]> git.ipfire.org Git - people/ms/u-boot.git/blob - common/dlmalloc.c
Merge git://git.denx.de/u-boot-dm
[people/ms/u-boot.git] / common / dlmalloc.c
1 #include <common.h>
2
3 #ifdef CONFIG_SANDBOX
4 #define DEBUG
5 #endif
6
7 #if 0 /* Moved to malloc.h */
8 /* ---------- To make a malloc.h, start cutting here ------------ */
9
10 /*
11 A version of malloc/free/realloc written by Doug Lea and released to the
12 public domain. Send questions/comments/complaints/performance data
13 to dl@cs.oswego.edu
14
15 * VERSION 2.6.6 Sun Mar 5 19:10:03 2000 Doug Lea (dl at gee)
16
17 Note: There may be an updated version of this malloc obtainable at
18 ftp://g.oswego.edu/pub/misc/malloc.c
19 Check before installing!
20
21 * Why use this malloc?
22
23 This is not the fastest, most space-conserving, most portable, or
24 most tunable malloc ever written. However it is among the fastest
25 while also being among the most space-conserving, portable and tunable.
26 Consistent balance across these factors results in a good general-purpose
27 allocator. For a high-level description, see
28 http://g.oswego.edu/dl/html/malloc.html
29
30 * Synopsis of public routines
31
32 (Much fuller descriptions are contained in the program documentation below.)
33
34 malloc(size_t n);
35 Return a pointer to a newly allocated chunk of at least n bytes, or null
36 if no space is available.
37 free(Void_t* p);
38 Release the chunk of memory pointed to by p, or no effect if p is null.
39 realloc(Void_t* p, size_t n);
40 Return a pointer to a chunk of size n that contains the same data
41 as does chunk p up to the minimum of (n, p's size) bytes, or null
42 if no space is available. The returned pointer may or may not be
43 the same as p. If p is null, equivalent to malloc. Unless the
44 #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
45 size argument of zero (re)allocates a minimum-sized chunk.
46 memalign(size_t alignment, size_t n);
47 Return a pointer to a newly allocated chunk of n bytes, aligned
48 in accord with the alignment argument, which must be a power of
49 two.
50 valloc(size_t n);
51 Equivalent to memalign(pagesize, n), where pagesize is the page
52 size of the system (or as near to this as can be figured out from
53 all the includes/defines below.)
54 pvalloc(size_t n);
55 Equivalent to valloc(minimum-page-that-holds(n)), that is,
56 round up n to nearest pagesize.
57 calloc(size_t unit, size_t quantity);
58 Returns a pointer to quantity * unit bytes, with all locations
59 set to zero.
60 cfree(Void_t* p);
61 Equivalent to free(p).
62 malloc_trim(size_t pad);
63 Release all but pad bytes of freed top-most memory back
64 to the system. Return 1 if successful, else 0.
65 malloc_usable_size(Void_t* p);
66 Report the number usable allocated bytes associated with allocated
67 chunk p. This may or may not report more bytes than were requested,
68 due to alignment and minimum size constraints.
69 malloc_stats();
70 Prints brief summary statistics.
71 mallinfo()
72 Returns (by copy) a struct containing various summary statistics.
73 mallopt(int parameter_number, int parameter_value)
74 Changes one of the tunable parameters described below. Returns
75 1 if successful in changing the parameter, else 0.
76
77 * Vital statistics:
78
79 Alignment: 8-byte
80 8 byte alignment is currently hardwired into the design. This
81 seems to suffice for all current machines and C compilers.
82
83 Assumed pointer representation: 4 or 8 bytes
84 Code for 8-byte pointers is untested by me but has worked
85 reliably by Wolfram Gloger, who contributed most of the
86 changes supporting this.
87
88 Assumed size_t representation: 4 or 8 bytes
89 Note that size_t is allowed to be 4 bytes even if pointers are 8.
90
91 Minimum overhead per allocated chunk: 4 or 8 bytes
92 Each malloced chunk has a hidden overhead of 4 bytes holding size
93 and status information.
94
95 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
96 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
97
98 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
99 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
100 needed; 4 (8) for a trailing size field
101 and 8 (16) bytes for free list pointers. Thus, the minimum
102 allocatable size is 16/24/32 bytes.
103
104 Even a request for zero bytes (i.e., malloc(0)) returns a
105 pointer to something of the minimum allocatable size.
106
107 Maximum allocated size: 4-byte size_t: 2^31 - 8 bytes
108 8-byte size_t: 2^63 - 16 bytes
109
110 It is assumed that (possibly signed) size_t bit values suffice to
111 represent chunk sizes. `Possibly signed' is due to the fact
112 that `size_t' may be defined on a system as either a signed or
113 an unsigned type. To be conservative, values that would appear
114 as negative numbers are avoided.
115 Requests for sizes with a negative sign bit when the request
116 size is treaded as a long will return null.
117
118 Maximum overhead wastage per allocated chunk: normally 15 bytes
119
120 Alignnment demands, plus the minimum allocatable size restriction
121 make the normal worst-case wastage 15 bytes (i.e., up to 15
122 more bytes will be allocated than were requested in malloc), with
123 two exceptions:
124 1. Because requests for zero bytes allocate non-zero space,
125 the worst case wastage for a request of zero bytes is 24 bytes.
126 2. For requests >= mmap_threshold that are serviced via
127 mmap(), the worst case wastage is 8 bytes plus the remainder
128 from a system page (the minimal mmap unit); typically 4096 bytes.
129
130 * Limitations
131
132 Here are some features that are NOT currently supported
133
134 * No user-definable hooks for callbacks and the like.
135 * No automated mechanism for fully checking that all accesses
136 to malloced memory stay within their bounds.
137 * No support for compaction.
138
139 * Synopsis of compile-time options:
140
141 People have reported using previous versions of this malloc on all
142 versions of Unix, sometimes by tweaking some of the defines
143 below. It has been tested most extensively on Solaris and
144 Linux. It is also reported to work on WIN32 platforms.
145 People have also reported adapting this malloc for use in
146 stand-alone embedded systems.
147
148 The implementation is in straight, hand-tuned ANSI C. Among other
149 consequences, it uses a lot of macros. Because of this, to be at
150 all usable, this code should be compiled using an optimizing compiler
151 (for example gcc -O2) that can simplify expressions and control
152 paths.
153
154 __STD_C (default: derived from C compiler defines)
155 Nonzero if using ANSI-standard C compiler, a C++ compiler, or
156 a C compiler sufficiently close to ANSI to get away with it.
157 DEBUG (default: NOT defined)
158 Define to enable debugging. Adds fairly extensive assertion-based
159 checking to help track down memory errors, but noticeably slows down
160 execution.
161 REALLOC_ZERO_BYTES_FREES (default: NOT defined)
162 Define this if you think that realloc(p, 0) should be equivalent
163 to free(p). Otherwise, since malloc returns a unique pointer for
164 malloc(0), so does realloc(p, 0).
165 HAVE_MEMCPY (default: defined)
166 Define if you are not otherwise using ANSI STD C, but still
167 have memcpy and memset in your C library and want to use them.
168 Otherwise, simple internal versions are supplied.
169 USE_MEMCPY (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
170 Define as 1 if you want the C library versions of memset and
171 memcpy called in realloc and calloc (otherwise macro versions are used).
172 At least on some platforms, the simple macro versions usually
173 outperform libc versions.
174 HAVE_MMAP (default: defined as 1)
175 Define to non-zero to optionally make malloc() use mmap() to
176 allocate very large blocks.
177 HAVE_MREMAP (default: defined as 0 unless Linux libc set)
178 Define to non-zero to optionally make realloc() use mremap() to
179 reallocate very large blocks.
180 malloc_getpagesize (default: derived from system #includes)
181 Either a constant or routine call returning the system page size.
182 HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
183 Optionally define if you are on a system with a /usr/include/malloc.h
184 that declares struct mallinfo. It is not at all necessary to
185 define this even if you do, but will ensure consistency.
186 INTERNAL_SIZE_T (default: size_t)
187 Define to a 32-bit type (probably `unsigned int') if you are on a
188 64-bit machine, yet do not want or need to allow malloc requests of
189 greater than 2^31 to be handled. This saves space, especially for
190 very small chunks.
191 INTERNAL_LINUX_C_LIB (default: NOT defined)
192 Defined only when compiled as part of Linux libc.
193 Also note that there is some odd internal name-mangling via defines
194 (for example, internally, `malloc' is named `mALLOc') needed
195 when compiling in this case. These look funny but don't otherwise
196 affect anything.
197 WIN32 (default: undefined)
198 Define this on MS win (95, nt) platforms to compile in sbrk emulation.
199 LACKS_UNISTD_H (default: undefined if not WIN32)
200 Define this if your system does not have a <unistd.h>.
201 LACKS_SYS_PARAM_H (default: undefined if not WIN32)
202 Define this if your system does not have a <sys/param.h>.
203 MORECORE (default: sbrk)
204 The name of the routine to call to obtain more memory from the system.
205 MORECORE_FAILURE (default: -1)
206 The value returned upon failure of MORECORE.
207 MORECORE_CLEARS (default 1)
208 true (1) if the routine mapped to MORECORE zeroes out memory (which
209 holds for sbrk).
210 DEFAULT_TRIM_THRESHOLD
211 DEFAULT_TOP_PAD
212 DEFAULT_MMAP_THRESHOLD
213 DEFAULT_MMAP_MAX
214 Default values of tunable parameters (described in detail below)
215 controlling interaction with host system routines (sbrk, mmap, etc).
216 These values may also be changed dynamically via mallopt(). The
217 preset defaults are those that give best performance for typical
218 programs/systems.
219 USE_DL_PREFIX (default: undefined)
220 Prefix all public routines with the string 'dl'. Useful to
221 quickly avoid procedure declaration conflicts and linker symbol
222 conflicts with existing memory allocation routines.
223
224
225 */
226
227
228
229 /* Preliminaries */
230
231 #ifndef __STD_C
232 #ifdef __STDC__
233 #define __STD_C 1
234 #else
235 #if __cplusplus
236 #define __STD_C 1
237 #else
238 #define __STD_C 0
239 #endif /*__cplusplus*/
240 #endif /*__STDC__*/
241 #endif /*__STD_C*/
242
243 #ifndef Void_t
244 #if (__STD_C || defined(WIN32))
245 #define Void_t void
246 #else
247 #define Void_t char
248 #endif
249 #endif /*Void_t*/
250
251 #if __STD_C
252 #include <stddef.h> /* for size_t */
253 #else
254 #include <sys/types.h>
255 #endif
256
257 #ifdef __cplusplus
258 extern "C" {
259 #endif
260
261 #include <stdio.h> /* needed for malloc_stats */
262
263
264 /*
265 Compile-time options
266 */
267
268
269 /*
270 Debugging:
271
272 Because freed chunks may be overwritten with link fields, this
273 malloc will often die when freed memory is overwritten by user
274 programs. This can be very effective (albeit in an annoying way)
275 in helping track down dangling pointers.
276
277 If you compile with -DDEBUG, a number of assertion checks are
278 enabled that will catch more memory errors. You probably won't be
279 able to make much sense of the actual assertion errors, but they
280 should help you locate incorrectly overwritten memory. The
281 checking is fairly extensive, and will slow down execution
282 noticeably. Calling malloc_stats or mallinfo with DEBUG set will
283 attempt to check every non-mmapped allocated and free chunk in the
284 course of computing the summmaries. (By nature, mmapped regions
285 cannot be checked very much automatically.)
286
287 Setting DEBUG may also be helpful if you are trying to modify
288 this code. The assertions in the check routines spell out in more
289 detail the assumptions and invariants underlying the algorithms.
290
291 */
292
293 /*
294 INTERNAL_SIZE_T is the word-size used for internal bookkeeping
295 of chunk sizes. On a 64-bit machine, you can reduce malloc
296 overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
297 at the expense of not being able to handle requests greater than
298 2^31. This limitation is hardly ever a concern; you are encouraged
299 to set this. However, the default version is the same as size_t.
300 */
301
302 #ifndef INTERNAL_SIZE_T
303 #define INTERNAL_SIZE_T size_t
304 #endif
305
306 /*
307 REALLOC_ZERO_BYTES_FREES should be set if a call to
308 realloc with zero bytes should be the same as a call to free.
309 Some people think it should. Otherwise, since this malloc
310 returns a unique pointer for malloc(0), so does realloc(p, 0).
311 */
312
313
314 /* #define REALLOC_ZERO_BYTES_FREES */
315
316
317 /*
318 WIN32 causes an emulation of sbrk to be compiled in
319 mmap-based options are not currently supported in WIN32.
320 */
321
322 /* #define WIN32 */
323 #ifdef WIN32
324 #define MORECORE wsbrk
325 #define HAVE_MMAP 0
326
327 #define LACKS_UNISTD_H
328 #define LACKS_SYS_PARAM_H
329
330 /*
331 Include 'windows.h' to get the necessary declarations for the
332 Microsoft Visual C++ data structures and routines used in the 'sbrk'
333 emulation.
334
335 Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft
336 Visual C++ header files are included.
337 */
338 #define WIN32_LEAN_AND_MEAN
339 #include <windows.h>
340 #endif
341
342
343 /*
344 HAVE_MEMCPY should be defined if you are not otherwise using
345 ANSI STD C, but still have memcpy and memset in your C library
346 and want to use them in calloc and realloc. Otherwise simple
347 macro versions are defined here.
