]> git.ipfire.org Git - people/ms/u-boot.git/blob - cpu/mpc85xx/spd_sdram.c
* Patch by Jon Loeliger, 2005-05-05
[people/ms/u-boot.git] / cpu / mpc85xx / spd_sdram.c
1 /*
2 * Copyright 2004 Freescale Semiconductor.
3 * (C) Copyright 2003 Motorola Inc.
4 * Xianghua Xiao (X.Xiao@motorola.com)
5 *
6 * See file CREDITS for list of people who contributed to this
7 * project.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of
12 * the License, or (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
22 * MA 02111-1307 USA
23 */
24
25 #include <common.h>
26 #include <asm/processor.h>
27 #include <i2c.h>
28 #include <spd.h>
29 #include <asm/mmu.h>
30
31
32 #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
33 extern void dma_init(void);
34 extern uint dma_check(void);
35 extern int dma_xfer(void *dest, uint count, void *src);
36 #endif
37
38 #ifdef CONFIG_SPD_EEPROM
39
40 #ifndef CFG_READ_SPD
41 #define CFG_READ_SPD i2c_read
42 #endif
43
44 static unsigned int setup_laws_and_tlbs(unsigned int memsize);
45
46
47 /*
48 * Convert picoseconds into clock cycles (rounding up if needed).
49 */
50
51 int
52 picos_to_clk(int picos)
53 {
54 int clks;
55
56 clks = picos / (2000000000 / (get_bus_freq(0) / 1000));
57 if (picos % (2000000000 / (get_bus_freq(0) / 1000)) != 0) {
58 clks++;
59 }
60
61 return clks;
62 }
63
64
65 /*
66 * Calculate the Density of each Physical Rank.
67 * Returned size is in bytes.
68 *
69 * Study these table from Byte 31 of JEDEC SPD Spec.
70 *
71 * DDR I DDR II
72 * Bit Size Size
73 * --- ----- ------
74 * 7 high 512MB 512MB
75 * 6 256MB 256MB
76 * 5 128MB 128MB
77 * 4 64MB 16GB
78 * 3 32MB 8GB
79 * 2 16MB 4GB
80 * 1 2GB 2GB
81 * 0 low 1GB 1GB
82 *
83 * Reorder Table to be linear by stripping the bottom
84 * 2 or 5 bits off and shifting them up to the top.
85 */
86
87 unsigned int
88 compute_banksize(unsigned int mem_type, unsigned char row_dens)
89 {
90 unsigned int bsize;
91
92 if (mem_type == SPD_MEMTYPE_DDR) {
93 /* Bottom 2 bits up to the top. */
94 bsize = ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24;
95 debug("DDR: DDR I rank density = 0x%08x\n", bsize);
96 } else {
97 /* Bottom 5 bits up to the top. */
98 bsize = ((row_dens >> 5) | ((row_dens & 31) << 3)) << 27;
99 debug("DDR: DDR II rank density = 0x%08x\n", bsize);
100 }
101 return bsize;
102 }
103
104
105 /*
106 * Convert a two-nibble BCD value into a cycle time.
107 * While the spec calls for nano-seconds, picos are returned.
108 *
109 * This implements the tables for bytes 9, 23 and 25 for both
110 * DDR I and II. No allowance for distinguishing the invalid
111 * fields absent for DDR I yet present in DDR II is made.
112 * (That is, cycle times of .25, .33, .66 and .75 ns are
113 * allowed for both DDR II and I.)
114 */
115
116 unsigned int
117 convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
118 {
119 /*
120 * Table look up the lower nibble, allow DDR I & II.
121 */
122 unsigned int tenths_ps[16] = {
123 0,
124 100,
125 200,
126 300,
127 400,
128 500,
129 600,
130 700,
131 800,
132 900,
133 250,
134 330, /* FIXME: Is 333 better/valid? */
135 660, /* FIXME: Is 667 better/valid? */
136 750,
137 0, /* undefined */
138 0 /* undefined */
139 };
140
141 unsigned int whole_ns = (spd_val & 0xF0) >> 4;
142 unsigned int tenth_ns = spd_val & 0x0F;
143 unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
144
145 return ps;
146 }
147
148
149 long int
150 spd_sdram(void)
151 {
152 volatile immap_t *immap = (immap_t *)CFG_IMMR;
153 volatile ccsr_ddr_t *ddr = &immap->im_ddr;
154 volatile ccsr_gur_t *gur = &immap->im_gur;
155 spd_eeprom_t spd;
156 unsigned int n_ranks;
157 unsigned int rank_density;
158 unsigned int odt_rd_cfg, odt_wr_cfg;
159 unsigned int odt_cfg, mode_odt_enable;
160 unsigned int dqs_cfg;
161 unsigned char twr_clk, twtr_clk, twr_auto_clk;
162 unsigned int tCKmin_ps, tCKmax_ps;
163 unsigned int max_data_rate, effective_data_rate;
164 unsigned int busfreq;
165 unsigned sdram_cfg;
166 unsigned int memsize;
167 unsigned char caslat, caslat_ctrl;
168 unsigned int trfc, trfc_clk, trfc_low, trfc_high;
169 unsigned int trcd_clk;
170 unsigned int trtp_clk;
171 unsigned char cke_min_clk;
172 unsigned char add_lat;
173 unsigned char wr_lat;
174 unsigned char wr_data_delay;
175 unsigned char four_act;
176 unsigned char cpo;
177 unsigned char burst_len;
178 unsigned int mode_caslat;
179 unsigned char sdram_type;
180 unsigned char d_init;
181
182 /*
183 * Read SPD information.
