]> git.ipfire.org Git - people/ms/u-boot.git/blob - common/image.c
Migrate generic bootcount to Kconfig
[people/ms/u-boot.git] / common / image.c
1 /*
2 * (C) Copyright 2008 Semihalf
3 *
4 * (C) Copyright 2000-2006
5 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
6 *
7 * SPDX-License-Identifier: GPL-2.0+
8 */
9
10 #ifndef USE_HOSTCC
11 #include <common.h>
12 #include <watchdog.h>
13
14 #ifdef CONFIG_SHOW_BOOT_PROGRESS
15 #include <status_led.h>
16 #endif
17
18 #include <rtc.h>
19
20 #include <environment.h>
21 #include <image.h>
22 #include <mapmem.h>
23
24 #if IMAGE_ENABLE_FIT || IMAGE_ENABLE_OF_LIBFDT
25 #include <libfdt.h>
26 #include <fdt_support.h>
27 #include <fpga.h>
28 #include <xilinx.h>
29 #endif
30
31 #include <u-boot/md5.h>
32 #include <u-boot/sha1.h>
33 #include <linux/errno.h>
34 #include <asm/io.h>
35
36 #ifdef CONFIG_CMD_BDI
37 extern int do_bdinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]);
38 #endif
39
40 DECLARE_GLOBAL_DATA_PTR;
41
42 #if defined(CONFIG_IMAGE_FORMAT_LEGACY)
43 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch,
44 int verify);
45 #endif
46 #else
47 #include "mkimage.h"
48 #include <u-boot/md5.h>
49 #include <time.h>
50 #include <image.h>
51
52 #ifndef __maybe_unused
53 # define __maybe_unused /* unimplemented */
54 #endif
55 #endif /* !USE_HOSTCC*/
56
57 #include <u-boot/crc.h>
58
59 #ifndef CONFIG_SYS_BARGSIZE
60 #define CONFIG_SYS_BARGSIZE 512
61 #endif
62
63 static const table_entry_t uimage_arch[] = {
64 { IH_ARCH_INVALID, "invalid", "Invalid ARCH", },
65 { IH_ARCH_ALPHA, "alpha", "Alpha", },
66 { IH_ARCH_ARM, "arm", "ARM", },
67 { IH_ARCH_I386, "x86", "Intel x86", },
68 { IH_ARCH_IA64, "ia64", "IA64", },
69 { IH_ARCH_M68K, "m68k", "M68K", },
70 { IH_ARCH_MICROBLAZE, "microblaze", "MicroBlaze", },
71 { IH_ARCH_MIPS, "mips", "MIPS", },
72 { IH_ARCH_MIPS64, "mips64", "MIPS 64 Bit", },
73 { IH_ARCH_NIOS2, "nios2", "NIOS II", },
74 { IH_ARCH_PPC, "powerpc", "PowerPC", },
75 { IH_ARCH_PPC, "ppc", "PowerPC", },
76 { IH_ARCH_S390, "s390", "IBM S390", },
77 { IH_ARCH_SH, "sh", "SuperH", },
78 { IH_ARCH_SPARC, "sparc", "SPARC", },
79 { IH_ARCH_SPARC64, "sparc64", "SPARC 64 Bit", },
80 { IH_ARCH_BLACKFIN, "blackfin", "Blackfin", },
81 { IH_ARCH_AVR32, "avr32", "AVR32", },
82 { IH_ARCH_NDS32, "nds32", "NDS32", },
83 { IH_ARCH_OPENRISC, "or1k", "OpenRISC 1000",},
84 { IH_ARCH_SANDBOX, "sandbox", "Sandbox", },
85 { IH_ARCH_ARM64, "arm64", "AArch64", },
86 { IH_ARCH_ARC, "arc", "ARC", },
87 { IH_ARCH_X86_64, "x86_64", "AMD x86_64", },
88 { IH_ARCH_XTENSA, "xtensa", "Xtensa", },
89 { -1, "", "", },
90 };
91
92 static const table_entry_t uimage_os[] = {
93 { IH_OS_INVALID, "invalid", "Invalid OS", },
94 { IH_OS_ARM_TRUSTED_FIRMWARE, "arm-trusted-firmware", "ARM Trusted Firmware" },
95 { IH_OS_LINUX, "linux", "Linux", },
96 #if defined(CONFIG_LYNXKDI) || defined(USE_HOSTCC)
97 { IH_OS_LYNXOS, "lynxos", "LynxOS", },
98 #endif
99 { IH_OS_NETBSD, "netbsd", "NetBSD", },
100 { IH_OS_OSE, "ose", "Enea OSE", },
101 { IH_OS_PLAN9, "plan9", "Plan 9", },
102 { IH_OS_RTEMS, "rtems", "RTEMS", },
103 { IH_OS_U_BOOT, "u-boot", "U-Boot", },
104 { IH_OS_VXWORKS, "vxworks", "VxWorks", },
105 #if defined(CONFIG_CMD_ELF) || defined(USE_HOSTCC)
106 { IH_OS_QNX, "qnx", "QNX", },
107 #endif
108 #if defined(CONFIG_INTEGRITY) || defined(USE_HOSTCC)
109 { IH_OS_INTEGRITY,"integrity", "INTEGRITY", },
110 #endif
111 #ifdef USE_HOSTCC
112 { IH_OS_4_4BSD, "4_4bsd", "4_4BSD", },
113 { IH_OS_DELL, "dell", "Dell", },
114 { IH_OS_ESIX, "esix", "Esix", },
115 { IH_OS_FREEBSD, "freebsd", "FreeBSD", },
116 { IH_OS_IRIX, "irix", "Irix", },
117 { IH_OS_NCR, "ncr", "NCR", },
118 { IH_OS_OPENBSD, "openbsd", "OpenBSD", },
119 { IH_OS_PSOS, "psos", "pSOS", },
120 { IH_OS_SCO, "sco", "SCO", },
121 { IH_OS_SOLARIS, "solaris", "Solaris", },
122 { IH_OS_SVR4, "svr4", "SVR4", },
123 #endif
124 #if defined(CONFIG_BOOTM_OPENRTOS) || defined(USE_HOSTCC)
125 { IH_OS_OPENRTOS, "openrtos", "OpenRTOS", },
126 #endif
127
128 { -1, "", "", },
129 };
130
131 static const table_entry_t uimage_type[] = {
132 { IH_TYPE_AISIMAGE, "aisimage", "Davinci AIS image",},
133 { IH_TYPE_FILESYSTEM, "filesystem", "Filesystem Image", },
134 { IH_TYPE_FIRMWARE, "firmware", "Firmware", },
135 { IH_TYPE_FLATDT, "flat_dt", "Flat Device Tree", },
136 { IH_TYPE_GPIMAGE, "gpimage", "TI Keystone SPL Image",},
137 { IH_TYPE_KERNEL, "kernel", "Kernel Image", },
138 { IH_TYPE_KERNEL_NOLOAD, "kernel_noload", "Kernel Image (no loading done)", },
139 { IH_TYPE_KWBIMAGE, "kwbimage", "Kirkwood Boot Image",},
140 { IH_TYPE_IMXIMAGE, "imximage", "Freescale i.MX Boot Image",},
141 { IH_TYPE_INVALID, "invalid", "Invalid Image", },
142 { IH_TYPE_MULTI, "multi", "Multi-File Image", },
143 { IH_TYPE_OMAPIMAGE, "omapimage", "TI OMAP SPL With GP CH",},
144 { IH_TYPE_PBLIMAGE, "pblimage", "Freescale PBL Boot Image",},
145 { IH_TYPE_RAMDISK, "ramdisk", "RAMDisk Image", },
146 { IH_TYPE_SCRIPT, "script", "Script", },
147 { IH_TYPE_SOCFPGAIMAGE, "socfpgaimage", "Altera SOCFPGA preloader",},
148 { IH_TYPE_STANDALONE, "standalone", "Standalone Program", },
149 { IH_TYPE_UBLIMAGE, "ublimage", "Davinci UBL image",},
150 { IH_TYPE_MXSIMAGE, "mxsimage", "Freescale MXS Boot Image",},
151 { IH_TYPE_ATMELIMAGE, "atmelimage", "ATMEL ROM-Boot Image",},
152 { IH_TYPE_X86_SETUP, "x86_setup", "x86 setup.bin", },
153 { IH_TYPE_LPC32XXIMAGE, "lpc32xximage", "LPC32XX Boot Image", },
154 { IH_TYPE_RKIMAGE, "rkimage", "Rockchip Boot Image" },