348
349 USE_MEMCPY should be defined as 1 if you actually want to
350 have memset and memcpy called. People report that the macro
351 versions are often enough faster than libc versions on many
352 systems that it is better to use them.
353
354 */
355
356 #define HAVE_MEMCPY
357
358 #ifndef USE_MEMCPY
359 #ifdef HAVE_MEMCPY
360 #define USE_MEMCPY 1
361 #else
362 #define USE_MEMCPY 0
363 #endif
364 #endif
365
366 #if (__STD_C || defined(HAVE_MEMCPY))
367
368 #if __STD_C
369 void* memset(void*, int, size_t);
370 void* memcpy(void*, const void*, size_t);
371 #else
372 #ifdef WIN32
373 /* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */
374 /* 'windows.h' */
375 #else
376 Void_t* memset();
377 Void_t* memcpy();
378 #endif
379 #endif
380 #endif
381
382 #if USE_MEMCPY
383
384 /* The following macros are only invoked with (2n+1)-multiples of
385 INTERNAL_SIZE_T units, with a positive integer n. This is exploited
386 for fast inline execution when n is small. */
387
388 #define MALLOC_ZERO(charp, nbytes) \
389 do { \
390 INTERNAL_SIZE_T mzsz = (nbytes); \
391 if(mzsz <= 9*sizeof(mzsz)) { \
392 INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp); \
393 if(mzsz >= 5*sizeof(mzsz)) { *mz++ = 0; \
394 *mz++ = 0; \
395 if(mzsz >= 7*sizeof(mzsz)) { *mz++ = 0; \
396 *mz++ = 0; \
397 if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0; \
398 *mz++ = 0; }}} \
399 *mz++ = 0; \
400 *mz++ = 0; \
401 *mz = 0; \
402 } else memset((charp), 0, mzsz); \
403 } while(0)
404
405 #define MALLOC_COPY(dest,src,nbytes) \
406 do { \
407 INTERNAL_SIZE_T mcsz = (nbytes); \
408 if(mcsz <= 9*sizeof(mcsz)) { \
409 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src); \
410 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest); \
411 if(mcsz >= 5*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
412 *mcdst++ = *mcsrc++; \
413 if(mcsz >= 7*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
414 *mcdst++ = *mcsrc++; \
415 if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
416 *mcdst++ = *mcsrc++; }}} \
417 *mcdst++ = *mcsrc++; \
418 *mcdst++ = *mcsrc++; \
419 *mcdst = *mcsrc ; \
420 } else memcpy(dest, src, mcsz); \
421 } while(0)
422
423 #else /* !USE_MEMCPY */
424
425 /* Use Duff's device for good zeroing/copying performance. */
426
427 #define MALLOC_ZERO(charp, nbytes) \
428 do { \
429 INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \
430 long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \
431 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
432 switch (mctmp) { \
433 case 0: for(;;) { *mzp++ = 0; \
434 case 7: *mzp++ = 0; \
435 case 6: *mzp++ = 0; \
436 case 5: *mzp++ = 0; \
437 case 4: *mzp++ = 0; \
438 case 3: *mzp++ = 0; \
439 case 2: *mzp++ = 0; \
440 case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \
441 } \
442 } while(0)
443
444 #define MALLOC_COPY(dest,src,nbytes) \
445 do { \
446 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \
447 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \
448 long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \
449 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
450 switch (mctmp) { \
451 case 0: for(;;) { *mcdst++ = *mcsrc++; \
452 case 7: *mcdst++ = *mcsrc++; \
453 case 6: *mcdst++ = *mcsrc++; \
454 case 5: *mcdst++ = *mcsrc++; \
455 case 4: *mcdst++ = *mcsrc++; \
456 case 3: *mcdst++ = *mcsrc++; \
457 case 2: *mcdst++ = *mcsrc++; \
458 case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \
459 } \
460 } while(0)
461
462 #endif
463
464
465 /*
466 Define HAVE_MMAP to optionally make malloc() use mmap() to
467 allocate very large blocks. These will be returned to the
468 operating system immediately after a free().
469 */
470
471 #ifndef HAVE_MMAP
472 #define HAVE_MMAP 1
473 #endif
474
475 /*
476 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
477 large blocks. This is currently only possible on Linux with
478 kernel versions newer than 1.3.77.
479 */
480
481 #ifndef HAVE_MREMAP
482 #ifdef INTERNAL_LINUX_C_LIB
483 #define HAVE_MREMAP 1
484 #else
485 #define HAVE_MREMAP 0
486 #endif
487 #endif
488
489 #if HAVE_MMAP
490
491 #include <unistd.h>
492 #include <fcntl.h>
493 #include <sys/mman.h>
494
495 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
496 #define MAP_ANONYMOUS MAP_ANON
497 #endif
498
499 #endif /* HAVE_MMAP */
500
501 /*
502 Access to system page size. To the extent possible, this malloc
503 manages memory from the system in page-size units.
504
505 The following mechanics for getpagesize were adapted from
506 bsd/gnu getpagesize.h
507 */
508
509 #ifndef LACKS_UNISTD_H
510 # include <unistd.h>
511 #endif
512
513 #ifndef malloc_getpagesize
514 # ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
515 # ifndef _SC_PAGE_SIZE
516 # define _SC_PAGE_SIZE _SC_PAGESIZE
517 # endif
518 # endif
519 # ifdef _SC_PAGE_SIZE
520 # define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
521 # else
522 # if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
523 extern size_t getpagesize();
524 # define malloc_getpagesize getpagesize()
525 # else
526 # ifdef WIN32
527 # define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */
528 # else
529 # ifndef LACKS_SYS_PARAM_H
530 # include <sys/param.h>
531 # endif
532 # ifdef EXEC_PAGESIZE
533 # define malloc_getpagesize EXEC_PAGESIZE
534 # else
535 # ifdef NBPG
536 # ifndef CLSIZE
537 # define malloc_getpagesize NBPG
538 # else
539 # define malloc_getpagesize (NBPG * CLSIZE)
540 # endif
541 # else
542 # ifdef NBPC
543 # define malloc_getpagesize NBPC
544 # else
545 # ifdef PAGESIZE
546 # define malloc_getpagesize PAGESIZE
547 # else
548 # define malloc_getpagesize (4096) /* just guess */
549 # endif
550 # endif
551 # endif
552 # endif
553 # endif
554 # endif
555 # endif
556 #endif
557
558
559 /*
560
561 This version of malloc supports the standard SVID/XPG mallinfo
562 routine that returns a struct containing the same kind of
563 information you can get from malloc_stats. It should work on
564 any SVID/XPG compliant system that has a /usr/include/malloc.h
565 defining struct mallinfo. (If you'd like to install such a thing
566 yourself, cut out the preliminary declarations as described above
567 and below and save them in a malloc.h file. But there's no
568 compelling reason to bother to do this.)
569
570 The main declaration needed is the mallinfo struct that is returned
571 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
572 bunch of fields, most of which are not even meaningful in this
573 version of malloc. Some of these fields are are instead filled by
574 mallinfo() with other numbers that might possibly be of interest.
575
576 HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
577 /usr/include/malloc.h file that includes a declaration of struct
578 mallinfo. If so, it is included; else an SVID2/XPG2 compliant
579 version is declared below. These must be precisely the same for
580 mallinfo() to work.
581
582 */
583
584 /* #define HAVE_USR_INCLUDE_MALLOC_H */
585
586 #if HAVE_USR_INCLUDE_MALLOC_H
587 #include "/usr/include/malloc.h"
588 #else
589
590 /* SVID2/XPG mallinfo structure */
591
592 struct mallinfo {
593 int arena; /* total space allocated from system */
594 int ordblks; /* number of non-inuse chunks */
595 int smblks; /* unused -- always zero */
596 int hblks; /* number of mmapped regions */
597 int hblkhd; /* total space in mmapped regions */
598 int usmblks; /* unused -- always zero */
599 int fsmblks; /* unused -- always zero */
600 int uordblks; /* total allocated space */
601 int fordblks; /* total non-inuse space */
602 int keepcost; /* top-most, releasable (via malloc_trim) space */
603 };
604
605 /* SVID2/XPG mallopt options */
606
607 #define M_MXFAST 1 /* UNUSED in this malloc */
608 #define M_NLBLKS 2 /* UNUSED in this malloc */
609 #define M_GRAIN 3 /* UNUSED in this malloc */
610 #define M_KEEP 4 /* UNUSED in this malloc */
611
612 #endif
613
614 /* mallopt options that actually do something */
615
616 #define M_TRIM_THRESHOLD -1
617 #define M_TOP_PAD -2
618 #define M_MMAP_THRESHOLD -3
619 #define M_MMAP_MAX -4
620
621
622 #ifndef DEFAULT_TRIM_THRESHOLD
623 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
624 #endif
625
626 /*
627 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
628 to keep before releasing via malloc_trim in free().
629
630 Automatic trimming is mainly useful in long-lived programs.
631 Because trimming via sbrk can be slow on some systems, and can
632 sometimes be wasteful (in cases where programs immediately
633 afterward allocate more large chunks) the value should be high
634 enough so that your overall system performance would improve by
635 releasing.
636
637 The trim threshold and the mmap control parameters (see below)
638 can be traded off with one another. Trimming and mmapping are
639 two different ways of releasing unused memory back to the
640 system. Between these two, it is often possible to keep
641 system-level demands of a long-lived program down to a bare
642 minimum. For example, in one test suite of sessions measuring
643 the XF86 X server on Linux, using a trim threshold of 128K and a
644 mmap threshold of 192K led to near-minimal long term resource
645 consumption.
646
647 If you are using this malloc in a long-lived program, it should
648 pay to experiment with these values. As a rough guide, you
649 might set to a value close to the average size of a process
650 (program) running on your system. Releasing this much memory
651 would allow such a process to run in memory. Generally, it's
652 worth it to tune for trimming rather tham memory mapping when a
653 program undergoes phases where several large chunks are
654 allocated and released in ways that can reuse each other's
655 storage, perhaps mixed with phases where there are no such
656 chunks at all. And in well-behaved long-lived programs,
657 controlling release of large blocks via trimming versus mapping
658 is usually faster.
659
660 However, in most programs, these parameters serve mainly as
661 protection against the system-level effects of carrying around
662 massive amounts of unneeded memory. Since frequent calls to
663 sbrk, mmap, and munmap otherwise degrade performance, the default
664 parameters are set to relatively high values that serve only as
665 safeguards.
666
667 The default trim value is high enough to cause trimming only in
668 fairly extreme (by current memory consumption standards) cases.
669 It must be greater than page size to have any useful effect. To
670 disable trimming completely, you can set to (unsigned long)(-1);
671
672
673 */
674
675
676 #ifndef DEFAULT_TOP_PAD
677 #define DEFAULT_TOP_PAD (0)
678 #endif
679
680 /*
681 M_TOP_PAD is the amount of extra `padding' space to allocate or
682 retain whenever sbrk is called. It is used in two ways internally:
683
684 * When sbrk is called to extend the top of the arena to satisfy
685 a new malloc request, this much padding is added to the sbrk
686 request.
687
688 * When malloc_trim is called automatically from free(),
689 it is used as the `pad' argument.
690
691 In both cases, the actual amount of padding is rounded
692 so that the end of the arena is always a system page boundary.
693
694 The main reason for using padding is to avoid calling sbrk so
695 often. Having even a small pad greatly reduces the likelihood
696 that nearly every malloc request during program start-up (or
697 after trimming) will invoke sbrk, which needlessly wastes
698 time.
699
700 Automatic rounding-up to page-size units is normally sufficient
701 to avoid measurable overhead, so the default is 0. However, in
702 systems where sbrk is relatively slow, it can pay to increase
703 this value, at the expense of carrying around more memory than
704 the program needs.
705
706 */
707
708
709 #ifndef DEFAULT_MMAP_THRESHOLD
710 #define DEFAULT_MMAP_THRESHOLD (128 * 1024)
711 #endif
712
713 /*
714
715 M_MMAP_THRESHOLD is the request size threshold for using mmap()
716 to service a request. Requests of at least this size that cannot
717 be allocated using already-existing space will be serviced via mmap.
718 (If enough normal freed space already exists it is used instead.)
719
720 Using mmap segregates relatively large chunks of memory so that
721 they can be individually obtained and released from the host
722 system. A request serviced through mmap is never reused by any
723 other request (at least not directly; the system may just so
724 happen to remap successive requests to the same locations).
725
726 Segregating space in this way has the benefit that mmapped space
727 can ALWAYS be individually released back to the system, which
728 helps keep the system level memory demands of a long-lived
729 program low. Mapped memory can never become `locked' between
730 other chunks, as can happen with normally allocated chunks, which
731 menas that even trimming via malloc_trim would not release them.
732
733 However, it has the disadvantages that:
734
735 1. The space cannot be reclaimed, consolidated, and then
736 used to service later requests, as happens with normal chunks.
737 2. It can lead to more wastage because of mmap page alignment
738 requirements
739 3. It causes malloc performance to be more dependent on host
740 system memory management support routines which may vary in
741 implementation quality and may impose arbitrary
742 limitations. Generally, servicing a request via normal
743 malloc steps is faster than going through a system's mmap.
744
745 All together, these considerations should lead you to use mmap
746 only for relatively large requests.
