]> git.ipfire.org Git - people/ms/u-boot.git/blob - disk/part_efi.c
net: designware: Make driver independent from DM_GPIO again
[people/ms/u-boot.git] / disk / part_efi.c
1 /*
2 * Copyright (C) 2008 RuggedCom, Inc.
3 * Richard Retanubun <RichardRetanubun@RuggedCom.com>
4 *
5 * SPDX-License-Identifier: GPL-2.0+
6 */
7
8 /*
9 * NOTE:
10 * when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this
11 * limits the maximum size of addressable storage to < 2 Terra Bytes
12 */
13 #include <asm/unaligned.h>
14 #include <common.h>
15 #include <command.h>
16 #include <ide.h>
17 #include <inttypes.h>
18 #include <malloc.h>
19 #include <memalign.h>
20 #include <part_efi.h>
21 #include <linux/ctype.h>
22
23 DECLARE_GLOBAL_DATA_PTR;
24
25 #ifdef HAVE_BLOCK_DEVICE
26 /**
27 * efi_crc32() - EFI version of crc32 function
28 * @buf: buffer to calculate crc32 of
29 * @len - length of buf
30 *
31 * Description: Returns EFI-style CRC32 value for @buf
32 */
33 static inline u32 efi_crc32(const void *buf, u32 len)
34 {
35 return crc32(0, buf, len);
36 }
37
38 /*
39 * Private function prototypes
40 */
41
42 static int pmbr_part_valid(struct partition *part);
43 static int is_pmbr_valid(legacy_mbr * mbr);
44 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba,
45 gpt_header *pgpt_head, gpt_entry **pgpt_pte);
46 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc,
47 gpt_header *pgpt_head);
48 static int is_pte_valid(gpt_entry * pte);
49
50 static char *print_efiname(gpt_entry *pte)
51 {
52 static char name[PARTNAME_SZ + 1];
53 int i;
54 for (i = 0; i < PARTNAME_SZ; i++) {
55 u8 c;
56 c = pte->partition_name[i] & 0xff;
57 c = (c && !isprint(c)) ? '.' : c;
58 name[i] = c;
59 }
60 name[PARTNAME_SZ] = 0;
61 return name;
62 }
63
64 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID;
65
66 static inline int is_bootable(gpt_entry *p)
67 {
68 return p->attributes.fields.legacy_bios_bootable ||
69 !memcmp(&(p->partition_type_guid), &system_guid,
70 sizeof(efi_guid_t));
71 }
72
73 static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba,
74 lbaint_t lastlba)
75 {
76 uint32_t crc32_backup = 0;
77 uint32_t calc_crc32;
78
79 /* Check the GPT header signature */
80 if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE) {
81 printf("%s signature is wrong: 0x%llX != 0x%llX\n",
82 "GUID Partition Table Header",
83 le64_to_cpu(gpt_h->signature),
84 GPT_HEADER_SIGNATURE);
85 return -1;
86 }
87
88 /* Check the GUID Partition Table CRC */
89 memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup));
90 memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32));
91
92 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
93 le32_to_cpu(gpt_h->header_size));
94
95 memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup));
96
97 if (calc_crc32 != le32_to_cpu(crc32_backup)) {
98 printf("%s CRC is wrong: 0x%x != 0x%x\n",
99 "GUID Partition Table Header",
100 le32_to_cpu(crc32_backup), calc_crc32);
101 return -1;
102 }
103
104 /*
105 * Check that the my_lba entry points to the LBA that contains the GPT
106 */
107 if (le64_to_cpu(gpt_h->my_lba) != lba) {
108 printf("GPT: my_lba incorrect: %llX != " LBAF "\n",
109 le64_to_cpu(gpt_h->my_lba),
110 lba);
111 return -1;
112 }
113
114 /*
115 * Check that the first_usable_lba and that the last_usable_lba are
116 * within the disk.