155 { IH_TYPE_RKSD, "rksd", "Rockchip SD Boot Image" },
156 { IH_TYPE_RKSPI, "rkspi", "Rockchip SPI Boot Image" },
157 { IH_TYPE_VYBRIDIMAGE, "vybridimage", "Vybrid Boot Image", },
158 { IH_TYPE_ZYNQIMAGE, "zynqimage", "Xilinx Zynq Boot Image" },
159 { IH_TYPE_ZYNQMPIMAGE, "zynqmpimage", "Xilinx ZynqMP Boot Image" },
160 { IH_TYPE_FPGA, "fpga", "FPGA Image" },
161 { IH_TYPE_TEE, "tee", "Trusted Execution Environment Image",},
162 { IH_TYPE_FIRMWARE_IVT, "firmware_ivt", "Firmware with HABv4 IVT" },
163 { IH_TYPE_PMMC, "pmmc", "TI Power Management Micro-Controller Firmware",},
164 { -1, "", "", },
165 };
166
167 static const table_entry_t uimage_comp[] = {
168 { IH_COMP_NONE, "none", "uncompressed", },
169 { IH_COMP_BZIP2, "bzip2", "bzip2 compressed", },
170 { IH_COMP_GZIP, "gzip", "gzip compressed", },
171 { IH_COMP_LZMA, "lzma", "lzma compressed", },
172 { IH_COMP_LZO, "lzo", "lzo compressed", },
173 { IH_COMP_LZ4, "lz4", "lz4 compressed", },
174 { -1, "", "", },
175 };
176
177 struct table_info {
178 const char *desc;
179 int count;
180 const table_entry_t *table;
181 };
182
183 static const struct table_info table_info[IH_COUNT] = {
184 { "architecture", IH_ARCH_COUNT, uimage_arch },
185 { "compression", IH_COMP_COUNT, uimage_comp },
186 { "operating system", IH_OS_COUNT, uimage_os },
187 { "image type", IH_TYPE_COUNT, uimage_type },
188 };
189
190 /*****************************************************************************/
191 /* Legacy format routines */
192 /*****************************************************************************/
193 int image_check_hcrc(const image_header_t *hdr)
194 {
195 ulong hcrc;
196 ulong len = image_get_header_size();
197 image_header_t header;
198
199 /* Copy header so we can blank CRC field for re-calculation */
200 memmove(&header, (char *)hdr, image_get_header_size());
201 image_set_hcrc(&header, 0);
202
203 hcrc = crc32(0, (unsigned char *)&header, len);
204
205 return (hcrc == image_get_hcrc(hdr));
206 }
207
208 int image_check_dcrc(const image_header_t *hdr)
209 {
210 ulong data = image_get_data(hdr);
211 ulong len = image_get_data_size(hdr);
212 ulong dcrc = crc32_wd(0, (unsigned char *)data, len, CHUNKSZ_CRC32);
213
214 return (dcrc == image_get_dcrc(hdr));
215 }
216
217 /**
218 * image_multi_count - get component (sub-image) count
219 * @hdr: pointer to the header of the multi component image
220 *
221 * image_multi_count() returns number of components in a multi
222 * component image.
223 *
224 * Note: no checking of the image type is done, caller must pass
225 * a valid multi component image.
226 *
227 * returns:
228 * number of components
229 */
230 ulong image_multi_count(const image_header_t *hdr)
231 {
232 ulong i, count = 0;
233 uint32_t *size;
234
235 /* get start of the image payload, which in case of multi
236 * component images that points to a table of component sizes */
237 size = (uint32_t *)image_get_data(hdr);
238
239 /* count non empty slots */
240 for (i = 0; size[i]; ++i)
241 count++;
242
243 return count;
244 }
245
246 /**
247 * image_multi_getimg - get component data address and size
248 * @hdr: pointer to the header of the multi component image
249 * @idx: index of the requested component
250 * @data: pointer to a ulong variable, will hold component data address
251 * @len: pointer to a ulong variable, will hold component size
252 *
253 * image_multi_getimg() returns size and data address for the requested
254 * component in a multi component image.
255 *
256 * Note: no checking of the image type is done, caller must pass
257 * a valid multi component image.
258 *
259 * returns:
260 * data address and size of the component, if idx is valid
261 * 0 in data and len, if idx is out of range
262 */
263 void image_multi_getimg(const image_header_t *hdr, ulong idx,
264 ulong *data, ulong *len)
265 {
266 int i;
267 uint32_t *size;
268 ulong offset, count, img_data;
269
270 /* get number of component */
271 count = image_multi_count(hdr);
272
273 /* get start of the image payload, which in case of multi
274 * component images that points to a table of component sizes */
275 size = (uint32_t *)image_get_data(hdr);
276
277 /* get address of the proper component data start, which means
278 * skipping sizes table (add 1 for last, null entry) */
279 img_data = image_get_data(hdr) + (count + 1) * sizeof(uint32_t);
280
281 if (idx < count) {
282 *len = uimage_to_cpu(size[idx]);
283 offset = 0;
284
285 /* go over all indices preceding requested component idx */
286 for (i = 0; i < idx; i++) {
287 /* add up i-th component size, rounding up to 4 bytes */
288 offset += (uimage_to_cpu(size[i]) + 3) & ~3 ;
289 }
290
291 /* calculate idx-th component data address */
292 *data = img_data + offset;
293 } else {
294 *len = 0;
295 *data = 0;
296 }
297 }
298
299 static void image_print_type(const image_header_t *hdr)
300 {
301 const char __maybe_unused *os, *arch, *type, *comp;
302
303 os = genimg_get_os_name(image_get_os(hdr));
304 arch = genimg_get_arch_name(image_get_arch(hdr));
305 type = genimg_get_type_name(image_get_type(hdr));
306 comp = genimg_get_comp_name(image_get_comp(hdr));
307
308 printf("%s %s %s (%s)\n", arch, os, type, comp);
309 }
310
311 /**
312 * image_print_contents - prints out the contents of the legacy format image
313 * @ptr: pointer to the legacy format image header
314 * @p: pointer to prefix string
315 *
316 * image_print_contents() formats a multi line legacy image contents description.