747
748
749 */
750
751
752 #ifndef DEFAULT_MMAP_MAX
753 #if HAVE_MMAP
754 #define DEFAULT_MMAP_MAX (64)
755 #else
756 #define DEFAULT_MMAP_MAX (0)
757 #endif
758 #endif
759
760 /*
761 M_MMAP_MAX is the maximum number of requests to simultaneously
762 service using mmap. This parameter exists because:
763
764 1. Some systems have a limited number of internal tables for
765 use by mmap.
766 2. In most systems, overreliance on mmap can degrade overall
767 performance.
768 3. If a program allocates many large regions, it is probably
769 better off using normal sbrk-based allocation routines that
770 can reclaim and reallocate normal heap memory. Using a
771 small value allows transition into this mode after the
772 first few allocations.
773
774 Setting to 0 disables all use of mmap. If HAVE_MMAP is not set,
775 the default value is 0, and attempts to set it to non-zero values
776 in mallopt will fail.
777 */
778
779
780 /*
781 USE_DL_PREFIX will prefix all public routines with the string 'dl'.
782 Useful to quickly avoid procedure declaration conflicts and linker
783 symbol conflicts with existing memory allocation routines.
784
785 */
786
787 /* #define USE_DL_PREFIX */
788
789
790 /*
791
792 Special defines for linux libc
793
794 Except when compiled using these special defines for Linux libc
795 using weak aliases, this malloc is NOT designed to work in
796 multithreaded applications. No semaphores or other concurrency
797 control are provided to ensure that multiple malloc or free calls
798 don't run at the same time, which could be disasterous. A single
799 semaphore could be used across malloc, realloc, and free (which is
800 essentially the effect of the linux weak alias approach). It would
801 be hard to obtain finer granularity.
802
803 */
804
805
806 #ifdef INTERNAL_LINUX_C_LIB
807
808 #if __STD_C
809
810 Void_t * __default_morecore_init (ptrdiff_t);
811 Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init;
812
813 #else
814
815 Void_t * __default_morecore_init ();
816 Void_t *(*__morecore)() = __default_morecore_init;
817
818 #endif
819
820 #define MORECORE (*__morecore)
821 #define MORECORE_FAILURE 0
822 #define MORECORE_CLEARS 1
823
824 #else /* INTERNAL_LINUX_C_LIB */
825
826 #if __STD_C
827 extern Void_t* sbrk(ptrdiff_t);
828 #else
829 extern Void_t* sbrk();
830 #endif
831
832 #ifndef MORECORE
833 #define MORECORE sbrk
834 #endif
835
836 #ifndef MORECORE_FAILURE
837 #define MORECORE_FAILURE -1
838 #endif
839
840 #ifndef MORECORE_CLEARS
841 #define MORECORE_CLEARS 1
842 #endif
843
844 #endif /* INTERNAL_LINUX_C_LIB */
845
846 #if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__)
847
848 #define cALLOc __libc_calloc
849 #define fREe __libc_free
850 #define mALLOc __libc_malloc
851 #define mEMALIGn __libc_memalign
852 #define rEALLOc __libc_realloc
853 #define vALLOc __libc_valloc
854 #define pvALLOc __libc_pvalloc
855 #define mALLINFo __libc_mallinfo
856 #define mALLOPt __libc_mallopt
857
858 #pragma weak calloc = __libc_calloc
859 #pragma weak free = __libc_free
860 #pragma weak cfree = __libc_free
861 #pragma weak malloc = __libc_malloc
862 #pragma weak memalign = __libc_memalign
863 #pragma weak realloc = __libc_realloc
864 #pragma weak valloc = __libc_valloc
865 #pragma weak pvalloc = __libc_pvalloc
866 #pragma weak mallinfo = __libc_mallinfo
867 #pragma weak mallopt = __libc_mallopt
868
869 #else
870
871 #ifdef USE_DL_PREFIX
872 #define cALLOc dlcalloc
873 #define fREe dlfree
874 #define mALLOc dlmalloc
875 #define mEMALIGn dlmemalign
876 #define rEALLOc dlrealloc
877 #define vALLOc dlvalloc
878 #define pvALLOc dlpvalloc
879 #define mALLINFo dlmallinfo
880 #define mALLOPt dlmallopt
881 #else /* USE_DL_PREFIX */
882 #define cALLOc calloc
883 #define fREe free
884 #define mALLOc malloc
885 #define mEMALIGn memalign
886 #define rEALLOc realloc
887 #define vALLOc valloc
888 #define pvALLOc pvalloc
889 #define mALLINFo mallinfo
890 #define mALLOPt mallopt
891 #endif /* USE_DL_PREFIX */
892
893 #endif
894
895 /* Public routines */
896
897 #if __STD_C
898
899 Void_t* mALLOc(size_t);
900 void fREe(Void_t*);
901 Void_t* rEALLOc(Void_t*, size_t);
902 Void_t* mEMALIGn(size_t, size_t);
903 Void_t* vALLOc(size_t);
904 Void_t* pvALLOc(size_t);
905 Void_t* cALLOc(size_t, size_t);
906 void cfree(Void_t*);
907 int malloc_trim(size_t);
908 size_t malloc_usable_size(Void_t*);
909 void malloc_stats();
910 int mALLOPt(int, int);
911 struct mallinfo mALLINFo(void);
912 #else
913 Void_t* mALLOc();
914 void fREe();
915 Void_t* rEALLOc();
916 Void_t* mEMALIGn();
917 Void_t* vALLOc();
918 Void_t* pvALLOc();
919 Void_t* cALLOc();
920 void cfree();
921 int malloc_trim();
922 size_t malloc_usable_size();
923 void malloc_stats();
924 int mALLOPt();
925 struct mallinfo mALLINFo();
926 #endif
927
928
929 #ifdef __cplusplus
930 }; /* end of extern "C" */
931 #endif
932
933 /* ---------- To make a malloc.h, end cutting here ------------ */
934 #endif /* 0 */ /* Moved to malloc.h */
935
936 #include <malloc.h>
937 #include <asm/io.h>
938
939 #ifdef DEBUG
940 #if __STD_C
941 static void malloc_update_mallinfo (void);
942 void malloc_stats (void);
943 #else
944 static void malloc_update_mallinfo ();
945 void malloc_stats();
946 #endif
947 #endif /* DEBUG */
948
949 DECLARE_GLOBAL_DATA_PTR;
950
951 /*
952 Emulation of sbrk for WIN32
953 All code within the ifdef WIN32 is untested by me.
954
955 Thanks to Martin Fong and others for supplying this.
956 */
957
958
959 #ifdef WIN32
960
961 #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
962 ~(malloc_getpagesize-1))
963 #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
964
965 /* resrve 64MB to insure large contiguous space */
966 #define RESERVED_SIZE (1024*1024*64)
967 #define NEXT_SIZE (2048*1024)
968 #define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
969
970 struct GmListElement;
971 typedef struct GmListElement GmListElement;
972
973 struct GmListElement
974 {
975 GmListElement* next;
976 void* base;
977 };
978
979 static GmListElement* head = 0;
980 static unsigned int gNextAddress = 0;
981 static unsigned int gAddressBase = 0;
982 static unsigned int gAllocatedSize = 0;
983
984 static
985 GmListElement* makeGmListElement (void* bas)
986 {
987 GmListElement* this;
988 this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
989 assert (this);
990 if (this)
991 {
992 this->base = bas;
993 this->next = head;
994 head = this;
995 }
996 return this;
997 }
998
999 void gcleanup ()
1000 {
1001 BOOL rval;
1002 assert ( (head == NULL) || (head->base == (void*)gAddressBase));
1003 if (gAddressBase && (gNextAddress - gAddressBase))
1004 {
1005 rval = VirtualFree ((void*)gAddressBase,
1006 gNextAddress - gAddressBase,
1007 MEM_DECOMMIT);
1008 assert (rval);
1009 }
1010 while (head)
1011 {
1012 GmListElement* next = head->next;
1013 rval = VirtualFree (head->base, 0, MEM_RELEASE);
1014 assert (rval);
1015 LocalFree (head);
1016 head = next;
1017 }
1018 }
1019
1020 static
1021 void* findRegion (void* start_address, unsigned long size)
1022 {
1023 MEMORY_BASIC_INFORMATION info;
1024 if (size >= TOP_MEMORY) return NULL;
1025
1026 while ((unsigned long)start_address + size < TOP_MEMORY)
1027 {
1028 VirtualQuery (start_address, &info, sizeof (info));
1029 if ((info.State == MEM_FREE) && (info.RegionSize >= size))
1030 return start_address;
1031 else
1032 {
1033 /* Requested region is not available so see if the */
1034 /* next region is available. Set 'start_address' */
1035 /* to the next region and call 'VirtualQuery()' */
1036 /* again. */
1037
1038 start_address = (char*)info.BaseAddress + info.RegionSize;
1039
1040 /* Make sure we start looking for the next region */
1041 /* on the *next* 64K boundary. Otherwise, even if */
1042 /* the new region is free according to */
1043 /* 'VirtualQuery()', the subsequent call to */
1044 /* 'VirtualAlloc()' (which follows the call to */
1045 /* this routine in 'wsbrk()') will round *down* */
1046 /* the requested address to a 64K boundary which */
1047 /* we already know is an address in the */
1048 /* unavailable region. Thus, the subsequent call */
1049 /* to 'VirtualAlloc()' will fail and bring us back */
1050 /* here, causing us to go into an infinite loop. */
1051
1052 start_address =
1053 (void *) AlignPage64K((unsigned long) start_address);
1054 }
1055 }
1056 return NULL;
1057
1058 }
1059
1060
1061 void* wsbrk (long size)
1062 {
1063 void* tmp;
1064 if (size > 0)
1065 {
1066 if (gAddressBase == 0)
1067 {
1068 gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
1069 gNextAddress = gAddressBase =
1070 (unsigned int)VirtualAlloc (NULL, gAllocatedSize,
1071 MEM_RESERVE, PAGE_NOACCESS);
1072 } else if (AlignPage (gNextAddress + size) > (gAddressBase +
1073 gAllocatedSize))
1074 {
1075 long new_size = max (NEXT_SIZE, AlignPage (size));
1076 void* new_address = (void*)(gAddressBase+gAllocatedSize);
1077 do
1078 {
1079 new_address = findRegion (new_address, new_size);
1080
1081 if (new_address == 0)
1082 return (void*)-1;
1083
1084 gAddressBase = gNextAddress =
1085 (unsigned int)VirtualAlloc (new_address, new_size,
1086 MEM_RESERVE, PAGE_NOACCESS);
1087 /* repeat in case of race condition */
1088 /* The region that we found has been snagged */
1089 /* by another thread */
1090 }
1091 while (gAddressBase == 0);
1092
1093 assert (new_address == (void*)gAddressBase);
1094
1095 gAllocatedSize = new_size;
1096
1097 if (!makeGmListElement ((void*)gAddressBase))
1098 return (void*)-1;
1099 }
1100 if ((size + gNextAddress) > AlignPage (gNextAddress))
1101 {
1102 void* res;
1103 res = VirtualAlloc ((void*)AlignPage (gNextAddress),
1104 (size + gNextAddress -
1105 AlignPage (gNextAddress)),
1106 MEM_COMMIT, PAGE_READWRITE);
1107 if (res == 0)
1108 return (void*)-1;
1109 }
1110 tmp = (void*)gNextAddress;
1111 gNextAddress = (unsigned int)tmp + size;
1112 return tmp;
1113 }
1114 else if (size < 0)
1115 {
1116 unsigned int alignedGoal = AlignPage (gNextAddress + size);
1117 /* Trim by releasing the virtual memory */
1118 if (alignedGoal >= gAddressBase)
1119 {
1120 VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
1121 MEM_DECOMMIT);
1122 gNextAddress = gNextAddress + size;
1123 return (void*)gNextAddress;
1124 }
1125 else
1126 {
1127 VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
1128 MEM_DECOMMIT);
1129 gNextAddress = gAddressBase;
1130 return (void*)-1;
1131 }
1132 }
1133 else
1134 {
1135 return (void*)gNextAddress;
1136 }
1137 }
1138
1139 #endif
1140
1141
1142
1143 /*
1144 Type declarations
1145 */
1146
1147
1148 struct malloc_chunk
1149 {
1150 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
1151 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
1152 struct malloc_chunk* fd; /* double links -- used only if free. */
1153 struct malloc_chunk* bk;
1154 } __attribute__((__may_alias__)) ;
1155
1156 typedef struct malloc_chunk* mchunkptr;
1157
1158 /*
1159
1160 malloc_chunk details:
1161
1162 (The following includes lightly edited explanations by Colin Plumb.)
1163
1164 Chunks of memory are maintained using a `boundary tag' method as
1165 described in e.g., Knuth or Standish. (See the paper by Paul
1166 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1167 survey of such techniques.) Sizes of free chunks are stored both
1168 in the front of each chunk and at the end. This makes
1169 consolidating fragmented chunks into bigger chunks very fast. The
1170 size fields also hold bits representing whether chunks are free or
1171 in use.
1172
1173 An allocated chunk looks like this:
1174
1175
1176 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1177 | Size of previous chunk, if allocated | |
1178 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1179 | Size of chunk, in bytes |P|
1180 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1181 | User data starts here... .
1182 . .
1183 . (malloc_usable_space() bytes) .