117 */
118 if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) {
119 printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n",
120 le64_to_cpu(gpt_h->first_usable_lba), lastlba);
121 return -1;
122 }
123 if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) {
124 printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n",
125 le64_to_cpu(gpt_h->last_usable_lba), lastlba);
126 return -1;
127 }
128
129 debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: "
130 LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba),
131 le64_to_cpu(gpt_h->last_usable_lba), lastlba);
132
133 return 0;
134 }
135
136 static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e)
137 {
138 uint32_t calc_crc32;
139
140 /* Check the GUID Partition Table Entry Array CRC */
141 calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
142 le32_to_cpu(gpt_h->num_partition_entries) *
143 le32_to_cpu(gpt_h->sizeof_partition_entry));
144
145 if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) {
146 printf("%s: 0x%x != 0x%x\n",
147 "GUID Partition Table Entry Array CRC is wrong",
148 le32_to_cpu(gpt_h->partition_entry_array_crc32),
149 calc_crc32);
150 return -1;
151 }
152
153 return 0;
154 }
155
156 static void prepare_backup_gpt_header(gpt_header *gpt_h)
157 {
158 uint32_t calc_crc32;
159 uint64_t val;
160
161 /* recalculate the values for the Backup GPT Header */
162 val = le64_to_cpu(gpt_h->my_lba);
163 gpt_h->my_lba = gpt_h->alternate_lba;
164 gpt_h->alternate_lba = cpu_to_le64(val);
165 gpt_h->partition_entry_lba =
166 cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1);
167 gpt_h->header_crc32 = 0;
168
169 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
170 le32_to_cpu(gpt_h->header_size));
171 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
172 }
173
174 #ifdef CONFIG_EFI_PARTITION
175 /*
176 * Public Functions (include/part.h)
177 */
178
179 void part_print_efi(struct blk_desc *dev_desc)
180 {
181 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
182 gpt_entry *gpt_pte = NULL;
183 int i = 0;
184 char uuid[37];
185 unsigned char *uuid_bin;
186
187 /* This function validates AND fills in the GPT header and PTE */
188 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
189 gpt_head, &gpt_pte) != 1) {
190 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
191 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
192 gpt_head, &gpt_pte) != 1) {
193 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
194 __func__);
195 return;
196 } else {
197 printf("%s: *** Using Backup GPT ***\n",
198 __func__);
199 }
200 }
201
202 debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
203
204 printf("Part\tStart LBA\tEnd LBA\t\tName\n");
205 printf("\tAttributes\n");
206 printf("\tType GUID\n");
207 printf("\tPartition GUID\n");
208
209 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) {
210 /* Stop at the first non valid PTE */
211 if (!is_pte_valid(&gpt_pte[i]))
212 break;
213
214 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
215 le64_to_cpu(gpt_pte[i].starting_lba),
216 le64_to_cpu(gpt_pte[i].ending_lba),
217 print_efiname(&gpt_pte[i]));
218 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
219 uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b;
220 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
221 printf("\ttype:\t%s\n", uuid);
222 #ifdef CONFIG_PARTITION_TYPE_GUID
223 if (!uuid_guid_get_str(uuid_bin, uuid))
224 printf("\ttype:\t%s\n", uuid);
225 #endif
226 uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b;
227 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
228 printf("\tguid:\t%s\n", uuid);
229 }
230
231 /* Remember to free pte */
232 free(gpt_pte);
233 return;
234 }
235
236 int part_get_info_efi(struct blk_desc *dev_desc, int part,
237 disk_partition_t *info)
238 {
239 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
240 gpt_entry *gpt_pte = NULL;
241