317 * The routine prints out all header fields followed by the size/offset data
318 * for MULTI/SCRIPT images.
319 *
320 * returns:
321 * no returned results
322 */
323 void image_print_contents(const void *ptr)
324 {
325 const image_header_t *hdr = (const image_header_t *)ptr;
326 const char __maybe_unused *p;
327
328 p = IMAGE_INDENT_STRING;
329 printf("%sImage Name: %.*s\n", p, IH_NMLEN, image_get_name(hdr));
330 if (IMAGE_ENABLE_TIMESTAMP) {
331 printf("%sCreated: ", p);
332 genimg_print_time((time_t)image_get_time(hdr));
333 }
334 printf("%sImage Type: ", p);
335 image_print_type(hdr);
336 printf("%sData Size: ", p);
337 genimg_print_size(image_get_data_size(hdr));
338 printf("%sLoad Address: %08x\n", p, image_get_load(hdr));
339 printf("%sEntry Point: %08x\n", p, image_get_ep(hdr));
340
341 if (image_check_type(hdr, IH_TYPE_MULTI) ||
342 image_check_type(hdr, IH_TYPE_SCRIPT)) {
343 int i;
344 ulong data, len;
345 ulong count = image_multi_count(hdr);
346
347 printf("%sContents:\n", p);
348 for (i = 0; i < count; i++) {
349 image_multi_getimg(hdr, i, &data, &len);
350
351 printf("%s Image %d: ", p, i);
352 genimg_print_size(len);
353
354 if (image_check_type(hdr, IH_TYPE_SCRIPT) && i > 0) {
355 /*
356 * the user may need to know offsets
357 * if planning to do something with
358 * multiple files
359 */
360 printf("%s Offset = 0x%08lx\n", p, data);
361 }
362 }
363 } else if (image_check_type(hdr, IH_TYPE_FIRMWARE_IVT)) {
364 printf("HAB Blocks: 0x%08x 0x0000 0x%08x\n",
365 image_get_load(hdr) - image_get_header_size(),
366 image_get_size(hdr) + image_get_header_size()
367 - 0x1FE0);
368 }
369 }
370
371
372 #ifndef USE_HOSTCC
373 #if defined(CONFIG_IMAGE_FORMAT_LEGACY)
374 /**
375 * image_get_ramdisk - get and verify ramdisk image
376 * @rd_addr: ramdisk image start address
377 * @arch: expected ramdisk architecture
378 * @verify: checksum verification flag
379 *
380 * image_get_ramdisk() returns a pointer to the verified ramdisk image
381 * header. Routine receives image start address and expected architecture
382 * flag. Verification done covers data and header integrity and os/type/arch
383 * fields checking.
384 *
385 * returns:
386 * pointer to a ramdisk image header, if image was found and valid
387 * otherwise, return NULL
388 */
389 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch,
390 int verify)
391 {
392 const image_header_t *rd_hdr = (const image_header_t *)rd_addr;
393
394 if (!image_check_magic(rd_hdr)) {
395 puts("Bad Magic Number\n");
396 bootstage_error(BOOTSTAGE_ID_RD_MAGIC);
397 return NULL;
398 }
399
400 if (!image_check_hcrc(rd_hdr)) {
401 puts("Bad Header Checksum\n");
402 bootstage_error(BOOTSTAGE_ID_RD_HDR_CHECKSUM);
403 return NULL;
404 }
405
406 bootstage_mark(BOOTSTAGE_ID_RD_MAGIC);
407 image_print_contents(rd_hdr);
408
409 if (verify) {
410 puts(" Verifying Checksum ... ");
411 if (!image_check_dcrc(rd_hdr)) {
412 puts("Bad Data CRC\n");
413 bootstage_error(BOOTSTAGE_ID_RD_CHECKSUM);
414 return NULL;
415 }
416 puts("OK\n");
417 }
418
419 bootstage_mark(BOOTSTAGE_ID_RD_HDR_CHECKSUM);
420
421 if (!image_check_os(rd_hdr, IH_OS_LINUX) ||
422 !image_check_arch(rd_hdr, arch) ||
423 !image_check_type(rd_hdr, IH_TYPE_RAMDISK)) {
424 printf("No Linux %s Ramdisk Image\n",
425 genimg_get_arch_name(arch));
426 bootstage_error(BOOTSTAGE_ID_RAMDISK);
427 return NULL;
428 }
429
430 return rd_hdr;
431 }
432 #endif
433 #endif /* !USE_HOSTCC */
434
435 /*****************************************************************************/
436 /* Shared dual-format routines */
437 /*****************************************************************************/
438 #ifndef USE_HOSTCC
439 ulong load_addr = CONFIG_SYS_LOAD_ADDR; /* Default Load Address */
440 ulong save_addr; /* Default Save Address */
441 ulong save_size; /* Default Save Size (in bytes) */
442
443 static int on_loadaddr(const char *name, const char *value, enum env_op op,
444 int flags)
445 {
446 switch (op) {
447 case env_op_create:
448 case env_op_overwrite:
449 load_addr = simple_strtoul(value, NULL, 16);
450 break;
451 default:
452 break;
453 }
454
455 return 0;
456 }
457 U_BOOT_ENV_CALLBACK(loadaddr, on_loadaddr);
458
459 ulong env_get_bootm_low(void)
460 {
461 char *s = env_get("bootm_low");
462 if (s) {
463 ulong tmp = simple_strtoul(s, NULL, 16);
464 return tmp;
465 }
466
467 #if defined(CONFIG_SYS_SDRAM_BASE)
468 return CONFIG_SYS_SDRAM_BASE;
469 #elif defined(CONFIG_ARM)
470 return gd->bd->bi_dram[0].start;
471 #else
472 return 0;
473 #endif
474 }
475
476 phys_size_t env_get_bootm_size(void)
477 {
478 phys_size_t tmp, size;
479 phys_addr_t start;
480 char *s = env_get("bootm_size");
481 if (s) {
482 tmp = (phys_size_t)simple_strtoull(s, NULL, 16);
483 return tmp;
484 }
485
486 #if defined(CONFIG_ARM) && defined(CONFIG_NR_DRAM_BANKS)
487 start = gd->bd->bi_dram[0].start;
488 size = gd->bd->bi_dram[0].size;
489 #else
490 start = gd->bd->bi_memstart;
491 size = gd->bd->bi_memsize;
492 #endif
493
494 s = env_get("bootm_low");
495 if (s)
496 tmp = (phys_size_t)simple_strtoull(s, NULL, 16);
497 else
498 tmp = start;
499
500 return size - (tmp - start);
501 }
502
503 phys_size_t env_get_bootm_mapsize(void)
504 {
505 phys_size_t tmp;
506 char *s = env_get("bootm_mapsize");
507 if (s) {
508 tmp = (phys_size_t)simple_strtoull(s, NULL, 16);
509 return tmp;
510 }
511
512 #if defined(CONFIG_SYS_BOOTMAPSZ)
513 return CONFIG_SYS_BOOTMAPSZ;
514 #else
515 return env_get_bootm_size();
516 #endif
517 }
518
519 void memmove_wd(void *to, void *from, size_t len, ulong chunksz)
520 {
521 if (to == from)
522 return;
523
524 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
525 if (to > from) {
526 from += len;
527 to += len;
528 }
529 while (len > 0) {
530 size_t tail = (len > chunksz) ? chunksz : len;
531 WATCHDOG_RESET();
532 if (to > from) {
533 to -= tail;
534 from -= tail;