1184 . |
1185 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1186 | Size of chunk |
1187 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1188
1189
1190 Where "chunk" is the front of the chunk for the purpose of most of
1191 the malloc code, but "mem" is the pointer that is returned to the
1192 user. "Nextchunk" is the beginning of the next contiguous chunk.
1193
1194 Chunks always begin on even word boundries, so the mem portion
1195 (which is returned to the user) is also on an even word boundary, and
1196 thus double-word aligned.
1197
1198 Free chunks are stored in circular doubly-linked lists, and look like this:
1199
1200 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1201 | Size of previous chunk |
1202 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1203 `head:' | Size of chunk, in bytes |P|
1204 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1205 | Forward pointer to next chunk in list |
1206 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1207 | Back pointer to previous chunk in list |
1208 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1209 | Unused space (may be 0 bytes long) .
1210 . .
1211 . |
1212 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1213 `foot:' | Size of chunk, in bytes |
1214 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1215
1216 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1217 chunk size (which is always a multiple of two words), is an in-use
1218 bit for the *previous* chunk. If that bit is *clear*, then the
1219 word before the current chunk size contains the previous chunk
1220 size, and can be used to find the front of the previous chunk.
1221 (The very first chunk allocated always has this bit set,
1222 preventing access to non-existent (or non-owned) memory.)
1223
1224 Note that the `foot' of the current chunk is actually represented
1225 as the prev_size of the NEXT chunk. (This makes it easier to
1226 deal with alignments etc).
1227
1228 The two exceptions to all this are
1229
1230 1. The special chunk `top', which doesn't bother using the
1231 trailing size field since there is no
1232 next contiguous chunk that would have to index off it. (After
1233 initialization, `top' is forced to always exist. If it would
1234 become less than MINSIZE bytes long, it is replenished via
1235 malloc_extend_top.)
1236
1237 2. Chunks allocated via mmap, which have the second-lowest-order
1238 bit (IS_MMAPPED) set in their size fields. Because they are
1239 never merged or traversed from any other chunk, they have no
1240 foot size or inuse information.
1241
1242 Available chunks are kept in any of several places (all declared below):
1243
1244 * `av': An array of chunks serving as bin headers for consolidated
1245 chunks. Each bin is doubly linked. The bins are approximately
1246 proportionally (log) spaced. There are a lot of these bins
1247 (128). This may look excessive, but works very well in
1248 practice. All procedures maintain the invariant that no
1249 consolidated chunk physically borders another one. Chunks in
1250 bins are kept in size order, with ties going to the
1251 approximately least recently used chunk.
1252
1253 The chunks in each bin are maintained in decreasing sorted order by
1254 size. This is irrelevant for the small bins, which all contain
1255 the same-sized chunks, but facilitates best-fit allocation for
1256 larger chunks. (These lists are just sequential. Keeping them in
1257 order almost never requires enough traversal to warrant using
1258 fancier ordered data structures.) Chunks of the same size are
1259 linked with the most recently freed at the front, and allocations
1260 are taken from the back. This results in LRU or FIFO allocation
1261 order, which tends to give each chunk an equal opportunity to be
1262 consolidated with adjacent freed chunks, resulting in larger free
1263 chunks and less fragmentation.
1264
1265 * `top': The top-most available chunk (i.e., the one bordering the
1266 end of available memory) is treated specially. It is never
1267 included in any bin, is used only if no other chunk is
1268 available, and is released back to the system if it is very
1269 large (see M_TRIM_THRESHOLD).
1270
1271 * `last_remainder': A bin holding only the remainder of the
1272 most recently split (non-top) chunk. This bin is checked
1273 before other non-fitting chunks, so as to provide better
1274 locality for runs of sequentially allocated chunks.
1275
1276 * Implicitly, through the host system's memory mapping tables.
1277 If supported, requests greater than a threshold are usually
1278 serviced via calls to mmap, and then later released via munmap.
1279
1280 */
1281
1282 /* sizes, alignments */
1283
1284 #define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
1285 #define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ)
1286 #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
1287 #define MINSIZE (sizeof(struct malloc_chunk))
1288
1289 /* conversion from malloc headers to user pointers, and back */
1290
1291 #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
1292 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1293
1294 /* pad request bytes into a usable size */
1295
1296 #define request2size(req) \
1297 (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
1298 (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
1299 (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
1300
1301 /* Check if m has acceptable alignment */
1302
1303 #define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
1304
1305
1306
1307
1308 /*
1309 Physical chunk operations
1310 */
1311
1312
1313 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1314
1315 #define PREV_INUSE 0x1
1316
1317 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1318
1319 #define IS_MMAPPED 0x2
1320
1321 /* Bits to mask off when extracting size */
1322
1323 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
1324
1325
1326 /* Ptr to next physical malloc_chunk. */
1327
1328 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
1329
1330 /* Ptr to previous physical malloc_chunk */
1331
1332 #define prev_chunk(p)\
1333 ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
1334
1335
1336 /* Treat space at ptr + offset as a chunk */
1337
1338 #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
1339
1340
1341
1342
1343 /*
1344 Dealing with use bits
1345 */
1346
1347 /* extract p's inuse bit */
1348
1349 #define inuse(p)\
1350 ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
1351
1352 /* extract inuse bit of previous chunk */
1353
1354 #define prev_inuse(p) ((p)->size & PREV_INUSE)
1355
1356 /* check for mmap()'ed chunk */
1357
1358 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1359
1360 /* set/clear chunk as in use without otherwise disturbing */
1361
1362 #define set_inuse(p)\
1363 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
1364
1365 #define clear_inuse(p)\
1366 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
1367
1368 /* check/set/clear inuse bits in known places */
1369
1370 #define inuse_bit_at_offset(p, s)\
1371 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
1372
1373 #define set_inuse_bit_at_offset(p, s)\
1374 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
1375
1376 #define clear_inuse_bit_at_offset(p, s)\
1377 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
1378
1379
1380
1381
1382 /*
1383 Dealing with size fields
1384 */
1385
1386 /* Get size, ignoring use bits */
1387
1388 #define chunksize(p) ((p)->size & ~(SIZE_BITS))
1389
1390 /* Set size at head, without disturbing its use bit */
1391
1392 #define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s)))
1393
1394 /* Set size/use ignoring previous bits in header */
1395
1396 #define set_head(p, s) ((p)->size = (s))
1397
1398 /* Set size at footer (only when chunk is not in use) */
1399
1400 #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
1401
1402
1403
1404
1405
1406 /*
1407 Bins
1408
1409 The bins, `av_' are an array of pairs of pointers serving as the
1410 heads of (initially empty) doubly-linked lists of chunks, laid out
1411 in a way so that each pair can be treated as if it were in a
1412 malloc_chunk. (This way, the fd/bk offsets for linking bin heads
1413 and chunks are the same).
1414
1415 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1416 8 bytes apart. Larger bins are approximately logarithmically
1417 spaced. (See the table below.) The `av_' array is never mentioned
1418 directly in the code, but instead via bin access macros.
1419
1420 Bin layout:
1421
1422 64 bins of size 8
1423 32 bins of size 64
1424 16 bins of size 512
1425 8 bins of size 4096
1426 4 bins of size 32768
1427 2 bins of size 262144
1428 1 bin of size what's left
1429
1430 There is actually a little bit of slop in the numbers in bin_index
1431 for the sake of speed. This makes no difference elsewhere.
1432
1433 The special chunks `top' and `last_remainder' get their own bins,
1434 (this is implemented via yet more trickery with the av_ array),
1435 although `top' is never properly linked to its bin since it is
1436 always handled specially.
1437
1438 */
1439
1440 #define NAV 128 /* number of bins */
1441
1442 typedef struct malloc_chunk* mbinptr;
1443
1444 /* access macros */
1445
1446 #define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
1447 #define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
1448 #define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
1449
1450 /*
1451 The first 2 bins are never indexed. The corresponding av_ cells are instead
1452 used for bookkeeping. This is not to save space, but to simplify
1453 indexing, maintain locality, and avoid some initialization tests.
1454 */
1455
1456 #define top (av_[2]) /* The topmost chunk */
1457 #define last_remainder (bin_at(1)) /* remainder from last split */
1458
1459
1460 /*
1461 Because top initially points to its own bin with initial
1462 zero size, thus forcing extension on the first malloc request,
1463 we avoid having any special code in malloc to check whether
1464 it even exists yet. But we still need to in malloc_extend_top.
1465 */
1466
1467 #define initial_top ((mchunkptr)(bin_at(0)))
1468
1469 /* Helper macro to initialize bins */
1470
1471 #define IAV(i) bin_at(i), bin_at(i)
1472
1473 static mbinptr av_[NAV * 2 + 2] = {
1474 NULL, NULL,
1475 IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7),
1476 IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15),
1477 IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23),
1478 IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31),
1479 IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39),
1480 IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47),
1481 IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55),
1482 IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63),
1483 IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71),
1484 IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79),
1485 IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87),
1486 IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95),
1487 IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103),
1488 IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
1489 IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
1490 IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
1491 };
1492
1493 #ifdef CONFIG_NEEDS_MANUAL_RELOC
1494 static void malloc_bin_reloc(void)
1495 {
1496 mbinptr *p = &av_[2];
1497 size_t i;
1498
1499 for (i = 2; i < ARRAY_SIZE(av_); ++i, ++p)
1500 *p = (mbinptr)((ulong)*p + gd->reloc_off);
1501 }
1502 #else
1503 static inline void malloc_bin_reloc(void) {}
1504 #endif
1505
1506 ulong mem_malloc_start = 0;
1507 ulong mem_malloc_end = 0;
1508 ulong mem_malloc_brk = 0;
1509
1510 void *sbrk(ptrdiff_t increment)
1511 {
1512 ulong old = mem_malloc_brk;
1513 ulong new = old + increment;
1514
1515 /*
1516 * if we are giving memory back make sure we clear it out since
1517 * we set MORECORE_CLEARS to 1
1518 */
1519 if (increment < 0)
1520 memset((void *)new, 0, -increment);
1521
1522 if ((new < mem_malloc_start) || (new > mem_malloc_end))
1523 return (void *)MORECORE_FAILURE;
1524
1525 mem_malloc_brk = new;
1526
1527 return (void *)old;
1528 }
1529
1530 void mem_malloc_init(ulong start, ulong size)
1531 {
1532 mem_malloc_start = start;
1533 mem_malloc_end = start + size;
1534 mem_malloc_brk = start;
1535
1536 debug("using memory %#lx-%#lx for malloc()\n", mem_malloc_start,
1537 mem_malloc_end);
1538
1539 memset((void *)mem_malloc_start, 0, size);
1540
1541 malloc_bin_reloc();
1542 }
1543
1544 /* field-extraction macros */
1545
1546 #define first(b) ((b)->fd)
1547 #define last(b) ((b)->bk)
1548
1549 /*
1550 Indexing into bins
1551 */
1552
1553 #define bin_index(sz) \
1554 (((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \
1555 ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \
1556 ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \
1557 ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \
1558 ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \
1559 ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
1560 126)
1561 /*
1562 bins for chunks < 512 are all spaced 8 bytes apart, and hold
1563 identically sized chunks. This is exploited in malloc.
1564 */
1565
1566 #define MAX_SMALLBIN 63
1567 #define MAX_SMALLBIN_SIZE 512
1568 #define SMALLBIN_WIDTH 8
1569
1570 #define smallbin_index(sz) (((unsigned long)(sz)) >> 3)
1571
1572 /*
1573 Requests are `small' if both the corresponding and the next bin are small
1574 */
1575
1576 #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
1577
1578
1579
1580 /*
1581 To help compensate for the large number of bins, a one-level index
1582 structure is used for bin-by-bin searching. `binblocks' is a
1583 one-word bitvector recording whether groups of BINBLOCKWIDTH bins
1584 have any (possibly) non-empty bins, so they can be skipped over
1585 all at once during during traversals. The bits are NOT always
1586 cleared as soon as all bins in a block are empty, but instead only
1587 when all are noticed to be empty during traversal in malloc.
1588 */
1589
1590 #define BINBLOCKWIDTH 4 /* bins per block */
1591
1592 #define binblocks_r ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */
1593 #define binblocks_w (av_[1])
1594
1595 /* bin<->block macros */
1596
1597 #define idx2binblock(ix) ((unsigned)1 << (ix / BINBLOCKWIDTH))
1598 #define mark_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii)))
1599 #define clear_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii))))
1600
1601
1602
1603
1604
1605 /* Other static bookkeeping data */
1606
1607 /* variables holding tunable values */
1608
1609 static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD;
1610 static unsigned long top_pad = DEFAULT_TOP_PAD;
1611 static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX;
1612 static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD;
1613
1614 /* The first value returned from sbrk */
1615 static char* sbrk_base = (char*)(-1);
1616
1617 /* The maximum memory obtained from system via sbrk */
1618 static unsigned long max_sbrked_mem = 0;
1619
1620 /* The maximum via either sbrk or mmap */
1621 static unsigned long max_total_mem = 0;
1622
1623 /* internal working copy of mallinfo */
1624 static struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
1625
1626 /* The total memory obtained from system via sbrk */
1627 #define sbrked_mem (current_mallinfo.arena)
1628
1629 /* Tracking mmaps */
1630
1631 #ifdef DEBUG
1632 static unsigned int n_mmaps = 0;
1633 #endif /* DEBUG */
1634 static unsigned long mmapped_mem = 0;
1635 #if HAVE_MMAP
1636 static unsigned int max_n_mmaps = 0;
1637 static unsigned long max_mmapped_mem = 0;
1638 #endif
1639
1640
1641
1642 /*
1643 Debugging support
1644 */
1645
1646 #ifdef DEBUG
1647
1648
1649 /*
1650 These routines make a number of assertions about the states
1651 of data structures that should be true at all times. If any
1652 are not true, it's very likely that a user program has somehow
1653 trashed memory. (It's also possible that there is a coding error
1654 in malloc. In which case, please report it!)