184 */
185 CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) &spd, sizeof(spd));
186
187 /*
188 * Check for supported memory module types.
189 */
190 if (spd.mem_type != SPD_MEMTYPE_DDR &&
191 spd.mem_type != SPD_MEMTYPE_DDR2) {
192 printf("Unable to locate DDR I or DDR II module.\n"
193 " Fundamental memory type is 0x%0x\n",
194 spd.mem_type);
195 return 0;
196 }
197
198 /*
199 * These test gloss over DDR I and II differences in interpretation
200 * of bytes 3 and 4, but irrelevantly. Multiple asymmetric banks
201 * are not supported on DDR I; and not encoded on DDR II.
202 *
203 * Also note that the 8548 controller can support:
204 * 12 <= nrow <= 16
205 * and
206 * 8 <= ncol <= 11 (still, for DDR)
207 * 6 <= ncol <= 9 (for FCRAM)
208 */
209 if (spd.nrow_addr < 12 || spd.nrow_addr > 14) {
210 printf("DDR: Unsupported number of Row Addr lines: %d.\n",
211 spd.nrow_addr);
212 return 0;
213 }
214 if (spd.ncol_addr < 8 || spd.ncol_addr > 11) {
215 printf("DDR: Unsupported number of Column Addr lines: %d.\n",
216 spd.ncol_addr);
217 return 0;
218 }
219
220 /*
221 * Determine the number of physical banks controlled by
222 * different Chip Select signals. This is not quite the
223 * same as the number of DIMM modules on the board. Feh.
224 */
225 if (spd.mem_type == SPD_MEMTYPE_DDR) {
226 n_ranks = spd.nrows;
227 } else {
228 n_ranks = (spd.nrows & 0x7) + 1;
229 }
230
231 debug("DDR: number of ranks = %d\n", n_ranks);
232
233 if (n_ranks > 2) {
234 printf("DDR: Only 2 chip selects are supported: %d\n",
235 n_ranks);
236 return 0;
237 }
238
239 /*
240 * Adjust DDR II IO voltage biasing. It just makes it work.
241 */
242 if (spd.mem_type == SPD_MEMTYPE_DDR2) {
243 gur->ddrioovcr = (0
244 | 0x80000000 /* Enable */
245 | 0x10000000 /* VSEL to 1.8V */
246 );
247 }
248
249 /*
250 * Determine the size of each Rank in bytes.
251 */
252 rank_density = compute_banksize(spd.mem_type, spd.row_dens);
253
254
255 /*
256 * Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg
257 */
258 ddr->cs0_bnds = (rank_density >> 24) - 1;
259
260 /*
261 * ODT configuration recommendation from DDR Controller Chapter.
262 */
263 odt_rd_cfg = 0; /* Never assert ODT */
264 odt_wr_cfg = 0; /* Never assert ODT */
265 if (spd.mem_type == SPD_MEMTYPE_DDR2) {
266 odt_wr_cfg = 1; /* Assert ODT on writes to CS0 */
267 #if 0
268 /* FIXME: How to determine the number of dimm modules? */
269 if (n_dimm_modules == 2) {
270 odt_rd_cfg = 1; /* Assert ODT on reads to CS0 */
271 }
272 #endif
273 }
274
275 ddr->cs0_config = ( 1 << 31
276 | (odt_rd_cfg << 20)
277 | (odt_wr_cfg << 16)
278 | (spd.nrow_addr - 12) << 8
279 | (spd.ncol_addr - 8) );
280 debug("\n");
281 debug("DDR: cs0_bnds = 0x%08x\n", ddr->cs0_bnds);
282 debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config);
283
284 if (n_ranks == 2) {
285 /*
286 * Eg: Bounds: 0x0f00_0000 to 0x1e0000_0000, second 256 Meg
287 */
288 ddr->cs1_bnds = ( (rank_density >> 8)
289 | ((rank_density >> (24 - 1)) - 1) );
290 ddr->cs1_config = ( 1<<31
291 | (odt_rd_cfg << 20)
292 | (odt_wr_cfg << 16)
293 | (spd.nrow_addr - 12) << 8
294 | (spd.ncol_addr - 8) );
295 debug("DDR: cs1_bnds = 0x%08x\n", ddr->cs1_bnds);
296 debug("DDR: cs1_config = 0x%08x\n", ddr->cs1_config);
297 }
298
299
300 /*
301 * Find the largest CAS by locating the highest 1 bit
302 * in the spd.cas_lat field. Translate it to a DDR
303 * controller field value:
304 *
305 * CAS Lat DDR I DDR II Ctrl
306 * Clocks SPD Bit SPD Bit Value
307 * ------- ------- ------- -----
308 * 1.0 0 0001
309 * 1.5 1 0010
310 * 2.0 2 2 0011
311 * 2.5 3 0100
312 * 3.0 4 3 0101
313 * 3.5 5 0110
314 * 4.0 4 0111
315 * 4.5 1000
316 * 5.0 5 1001
317 */
318 caslat = __ilog2(spd.cas_lat);
319 if ((spd.mem_type == SPD_MEMTYPE_DDR)
320 && (caslat > 5)) {
321 printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat);
322 return 0;
323
324 } else if (spd.mem_type == SPD_MEMTYPE_DDR2
325 && (caslat < 2 || caslat > 5)) {
326 printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n",
327 spd.cas_lat);
328 return 0;
329 }
330 debug("DDR: caslat SPD bit is %d\n", caslat);
331
332 /*
333 * Calculate the Maximum Data Rate based on the Minimum Cycle time.
