add a few optimizations from colin@nyx10.cs.du.edu
3311
3312 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
3313 * faster bin computation & slightly different binning
3314 * merged all consolidations to one part of malloc proper
3315 (eliminating old malloc_find_space & malloc_clean_bin)
3316 * Scan 2 returns chunks (not just 1)
3317 * Propagate failure in realloc if malloc returns 0
3318 * Add stuff to allow compilation on non-ANSI compilers
3319 from kpv@research.att.com
3320
3321 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
3322 * removed potential for odd address access in prev_chunk
3323 * removed dependency on getpagesize.h
3324 * misc cosmetics and a bit more internal documentation
3325 * anticosmetics: mangled names in macros to evade debugger strangeness
3326 * tested on sparc, hp-700, dec-mips, rs6000
3327 with gcc & native cc (hp, dec only) allowing
3328 Detlefs & Zorn comparison study (in SIGPLAN Notices.)
3329
3330 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
3331 * Based loosely on libg++-1.2X malloc. (It retains some of the overall
3332 structure of old version, but most details differ.)
3333
3334 */