1655 */
1656
1657 #if __STD_C
1658 static void do_check_chunk(mchunkptr p)
1659 #else
1660 static void do_check_chunk(p) mchunkptr p;
1661 #endif
1662 {
1663 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1664
1665 /* No checkable chunk is mmapped */
1666 assert(!chunk_is_mmapped(p));
1667
1668 /* Check for legal address ... */
1669 assert((char*)p >= sbrk_base);
1670 if (p != top)
1671 assert((char*)p + sz <= (char*)top);
1672 else
1673 assert((char*)p + sz <= sbrk_base + sbrked_mem);
1674
1675 }
1676
1677
1678 #if __STD_C
1679 static void do_check_free_chunk(mchunkptr p)
1680 #else
1681 static void do_check_free_chunk(p) mchunkptr p;
1682 #endif
1683 {
1684 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1685 mchunkptr next = chunk_at_offset(p, sz);
1686
1687 do_check_chunk(p);
1688
1689 /* Check whether it claims to be free ... */
1690 assert(!inuse(p));
1691
1692 /* Unless a special marker, must have OK fields */
1693 if ((long)sz >= (long)MINSIZE)
1694 {
1695 assert((sz & MALLOC_ALIGN_MASK) == 0);
1696 assert(aligned_OK(chunk2mem(p)));
1697 /* ... matching footer field */
1698 assert(next->prev_size == sz);
1699 /* ... and is fully consolidated */
1700 assert(prev_inuse(p));
1701 assert (next == top || inuse(next));
1702
1703 /* ... and has minimally sane links */
1704 assert(p->fd->bk == p);
1705 assert(p->bk->fd == p);
1706 }
1707 else /* markers are always of size SIZE_SZ */
1708 assert(sz == SIZE_SZ);
1709 }
1710
1711 #if __STD_C
1712 static void do_check_inuse_chunk(mchunkptr p)
1713 #else
1714 static void do_check_inuse_chunk(p) mchunkptr p;
1715 #endif
1716 {
1717 mchunkptr next = next_chunk(p);
1718 do_check_chunk(p);
1719
1720 /* Check whether it claims to be in use ... */
1721 assert(inuse(p));
1722
1723 /* ... and is surrounded by OK chunks.
1724 Since more things can be checked with free chunks than inuse ones,
1725 if an inuse chunk borders them and debug is on, it's worth doing them.
1726 */
1727 if (!prev_inuse(p))
1728 {
1729 mchunkptr prv = prev_chunk(p);
1730 assert(next_chunk(prv) == p);
1731 do_check_free_chunk(prv);
1732 }
1733 if (next == top)
1734 {
1735 assert(prev_inuse(next));
1736 assert(chunksize(next) >= MINSIZE);
1737 }
1738 else if (!inuse(next))
1739 do_check_free_chunk(next);
1740
1741 }
1742
1743 #if __STD_C
1744 static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
1745 #else
1746 static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
1747 #endif
1748 {
1749 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1750 long room = sz - s;
1751
1752 do_check_inuse_chunk(p);
1753
1754 /* Legal size ... */
1755 assert((long)sz >= (long)MINSIZE);
1756 assert((sz & MALLOC_ALIGN_MASK) == 0);
1757 assert(room >= 0);
1758 assert(room < (long)MINSIZE);
1759
1760 /* ... and alignment */
1761 assert(aligned_OK(chunk2mem(p)));
1762
1763
1764 /* ... and was allocated at front of an available chunk */
1765 assert(prev_inuse(p));
1766
1767 }
1768
1769
1770 #define check_free_chunk(P) do_check_free_chunk(P)
1771 #define check_inuse_chunk(P) do_check_inuse_chunk(P)
1772 #define check_chunk(P) do_check_chunk(P)
1773 #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
1774 #else
1775 #define check_free_chunk(P)
1776 #define check_inuse_chunk(P)
1777 #define check_chunk(P)
1778 #define check_malloced_chunk(P,N)
1779 #endif
1780
1781
1782
1783 /*
1784 Macro-based internal utilities
1785 */
1786
1787
1788 /*
1789 Linking chunks in bin lists.
1790 Call these only with variables, not arbitrary expressions, as arguments.
1791 */
1792
1793 /*
1794 Place chunk p of size s in its bin, in size order,
1795 putting it ahead of others of same size.
1796 */
1797
1798
1799 #define frontlink(P, S, IDX, BK, FD) \
1800 { \
1801 if (S < MAX_SMALLBIN_SIZE) \
1802 { \
1803 IDX = smallbin_index(S); \
1804 mark_binblock(IDX); \
1805 BK = bin_at(IDX); \
1806 FD = BK->fd; \
1807 P->bk = BK; \
1808 P->fd = FD; \
1809 FD->bk = BK->fd = P; \
1810 } \
1811 else \
1812 { \
1813 IDX = bin_index(S); \
1814 BK = bin_at(IDX); \
1815 FD = BK->fd; \
1816 if (FD == BK) mark_binblock(IDX); \
1817 else \
1818 { \
1819 while (FD != BK && S < chunksize(FD)) FD = FD->fd; \
1820 BK = FD->bk; \
1821 } \
1822 P->bk = BK; \
1823 P->fd = FD; \
1824 FD->bk = BK->fd = P; \
1825 } \
1826 }
1827
1828
1829 /* take a chunk off a list */
1830
1831 #define unlink(P, BK, FD) \
1832 { \
1833 BK = P->bk; \
1834 FD = P->fd; \
1835 FD->bk = BK; \
1836 BK->fd = FD; \
1837 } \
1838
1839 /* Place p as the last remainder */
1840
1841 #define link_last_remainder(P) \
1842 { \
1843 last_remainder->fd = last_remainder->bk = P; \
1844 P->fd = P->bk = last_remainder; \
1845 }
1846
1847 /* Clear the last_remainder bin */
1848
1849 #define clear_last_remainder \
1850 (last_remainder->fd = last_remainder->bk = last_remainder)
1851
1852
1853
1854
1855
1856 /* Routines dealing with mmap(). */
1857
1858 #if HAVE_MMAP
1859
1860 #if __STD_C
1861 static mchunkptr mmap_chunk(size_t size)
1862 #else
1863 static mchunkptr mmap_chunk(size) size_t size;
1864 #endif
1865 {
1866 size_t page_mask = malloc_getpagesize - 1;
1867 mchunkptr p;
1868
1869 #ifndef MAP_ANONYMOUS
1870 static int fd = -1;
1871 #endif
1872
1873 if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
1874
1875 /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
1876 * there is no following chunk whose prev_size field could be used.
1877 */
1878 size = (size + SIZE_SZ + page_mask) & ~page_mask;
1879
1880 #ifdef MAP_ANONYMOUS
1881 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
1882 MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1883 #else /* !MAP_ANONYMOUS */
1884 if (fd < 0)
1885 {
1886 fd = open("/dev/zero", O_RDWR);
1887 if(fd < 0) return 0;
1888 }
1889 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
1890 #endif
1891
1892 if(p == (mchunkptr)-1) return 0;
1893
1894 n_mmaps++;
1895 if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
1896
1897 /* We demand that eight bytes into a page must be 8-byte aligned. */
1898 assert(aligned_OK(chunk2mem(p)));
1899
1900 /* The offset to the start of the mmapped region is stored
1901 * in the prev_size field of the chunk; normally it is zero,
1902 * but that can be changed in memalign().
1903 */
1904 p->prev_size = 0;
1905 set_head(p, size|IS_MMAPPED);
1906
1907 mmapped_mem += size;
1908 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1909 max_mmapped_mem = mmapped_mem;
1910 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1911 max_total_mem = mmapped_mem + sbrked_mem;
1912 return p;
1913 }
1914
1915 #if __STD_C
1916 static void munmap_chunk(mchunkptr p)
1917 #else
1918 static void munmap_chunk(p) mchunkptr p;
1919 #endif
1920 {
1921 INTERNAL_SIZE_T size = chunksize(p);
1922 int ret;
1923
1924 assert (chunk_is_mmapped(p));
1925 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1926 assert((n_mmaps > 0));
1927 assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1928
1929 n_mmaps--;
1930 mmapped_mem -= (size + p->prev_size);
1931
1932 ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1933
1934 /* munmap returns non-zero on failure */
1935 assert(ret == 0);
1936 }
1937
1938 #if HAVE_MREMAP
1939
1940 #if __STD_C
1941 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1942 #else
1943 static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1944 #endif
1945 {
1946 size_t page_mask = malloc_getpagesize - 1;
1947 INTERNAL_SIZE_T offset = p->prev_size;
1948 INTERNAL_SIZE_T size = chunksize(p);
1949 char *cp;
1950
1951 assert (chunk_is_mmapped(p));
1952 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1953 assert((n_mmaps > 0));
1954 assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1955
1956 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1957 new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1958
1959 cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1960
1961 if (cp == (char *)-1) return 0;
1962
1963 p = (mchunkptr)(cp + offset);
1964
1965 assert(aligned_OK(chunk2mem(p)));
1966
1967 assert((p->prev_size == offset));
1968 set_head(p, (new_size - offset)|IS_MMAPPED);
1969
1970 mmapped_mem -= size + offset;
1971 mmapped_mem += new_size;
1972 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1973 max_mmapped_mem = mmapped_mem;
1974 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1975 max_total_mem = mmapped_mem + sbrked_mem;
1976 return p;
1977 }
1978
1979 #endif /* HAVE_MREMAP */
1980
1981 #endif /* HAVE_MMAP */
1982
1983
1984
1985
1986 /*
1987 Extend the top-most chunk by obtaining memory from system.
1988 Main interface to sbrk (but see also malloc_trim).
1989 */
1990
1991 #if __STD_C
1992 static void malloc_extend_top(INTERNAL_SIZE_T nb)
1993 #else
1994 static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1995 #endif
1996 {
1997 char* brk; /* return value from sbrk */
1998 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1999 INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */
2000 char* new_brk; /* return of 2nd sbrk call */
2001 INTERNAL_SIZE_T top_size; /* new size of top chunk */
2002
2003 mchunkptr old_top = top; /* Record state of old top */
2004 INTERNAL_SIZE_T old_top_size = chunksize(old_top);
2005 char* old_end = (char*)(chunk_at_offset(old_top, old_top_size));
2006
2007 /* Pad request with top_pad plus minimal overhead */
2008
2009 INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE;
2010 unsigned long pagesz = malloc_getpagesize;
2011
2012 /* If not the first time through, round to preserve page boundary */
2013 /* Otherwise, we need to correct to a page size below anyway. */
2014 /* (We also correct below if an intervening foreign sbrk call.) */
2015
2016 if (sbrk_base != (char*)(-1))
2017 sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
2018
2019 brk = (char*)(MORECORE (sbrk_size));
2020
2021 /* Fail if sbrk failed or if a foreign sbrk call killed our space */
2022 if (brk == (char*)(MORECORE_FAILURE) ||
2023 (brk < old_end && old_top != initial_top))
2024 return;
2025
2026 sbrked_mem += sbrk_size;
2027
2028 if (brk == old_end) /* can just add bytes to current top */
2029 {
2030 top_size = sbrk_size + old_top_size;
2031 set_head(top, top_size | PREV_INUSE);
2032 }
2033 else
2034 {
2035 if (sbrk_base == (char*)(-1)) /* First time through. Record base */
2036 sbrk_base = brk;
2037 else /* Someone else called sbrk(). Count those bytes as sbrked_mem. */
2038 sbrked_mem += brk - (char*)old_end;
2039
2040 /* Guarantee alignment of first new chunk made from this space */
2041 front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
2042 if (front_misalign > 0)
2043 {
2044 correction = (MALLOC_ALIGNMENT) - front_misalign;
2045 brk += correction;
2046 }
2047 else
2048 correction = 0;
2049
2050 /* Guarantee the next brk will be at a page boundary */
2051
2052 correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
2053 ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
2054
2055 /* Allocate correction */
2056 new_brk = (char*)(MORECORE (correction));
2057 if (new_brk == (char*)(MORECORE_FAILURE)) return;
2058
2059 sbrked_mem += correction;
2060
2061 top = (mchunkptr)brk;
2062 top_size = new_brk - brk + correction;
2063 set_head(top, top_size | PREV_INUSE);
2064
2065 if (old_top != initial_top)
2066 {
2067
2068 /* There must have been an intervening foreign sbrk call. */
2069 /* A double fencepost is necessary to prevent consolidation */
2070
2071 /* If not enough space to do this, then user did something very wrong */
2072 if (old_top_size < MINSIZE)
2073 {
2074 set_head(top, PREV_INUSE); /* will force null return from malloc */
2075 return;
2076 }
2077
2078 /* Also keep size a multiple of MALLOC_ALIGNMENT */
2079 old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
2080 set_head_size(old_top, old_top_size);
2081 chunk_at_offset(old_top, old_top_size )->size =
2082 SIZE_SZ|PREV_INUSE;
2083 chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
2084 SIZE_SZ|PREV_INUSE;
2085 /* If possible, release the rest. */
2086 if (old_top_size >= MINSIZE)
2087 fREe(chunk2mem(old_top));
2088 }
2089 }
2090
2091 if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
2092 max_sbrked_mem = sbrked_mem;
2093 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
2094 max_total_mem = mmapped_mem + sbrked_mem;
2095
2096 /* We always land on a page boundary */
2097 assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
2098 }
2099
2100
2101
2102
2103 /* Main public routines */
2104
2105
2106 /*
2107 Malloc Algorthim:
2108
2109 The requested size is first converted into a usable form, `nb'.
2110 This currently means to add 4 bytes overhead plus possibly more to
2111 obtain 8-byte alignment and/or to obtain a size of at least
2112 MINSIZE (currently 16 bytes), the smallest allocatable size.
2113 (All fits are considered `exact' if they are within MINSIZE bytes.)