242 /* "part" argument must be at least 1 */
243 if (part < 1) {
244 printf("%s: Invalid Argument(s)\n", __func__);
245 return -1;
246 }
247
248 /* This function validates AND fills in the GPT header and PTE */
249 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
250 gpt_head, &gpt_pte) != 1) {
251 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
252 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
253 gpt_head, &gpt_pte) != 1) {
254 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
255 __func__);
256 return -1;
257 } else {
258 printf("%s: *** Using Backup GPT ***\n",
259 __func__);
260 }
261 }
262
263 if (part > le32_to_cpu(gpt_head->num_partition_entries) ||
264 !is_pte_valid(&gpt_pte[part - 1])) {
265 debug("%s: *** ERROR: Invalid partition number %d ***\n",
266 __func__, part);
267 free(gpt_pte);
268 return -1;
269 }
270
271 /* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */
272 info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba);
273 /* The ending LBA is inclusive, to calculate size, add 1 to it */
274 info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1
275 - info->start;
276 info->blksz = dev_desc->blksz;
277
278 sprintf((char *)info->name, "%s",
279 print_efiname(&gpt_pte[part - 1]));
280 strcpy((char *)info->type, "U-Boot");
281 info->bootable = is_bootable(&gpt_pte[part - 1]);
282 #ifdef CONFIG_PARTITION_UUIDS
283 uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid,
284 UUID_STR_FORMAT_GUID);
285 #endif
286 #ifdef CONFIG_PARTITION_TYPE_GUID
287 uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b,
288 info->type_guid, UUID_STR_FORMAT_GUID);
289 #endif
290
291 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__,
292 info->start, info->size, info->name);
293
294 /* Remember to free pte */
295 free(gpt_pte);
296 return 0;
297 }
298
299 int part_get_info_efi_by_name(struct blk_desc *dev_desc,
300 const char *name, disk_partition_t *info)
301 {
302 int ret;
303 int i;
304 for (i = 1; i < GPT_ENTRY_NUMBERS; i++) {
305 ret = part_get_info_efi(dev_desc, i, info);
306 if (ret != 0) {
307 /* no more entries in table */
308 return -1;
309 }
310 if (strcmp(name, (const char *)info->name) == 0) {
311 /* matched */
312 return 0;
313 }
314 }
315 return -2;
316 }
317
318 static int part_test_efi(struct blk_desc *dev_desc)
319 {
320 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz);
321
322 /* Read legacy MBR from block 0 and validate it */
323 if ((blk_dread(dev_desc, 0, 1, (ulong *)legacymbr) != 1)
324 || (is_pmbr_valid(legacymbr) != 1)) {
325 return -1;
326 }
327 return 0;
328 }
329
330 /**
331 * set_protective_mbr(): Set the EFI protective MBR
332 * @param dev_desc - block device descriptor
333 *
334 * @return - zero on success, otherwise error
335 */
336 static int set_protective_mbr(struct blk_desc *dev_desc)
337 {
338 /* Setup the Protective MBR */
339 ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1);
340 memset(p_mbr, 0, sizeof(*p_mbr));
341
342 if (p_mbr == NULL) {
343 printf("%s: calloc failed!\n", __func__);
344 return -1;
345 }
346 /* Append signature */
347 p_mbr->signature = MSDOS_MBR_SIGNATURE;
348 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT;
349 p_mbr->partition_record[0].start_sect = 1;
350 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1;
351
352 /* Write MBR sector to the MMC device */
353 if (blk_dwrite(dev_desc, 0, 1, p_mbr) != 1) {
354 printf("** Can't write to device %d **\n",
355 dev_desc->devnum);
356 return -1;
357 }
358
359 return 0;
360 }
361
362 int write_gpt_table(struct blk_desc *dev_desc,
363 gpt_header *gpt_h, gpt_entry *gpt_e)
364 {
365 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries
366 * sizeof(gpt_entry)), dev_desc);
367 u32 calc_crc32;
368
369 debug("max lba: %x\n", (u32) dev_desc->lba);
370 /* Setup the Protective MBR */
371 if (set_protective_mbr(dev_desc) < 0)
372 goto err;
373
374 /* Generate CRC for the Primary GPT Header */