334 * The SPD clk_cycle field (tCKmin) is measured in tenths of
335 * nanoseconds and represented as BCD.
336 */
337 tCKmin_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle);
338 debug("DDR: tCKmin = %d ps\n", tCKmin_ps);
339
340 /*
341 * Double-data rate, scaled 1000 to picoseconds, and back down to MHz.
342 */
343 max_data_rate = 2 * 1000 * 1000 / tCKmin_ps;
344 debug("DDR: Module max data rate = %d Mhz\n", max_data_rate);
345
346
347 /*
348 * Adjust the CAS Latency to allow for bus speeds that
349 * are slower than the DDR module.
350 */
351 busfreq = get_bus_freq(0) / 1000000; /* MHz */
352
353 effective_data_rate = max_data_rate;
354 if (busfreq < 90) {
355 /* DDR rate out-of-range */
356 puts("DDR: platform frequency is not fit for DDR rate\n");
357 return 0;
358
359 } else if (90 <= busfreq && busfreq < 230 && max_data_rate >= 230) {
360 /*
361 * busfreq 90~230 range, treated as DDR 200.
362 */
363 effective_data_rate = 200;
364 if (spd.clk_cycle3 == 0xa0) /* 10 ns */
365 caslat -= 2;
366 else if (spd.clk_cycle2 == 0xa0)
367 caslat--;
368
369 } else if (230 <= busfreq && busfreq < 280 && max_data_rate >= 280) {
370 /*
371 * busfreq 230~280 range, treated as DDR 266.
372 */
373 effective_data_rate = 266;
374 if (spd.clk_cycle3 == 0x75) /* 7.5 ns */
375 caslat -= 2;
376 else if (spd.clk_cycle2 == 0x75)
377 caslat--;
378
379 } else if (280 <= busfreq && busfreq < 350 && max_data_rate >= 350) {
380 /*
381 * busfreq 280~350 range, treated as DDR 333.
382 */
383 effective_data_rate = 333;
384 if (spd.clk_cycle3 == 0x60) /* 6.0 ns */
385 caslat -= 2;
386 else if (spd.clk_cycle2 == 0x60)
387 caslat--;
388
389 } else if (350 <= busfreq && busfreq < 460 && max_data_rate >= 460) {
390 /*
391 * busfreq 350~460 range, treated as DDR 400.
392 */
393 effective_data_rate = 400;
394 if (spd.clk_cycle3 == 0x50) /* 5.0 ns */
395 caslat -= 2;
396 else if (spd.clk_cycle2 == 0x50)
397 caslat--;
398
399 } else if (460 <= busfreq && busfreq < 560 && max_data_rate >= 560) {
400 /*
401 * busfreq 460~560 range, treated as DDR 533.
402 */
403 effective_data_rate = 533;
404 if (spd.clk_cycle3 == 0x3D) /* 3.75 ns */
405 caslat -= 2;
406 else if (spd.clk_cycle2 == 0x3D)
407 caslat--;
408
409 } else if (560 <= busfreq && busfreq < 700 && max_data_rate >= 700) {
410 /*
411 * busfreq 560~700 range, treated as DDR 667.
412 */
413 effective_data_rate = 667;
414 if (spd.clk_cycle3 == 0x30) /* 3.0 ns */
415 caslat -= 2;
416 else if (spd.clk_cycle2 == 0x30)
417 caslat--;
418
419 } else if (700 <= busfreq) {
420 /*
421 * DDR rate out-of-range
422 */
423 printf("DDR: Bus freq %d MHz is not fit for DDR rate %d MHz\n",
424 busfreq, max_data_rate);
425 return 0;
426 }
427
428
429 /*
430 * Convert caslat clocks to DDR controller value.
431 * Force caslat_ctrl to be DDR Controller field-sized.