535 }
536 memmove(to, from, tail);
537 if (to < from) {
538 to += tail;
539 from += tail;
540 }
541 len -= tail;
542 }
543 #else /* !(CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG) */
544 memmove(to, from, len);
545 #endif /* CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG */
546 }
547 #endif /* !USE_HOSTCC */
548
549 void genimg_print_size(uint32_t size)
550 {
551 #ifndef USE_HOSTCC
552 printf("%d Bytes = ", size);
553 print_size(size, "\n");
554 #else
555 printf("%d Bytes = %.2f KiB = %.2f MiB\n",
556 size, (double)size / 1.024e3,
557 (double)size / 1.048576e6);
558 #endif
559 }
560
561 #if IMAGE_ENABLE_TIMESTAMP
562 void genimg_print_time(time_t timestamp)
563 {
564 #ifndef USE_HOSTCC
565 struct rtc_time tm;
566
567 rtc_to_tm(timestamp, &tm);
568 printf("%4d-%02d-%02d %2d:%02d:%02d UTC\n",
569 tm.tm_year, tm.tm_mon, tm.tm_mday,
570 tm.tm_hour, tm.tm_min, tm.tm_sec);
571 #else
572 printf("%s", ctime(&timestamp));
573 #endif
574 }
575 #endif
576
577 const table_entry_t *get_table_entry(const table_entry_t *table, int id)
578 {
579 for (; table->id >= 0; ++table) {
580 if (table->id == id)
581 return table;
582 }
583 return NULL;
584 }
585
586 static const char *unknown_msg(enum ih_category category)
587 {
588 static const char unknown_str[] = "Unknown ";
589 static char msg[30];
590
591 strcpy(msg, unknown_str);
592 strncat(msg, table_info[category].desc,
593 sizeof(msg) - sizeof(unknown_str));
594
595 return msg;
596 }
597
598 /**
599 * get_cat_table_entry_name - translate entry id to long name
600 * @category: category to look up (enum ih_category)
601 * @id: entry id to be translated
602 *
603 * This will scan the translation table trying to find the entry that matches
604 * the given id.
605 *
606 * @retur long entry name if translation succeeds; error string on failure
607 */
608 const char *genimg_get_cat_name(enum ih_category category, uint id)
609 {
610 const table_entry_t *entry;
611
612 entry = get_table_entry(table_info[category].table, id);
613 if (!entry)
614 return unknown_msg(category);
615 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC)
616 return entry->lname;
617 #else
618 return entry->lname + gd->reloc_off;
619 #endif
620 }
621
622 /**
623 * get_cat_table_entry_short_name - translate entry id to short name
624 * @category: category to look up (enum ih_category)
625 * @id: entry id to be translated
626 *
627 * This will scan the translation table trying to find the entry that matches
628 * the given id.
629 *
630 * @retur short entry name if translation succeeds; error string on failure
631 */
632 const char *genimg_get_cat_short_name(enum ih_category category, uint id)
633 {
634 const table_entry_t *entry;
635
636 entry = get_table_entry(table_info[category].table, id);
637 if (!entry)
638 return unknown_msg(category);
639 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC)
640 return entry->sname;
641 #else
642 return entry->sname + gd->reloc_off;
643 #endif
644 }
645
646 int genimg_get_cat_count(enum ih_category category)
647 {
648 return table_info[category].count;
649 }
650
651 const char *genimg_get_cat_desc(enum ih_category category)
652 {
653 return table_info[category].desc;
654 }
655
656 /**
657 * get_table_entry_name - translate entry id to long name
658 * @table: pointer to a translation table for entries of a specific type
659 * @msg: message to be returned when translation fails
660 * @id: entry id to be translated
661 *
662 * get_table_entry_name() will go over translation table trying to find
663 * entry that matches given id. If matching entry is found, its long
664 * name is returned to the caller.
665 *
666 * returns:
667 * long entry name if translation succeeds
668 * msg otherwise
669 */
670 char *get_table_entry_name(const table_entry_t *table, char *msg, int id)
671 {
672 table = get_table_entry(table, id);
673 if (!table)
674 return msg;
675 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC)
676 return table->lname;
677 #else
678 return table->lname + gd->reloc_off;
679 #endif
680 }
681
682 const char *genimg_get_os_name(uint8_t os)
683 {
684 return (get_table_entry_name(uimage_os, "Unknown OS", os));
685 }
686
687 const char *genimg_get_arch_name(uint8_t arch)
688 {
689 return (get_table_entry_name(uimage_arch, "Unknown Architecture",
690 arch));
691 }
692
693 const char *genimg_get_type_name(uint8_t type)
694 {
695 return (get_table_entry_name(uimage_type, "Unknown Image", type));
696 }
697
698 static const char *genimg_get_short_name(const table_entry_t *table, int val)
699 {
700 table = get_table_entry(table, val);
701 if (!table)
702 return "unknown";
703 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC)
704 return table->sname;
705 #else
706 return table->sname + gd->reloc_off;
707 #endif
708 }
709
710 const char *genimg_get_type_short_name(uint8_t type)
711 {
712 return genimg_get_short_name(uimage_type, type);
713 }
714
715 const char *genimg_get_comp_name(uint8_t comp)
716 {
717 return (get_table_entry_name(uimage_comp, "Unknown Compression",
718 comp));
719 }
720
721 const char *genimg_get_comp_short_name(uint8_t comp)
722 {
723 return genimg_get_short_name(uimage_comp, comp);
724 }
725
726 const char *genimg_get_os_short_name(uint8_t os)
727 {
728 return genimg_get_short_name(uimage_os, os);
729 }
730
731 const char *genimg_get_arch_short_name(uint8_t arch)
732 {
733 return genimg_get_short_name(uimage_arch, arch);
734 }
735
736 /**
737 * get_table_entry_id - translate short entry name to id
738 * @table: pointer to a translation table for entries of a specific type
739 * @table_name: to be used in case of error
740 * @name: entry short name to be translated
741 *
742 * get_table_entry_id() will go over translation table trying to find
743 * entry that matches given short name. If matching entry is found,
744 * its id returned to the caller.