375 calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
376 le32_to_cpu(gpt_h->num_partition_entries) *
377 le32_to_cpu(gpt_h->sizeof_partition_entry));
378 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32);
379
380 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
381 le32_to_cpu(gpt_h->header_size));
382 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
383
384 /* Write the First GPT to the block right after the Legacy MBR */
385 if (blk_dwrite(dev_desc, 1, 1, gpt_h) != 1)
386 goto err;
387
388 if (blk_dwrite(dev_desc, 2, pte_blk_cnt, gpt_e)
389 != pte_blk_cnt)
390 goto err;
391
392 prepare_backup_gpt_header(gpt_h);
393
394 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba)
395 + 1, pte_blk_cnt, gpt_e) != pte_blk_cnt)
396 goto err;
397
398 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1,
399 gpt_h) != 1)
400 goto err;
401
402 debug("GPT successfully written to block device!\n");
403 return 0;
404
405 err:
406 printf("** Can't write to device %d **\n", dev_desc->devnum);
407 return -1;
408 }
409
410 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e,
411 disk_partition_t *partitions, int parts)
412 {
413 lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba);
414 lbaint_t start;
415 lbaint_t last_usable_lba = (lbaint_t)
416 le64_to_cpu(gpt_h->last_usable_lba);
417 int i, k;
418 size_t efiname_len, dosname_len;
419 #ifdef CONFIG_PARTITION_UUIDS
420 char *str_uuid;
421 unsigned char *bin_uuid;
422 #endif
423 #ifdef CONFIG_PARTITION_TYPE_GUID
424 char *str_type_guid;
425 unsigned char *bin_type_guid;
426 #endif
427
428 for (i = 0; i < parts; i++) {
429 /* partition starting lba */
430 start = partitions[i].start;
431 if (start && (start < offset)) {
432 printf("Partition overlap\n");
433 return -1;
434 }
435 if (start) {
436 gpt_e[i].starting_lba = cpu_to_le64(start);
437 offset = start + partitions[i].size;
438 } else {
439 gpt_e[i].starting_lba = cpu_to_le64(offset);
440 offset += partitions[i].size;
441 }
442 if (offset > (last_usable_lba + 1)) {
443 printf("Partitions layout exceds disk size\n");
444 return -1;
445 }
446 /* partition ending lba */
447 if ((i == parts - 1) && (partitions[i].size == 0))
448 /* extend the last partition to maximuim */
449 gpt_e[i].ending_lba = gpt_h->last_usable_lba;
450 else
451 gpt_e[i].ending_lba = cpu_to_le64(offset - 1);
452
453 #ifdef CONFIG_PARTITION_TYPE_GUID
454 str_type_guid = partitions[i].type_guid;
455 bin_type_guid = gpt_e[i].partition_type_guid.b;
456 if (strlen(str_type_guid)) {
457 if (uuid_str_to_bin(str_type_guid, bin_type_guid,
458 UUID_STR_FORMAT_GUID)) {
459 printf("Partition no. %d: invalid type guid: %s\n",
460 i, str_type_guid);
461 return -1;
462 }
463 } else {
464 /* default partition type GUID */
465 memcpy(bin_type_guid,
466 &PARTITION_BASIC_DATA_GUID, 16);
467 }
468 #else
469 /* partition type GUID */
470 memcpy(gpt_e[i].partition_type_guid.b,
471 &PARTITION_BASIC_DATA_GUID, 16);
472 #endif
473
474 #ifdef CONFIG_PARTITION_UUIDS
475 str_uuid = partitions[i].uuid;
476 bin_uuid = gpt_e[i].unique_partition_guid.b;
477
478 if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_STD)) {
479 printf("Partition no. %d: invalid guid: %s\n",
480 i, str_uuid);
481 return -1;
482 }
483 #endif
484
485 /* partition attributes */
486 memset(&gpt_e[i].attributes, 0,
487 sizeof(gpt_entry_attributes));
488
489 if (partitions[i].bootable)
490 gpt_e[i].attributes.fields.legacy_bios_bootable = 1;
491
492 /* partition name */
493 efiname_len = sizeof(gpt_e[i].partition_name)
494 / sizeof(efi_char16_t);
495 dosname_len = sizeof(partitions[i].name);
496
497 memset(gpt_e[i].partition_name, 0,
498 sizeof(gpt_e[i].partition_name));
499
500 for (k = 0; k < min(dosname_len, efiname_len); k++)
501 gpt_e[i].partition_name[k] =
502 (efi_char16_t)(partitions[i].name[k]);
503
504 debug("%s: name: %s offset[%d]: 0x" LBAF
505 " size[%d]: 0x" LBAF "\n",