432 */
433 if (spd.mem_type == SPD_MEMTYPE_DDR) {
434 caslat_ctrl = (caslat + 1) & 0x07;
435 } else {
436 caslat_ctrl = (2 * caslat - 1) & 0x0f;
437 }
438
439 debug("DDR: effective data rate is %d MHz\n", effective_data_rate);
440 debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n",
441 caslat, caslat_ctrl);
442
443 /*
444 * Timing Config 0.
445 * Avoid writing for DDR I. The new PQ38 DDR controller
446 * dreams up non-zero default values to be backwards compatible.
447 */
448 if (spd.mem_type == SPD_MEMTYPE_DDR2) {
449 unsigned char taxpd_clk = 8; /* By the book. */
450 unsigned char tmrd_clk = 2; /* By the book. */
451 unsigned char act_pd_exit = 2; /* Empirical? */
452 unsigned char pre_pd_exit = 6; /* Empirical? */
453
454 ddr->timing_cfg_0 = (0
455 | ((act_pd_exit & 0x7) << 20) /* ACT_PD_EXIT */
456 | ((pre_pd_exit & 0x7) << 16) /* PRE_PD_EXIT */
457 | ((taxpd_clk & 0xf) << 8) /* ODT_PD_EXIT */
458 | ((tmrd_clk & 0xf) << 0) /* MRS_CYC */
459 );
460 #if 0
461 ddr->timing_cfg_0 |= 0xaa000000; /* extra cycles */
462 #endif
463 debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
464
465 } else {
466 #if 0
467 /*
468 * Force extra cycles with 0xaa bits.
469 * Incidentally supply the dreamt-up backwards compat value!
470 */
471 ddr->timing_cfg_0 = 0x00110105; /* backwards compat value */
472 ddr->timing_cfg_0 |= 0xaa000000; /* extra cycles */
473 debug("DDR: HACK timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
474 #endif
475 }
476
477
478 /*
479 * Some Timing Config 1 values now.
480 * Sneak Extended Refresh Recovery in here too.
481 */
482
483 /*
484 * For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD,
485 * use conservative value.
486 * For DDR II, they are bytes 36 and 37, in quarter nanos.
487 */
488
489 if (spd.mem_type == SPD_MEMTYPE_DDR) {
490 twr_clk = 3; /* Clocks */
491 twtr_clk = 1; /* Clocks */
492 } else {
493 twr_clk = picos_to_clk(spd.twr * 250);
494 twtr_clk = picos_to_clk(spd.twtr * 250);
495 }
496
497 /*
498 * Calculate Trfc, in picos.
499 * DDR I: Byte 42 straight up in ns.
500 * DDR II: Byte 40 and 42 swizzled some, in ns.
501 */
502 if (spd.mem_type == SPD_MEMTYPE_DDR) {
503 trfc = spd.trfc * 1000; /* up to ps */
504 } else {
505 unsigned int byte40_table_ps[8] = {
506 0,
507 250,
508 330,
509 500,
510 660,
511 750,
512 0,
513 0
514 };
515
516 trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000
517 + byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7];
518 }
519 trfc_clk = picos_to_clk(trfc);
520
521 /*
522 * Trcd, Byte 29, from quarter nanos to ps and clocks.
523 */
524 trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7;
525
526 /*
527 * Convert trfc_clk to DDR controller fields. DDR I should
528 * fit in the REFREC field (16-19) of TIMING_CFG_1, but the
529 * 8548 controller has an extended REFREC field of three bits.
530 * The controller automatically adds 8 clocks to this value,
531 * so preadjust it down 8 first before splitting it up.
532 */
533 trfc_low = (trfc_clk - 8) & 0xf;
534 trfc_high = ((trfc_clk - 8) >> 4) & 0x3;
535
536 /*
537 * Sneak in some Extended Refresh Recovery.
538 */
539 ddr->ext_refrec = (trfc_high << 16);
540 debug("DDR: ext_refrec = 0x%08x\n", ddr->ext_refrec);
541
542 ddr->timing_cfg_1 =
543 (0
544 | ((picos_to_clk(spd.trp * 250) & 0x07) << 28) /* PRETOACT */
545 | ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24) /* ACTTOPRE */
546 | (trcd_clk << 20) /* ACTTORW */
547 | (caslat_ctrl << 16) /* CASLAT */
548 | (trfc_low << 12) /* REFEC */
549 | ((twr_clk & 0x07) << 8) /* WRRREC */
550 | ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) /* ACTTOACT */
551 | ((twtr_clk & 0x07) << 0) /* WRTORD */
552 );
553
554 debug("DDR: timing_cfg_1 = 0x%08x\n", ddr->timing_cfg_1);
555
556
557 /*
558 * Timing_Config_2
559 * Was: 0x00000800;
560 */
561
562 /*
563 * Additive Latency
564 * For DDR I, 0.