2114
2115 From there, the first successful of the following steps is taken:
2116
2117 1. The bin corresponding to the request size is scanned, and if
2118 a chunk of exactly the right size is found, it is taken.
2119
2120 2. The most recently remaindered chunk is used if it is big
2121 enough. This is a form of (roving) first fit, used only in
2122 the absence of exact fits. Runs of consecutive requests use
2123 the remainder of the chunk used for the previous such request
2124 whenever possible. This limited use of a first-fit style
2125 allocation strategy tends to give contiguous chunks
2126 coextensive lifetimes, which improves locality and can reduce
2127 fragmentation in the long run.
2128
2129 3. Other bins are scanned in increasing size order, using a
2130 chunk big enough to fulfill the request, and splitting off
2131 any remainder. This search is strictly by best-fit; i.e.,
2132 the smallest (with ties going to approximately the least
2133 recently used) chunk that fits is selected.
2134
2135 4. If large enough, the chunk bordering the end of memory
2136 (`top') is split off. (This use of `top' is in accord with
2137 the best-fit search rule. In effect, `top' is treated as
2138 larger (and thus less well fitting) than any other available
2139 chunk since it can be extended to be as large as necessary
2140 (up to system limitations).
2141
2142 5. If the request size meets the mmap threshold and the
2143 system supports mmap, and there are few enough currently
2144 allocated mmapped regions, and a call to mmap succeeds,
2145 the request is allocated via direct memory mapping.
2146
2147 6. Otherwise, the top of memory is extended by
2148 obtaining more space from the system (normally using sbrk,
2149 but definable to anything else via the MORECORE macro).
2150 Memory is gathered from the system (in system page-sized
2151 units) in a way that allows chunks obtained across different
2152 sbrk calls to be consolidated, but does not require
2153 contiguous memory. Thus, it should be safe to intersperse
2154 mallocs with other sbrk calls.
2155
2156
2157 All allocations are made from the the `lowest' part of any found
2158 chunk. (The implementation invariant is that prev_inuse is
2159 always true of any allocated chunk; i.e., that each allocated
2160 chunk borders either a previously allocated and still in-use chunk,
2161 or the base of its memory arena.)
2162
2163 */
2164
2165 #if __STD_C
2166 Void_t* mALLOc(size_t bytes)
2167 #else
2168 Void_t* mALLOc(bytes) size_t bytes;
2169 #endif
2170 {
2171 mchunkptr victim; /* inspected/selected chunk */
2172 INTERNAL_SIZE_T victim_size; /* its size */
2173 int idx; /* index for bin traversal */
2174 mbinptr bin; /* associated bin */
2175 mchunkptr remainder; /* remainder from a split */
2176 long remainder_size; /* its size */
2177 int remainder_index; /* its bin index */
2178 unsigned long block; /* block traverser bit */
2179 int startidx; /* first bin of a traversed block */
2180 mchunkptr fwd; /* misc temp for linking */
2181 mchunkptr bck; /* misc temp for linking */
2182 mbinptr q; /* misc temp */
2183
2184 INTERNAL_SIZE_T nb;
2185
2186 #ifdef CONFIG_SYS_MALLOC_F_LEN
2187 if (gd && !(gd->flags & GD_FLG_FULL_MALLOC_INIT))
2188 return malloc_simple(bytes);
2189 #endif
2190
2191 /* check if mem_malloc_init() was run */
2192 if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) {
2193 /* not initialized yet */
2194 return NULL;
2195 }
2196
2197 if ((long)bytes < 0) return NULL;
2198
2199 nb = request2size(bytes); /* padded request size; */
2200
2201 /* Check for exact match in a bin */
2202
2203 if (is_small_request(nb)) /* Faster version for small requests */
2204 {
2205 idx = smallbin_index(nb);
2206
2207 /* No traversal or size check necessary for small bins. */
2208
2209 q = bin_at(idx);
2210 victim = last(q);
2211
2212 /* Also scan the next one, since it would have a remainder < MINSIZE */
2213 if (victim == q)
2214 {
2215 q = next_bin(q);
2216 victim = last(q);
2217 }
2218 if (victim != q)
2219 {
2220 victim_size = chunksize(victim);
2221 unlink(victim, bck, fwd);
2222 set_inuse_bit_at_offset(victim, victim_size);
2223 check_malloced_chunk(victim, nb);
2224 return chunk2mem(victim);
2225 }
2226
2227 idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
2228
2229 }
2230 else
2231 {
2232 idx = bin_index(nb);
2233 bin = bin_at(idx);
2234
2235 for (victim = last(bin); victim != bin; victim = victim->bk)
2236 {
2237 victim_size = chunksize(victim);
2238 remainder_size = victim_size - nb;
2239
2240 if (remainder_size >= (long)MINSIZE) /* too big */
2241 {
2242 --idx; /* adjust to rescan below after checking last remainder */
2243 break;
2244 }
2245
2246 else if (remainder_size >= 0) /* exact fit */
2247 {
2248 unlink(victim, bck, fwd);
2249 set_inuse_bit_at_offset(victim, victim_size);
2250 check_malloced_chunk(victim, nb);
2251 return chunk2mem(victim);
2252 }
2253 }
2254
2255 ++idx;
2256
2257 }
2258
2259 /* Try to use the last split-off remainder */
2260
2261 if ( (victim = last_remainder->fd) != last_remainder)
2262 {
2263 victim_size = chunksize(victim);
2264 remainder_size = victim_size - nb;
2265
2266 if (remainder_size >= (long)MINSIZE) /* re-split */
2267 {
2268 remainder = chunk_at_offset(victim, nb);
2269 set_head(victim, nb | PREV_INUSE);
2270 link_last_remainder(remainder);
2271 set_head(remainder, remainder_size | PREV_INUSE);
2272 set_foot(remainder, remainder_size);
2273 check_malloced_chunk(victim, nb);
2274 return chunk2mem(victim);
2275 }
2276
2277 clear_last_remainder;
2278
2279 if (remainder_size >= 0) /* exhaust */
2280 {
2281 set_inuse_bit_at_offset(victim, victim_size);
2282 check_malloced_chunk(victim, nb);
2283 return chunk2mem(victim);
2284 }
2285
2286 /* Else place in bin */
2287
2288 frontlink(victim, victim_size, remainder_index, bck, fwd);
2289 }
2290
2291 /*
2292 If there are any possibly nonempty big-enough blocks,
2293 search for best fitting chunk by scanning bins in blockwidth units.
2294 */
2295
2296 if ( (block = idx2binblock(idx)) <= binblocks_r)
2297 {
2298
2299 /* Get to the first marked block */
2300
2301 if ( (block & binblocks_r) == 0)
2302 {
2303 /* force to an even block boundary */
2304 idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
2305 block <<= 1;
2306 while ((block & binblocks_r) == 0)
2307 {
2308 idx += BINBLOCKWIDTH;
2309 block <<= 1;
2310 }
2311 }
2312
2313 /* For each possibly nonempty block ... */
2314 for (;;)
2315 {
2316 startidx = idx; /* (track incomplete blocks) */
2317 q = bin = bin_at(idx);
2318
2319 /* For each bin in this block ... */
2320 do
2321 {
2322 /* Find and use first big enough chunk ... */
2323
2324 for (victim = last(bin); victim != bin; victim = victim->bk)
2325 {
2326 victim_size = chunksize(victim);
2327 remainder_size = victim_size - nb;
2328
2329 if (remainder_size >= (long)MINSIZE) /* split */
2330 {
2331 remainder = chunk_at_offset(victim, nb);
2332 set_head(victim, nb | PREV_INUSE);
2333 unlink(victim, bck, fwd);
2334 link_last_remainder(remainder);
2335 set_head(remainder, remainder_size | PREV_INUSE);
2336 set_foot(remainder, remainder_size);
2337 check_malloced_chunk(victim, nb);
2338 return chunk2mem(victim);
2339 }
2340
2341 else if (remainder_size >= 0) /* take */
2342 {
2343 set_inuse_bit_at_offset(victim, victim_size);
2344 unlink(victim, bck, fwd);
2345 check_malloced_chunk(victim, nb);
2346 return chunk2mem(victim);
2347 }
2348
2349 }
2350
2351 bin = next_bin(bin);
2352
2353 } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
2354
2355 /* Clear out the block bit. */
2356
2357 do /* Possibly backtrack to try to clear a partial block */
2358 {
2359 if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
2360 {
2361 av_[1] = (mbinptr)(binblocks_r & ~block);
2362 break;
2363 }
2364 --startidx;
2365 q = prev_bin(q);
2366 } while (first(q) == q);
2367
2368 /* Get to the next possibly nonempty block */
2369
2370 if ( (block <<= 1) <= binblocks_r && (block != 0) )
2371 {
2372 while ((block & binblocks_r) == 0)
2373 {
2374 idx += BINBLOCKWIDTH;
2375 block <<= 1;
2376 }
2377 }
2378 else
2379 break;
2380 }
2381 }
2382
2383
2384 /* Try to use top chunk */
2385
2386 /* Require that there be a remainder, ensuring top always exists */
2387 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2388 {
2389
2390 #if HAVE_MMAP
2391 /* If big and would otherwise need to extend, try to use mmap instead */
2392 if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
2393 (victim = mmap_chunk(nb)) != 0)
2394 return chunk2mem(victim);
2395 #endif
2396
2397 /* Try to extend */
2398 malloc_extend_top(nb);
2399 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2400 return NULL; /* propagate failure */
2401 }
2402
2403 victim = top;
2404 set_head(victim, nb | PREV_INUSE);
2405 top = chunk_at_offset(victim, nb);
2406 set_head(top, remainder_size | PREV_INUSE);
2407 check_malloced_chunk(victim, nb);
2408 return chunk2mem(victim);
2409
2410 }
2411
2412
2413
2414
2415 /*
2416
2417 free() algorithm :
2418
2419 cases:
2420
2421 1. free(0) has no effect.
2422
2423 2. If the chunk was allocated via mmap, it is release via munmap().
2424
2425 3. If a returned chunk borders the current high end of memory,
2426 it is consolidated into the top, and if the total unused
2427 topmost memory exceeds the trim threshold, malloc_trim is
2428 called.
2429
2430 4. Other chunks are consolidated as they arrive, and
2431 placed in corresponding bins. (This includes the case of
2432 consolidating with the current `last_remainder').
2433
2434 */
2435
2436
2437 #if __STD_C
2438 void fREe(Void_t* mem)
2439 #else
2440 void fREe(mem) Void_t* mem;
2441 #endif
2442 {
2443 mchunkptr p; /* chunk corresponding to mem */
2444 INTERNAL_SIZE_T hd; /* its head field */
2445 INTERNAL_SIZE_T sz; /* its size */
2446 int idx; /* its bin index */
2447 mchunkptr next; /* next contiguous chunk */
2448 INTERNAL_SIZE_T nextsz; /* its size */
2449 INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
2450 mchunkptr bck; /* misc temp for linking */
2451 mchunkptr fwd; /* misc temp for linking */
2452 int islr; /* track whether merging with last_remainder */
2453
2454 #ifdef CONFIG_SYS_MALLOC_F_LEN
2455 /* free() is a no-op - all the memory will be freed on relocation */
2456 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT))
2457 return;
2458 #endif
2459
2460 if (mem == NULL) /* free(0) has no effect */
2461 return;
2462
2463 p = mem2chunk(mem);
2464 hd = p->size;
2465
2466 #if HAVE_MMAP
2467 if (hd & IS_MMAPPED) /* release mmapped memory. */
2468 {
2469 munmap_chunk(p);
2470 return;
2471 }
2472 #endif
2473
2474 check_inuse_chunk(p);
2475
2476 sz = hd & ~PREV_INUSE;
2477 next = chunk_at_offset(p, sz);
2478 nextsz = chunksize(next);
2479
2480 if (next == top) /* merge with top */
2481 {
2482 sz += nextsz;
2483
2484 if (!(hd & PREV_INUSE)) /* consolidate backward */
2485 {
2486 prevsz = p->prev_size;
2487 p = chunk_at_offset(p, -((long) prevsz));
2488 sz += prevsz;
2489 unlink(p, bck, fwd);
2490 }
2491
2492 set_head(p, sz | PREV_INUSE);
2493 top = p;
2494 if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
2495 malloc_trim(top_pad);
2496 return;
2497 }
2498
2499 set_head(next, nextsz); /* clear inuse bit */
2500
2501 islr = 0;
2502
2503 if (!(hd & PREV_INUSE)) /* consolidate backward */
2504 {
2505 prevsz = p->prev_size;
2506 p = chunk_at_offset(p, -((long) prevsz));
2507 sz += prevsz;
2508
2509 if (p->fd == last_remainder) /* keep as last_remainder */
2510 islr = 1;
2511 else
2512 unlink(p, bck, fwd);
2513 }
2514
2515 if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */
2516 {
2517 sz += nextsz;
2518
2519 if (!islr && next->fd == last_remainder) /* re-insert last_remainder */
2520 {
2521 islr = 1;
2522 link_last_remainder(p);
2523 }
2524 else
2525 unlink(next, bck, fwd);
2526 }
2527
2528
2529 set_head(p, sz | PREV_INUSE);
2530 set_foot(p, sz);
2531 if (!islr)
2532 frontlink(p, sz, idx, bck, fwd);
2533 }
2534
2535
2536
2537
2538
2539 /*
2540
2541 Realloc algorithm:
2542
2543 Chunks that were obtained via mmap cannot be extended or shrunk
2544 unless HAVE_MREMAP is defined, in which case mremap is used.