506 __func__, partitions[i].name, i,
507 offset, i, partitions[i].size);
508 }
509
510 return 0;
511 }
512
513 int gpt_fill_header(struct blk_desc *dev_desc, gpt_header *gpt_h,
514 char *str_guid, int parts_count)
515 {
516 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE);
517 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1);
518 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header));
519 gpt_h->my_lba = cpu_to_le64(1);
520 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1);
521 gpt_h->first_usable_lba = cpu_to_le64(34);
522 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34);
523 gpt_h->partition_entry_lba = cpu_to_le64(2);
524 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS);
525 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry));
526 gpt_h->header_crc32 = 0;
527 gpt_h->partition_entry_array_crc32 = 0;
528
529 if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID))
530 return -1;
531
532 return 0;
533 }
534
535 int gpt_restore(struct blk_desc *dev_desc, char *str_disk_guid,
536 disk_partition_t *partitions, int parts_count)
537 {
538 int ret;
539
540 gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header),
541 dev_desc));
542 gpt_entry *gpt_e;
543
544 if (gpt_h == NULL) {
545 printf("%s: calloc failed!\n", __func__);
546 return -1;
547 }
548
549 gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS
550 * sizeof(gpt_entry),
551 dev_desc));
552 if (gpt_e == NULL) {
553 printf("%s: calloc failed!\n", __func__);
554 free(gpt_h);
555 return -1;
556 }
557
558 /* Generate Primary GPT header (LBA1) */
559 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count);
560 if (ret)
561 goto err;
562
563 /* Generate partition entries */
564 ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count);
565 if (ret)
566 goto err;
567
568 /* Write GPT partition table */
569 ret = write_gpt_table(dev_desc, gpt_h, gpt_e);
570
571 err:
572 free(gpt_e);
573 free(gpt_h);
574 return ret;
575 }
576
577 static void gpt_convert_efi_name_to_char(char *s, efi_char16_t *es, int n)
578 {
579 char *ess = (char *)es;
580 int i, j;
581
582 memset(s, '\0', n);
583
584 for (i = 0, j = 0; j < n; i += 2, j++) {
585 s[j] = ess[i];
586 if (!ess[i])
587 return;
588 }
589 }
590
591 int gpt_verify_headers(struct blk_desc *dev_desc, gpt_header *gpt_head,
592 gpt_entry **gpt_pte)
593 {
594 /*
595 * This function validates AND
596 * fills in the GPT header and PTE
597 */
598 if (is_gpt_valid(dev_desc,
599 GPT_PRIMARY_PARTITION_TABLE_LBA,
600 gpt_head, gpt_pte) != 1) {
601 printf("%s: *** ERROR: Invalid GPT ***\n",
602 __func__);
603 return -1;
604 }
605 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
606 gpt_head, gpt_pte) != 1) {
607 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
608 __func__);
609 return -1;
610 }
611
612 return 0;
613 }
614
615 int gpt_verify_partitions(struct blk_desc *dev_desc,
616 disk_partition_t *partitions, int parts,
617 gpt_header *gpt_head, gpt_entry **gpt_pte)
618 {
619 char efi_str[PARTNAME_SZ + 1];
620 u64 gpt_part_size;
621 gpt_entry *gpt_e;
622 int ret, i;
623
624 ret = gpt_verify_headers(dev_desc, gpt_head, gpt_pte);
625 if (ret)
626 return ret;
627
628 gpt_e = *gpt_pte;
629
630 for (i = 0; i < parts; i++) {
631 if (i == gpt_head->num_partition_entries) {
632 error("More partitions than allowed!\n");
633 return -1;
634 }
635
636 /* Check if GPT and ENV partition names match */
637 gpt_convert_efi_name_to_char(efi_str, gpt_e[i].partition_name,
638 PARTNAME_SZ + 1);
639
640 debug("%s: part: %2d name - GPT: %16s, ENV: %16s ",
641 __func__, i, efi_str, partitions[i].name);
642
643 if (strncmp(efi_str, (char *)partitions[i].name,
644 sizeof(partitions->name))) {
645 error("Partition name: %s does not match %s!\n",
646 efi_str, (char *)partitions[i].name);
647 return -1;
648 }
649
650 /* Check if GPT and ENV sizes match */
651 gpt_part_size = le64_to_cpu(gpt_e[i].ending_lba) -