745 *
746 * returns:
747 * entry id if translation succeeds
748 * -1 otherwise
749 */
750 int get_table_entry_id(const table_entry_t *table,
751 const char *table_name, const char *name)
752 {
753 const table_entry_t *t;
754
755 for (t = table; t->id >= 0; ++t) {
756 #ifdef CONFIG_NEEDS_MANUAL_RELOC
757 if (t->sname && strcasecmp(t->sname + gd->reloc_off, name) == 0)
758 #else
759 if (t->sname && strcasecmp(t->sname, name) == 0)
760 #endif
761 return (t->id);
762 }
763 debug("Invalid %s Type: %s\n", table_name, name);
764
765 return -1;
766 }
767
768 int genimg_get_os_id(const char *name)
769 {
770 return (get_table_entry_id(uimage_os, "OS", name));
771 }
772
773 int genimg_get_arch_id(const char *name)
774 {
775 return (get_table_entry_id(uimage_arch, "CPU", name));
776 }
777
778 int genimg_get_type_id(const char *name)
779 {
780 return (get_table_entry_id(uimage_type, "Image", name));
781 }
782
783 int genimg_get_comp_id(const char *name)
784 {
785 return (get_table_entry_id(uimage_comp, "Compression", name));
786 }
787
788 #ifndef USE_HOSTCC
789 /**
790 * genimg_get_kernel_addr_fit - get the real kernel address and return 2
791 * FIT strings
792 * @img_addr: a string might contain real image address
793 * @fit_uname_config: double pointer to a char, will hold pointer to a
794 * configuration unit name
795 * @fit_uname_kernel: double pointer to a char, will hold pointer to a subimage
796 * name
797 *
798 * genimg_get_kernel_addr_fit get the real kernel start address from a string
799 * which is normally the first argv of bootm/bootz
800 *
801 * returns:
802 * kernel start address
803 */
804 ulong genimg_get_kernel_addr_fit(char * const img_addr,
805 const char **fit_uname_config,
806 const char **fit_uname_kernel)
807 {
808 ulong kernel_addr;
809
810 /* find out kernel image address */
811 if (!img_addr) {
812 kernel_addr = load_addr;
813 debug("* kernel: default image load address = 0x%08lx\n",
814 load_addr);
815 #if CONFIG_IS_ENABLED(FIT)
816 } else if (fit_parse_conf(img_addr, load_addr, &kernel_addr,
817 fit_uname_config)) {
818 debug("* kernel: config '%s' from image at 0x%08lx\n",
819 *fit_uname_config, kernel_addr);
820 } else if (fit_parse_subimage(img_addr, load_addr, &kernel_addr,
821 fit_uname_kernel)) {
822 debug("* kernel: subimage '%s' from image at 0x%08lx\n",
823 *fit_uname_kernel, kernel_addr);
824 #endif
825 } else {
826 kernel_addr = simple_strtoul(img_addr, NULL, 16);
827 debug("* kernel: cmdline image address = 0x%08lx\n",
828 kernel_addr);
829 }
830
831 return kernel_addr;
832 }
833
834 /**
835 * genimg_get_kernel_addr() is the simple version of
836 * genimg_get_kernel_addr_fit(). It ignores those return FIT strings
837 */
838 ulong genimg_get_kernel_addr(char * const img_addr)
839 {
840 const char *fit_uname_config = NULL;
841 const char *fit_uname_kernel = NULL;
842
843 return genimg_get_kernel_addr_fit(img_addr, &fit_uname_config,
844 &fit_uname_kernel);
845 }
846
847 /**
848 * genimg_get_format - get image format type
849 * @img_addr: image start address
850 *
851 * genimg_get_format() checks whether provided address points to a valid
852 * legacy or FIT image.
853 *
854 * New uImage format and FDT blob are based on a libfdt. FDT blob
855 * may be passed directly or embedded in a FIT image. In both situations
856 * genimg_get_format() must be able to dectect libfdt header.
857 *
858 * returns:
859 * image format type or IMAGE_FORMAT_INVALID if no image is present
860 */
861 int genimg_get_format(const void *img_addr)
862 {
863 #if defined(CONFIG_IMAGE_FORMAT_LEGACY)
864 const image_header_t *hdr;
865
866 hdr = (const image_header_t *)img_addr;
867 if (image_check_magic(hdr))
868 return IMAGE_FORMAT_LEGACY;
869 #endif
870 #if IMAGE_ENABLE_FIT || IMAGE_ENABLE_OF_LIBFDT
871 if (fdt_check_header(img_addr) == 0)
872 return IMAGE_FORMAT_FIT;
873 #endif
874 #ifdef CONFIG_ANDROID_BOOT_IMAGE
875 if (android_image_check_header(img_addr) == 0)
876 return IMAGE_FORMAT_ANDROID;
877 #endif
878
879 return IMAGE_FORMAT_INVALID;
880 }
881
882 /**
883 * fit_has_config - check if there is a valid FIT configuration
884 * @images: pointer to the bootm command headers structure
885 *
886 * fit_has_config() checks if there is a FIT configuration in use
887 * (if FTI support is present).
888 *
889 * returns:
890 * 0, no FIT support or no configuration found
891 * 1, configuration found
892 */
893 int genimg_has_config(bootm_headers_t *images)
894 {
895 #if IMAGE_ENABLE_FIT
896 if (images->fit_uname_cfg)
897 return 1;
898 #endif
899 return 0;
900 }
901
902 /**
903 * boot_get_ramdisk - main ramdisk handling routine
904 * @argc: command argument count
905 * @argv: command argument list
906 * @images: pointer to the bootm images structure
907 * @arch: expected ramdisk architecture
908 * @rd_start: pointer to a ulong variable, will hold ramdisk start address
909 * @rd_end: pointer to a ulong variable, will hold ramdisk end
910 *
911 * boot_get_ramdisk() is responsible for finding a valid ramdisk image.
912 * Curently supported are the following ramdisk sources:
913 * - multicomponent kernel/ramdisk image,
914 * - commandline provided address of decicated ramdisk image.
915 *
916 * returns:
917 * 0, if ramdisk image was found and valid, or skiped
918 * rd_start and rd_end are set to ramdisk start/end addresses if
919 * ramdisk image is found and valid
920 *
921 * 1, if ramdisk image is found but corrupted, or invalid
922 * rd_start and rd_end are set to 0 if no ramdisk exists
923 */
924 int boot_get_ramdisk(int argc, char * const argv[], bootm_headers_t *images,
925 uint8_t arch, ulong *rd_start, ulong *rd_end)
926 {
927 ulong rd_addr, rd_load;
928 ulong rd_data, rd_len;
929 #if defined(CONFIG_IMAGE_FORMAT_LEGACY)
930 const image_header_t *rd_hdr;
931 #endif
932 void *buf;
933 #ifdef CONFIG_SUPPORT_RAW_INITRD
934 char *end;
935 #endif
936 #if IMAGE_ENABLE_FIT
937 const char *fit_uname_config = images->fit_uname_cfg;
938 const char *fit_uname_ramdisk = NULL;
939 ulong default_addr;
940 int rd_noffset;
941 #endif
942 const char *select = NULL;
943
944 *rd_start = 0;
945 *rd_end = 0;
946
947 #ifdef CONFIG_ANDROID_BOOT_IMAGE
948 /*
949 * Look for an Android boot image.