2545 Otherwise, if their reallocation is for additional space, they are
2546 copied. If for less, they are just left alone.
2547
2548 Otherwise, if the reallocation is for additional space, and the
2549 chunk can be extended, it is, else a malloc-copy-free sequence is
2550 taken. There are several different ways that a chunk could be
2551 extended. All are tried:
2552
2553 * Extending forward into following adjacent free chunk.
2554 * Shifting backwards, joining preceding adjacent space
2555 * Both shifting backwards and extending forward.
2556 * Extending into newly sbrked space
2557
2558 Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
2559 size argument of zero (re)allocates a minimum-sized chunk.
2560
2561 If the reallocation is for less space, and the new request is for
2562 a `small' (<512 bytes) size, then the newly unused space is lopped
2563 off and freed.
2564
2565 The old unix realloc convention of allowing the last-free'd chunk
2566 to be used as an argument to realloc is no longer supported.
2567 I don't know of any programs still relying on this feature,
2568 and allowing it would also allow too many other incorrect
2569 usages of realloc to be sensible.
2570
2571
2572 */
2573
2574
2575 #if __STD_C
2576 Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
2577 #else
2578 Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
2579 #endif
2580 {
2581 INTERNAL_SIZE_T nb; /* padded request size */
2582
2583 mchunkptr oldp; /* chunk corresponding to oldmem */
2584 INTERNAL_SIZE_T oldsize; /* its size */
2585
2586 mchunkptr newp; /* chunk to return */
2587 INTERNAL_SIZE_T newsize; /* its size */
2588 Void_t* newmem; /* corresponding user mem */
2589
2590 mchunkptr next; /* next contiguous chunk after oldp */
2591 INTERNAL_SIZE_T nextsize; /* its size */
2592
2593 mchunkptr prev; /* previous contiguous chunk before oldp */
2594 INTERNAL_SIZE_T prevsize; /* its size */
2595
2596 mchunkptr remainder; /* holds split off extra space from newp */
2597 INTERNAL_SIZE_T remainder_size; /* its size */
2598
2599 mchunkptr bck; /* misc temp for linking */
2600 mchunkptr fwd; /* misc temp for linking */
2601
2602 #ifdef REALLOC_ZERO_BYTES_FREES
2603 if (bytes == 0) { fREe(oldmem); return 0; }
2604 #endif
2605
2606 if ((long)bytes < 0) return NULL;
2607
2608 /* realloc of null is supposed to be same as malloc */
2609 if (oldmem == NULL) return mALLOc(bytes);
2610
2611 #ifdef CONFIG_SYS_MALLOC_F_LEN
2612 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
2613 /* This is harder to support and should not be needed */
2614 panic("pre-reloc realloc() is not supported");
2615 }
2616 #endif
2617
2618 newp = oldp = mem2chunk(oldmem);
2619 newsize = oldsize = chunksize(oldp);
2620
2621
2622 nb = request2size(bytes);
2623
2624 #if HAVE_MMAP
2625 if (chunk_is_mmapped(oldp))
2626 {
2627 #if HAVE_MREMAP
2628 newp = mremap_chunk(oldp, nb);
2629 if(newp) return chunk2mem(newp);
2630 #endif
2631 /* Note the extra SIZE_SZ overhead. */
2632 if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
2633 /* Must alloc, copy, free. */
2634 newmem = mALLOc(bytes);
2635 if (newmem == 0) return 0; /* propagate failure */
2636 MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
2637 munmap_chunk(oldp);
2638 return newmem;
2639 }
2640 #endif
2641
2642 check_inuse_chunk(oldp);
2643
2644 if ((long)(oldsize) < (long)(nb))
2645 {
2646
2647 /* Try expanding forward */
2648
2649 next = chunk_at_offset(oldp, oldsize);
2650 if (next == top || !inuse(next))
2651 {
2652 nextsize = chunksize(next);
2653
2654 /* Forward into top only if a remainder */
2655 if (next == top)
2656 {
2657 if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
2658 {
2659 newsize += nextsize;
2660 top = chunk_at_offset(oldp, nb);
2661 set_head(top, (newsize - nb) | PREV_INUSE);
2662 set_head_size(oldp, nb);
2663 return chunk2mem(oldp);
2664 }
2665 }
2666
2667 /* Forward into next chunk */
2668 else if (((long)(nextsize + newsize) >= (long)(nb)))
2669 {
2670 unlink(next, bck, fwd);
2671 newsize += nextsize;
2672 goto split;
2673 }
2674 }
2675 else
2676 {
2677 next = NULL;
2678 nextsize = 0;
2679 }
2680
2681 /* Try shifting backwards. */
2682
2683 if (!prev_inuse(oldp))
2684 {
2685 prev = prev_chunk(oldp);
2686 prevsize = chunksize(prev);
2687
2688 /* try forward + backward first to save a later consolidation */
2689
2690 if (next != NULL)
2691 {
2692 /* into top */
2693 if (next == top)
2694 {
2695 if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
2696 {
2697 unlink(prev, bck, fwd);
2698 newp = prev;
2699 newsize += prevsize + nextsize;
2700 newmem = chunk2mem(newp);
2701 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2702 top = chunk_at_offset(newp, nb);
2703 set_head(top, (newsize - nb) | PREV_INUSE);
2704 set_head_size(newp, nb);
2705 return newmem;
2706 }
2707 }
2708
2709 /* into next chunk */
2710 else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
2711 {
2712 unlink(next, bck, fwd);
2713 unlink(prev, bck, fwd);
2714 newp = prev;
2715 newsize += nextsize + prevsize;
2716 newmem = chunk2mem(newp);
2717 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2718 goto split;
2719 }
2720 }
2721
2722 /* backward only */
2723 if (prev != NULL && (long)(prevsize + newsize) >= (long)nb)
2724 {
2725 unlink(prev, bck, fwd);
2726 newp = prev;
2727 newsize += prevsize;
2728 newmem = chunk2mem(newp);
2729 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2730 goto split;
2731 }
2732 }
2733
2734 /* Must allocate */
2735
2736 newmem = mALLOc (bytes);
2737
2738 if (newmem == NULL) /* propagate failure */
2739 return NULL;
2740
2741 /* Avoid copy if newp is next chunk after oldp. */
2742 /* (This can only happen when new chunk is sbrk'ed.) */
2743
2744 if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
2745 {
2746 newsize += chunksize(newp);
2747 newp = oldp;
2748 goto split;
2749 }
2750
2751 /* Otherwise copy, free, and exit */
2752 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2753 fREe(oldmem);
2754 return newmem;
2755 }
2756
2757
2758 split: /* split off extra room in old or expanded chunk */
2759
2760 if (newsize - nb >= MINSIZE) /* split off remainder */
2761 {
2762 remainder = chunk_at_offset(newp, nb);
2763 remainder_size = newsize - nb;
2764 set_head_size(newp, nb);
2765 set_head(remainder, remainder_size | PREV_INUSE);
2766 set_inuse_bit_at_offset(remainder, remainder_size);
2767 fREe(chunk2mem(remainder)); /* let free() deal with it */
2768 }
2769 else
2770 {
2771 set_head_size(newp, newsize);
2772 set_inuse_bit_at_offset(newp, newsize);
2773 }
2774
2775 check_inuse_chunk(newp);
2776 return chunk2mem(newp);
2777 }
2778
2779
2780
2781
2782 /*
2783
2784 memalign algorithm:
2785
2786 memalign requests more than enough space from malloc, finds a spot
2787 within that chunk that meets the alignment request, and then
2788 possibly frees the leading and trailing space.
2789
2790 The alignment argument must be a power of two. This property is not
2791 checked by memalign, so misuse may result in random runtime errors.
2792
2793 8-byte alignment is guaranteed by normal malloc calls, so don't
2794 bother calling memalign with an argument of 8 or less.
2795
2796 Overreliance on memalign is a sure way to fragment space.
2797
2798 */
2799
2800
2801 #if __STD_C
2802 Void_t* mEMALIGn(size_t alignment, size_t bytes)
2803 #else
2804 Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
2805 #endif
2806 {
2807 INTERNAL_SIZE_T nb; /* padded request size */
2808 char* m; /* memory returned by malloc call */
2809 mchunkptr p; /* corresponding chunk */
2810 char* brk; /* alignment point within p */
2811 mchunkptr newp; /* chunk to return */
2812 INTERNAL_SIZE_T newsize; /* its size */
2813 INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */
2814 mchunkptr remainder; /* spare room at end to split off */
2815 long remainder_size; /* its size */
2816
2817 if ((long)bytes < 0) return NULL;
2818
2819 /* If need less alignment than we give anyway, just relay to malloc */
2820
2821 if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
2822
2823 /* Otherwise, ensure that it is at least a minimum chunk size */
2824
2825 if (alignment < MINSIZE) alignment = MINSIZE;
2826
2827 /* Call malloc with worst case padding to hit alignment. */
2828
2829 nb = request2size(bytes);
2830 m = (char*)(mALLOc(nb + alignment + MINSIZE));
2831
2832 if (m == NULL) return NULL; /* propagate failure */
2833
2834 p = mem2chunk(m);
2835
2836 if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
2837 {
2838 #if HAVE_MMAP
2839 if(chunk_is_mmapped(p))
2840 return chunk2mem(p); /* nothing more to do */
2841 #endif
2842 }
2843 else /* misaligned */
2844 {
2845 /*
2846 Find an aligned spot inside chunk.
2847 Since we need to give back leading space in a chunk of at
2848 least MINSIZE, if the first calculation places us at
2849 a spot with less than MINSIZE leader, we can move to the
2850 next aligned spot -- we've allocated enough total room so that
2851 this is always possible.
2852 */
2853
2854 brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
2855 if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
2856
2857 newp = (mchunkptr)brk;
2858 leadsize = brk - (char*)(p);
2859 newsize = chunksize(p) - leadsize;
2860
2861 #if HAVE_MMAP
2862 if(chunk_is_mmapped(p))
2863 {
2864 newp->prev_size = p->prev_size + leadsize;
2865 set_head(newp, newsize|IS_MMAPPED);
2866 return chunk2mem(newp);
2867 }
2868 #endif
2869
2870 /* give back leader, use the rest */
2871
2872 set_head(newp, newsize | PREV_INUSE);
2873 set_inuse_bit_at_offset(newp, newsize);
2874 set_head_size(p, leadsize);
2875 fREe(chunk2mem(p));
2876 p = newp;
2877
2878 assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
2879 }
2880
2881 /* Also give back spare room at the end */
2882
2883 remainder_size = chunksize(p) - nb;
2884
2885 if (remainder_size >= (long)MINSIZE)
2886 {
2887 remainder = chunk_at_offset(p, nb);
2888 set_head(remainder, remainder_size | PREV_INUSE);
2889 set_head_size(p, nb);
2890 fREe(chunk2mem(remainder));
2891 }
2892
2893 check_inuse_chunk(p);
2894 return chunk2mem(p);
2895
2896 }
2897
2898
2899
2900
2901 /*
2902 valloc just invokes memalign with alignment argument equal
2903 to the page size of the system (or as near to this as can
2904 be figured out from all the includes/defines above.)
2905 */
2906
2907 #if __STD_C
2908 Void_t* vALLOc(size_t bytes)
2909 #else
2910 Void_t* vALLOc(bytes) size_t bytes;
2911 #endif
2912 {
2913 return mEMALIGn (malloc_getpagesize, bytes);
2914 }
2915
2916 /*
2917 pvalloc just invokes valloc for the nearest pagesize
2918 that will accommodate request
2919 */
2920
2921
2922 #if __STD_C
2923 Void_t* pvALLOc(size_t bytes)
2924 #else
2925 Void_t* pvALLOc(bytes) size_t bytes;
2926 #endif
2927 {
2928 size_t pagesize = malloc_getpagesize;
2929 return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2930 }
2931
2932 /*
2933
2934 calloc calls malloc, then zeroes out the allocated chunk.