652 le64_to_cpu(gpt_e[i].starting_lba) + 1;
653 debug("size(LBA) - GPT: %8llu, ENV: %8llu ",
654 (unsigned long long)gpt_part_size,
655 (unsigned long long)partitions[i].size);
656
657 if (le64_to_cpu(gpt_part_size) != partitions[i].size) {
658 error("Partition %s size: %llu does not match %llu!\n",
659 efi_str, (unsigned long long)gpt_part_size,
660 (unsigned long long)partitions[i].size);
661 return -1;
662 }
663
664 /*
665 * Start address is optional - check only if provided
666 * in '$partition' variable
667 */
668 if (!partitions[i].start) {
669 debug("\n");
670 continue;
671 }
672
673 /* Check if GPT and ENV start LBAs match */
674 debug("start LBA - GPT: %8llu, ENV: %8llu\n",
675 le64_to_cpu(gpt_e[i].starting_lba),
676 (unsigned long long)partitions[i].start);
677
678 if (le64_to_cpu(gpt_e[i].starting_lba) != partitions[i].start) {
679 error("Partition %s start: %llu does not match %llu!\n",
680 efi_str, le64_to_cpu(gpt_e[i].starting_lba),
681 (unsigned long long)partitions[i].start);
682 return -1;
683 }
684 }
685
686 return 0;
687 }
688
689 int is_valid_gpt_buf(struct blk_desc *dev_desc, void *buf)
690 {
691 gpt_header *gpt_h;
692 gpt_entry *gpt_e;
693
694 /* determine start of GPT Header in the buffer */
695 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
696 dev_desc->blksz);
697 if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA,
698 dev_desc->lba))
699 return -1;
700
701 /* determine start of GPT Entries in the buffer */
702 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
703 dev_desc->blksz);
704 if (validate_gpt_entries(gpt_h, gpt_e))
705 return -1;
706
707 return 0;
708 }
709
710 int write_mbr_and_gpt_partitions(struct blk_desc *dev_desc, void *buf)
711 {
712 gpt_header *gpt_h;
713 gpt_entry *gpt_e;
714 int gpt_e_blk_cnt;
715 lbaint_t lba;
716 int cnt;
717
718 if (is_valid_gpt_buf(dev_desc, buf))
719 return -1;
720
721 /* determine start of GPT Header in the buffer */
722 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
723 dev_desc->blksz);
724
725 /* determine start of GPT Entries in the buffer */
726 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
727 dev_desc->blksz);
728 gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) *
729 le32_to_cpu(gpt_h->sizeof_partition_entry)),
730 dev_desc);
731
732 /* write MBR */
733 lba = 0; /* MBR is always at 0 */
734 cnt = 1; /* MBR (1 block) */
735 if (blk_dwrite(dev_desc, lba, cnt, buf) != cnt) {
736 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
737 __func__, "MBR", cnt, lba);
738 return 1;
739 }
740
741 /* write Primary GPT */
742 lba = GPT_PRIMARY_PARTITION_TABLE_LBA;
743 cnt = 1; /* GPT Header (1 block) */
744 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) {
745 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
746 __func__, "Primary GPT Header", cnt, lba);
747 return 1;
748 }
749
750 lba = le64_to_cpu(gpt_h->partition_entry_lba);
751 cnt = gpt_e_blk_cnt;
752 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) {
753 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
754 __func__, "Primary GPT Entries", cnt, lba);
755 return 1;
756 }
757
758 prepare_backup_gpt_header(gpt_h);
759
760 /* write Backup GPT */
761 lba = le64_to_cpu(gpt_h->partition_entry_lba);
762 cnt = gpt_e_blk_cnt;
763 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) {
764 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
765 __func__, "Backup GPT Entries", cnt, lba);
766 return 1;
767 }
768
769 lba = le64_to_cpu(gpt_h->my_lba);
770 cnt = 1; /* GPT Header (1 block) */
771 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) {
772 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
773 __func__, "Backup GPT Header", cnt, lba);
774 return 1;
775 }
776
777 return 0;
778 }
779 #endif
780
781 /*
782 * Private functions
783 */
784 /*
785 * pmbr_part_valid(): Check for EFI partition signature
786 *
787 * Returns: 1 if EFI GPT partition type is found.