565 * For DDR II, with ODT enabled, use "a value" less than ACTTORW,
566 * which comes from Trcd, and also note that:
567 * add_lat + caslat must be >= 4
568 */
569 add_lat = 0;
570 if (spd.mem_type == SPD_MEMTYPE_DDR2
571 && (odt_wr_cfg || odt_rd_cfg)
572 && (caslat < 4)) {
573 add_lat = 4 - caslat;
574 if (add_lat > trcd_clk) {
575 add_lat = trcd_clk - 1;
576 }
577 }
578
579 /*
580 * Write Data Delay
581 * Historically 0x2 == 4/8 clock delay.
582 * Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266.
583 */
584 wr_data_delay = 3;
585
586 /*
587 * Write Latency
588 * Read to Precharge
589 * Minimum CKE Pulse Width.
590 * Four Activate Window
591 */
592 if (spd.mem_type == SPD_MEMTYPE_DDR) {
593 /*
594 * This is a lie. It should really be 1, but if it is
595 * set to 1, bits overlap into the old controller's
596 * otherwise unused ACSM field. If we leave it 0, then
597 * the HW will magically treat it as 1 for DDR 1. Oh Yea.
598 */
599 wr_lat = 0;
600
601 trtp_clk = 2; /* By the book. */
602 cke_min_clk = 1; /* By the book. */
603 four_act = 1; /* By the book. */
604
605 } else {
606 wr_lat = caslat - 1;
607
608 /* Convert SPD value from quarter nanos to picos. */
609 trtp_clk = picos_to_clk(spd.trtp * 250);
610
611 cke_min_clk = 3; /* By the book. */
612 four_act = picos_to_clk(37500); /* By the book. 1k pages? */
613 }
614
615 /*
616 * Empirically set ~MCAS-to-preamble override for DDR 2.
617 * Your milage will vary.
618 */
619 cpo = 0;
620 if (spd.mem_type == SPD_MEMTYPE_DDR2) {
621 if (effective_data_rate == 266 || effective_data_rate == 333) {
622 cpo = 0x7; /* READ_LAT + 5/4 */
623 } else if (effective_data_rate == 400) {
624 cpo = 0x9; /* READ_LAT + 7/4 */
625 } else {
626 /* Pure speculation */
627 cpo = 0xb;
628 }
629 }
630
631 ddr->timing_cfg_2 = (0
632 | ((add_lat & 0x7) << 28) /* ADD_LAT */
633 | ((cpo & 0x1f) << 23) /* CPO */
634 | ((wr_lat & 0x7) << 19) /* WR_LAT */
635 | ((trtp_clk & 0x7) << 13) /* RD_TO_PRE */
636 | ((wr_data_delay & 0x7) << 10) /* WR_DATA_DELAY */
637 | ((cke_min_clk & 0x7) << 6) /* CKE_PLS */
638 | ((four_act & 0x1f) << 0) /* FOUR_ACT */
639 );
640
641 debug("DDR: timing_cfg_2 = 0x%08x\n", ddr->timing_cfg_2);
642
643
644 /*
645 * Determine the Mode Register Set.
646 *
647 * This is nominally part specific, but it appears to be
648 * consistent for all DDR I devices, and for all DDR II devices.
649 *
650 * caslat must be programmed
651 * burst length is always 4
652 * burst type is sequential
653 *
654 * For DDR I:
655 * operating mode is "normal"
656 *
657 * For DDR II:
658 * other stuff
659 */
660
661 mode_caslat = 0;
662
663 /*
664 * Table lookup from DDR I or II Device Operation Specs.
665 */
666 if (spd.mem_type == SPD_MEMTYPE_DDR) {
667 if (1 <= caslat && caslat <= 4) {
668 unsigned char mode_caslat_table[4] = {
669 0x5, /* 1.5 clocks */
670 0x2, /* 2.0 clocks */
671 0x6, /* 2.5 clocks */
672 0x3 /* 3.0 clocks */
673 };
674 mode_caslat = mode_caslat_table[caslat - 1];
675 } else {
676 puts("DDR I: Only CAS Latencies of 1.5, 2.0, "
677 "2.5 and 3.0 clocks are supported.\n");
678 return 0;
679 }
680
681 } else {
682 if (2 <= caslat && caslat <= 5) {
683 mode_caslat = caslat;
684 } else {
685 puts("DDR II: Only CAS Latencies of 2.0, 3.0, "
686 "4.0 and 5.0 clocks are supported.\n");
687 return 0;
688 }
689 }
690
691 /*
692 * Encoded Burst Lenght of 4.
693 */
694 burst_len = 2; /* Fiat. */
695
696 if (spd.mem_type == SPD_MEMTYPE_DDR) {
697 twr_auto_clk = 0; /* Historical */
698 } else {
699 /*
700 * Determine tCK max in picos. Grab tWR and convert to picos.
701 * Auto-precharge write recovery is:
702 * WR = roundup(tWR_ns/tCKmax_ns).
703 *
704 * Ponder: Is twr_auto_clk different than twr_clk?
705 */
706 tCKmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd.tckmax);
707 twr_auto_clk = (spd.twr * 250 + tCKmax_ps - 1) / tCKmax_ps;
708 }
709
710
711 /*
712 * Mode Reg in bits 16 ~ 31,
713 * Extended Mode Reg 1 in bits 0 ~ 15.