950 */
951 buf = map_sysmem(images->os.start, 0);
952 if (buf && genimg_get_format(buf) == IMAGE_FORMAT_ANDROID)
953 select = argv[0];
954 #endif
955
956 if (argc >= 2)
957 select = argv[1];
958
959 /*
960 * Look for a '-' which indicates to ignore the
961 * ramdisk argument
962 */
963 if (select && strcmp(select, "-") == 0) {
964 debug("## Skipping init Ramdisk\n");
965 rd_len = rd_data = 0;
966 } else if (select || genimg_has_config(images)) {
967 #if IMAGE_ENABLE_FIT
968 if (select) {
969 /*
970 * If the init ramdisk comes from the FIT image and
971 * the FIT image address is omitted in the command
972 * line argument, try to use os FIT image address or
973 * default load address.
974 */
975 if (images->fit_uname_os)
976 default_addr = (ulong)images->fit_hdr_os;
977 else
978 default_addr = load_addr;
979
980 if (fit_parse_conf(select, default_addr,
981 &rd_addr, &fit_uname_config)) {
982 debug("* ramdisk: config '%s' from image at "
983 "0x%08lx\n",
984 fit_uname_config, rd_addr);
985 } else if (fit_parse_subimage(select, default_addr,
986 &rd_addr, &fit_uname_ramdisk)) {
987 debug("* ramdisk: subimage '%s' from image at "
988 "0x%08lx\n",
989 fit_uname_ramdisk, rd_addr);
990 } else
991 #endif
992 {
993 rd_addr = simple_strtoul(select, NULL, 16);
994 debug("* ramdisk: cmdline image address = "
995 "0x%08lx\n",
996 rd_addr);
997 }
998 #if IMAGE_ENABLE_FIT
999 } else {
1000 /* use FIT configuration provided in first bootm
1001 * command argument. If the property is not defined,
1002 * quit silently.
1003 */
1004 rd_addr = map_to_sysmem(images->fit_hdr_os);
1005 rd_noffset = fit_get_node_from_config(images,
1006 FIT_RAMDISK_PROP, rd_addr);
1007 if (rd_noffset == -ENOENT)
1008 return 0;
1009 else if (rd_noffset < 0)
1010 return 1;
1011 }
1012 #endif
1013
1014 /*
1015 * Check if there is an initrd image at the
1016 * address provided in the second bootm argument
1017 * check image type, for FIT images get FIT node.
1018 */
1019 buf = map_sysmem(rd_addr, 0);
1020 switch (genimg_get_format(buf)) {
1021 #if defined(CONFIG_IMAGE_FORMAT_LEGACY)
1022 case IMAGE_FORMAT_LEGACY:
1023 printf("## Loading init Ramdisk from Legacy "
1024 "Image at %08lx ...\n", rd_addr);
1025
1026 bootstage_mark(BOOTSTAGE_ID_CHECK_RAMDISK);
1027 rd_hdr = image_get_ramdisk(rd_addr, arch,
1028 images->verify);
1029
1030 if (rd_hdr == NULL)
1031 return 1;
1032
1033 rd_data = image_get_data(rd_hdr);
1034 rd_len = image_get_data_size(rd_hdr);
1035 rd_load = image_get_load(rd_hdr);
1036 break;
1037 #endif
1038 #if IMAGE_ENABLE_FIT
1039 case IMAGE_FORMAT_FIT:
1040 rd_noffset = fit_image_load(images,
1041 rd_addr, &fit_uname_ramdisk,
1042 &fit_uname_config, arch,
1043 IH_TYPE_RAMDISK,
1044 BOOTSTAGE_ID_FIT_RD_START,
1045 FIT_LOAD_OPTIONAL_NON_ZERO,
1046 &rd_data, &rd_len);
1047 if (rd_noffset < 0)
1048 return 1;
1049
1050 images->fit_hdr_rd = map_sysmem(rd_addr, 0);
1051 images->fit_uname_rd = fit_uname_ramdisk;
1052 images->fit_noffset_rd = rd_noffset;
1053 break;
1054 #endif
1055 #ifdef CONFIG_ANDROID_BOOT_IMAGE
1056 case IMAGE_FORMAT_ANDROID:
1057 android_image_get_ramdisk((void *)images->os.start,
1058 &rd_data, &rd_len);
1059 break;
1060 #endif
1061 default:
1062 #ifdef CONFIG_SUPPORT_RAW_INITRD
1063 end = NULL;
1064 if (select)
1065 end = strchr(select, ':');
1066 if (end) {
1067 rd_len = simple_strtoul(++end, NULL, 16);
1068 rd_data = rd_addr;
1069 } else
1070 #endif
1071 {
1072 puts("Wrong Ramdisk Image Format\n");
1073 rd_data = rd_len = rd_load = 0;
1074 return 1;
1075 }
1076 }
1077 } else if (images->legacy_hdr_valid &&
1078 image_check_type(&images->legacy_hdr_os_copy,
1079 IH_TYPE_MULTI)) {
1080
1081 /*
1082 * Now check if we have a legacy mult-component image,
1083 * get second entry data start address and len.
1084 */
1085 bootstage_mark(BOOTSTAGE_ID_RAMDISK);
1086 printf("## Loading init Ramdisk from multi component "
1087 "Legacy Image at %08lx ...\n",
1088 (ulong)images->legacy_hdr_os);
1089
1090 image_multi_getimg(images->legacy_hdr_os, 1, &rd_data, &rd_len);
1091 } else {
1092 /*
1093 * no initrd image
1094 */
1095 bootstage_mark(BOOTSTAGE_ID_NO_RAMDISK);
1096 rd_len = rd_data = 0;
1097 }
1098
1099 if (!rd_data) {
1100 debug("## No init Ramdisk\n");
1101 } else {
1102 *rd_start = rd_data;
1103 *rd_end = rd_data + rd_len;
1104 }
1105 debug(" ramdisk start = 0x%08lx, ramdisk end = 0x%08lx\n",
1106 *rd_start, *rd_end);
1107
1108 return 0;
1109 }
1110
1111 #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH
1112 /**
1113 * boot_ramdisk_high - relocate init ramdisk
1114 * @lmb: pointer to lmb handle, will be used for memory mgmt
1115 * @rd_data: ramdisk data start address
1116 * @rd_len: ramdisk data length
1117 * @initrd_start: pointer to a ulong variable, will hold final init ramdisk
1118 * start address (after possible relocation)
1119 * @initrd_end: pointer to a ulong variable, will hold final init ramdisk
1120 * end address (after possible relocation)
1121 *
1122 * boot_ramdisk_high() takes a relocation hint from "initrd_high" environment
1123 * variable and if requested ramdisk data is moved to a specified location.
1124 *
1125 * Initrd_start and initrd_end are set to final (after relocation) ramdisk
1126 * start/end addresses if ramdisk image start and len were provided,
1127 * otherwise set initrd_start and initrd_end set to zeros.