2935
2936 */
2937
2938 #if __STD_C
2939 Void_t* cALLOc(size_t n, size_t elem_size)
2940 #else
2941 Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
2942 #endif
2943 {
2944 mchunkptr p;
2945 INTERNAL_SIZE_T csz;
2946
2947 INTERNAL_SIZE_T sz = n * elem_size;
2948
2949
2950 /* check if expand_top called, in which case don't need to clear */
2951 #if MORECORE_CLEARS
2952 mchunkptr oldtop = top;
2953 INTERNAL_SIZE_T oldtopsize = chunksize(top);
2954 #endif
2955 Void_t* mem = mALLOc (sz);
2956
2957 if ((long)n < 0) return NULL;
2958
2959 if (mem == NULL)
2960 return NULL;
2961 else
2962 {
2963 #ifdef CONFIG_SYS_MALLOC_F_LEN
2964 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
2965 MALLOC_ZERO(mem, sz);
2966 return mem;
2967 }
2968 #endif
2969 p = mem2chunk(mem);
2970
2971 /* Two optional cases in which clearing not necessary */
2972
2973
2974 #if HAVE_MMAP
2975 if (chunk_is_mmapped(p)) return mem;
2976 #endif
2977
2978 csz = chunksize(p);
2979
2980 #if MORECORE_CLEARS
2981 if (p == oldtop && csz > oldtopsize)
2982 {
2983 /* clear only the bytes from non-freshly-sbrked memory */
2984 csz = oldtopsize;
2985 }
2986 #endif
2987
2988 MALLOC_ZERO(mem, csz - SIZE_SZ);
2989 return mem;
2990 }
2991 }
2992
2993 /*
2994
2995 cfree just calls free. It is needed/defined on some systems
2996 that pair it with calloc, presumably for odd historical reasons.
2997
2998 */
2999
3000 #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
3001 #if __STD_C
3002 void cfree(Void_t *mem)
3003 #else
3004 void cfree(mem) Void_t *mem;
3005 #endif
3006 {
3007 fREe(mem);
3008 }
3009 #endif
3010
3011
3012
3013 /*
3014
3015 Malloc_trim gives memory back to the system (via negative
3016 arguments to sbrk) if there is unused memory at the `high' end of
3017 the malloc pool. You can call this after freeing large blocks of
3018 memory to potentially reduce the system-level memory requirements
3019 of a program. However, it cannot guarantee to reduce memory. Under
3020 some allocation patterns, some large free blocks of memory will be
3021 locked between two used chunks, so they cannot be given back to
3022 the system.
3023
3024 The `pad' argument to malloc_trim represents the amount of free
3025 trailing space to leave untrimmed. If this argument is zero,
3026 only the minimum amount of memory to maintain internal data
3027 structures will be left (one page or less). Non-zero arguments
3028 can be supplied to maintain enough trailing space to service
3029 future expected allocations without having to re-obtain memory
3030 from the system.
3031
3032 Malloc_trim returns 1 if it actually released any memory, else 0.
3033
3034 */
3035
3036 #if __STD_C
3037 int malloc_trim(size_t pad)
3038 #else
3039 int malloc_trim(pad) size_t pad;
3040 #endif
3041 {
3042 long top_size; /* Amount of top-most memory */
3043 long extra; /* Amount to release */
3044 char* current_brk; /* address returned by pre-check sbrk call */
3045 char* new_brk; /* address returned by negative sbrk call */
3046
3047 unsigned long pagesz = malloc_getpagesize;
3048
3049 top_size = chunksize(top);
3050 extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
3051
3052 if (extra < (long)pagesz) /* Not enough memory to release */
3053 return 0;
3054
3055 else
3056 {
3057 /* Test to make sure no one else called sbrk */
3058 current_brk = (char*)(MORECORE (0));
3059 if (current_brk != (char*)(top) + top_size)
3060 return 0; /* Apparently we don't own memory; must fail */
3061
3062 else
3063 {
3064 new_brk = (char*)(MORECORE (-extra));
3065
3066 if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
3067 {
3068 /* Try to figure out what we have */
3069 current_brk = (char*)(MORECORE (0));
3070 top_size = current_brk - (char*)top;
3071 if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
3072 {
3073 sbrked_mem = current_brk - sbrk_base;
3074 set_head(top, top_size | PREV_INUSE);
3075 }
3076 check_chunk(top);
3077 return 0;
3078 }
3079
3080 else
3081 {
3082 /* Success. Adjust top accordingly. */
3083 set_head(top, (top_size - extra) | PREV_INUSE);
3084 sbrked_mem -= extra;
3085 check_chunk(top);
3086 return 1;
3087 }
3088 }
3089 }
3090 }
3091
3092
3093
3094 /*
3095 malloc_usable_size:
3096
3097 This routine tells you how many bytes you can actually use in an
3098 allocated chunk, which may be more than you requested (although
3099 often not). You can use this many bytes without worrying about
3100 overwriting other allocated objects. Not a particularly great
3101 programming practice, but still sometimes useful.
3102
3103 */
3104
3105 #if __STD_C
3106 size_t malloc_usable_size(Void_t* mem)
3107 #else
3108 size_t malloc_usable_size(mem) Void_t* mem;
3109 #endif
3110 {
3111 mchunkptr p;
3112 if (mem == NULL)
3113 return 0;
3114 else
3115 {
3116 p = mem2chunk(mem);
3117 if(!chunk_is_mmapped(p))
3118 {
3119 if (!inuse(p)) return 0;
3120 check_inuse_chunk(p);
3121 return chunksize(p) - SIZE_SZ;
3122 }
3123 return chunksize(p) - 2*SIZE_SZ;
3124 }
3125 }
3126
3127
3128
3129
3130 /* Utility to update current_mallinfo for malloc_stats and mallinfo() */
3131
3132 #ifdef DEBUG
3133 static void malloc_update_mallinfo()
3134 {
3135 int i;
3136 mbinptr b;
3137 mchunkptr p;
3138 #ifdef DEBUG
3139 mchunkptr q;
3140 #endif
3141
3142 INTERNAL_SIZE_T avail = chunksize(top);
3143 int navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
3144
3145 for (i = 1; i < NAV; ++i)
3146 {
3147 b = bin_at(i);
3148 for (p = last(b); p != b; p = p->bk)
3149 {
3150 #ifdef DEBUG
3151 check_free_chunk(p);
3152 for (q = next_chunk(p);
3153 q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
3154 q = next_chunk(q))
3155 check_inuse_chunk(q);
3156 #endif
3157 avail += chunksize(p);
3158 navail++;
3159 }
3160 }
3161
3162 current_mallinfo.ordblks = navail;
3163 current_mallinfo.uordblks = sbrked_mem - avail;
3164 current_mallinfo.fordblks = avail;
3165 current_mallinfo.hblks = n_mmaps;
3166 current_mallinfo.hblkhd = mmapped_mem;
3167 current_mallinfo.keepcost = chunksize(top);
3168
3169 }
3170 #endif /* DEBUG */
3171
3172
3173
3174 /*
3175
3176 malloc_stats:
3177
3178 Prints on the amount of space obtain from the system (both
3179 via sbrk and mmap), the maximum amount (which may be more than
3180 current if malloc_trim and/or munmap got called), the maximum
3181 number of simultaneous mmap regions used, and the current number
3182 of bytes allocated via malloc (or realloc, etc) but not yet
3183 freed. (Note that this is the number of bytes allocated, not the
3184 number requested. It will be larger than the number requested
3185 because of alignment and bookkeeping overhead.)
3186
3187 */
3188
3189 #ifdef DEBUG
3190 void malloc_stats()
3191 {
3192 malloc_update_mallinfo();
3193 printf("max system bytes = %10u\n",
3194 (unsigned int)(max_total_mem));
3195 printf("system bytes = %10u\n",
3196 (unsigned int)(sbrked_mem + mmapped_mem));
3197 printf("in use bytes = %10u\n",
3198 (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
3199 #if HAVE_MMAP
3200 printf("max mmap regions = %10u\n",
3201 (unsigned int)max_n_mmaps);
3202 #endif
3203 }
3204 #endif /* DEBUG */
3205
3206 /*
3207 mallinfo returns a copy of updated current mallinfo.
3208 */
3209
3210 #ifdef DEBUG
3211 struct mallinfo mALLINFo()
3212 {
3213 malloc_update_mallinfo();
3214 return current_mallinfo;
3215 }
3216 #endif /* DEBUG */
3217
3218
3219
3220
3221 /*
3222 mallopt:
3223
3224 mallopt is the general SVID/XPG interface to tunable parameters.
3225 The format is to provide a (parameter-number, parameter-value) pair.
3226 mallopt then sets the corresponding parameter to the argument
3227 value if it can (i.e., so long as the value is meaningful),
3228 and returns 1 if successful else 0.
3229
3230 See descriptions of tunable parameters above.
3231
3232 */
3233
3234 #if __STD_C
3235 int mALLOPt(int param_number, int value)
3236 #else
3237 int mALLOPt(param_number, value) int param_number; int value;
3238 #endif
3239 {
3240 switch(param_number)
3241 {
3242 case M_TRIM_THRESHOLD:
3243 trim_threshold = value; return 1;
3244 case M_TOP_PAD:
3245 top_pad = value; return 1;
3246 case M_MMAP_THRESHOLD:
3247 mmap_threshold = value; return 1;
3248 case M_MMAP_MAX:
3249 #if HAVE_MMAP
3250 n_mmaps_max = value; return 1;
3251 #else
3252 if (value != 0) return 0; else n_mmaps_max = value; return 1;
3253 #endif
3254
3255 default:
3256 return 0;
3257 }
3258 }
3259
3260 /*
3261
3262 History:
3263
3264 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
3265 * return null for negative arguments
3266 * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
3267 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
3268 (e.g. WIN32 platforms)
3269 * Cleanup up header file inclusion for WIN32 platforms
3270 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
3271 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
3272 memory allocation routines
3273 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
3274 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
3275 usage of 'assert' in non-WIN32 code
3276 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
3277 avoid infinite loop
3278 * Always call 'fREe()' rather than 'free()'
3279
3280 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
3281 * Fixed ordering problem with boundary-stamping
3282
3283 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
3284 * Added pvalloc, as recommended by H.J. Liu
3285 * Added 64bit pointer support mainly from Wolfram Gloger
3286 * Added anonymously donated WIN32 sbrk emulation
3287 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
3288 * malloc_extend_top: fix mask error that caused wastage after
3289 foreign sbrks
3290 * Add linux mremap support code from HJ Liu
3291
3292 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
3293 * Integrated most documentation with the code.
3294 * Add support for mmap, with help from
3295 Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3296 * Use last_remainder in more cases.
3297 * Pack bins using idea from colin@nyx10.cs.du.edu
3298 * Use ordered bins instead of best-fit threshhold
3299 * Eliminate block-local decls to simplify tracing and debugging.
3300 * Support another case of realloc via move into top
3301 * Fix error occuring when initial sbrk_base not word-aligned.
3302 * Rely on page size for units instead of SBRK_UNIT to
3303 avoid surprises about sbrk alignment conventions.
3304 * Add mallinfo, mallopt. Thanks to Raymond Nijssen
3305 (raymond@es.ele.tue.nl) for the suggestion.
3306 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
3307 * More precautions for cases where other routines call sbrk,
3308 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3309 * Added macros etc., allowing use in linux libc from
3310 H.J. Lu (hjl@gnu.ai.mit.edu)
3311 * Inverted this history list
3312
3313 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
3314 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
3315 * Removed all preallocation code since under current scheme
3316 the work required to undo bad preallocations exceeds
3317 the work saved in good cases for most test programs.
3318 * No longer use return list or unconsolidated bins since
3319 no scheme using them consistently outperforms those that don't
3320 given above changes.
3321 * Use best fit for very large chunks to prevent some worst-cases.
3322 * Added some support for debugging
3323
3324 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
3325 * Removed footers when chunks are in use. Thanks to
3326 Paul Wilson (wilson@cs.texas.edu) for the suggestion.
3327
3328 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
3329 * Added malloc_trim, with help from Wolfram Gloger
3330 (wmglo@Dent.MED.Uni-Muenchen.DE).
3331
3332 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
3333
3334 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
3335 * realloc: try to expand in both directions
3336 * malloc: swap order of clean-bin strategy;
3337 * realloc: only conditionally expand backwards
3338 * Try not to scavenge used bins
3339 * Use bin counts as a guide to preallocation
3340 * Occasionally bin return list chunks in first scan
3341 * Add a few optimizations from colin@nyx10.cs.du.edu
3342
3343 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
3344 * faster bin computation & slightly different binning
3345 * merged all consolidations to one part of malloc proper
3346 (eliminating old malloc_find_space & malloc_clean_bin)
3347 * Scan 2 returns chunks (not just 1)
3348 * Propagate failure in realloc if malloc returns 0
3349 * Add stuff to allow compilation on non-ANSI compilers
3350 from kpv@research.att.com
3351
3352 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
3353 * removed potential for odd address access in prev_chunk
3354 * removed dependency on getpagesize.h
3355 * misc cosmetics and a bit more internal documentation
3356 * anticosmetics: mangled names in macros to evade debugger strangeness
3357 * tested on sparc, hp-700, dec-mips, rs6000
3358 with gcc & native cc (hp, dec only) allowing
3359 Detlefs & Zorn comparison study (in SIGPLAN Notices.)
3360
3361 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
3362 * Based loosely on libg++-1.2X malloc. (It retains some of the overall
3363 structure of old version, but most details differ.)
3364
3365 */