714 */
715 mode_odt_enable = 0x0; /* Default disabled */
716 if (odt_wr_cfg || odt_rd_cfg) {
717 /*
718 * Bits 6 and 2 in Extended MRS(1)
719 * Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules.
720 * Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module.
721 */
722 mode_odt_enable = 0x40; /* 150 Ohm */
723 }
724
725 ddr->sdram_mode =
726 (0
727 | (add_lat << (16 + 3)) /* Additive Latency in EMRS1 */
728 | (mode_odt_enable << 16) /* ODT Enable in EMRS1 */
729 | (twr_auto_clk << 9) /* Write Recovery Autopre */
730 | (mode_caslat << 4) /* caslat */
731 | (burst_len << 0) /* Burst length */
732 );
733
734 debug("DDR: sdram_mode = 0x%08x\n", ddr->sdram_mode);
735
736
737 /*
738 * Clear EMRS2 and EMRS3.
739 */
740 ddr->sdram_mode_2 = 0;
741 debug("DDR: sdram_mode_2 = 0x%08x\n", ddr->sdram_mode_2);
742
743
744 /*
745 * Determine Refresh Rate. Ignore self refresh bit on DDR I.
746 * Table from SPD Spec, Byte 12, converted to picoseconds and
747 * filled in with "default" normal values.
748 */
749 {
750 unsigned int refresh_clk;
751 unsigned int refresh_time_ns[8] = {
752 15625000, /* 0 Normal 1.00x */
753 3900000, /* 1 Reduced .25x */
754 7800000, /* 2 Extended .50x */
755 31300000, /* 3 Extended 2.00x */
756 62500000, /* 4 Extended 4.00x */
757 125000000, /* 5 Extended 8.00x */
758 15625000, /* 6 Normal 1.00x filler */
759 15625000, /* 7 Normal 1.00x filler */
760 };
761
762 refresh_clk = picos_to_clk(refresh_time_ns[spd.refresh & 0x7]);
763
764 /*
765 * Set BSTOPRE to 0x100 for page mode
766 * If auto-charge is used, set BSTOPRE = 0
767 */
768 ddr->sdram_interval =
769 (0
770 | (refresh_clk & 0x3fff) << 16
771 | 0x100
772 );
773 debug("DDR: sdram_interval = 0x%08x\n", ddr->sdram_interval);
774 }
775
776 /*
777 * Is this an ECC DDR chip?
778 * But don't mess with it if the DDR controller will init mem.
779 */
780 #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
781 if (spd.config == 0x02) {
782 ddr->err_disable = 0x0000000d;
783 ddr->err_sbe = 0x00ff0000;
784 }
785 debug("DDR: err_disable = 0x%08x\n", ddr->err_disable);
786 debug("DDR: err_sbe = 0x%08x\n", ddr->err_sbe);
787 #endif
788
789 asm("sync;isync;msync");
790 udelay(500);
791
792 /*
793 * SDRAM Cfg 2
794 */
795
796 /*
797 * When ODT is enabled, Chap 9 suggests asserting ODT to
798 * internal IOs only during reads.
799 */
800 odt_cfg = 0;
801 if (odt_rd_cfg | odt_wr_cfg) {
802 odt_cfg = 0x2; /* ODT to IOs during reads */
803 }
804
805 /*
806 * Try to use differential DQS with DDR II.
807 */
808 if (spd.mem_type == SPD_MEMTYPE_DDR) {
809 dqs_cfg = 0; /* No Differential DQS for DDR I */
810 } else {
811 dqs_cfg = 0x1; /* Differential DQS for DDR II */
812 }
813
814 #if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
815 /*
816 * Use the DDR controller to auto initialize memory.
817 */
818 d_init = 1;
819 ddr->sdram_data_init = CONFIG_MEM_INIT_VALUE;
820 debug("DDR: ddr_data_init = 0x%08x\n", ddr->sdram_data_init);
821 #else
822 /*
823 * Memory will be initialized via DMA, or not at all.
824 */
825 d_init = 0;
826 #endif
827
828 ddr->sdram_cfg_2 = (0
829 | (dqs_cfg << 26) /* Differential DQS */
830 | (odt_cfg << 21) /* ODT */
831 | (d_init << 4) /* D_INIT auto init DDR */
832 );
833
834 debug("DDR: sdram_cfg_2 = 0x%08x\n", ddr->sdram_cfg_2);
835
836
837 #ifdef MPC85xx_DDR_SDRAM_CLK_CNTL
838 {
839 unsigned char clk_adjust;
840
841 /*
842 * Setup the clock control.
843 * SDRAM_CLK_CNTL[0] = Source synchronous enable == 1
844 * SDRAM_CLK_CNTL[5-7] = Clock Adjust
845 * 0110 3/4 cycle late
846 * 0111 7/8 cycle late
847 */
848 if (spd.mem_type == SPD_MEMTYPE_DDR) {
849 clk_adjust = 0x6;
850 } else {
851 clk_adjust = 0x7;
852 }
853
854 ddr->sdram_clk_cntl = (0
855 | 0x80000000
856 | (clk_adjust << 23)
857 );
858 debug("DDR: sdram_clk_cntl = 0x%08x\n", ddr->sdram_clk_cntl);
859 }
860 #endif
861
862 /*
863 * Figure out the settings for the sdram_cfg register.