1128 *
1129 * returns:
1130 * 0 - success
1131 * -1 - failure
1132 */
1133 int boot_ramdisk_high(struct lmb *lmb, ulong rd_data, ulong rd_len,
1134 ulong *initrd_start, ulong *initrd_end)
1135 {
1136 char *s;
1137 ulong initrd_high;
1138 int initrd_copy_to_ram = 1;
1139
1140 s = env_get("initrd_high");
1141 if (s) {
1142 /* a value of "no" or a similar string will act like 0,
1143 * turning the "load high" feature off. This is intentional.
1144 */
1145 initrd_high = simple_strtoul(s, NULL, 16);
1146 if (initrd_high == ~0)
1147 initrd_copy_to_ram = 0;
1148 } else {
1149 initrd_high = env_get_bootm_mapsize() + env_get_bootm_low();
1150 }
1151
1152
1153 debug("## initrd_high = 0x%08lx, copy_to_ram = %d\n",
1154 initrd_high, initrd_copy_to_ram);
1155
1156 if (rd_data) {
1157 if (!initrd_copy_to_ram) { /* zero-copy ramdisk support */
1158 debug(" in-place initrd\n");
1159 *initrd_start = rd_data;
1160 *initrd_end = rd_data + rd_len;
1161 lmb_reserve(lmb, rd_data, rd_len);
1162 } else {
1163 if (initrd_high)
1164 *initrd_start = (ulong)lmb_alloc_base(lmb,
1165 rd_len, 0x1000, initrd_high);
1166 else
1167 *initrd_start = (ulong)lmb_alloc(lmb, rd_len,
1168 0x1000);
1169
1170 if (*initrd_start == 0) {
1171 puts("ramdisk - allocation error\n");
1172 goto error;
1173 }
1174 bootstage_mark(BOOTSTAGE_ID_COPY_RAMDISK);
1175
1176 *initrd_end = *initrd_start + rd_len;
1177 printf(" Loading Ramdisk to %08lx, end %08lx ... ",
1178 *initrd_start, *initrd_end);
1179
1180 memmove_wd((void *)*initrd_start,
1181 (void *)rd_data, rd_len, CHUNKSZ);
1182
1183 #ifdef CONFIG_MP
1184 /*
1185 * Ensure the image is flushed to memory to handle
1186 * AMP boot scenarios in which we might not be
1187 * HW cache coherent
1188 */
1189 flush_cache((unsigned long)*initrd_start,
1190 ALIGN(rd_len, ARCH_DMA_MINALIGN));
1191 #endif
1192 puts("OK\n");
1193 }
1194 } else {
1195 *initrd_start = 0;
1196 *initrd_end = 0;
1197 }
1198 debug(" ramdisk load start = 0x%08lx, ramdisk load end = 0x%08lx\n",
1199 *initrd_start, *initrd_end);
1200
1201 return 0;
1202
1203 error:
1204 return -1;
1205 }
1206 #endif /* CONFIG_SYS_BOOT_RAMDISK_HIGH */
1207
1208 int boot_get_setup(bootm_headers_t *images, uint8_t arch,
1209 ulong *setup_start, ulong *setup_len)
1210 {
1211 #if IMAGE_ENABLE_FIT
1212 return boot_get_setup_fit(images, arch, setup_start, setup_len);
1213 #else
1214 return -ENOENT;
1215 #endif
1216 }
1217
1218 #if IMAGE_ENABLE_FIT
1219 #if defined(CONFIG_FPGA)
1220 int boot_get_fpga(int argc, char * const argv[], bootm_headers_t *images,
1221 uint8_t arch, const ulong *ld_start, ulong * const ld_len)
1222 {
1223 ulong tmp_img_addr, img_data, img_len;
1224 void *buf;
1225 int conf_noffset;
1226 int fit_img_result;
1227 const char *uname, *name;
1228 int err;
1229 int devnum = 0; /* TODO support multi fpga platforms */
1230
1231 /* Check to see if the images struct has a FIT configuration */
1232 if (!genimg_has_config(images)) {
1233 debug("## FIT configuration was not specified\n");
1234 return 0;
1235 }
1236
1237 /*
1238 * Obtain the os FIT header from the images struct
1239 */
1240 tmp_img_addr = map_to_sysmem(images->fit_hdr_os);
1241 buf = map_sysmem(tmp_img_addr, 0);
1242 /*
1243 * Check image type. For FIT images get FIT node
1244 * and attempt to locate a generic binary.
1245 */
1246 switch (genimg_get_format(buf)) {
1247 case IMAGE_FORMAT_FIT:
1248 conf_noffset = fit_conf_get_node(buf, images->fit_uname_cfg);
1249
1250 uname = fdt_stringlist_get(buf, conf_noffset, FIT_FPGA_PROP, 0,
1251 NULL);
1252 if (!uname) {
1253 debug("## FPGA image is not specified\n");
1254 return 0;
1255 }
1256 fit_img_result = fit_image_load(images,
1257 tmp_img_addr,
1258 (const char **)&uname,
1259 &(images->fit_uname_cfg),
1260 arch,
1261 IH_TYPE_FPGA,
1262 BOOTSTAGE_ID_FPGA_INIT,
1263 FIT_LOAD_OPTIONAL_NON_ZERO,
1264 &img_data, &img_len);
1265
1266 debug("FPGA image (%s) loaded to 0x%lx/size 0x%lx\n",
1267 uname, img_data, img_len);
1268
1269 if (fit_img_result < 0) {
1270 /* Something went wrong! */
1271 return fit_img_result;
1272 }
1273
1274 if (!fpga_is_partial_data(devnum, img_len)) {
1275 name = "full";
1276 err = fpga_loadbitstream(devnum, (char *)img_data,
1277 img_len, BIT_FULL);
1278 if (err)
1279 err = fpga_load(devnum, (const void *)img_data,
1280 img_len, BIT_FULL);
1281 } else {
1282 name = "partial";
1283 err = fpga_loadbitstream(devnum, (char *)img_data,
1284 img_len, BIT_PARTIAL);
1285 if (err)
1286 err = fpga_load(devnum, (const void *)img_data,
1287 img_len, BIT_PARTIAL);
1288 }
1289
1290 if (err)
1291 return err;
1292
1293 printf(" Programming %s bitstream... OK\n", name);
1294 break;
1295 default:
1296 printf("The given image format is not supported (corrupt?)\n");
1297 return 1;
1298 }
1299
1300 return 0;
1301 }
1302 #endif
1303
1304 static void fit_loadable_process(uint8_t img_type,
1305 ulong img_data,
1306 ulong img_len)
1307 {
1308 int i;
1309 const unsigned int count =
1310 ll_entry_count(struct fit_loadable_tbl, fit_loadable);
1311 struct fit_loadable_tbl *fit_loadable_handler =
1312 ll_entry_start(struct fit_loadable_tbl, fit_loadable);
1313 /* For each loadable handler */
1314 for (i = 0; i < count; i++, fit_loadable_handler++)
1315 /* matching this type */
1316 if (fit_loadable_handler->type == img_type)
1317 /* call that handler with this image data */
1318 fit_loadable_handler->handler(img_data, img_len);
1319 }
1320
1321 int boot_get_loadable(int argc, char * const argv[], bootm_headers_t *images,
1322 uint8_t arch, const ulong *ld_start, ulong * const ld_len)
1323 {
1324 /*
1325 * These variables are used to hold the current image location
1326 * in system memory.
1327 */
1328 ulong tmp_img_addr;
1329 /*
1330 * These two variables are requirements for fit_image_load, but
1331 * their values are not used
1332 */
1333 ulong img_data, img_len;
1334 void *buf;
1335 int loadables_index;
1336 int conf_noffset;
1337 int fit_img_result;
1338 const char *uname;
1339 uint8_t img_type;
1340
1341 /* Check to see if the images struct has a FIT configuration */
1342 if (!genimg_has_config(images)) {
1343 debug("## FIT configuration was not specified\n");
1344 return 0;
1345 }
1346
1347 /*
1348 * Obtain the os FIT header from the images struct
1349 */
1350 tmp_img_addr = map_to_sysmem(images->fit_hdr_os);
1351 buf = map_sysmem(tmp_img_addr, 0);
1352 /*
1353 * Check image type. For FIT images get FIT node
1354 * and attempt to locate a generic binary.
1355 */
1356 switch (genimg_get_format(buf)) {
1357 case IMAGE_FORMAT_FIT:
1358 conf_noffset = fit_conf_get_node(buf, images->fit_uname_cfg);
1359
1360 for (loadables_index = 0;
1361 uname = fdt_stringlist_get(buf, conf_noffset,
1362 FIT_LOADABLE_PROP, loadables_index,
1363 NULL), uname;
1364 loadables_index++)
1365 {
1366 fit_img_result = fit_image_load(images,
1367 tmp_img_addr,
1368 &uname,
1369 &(images->fit_uname_cfg), arch,
1370 IH_TYPE_LOADABLE,
1371 BOOTSTAGE_ID_FIT_LOADABLE_START,
1372 FIT_LOAD_OPTIONAL_NON_ZERO,
1373 &img_data, &img_len);
1374 if (fit_img_result < 0) {
1375 /* Something went wrong! */
1376 return fit_img_result;
1377 }
1378
1379 fit_img_result = fit_image_get_node(buf, uname);
1380 if (fit_img_result < 0) {
1381 /* Something went wrong! */
1382 return fit_img_result;
1383 }
1384 fit_img_result = fit_image_get_type(buf,
1385 fit_img_result,
1386 &img_type);
1387 if (fit_img_result < 0) {
1388 /* Something went wrong! */
1389 return fit_img_result;
1390 }
1391
1392 fit_loadable_process(img_type, img_data, img_len);
1393 }
1394 break;
1395 default:
1396 printf("The given image format is not supported (corrupt?)\n");
1397 return 1;
1398 }
1399
1400 return 0;
1401 }
1402 #endif
1403
1404 #ifdef CONFIG_SYS_BOOT_GET_CMDLINE
1405 /**
1406 * boot_get_cmdline - allocate and initialize kernel cmdline
1407 * @lmb: pointer to lmb handle, will be used for memory mgmt
1408 * @cmd_start: pointer to a ulong variable, will hold cmdline start
1409 * @cmd_end: pointer to a ulong variable, will hold cmdline end
1410 *
1411 * boot_get_cmdline() allocates space for kernel command line below
1412 * BOOTMAPSZ + env_get_bootm_low() address. If "bootargs" U-Boot environemnt
1413 * variable is present its contents is copied to allocated kernel
1414 * command line.
1415 *
1416 * returns:
1417 * 0 - success
1418 * -1 - failure
1419 */
1420 int boot_get_cmdline(struct lmb *lmb, ulong *cmd_start, ulong *cmd_end)
1421 {
1422 char *cmdline;
1423 char *s;
1424
1425 cmdline = (char *)(ulong)lmb_alloc_base(lmb, CONFIG_SYS_BARGSIZE, 0xf,
1426 env_get_bootm_mapsize() + env_get_bootm_low());
1427
1428 if (cmdline == NULL)
1429 return -1;
1430
1431 s = env_get("bootargs");
1432 if (!s)
1433 s = "";
1434
1435 strcpy(cmdline, s);
1436
1437 *cmd_start = (ulong) & cmdline[0];
1438 *cmd_end = *cmd_start + strlen(cmdline);
1439
1440 debug("## cmdline at 0x%08lx ... 0x%08lx\n", *cmd_start, *cmd_end);
1441
1442 return 0;
1443 }
1444 #endif /* CONFIG_SYS_BOOT_GET_CMDLINE */
1445
1446 #ifdef CONFIG_SYS_BOOT_GET_KBD
1447 /**
1448 * boot_get_kbd - allocate and initialize kernel copy of board info
1449 * @lmb: pointer to lmb handle, will be used for memory mgmt
1450 * @kbd: double pointer to board info data
1451 *
1452 * boot_get_kbd() allocates space for kernel copy of board info data below
1453 * BOOTMAPSZ + env_get_bootm_low() address and kernel board info is initialized
1454 * with the current u-boot board info data.
1455 *
1456 * returns:
1457 * 0 - success
1458 * -1 - failure
1459 */
1460 int boot_get_kbd(struct lmb *lmb, bd_t **kbd)
1461 {
1462 *kbd = (bd_t *)(ulong)lmb_alloc_base(lmb, sizeof(bd_t), 0xf,
1463 env_get_bootm_mapsize() + env_get_bootm_low());
1464 if (*kbd == NULL)
1465 return -1;
1466
1467 **kbd = *(gd->bd);
1468
1469 debug("## kernel board info at 0x%08lx\n", (ulong)*kbd);
1470
1471 #if defined(DEBUG) && defined(CONFIG_CMD_BDI)
1472 do_bdinfo(NULL, 0, 0, NULL);
1473 #endif
1474
1475 return 0;
1476 }
1477 #endif /* CONFIG_SYS_BOOT_GET_KBD */
1478
1479 #ifdef CONFIG_LMB
1480 int image_setup_linux(bootm_headers_t *images)
1481 {
1482 ulong of_size = images->ft_len;
1483 char **of_flat_tree = &images->ft_addr;
1484 struct lmb *lmb = &images->lmb;
1485 int ret;
1486
1487 if (IMAGE_ENABLE_OF_LIBFDT)
1488 boot_fdt_add_mem_rsv_regions(lmb, *of_flat_tree);
1489
1490 if (IMAGE_BOOT_GET_CMDLINE) {
1491 ret = boot_get_cmdline(lmb, &images->cmdline_start,
1492 &images->cmdline_end);
1493 if (ret) {
1494 puts("ERROR with allocation of cmdline\n");
1495 return ret;
1496 }
1497 }
1498
1499 if (IMAGE_ENABLE_OF_LIBFDT) {
1500 ret = boot_relocate_fdt(lmb, of_flat_tree, &of_size);
1501 if (ret)
1502 return ret;
1503 }
1504
1505 if (IMAGE_ENABLE_OF_LIBFDT && of_size) {
1506 ret = image_setup_libfdt(images, *of_flat_tree, of_size, lmb);
1507 if (ret)
1508 return ret;
1509 }
1510
1511 return 0;
1512 }
1513 #endif /* CONFIG_LMB */
1514 #endif /* !USE_HOSTCC */