864 * Build up the entire register in 'sdram_cfg' before writing
865 * since the write into the register will actually enable the
866 * memory controller; all settings must be done before enabling.
867 *
868 * sdram_cfg[0] = 1 (ddr sdram logic enable)
869 * sdram_cfg[1] = 1 (self-refresh-enable)
870 * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM)
871 * 010 DDR 1 SDRAM
872 * 011 DDR 2 SDRAM
873 */
874 sdram_type = (spd.mem_type == SPD_MEMTYPE_DDR) ? 2 : 3;
875 sdram_cfg = (0
876 | (1 << 31) /* Enable */
877 | (1 << 30) /* Self refresh */
878 | (sdram_type << 24) /* SDRAM type */
879 );
880
881 /*
882 * sdram_cfg[3] = RD_EN - registered DIMM enable
883 * A value of 0x26 indicates micron registered DIMMS (micron.com)
884 */
885 if (spd.mem_type == SPD_MEMTYPE_DDR && spd.mod_attr == 0x26) {
886 sdram_cfg |= 0x10000000; /* RD_EN */
887 }
888
889 #if defined(CONFIG_DDR_ECC)
890 /*
891 * If the user wanted ECC (enabled via sdram_cfg[2])
892 */
893 if (spd.config == 0x02) {
894 sdram_cfg |= 0x20000000; /* ECC_EN */
895 }
896 #endif
897
898 /*
899 * REV1 uses 1T timing.
900 * REV2 may use 1T or 2T as configured by the user.
901 */
902 {
903 uint pvr = get_pvr();
904
905 if (pvr != PVR_85xx_REV1) {
906 #if defined(CONFIG_DDR_2T_TIMING)
907 /*
908 * Enable 2T timing by setting sdram_cfg[16].
909 */
910 sdram_cfg |= 0x8000; /* 2T_EN */
911 #endif
912 }
913 }
914
915 /*
916 * 200 painful micro-seconds must elapse between
917 * the DDR clock setup and the DDR config enable.
918 */
919 udelay(200);
920
921 /*
922 * Go!
923 */
924 ddr->sdram_cfg = sdram_cfg;
925
926 asm("sync;isync;msync");
927 udelay(500);
928
929 debug("DDR: sdram_cfg = 0x%08x\n", ddr->sdram_cfg);
930
931
932 #if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
933 /*
934 * Poll until memory is initialized.
935 * 512 Meg at 400 might hit this 200 times or so.
936 */
937 while ((ddr->sdram_cfg_2 & (d_init << 4)) != 0) {
938 udelay(1000);
939 }
940 #endif
941
942
943 /*
944 * Figure out memory size in Megabytes.
945 */
946 memsize = n_ranks * rank_density / 0x100000;
947
948 /*
949 * Establish Local Access Window and TLB mappings for DDR memory.
950 */
951 memsize = setup_laws_and_tlbs(memsize);
952 if (memsize == 0) {
953 return 0;
954 }
955
956 return memsize * 1024 * 1024;
957 }
958
959
960 /*
961 * Setup Local Access Window and TLB1 mappings for the requested
962 * amount of memory. Returns the amount of memory actually mapped
963 * (usually the original request size), or 0 on error.
964 */
965
966 static unsigned int
967 setup_laws_and_tlbs(unsigned int memsize)
968 {
969 volatile immap_t *immap = (immap_t *)CFG_IMMR;
970 volatile ccsr_local_ecm_t *ecm = &immap->im_local_ecm;
971 unsigned int tlb_size;
972 unsigned int law_size;
973 unsigned int ram_tlb_index;
974 unsigned int ram_tlb_address;
975
976 /*
977 * Determine size of each TLB1 entry.
978 */
979 switch (memsize) {
980 case 16:
981 case 32:
982 tlb_size = BOOKE_PAGESZ_16M;
983 break;
984 case 64:
985 case 128:
986 tlb_size = BOOKE_PAGESZ_64M;
987 break;
988 case 256:
989 case 512:
990 case 1024:
991 case 2048:
992 tlb_size = BOOKE_PAGESZ_256M;
993 break;
994 default:
995 puts("DDR: only 16M,32M,64M,128M,256M,512M,1G and 2G are supported.\n");
996
997 /*
998 * The memory was not able to be mapped.
999 */
1000 return 0;
1001 break;
1002 }
1003
1004 /*
1005 * Configure DDR TLB1 entries.
1006 * Starting at TLB1 8, use no more than 8 TLB1 entries.
1007 */
1008 ram_tlb_index = 8;
1009 ram_tlb_address = (unsigned int)CFG_DDR_SDRAM_BASE;
1010 while (ram_tlb_address < (memsize * 1024 * 1024)
1011 && ram_tlb_index < 16) {
1012 mtspr(MAS0, TLB1_MAS0(1, ram_tlb_index, 0));
1013 mtspr(MAS1, TLB1_MAS1(1, 1, 0, 0, tlb_size));
1014 mtspr(MAS2, TLB1_MAS2(E500_TLB_EPN(ram_tlb_address),
1015 0, 0, 0, 0, 0, 0, 0, 0));
1016 mtspr(MAS3, TLB1_MAS3(E500_TLB_RPN(ram_tlb_address),
1017 0, 0, 0, 0, 0, 1, 0, 1, 0, 1));
1018 asm volatile("isync;msync;tlbwe;isync");
1019
1020 debug("DDR: MAS0=0x%08x\n", TLB1_MAS0(1, ram_tlb_index, 0));
1021 debug("DDR: MAS1=0x%08x\n", TLB1_MAS1(1, 1, 0, 0, tlb_size));
1022 debug("DDR: MAS2=0x%08x\n",
1023 TLB1_MAS2(E500_TLB_EPN(ram_tlb_address),
1024 0, 0, 0, 0, 0, 0, 0, 0));
1025 debug("DDR: MAS3=0x%08x\n",
1026 TLB1_MAS3(E500_TLB_RPN(ram_tlb_address),
1027 0, 0, 0, 0, 0, 1, 0, 1, 0, 1));
1028
1029 ram_tlb_address += (0x1000 << ((tlb_size - 1) * 2));
1030 ram_tlb_index++;
1031 }
1032
1033
1034 /*
1035 * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23. Fnord.
1036 */
1037 law_size = 19 + __ilog2(memsize);
1038
1039 /*
1040 * Set up LAWBAR for all of DDR.
1041 */
1042 ecm->lawbar1 = ((CFG_DDR_SDRAM_BASE >> 12) & 0xfffff);
1043 ecm->lawar1 = (LAWAR_EN
1044 | LAWAR_TRGT_IF_DDR
1045 | (LAWAR_SIZE & law_size));
1046 debug("DDR: LAWBAR1=0x%08x\n", ecm->lawbar1);
1047 debug("DDR: LARAR1=0x%08x\n", ecm->lawar1);
1048
1049 /*
1050 * Confirm that the requested amount of memory was mapped.
1051 */
1052 return memsize;
1053 }
1054
1055 #endif /* CONFIG_SPD_EEPROM */
1056
1057
1058 #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
1059
1060 /*
1061 * Initialize all of memory for ECC, then enable errors.
1062 */
1063
1064 void
1065 ddr_enable_ecc(unsigned int dram_size)
1066 {
1067 uint *p = 0;
1068 uint i = 0;
1069 volatile immap_t *immap = (immap_t *)CFG_IMMR;
1070 volatile ccsr_ddr_t *ddr= &immap->im_ddr;
1071
1072 dma_init();
1073
1074 for (*p = 0; p < (uint *)(8 * 1024); p++) {
1075 if (((unsigned int)p & 0x1f) == 0) {
1076 ppcDcbz((unsigned long) p);
1077 }
1078 *p = (unsigned int)CONFIG_MEM_INIT_VALUE;
1079 if (((unsigned int)p & 0x1c) == 0x1c) {
1080 ppcDcbf((unsigned long) p);
1081 }
1082 }
1083
1084 /* 8K */
1085 dma_xfer((uint *)0x2000, 0x2000, (uint *)0);
1086 /* 16K */
1087 dma_xfer((uint *)0x4000, 0x4000, (uint *)0);
1088 /* 32K */
1089 dma_xfer((uint *)0x8000, 0x8000, (uint *)0);
1090 /* 64K */
1091 dma_xfer((uint *)0x10000, 0x10000, (uint *)0);
1092 /* 128k */
1093 dma_xfer((uint *)0x20000, 0x20000, (uint *)0);
1094 /* 256k */
1095 dma_xfer((uint *)0x40000, 0x40000, (uint *)0);
1096 /* 512k */
1097 dma_xfer((uint *)0x80000, 0x80000, (uint *)0);
1098 /* 1M */
1099 dma_xfer((uint *)0x100000, 0x100000, (uint *)0);
1100 /* 2M */
1101 dma_xfer((uint *)0x200000, 0x200000, (uint *)0);
1102 /* 4M */
1103 dma_xfer((uint *)0x400000, 0x400000, (uint *)0);
1104
1105 for (i = 1; i < dram_size / 0x800000; i++) {
1106 dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0);
1107 }
1108
1109 /*
1110 * Enable errors for ECC.
1111 */
1112 debug("DMA DDR: err_disable = 0x%08x\n", ddr->err_disable);
1113 ddr->err_disable = 0x00000000;
1114 asm("sync;isync;msync");
1115 debug("DMA DDR: err_disable = 0x%08x\n", ddr->err_disable);
1116 }
1117
1118 #endif /* CONFIG_DDR_ECC && ! CONFIG_ECC_INIT_VIA_DDRCONTROLLER */