788 */
789 static int pmbr_part_valid(struct partition *part)
790 {
791 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
792 get_unaligned_le32(&part->start_sect) == 1UL) {
793 return 1;
794 }
795
796 return 0;
797 }
798
799 /*
800 * is_pmbr_valid(): test Protective MBR for validity
801 *
802 * Returns: 1 if PMBR is valid, 0 otherwise.
803 * Validity depends on two things:
804 * 1) MSDOS signature is in the last two bytes of the MBR
805 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid()
806 */
807 static int is_pmbr_valid(legacy_mbr * mbr)
808 {
809 int i = 0;
810
811 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
812 return 0;
813
814 for (i = 0; i < 4; i++) {
815 if (pmbr_part_valid(&mbr->partition_record[i])) {
816 return 1;
817 }
818 }
819 return 0;
820 }
821
822 /**
823 * is_gpt_valid() - tests one GPT header and PTEs for validity
824 *
825 * lba is the logical block address of the GPT header to test
826 * gpt is a GPT header ptr, filled on return.
827 * ptes is a PTEs ptr, filled on return.
828 *
829 * Description: returns 1 if valid, 0 on error.
830 * If valid, returns pointers to PTEs.
831 */
832 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba,
833 gpt_header *pgpt_head, gpt_entry **pgpt_pte)
834 {
835 if (!dev_desc || !pgpt_head) {
836 printf("%s: Invalid Argument(s)\n", __func__);
837 return 0;
838 }
839
840 /* Read GPT Header from device */
841 if (blk_dread(dev_desc, (lbaint_t)lba, 1, pgpt_head) != 1) {
842 printf("*** ERROR: Can't read GPT header ***\n");
843 return 0;
844 }
845
846 if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba))
847 return 0;
848
849 /* Read and allocate Partition Table Entries */
850 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head);
851 if (*pgpt_pte == NULL) {
852 printf("GPT: Failed to allocate memory for PTE\n");
853 return 0;
854 }
855
856 if (validate_gpt_entries(pgpt_head, *pgpt_pte)) {
857 free(*pgpt_pte);
858 return 0;
859 }
860
861 /* We're done, all's well */
862 return 1;
863 }
864
865 /**
866 * alloc_read_gpt_entries(): reads partition entries from disk
867 * @dev_desc
868 * @gpt - GPT header
869 *
870 * Description: Returns ptes on success, NULL on error.
871 * Allocates space for PTEs based on information found in @gpt.
872 * Notes: remember to free pte when you're done!
873 */
874 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc,
875 gpt_header *pgpt_head)
876 {
877 size_t count = 0, blk_cnt;
878 lbaint_t blk;
879 gpt_entry *pte = NULL;
880
881 if (!dev_desc || !pgpt_head) {
882 printf("%s: Invalid Argument(s)\n", __func__);
883 return NULL;
884 }
885
886 count = le32_to_cpu(pgpt_head->num_partition_entries) *
887 le32_to_cpu(pgpt_head->sizeof_partition_entry);
888
889 debug("%s: count = %u * %u = %zu\n", __func__,
890 (u32) le32_to_cpu(pgpt_head->num_partition_entries),
891 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count);
892
893 /* Allocate memory for PTE, remember to FREE */
894 if (count != 0) {
895 pte = memalign(ARCH_DMA_MINALIGN,
896 PAD_TO_BLOCKSIZE(count, dev_desc));
897 }
898
899 if (count == 0 || pte == NULL) {
900 printf("%s: ERROR: Can't allocate 0x%zX "
901 "bytes for GPT Entries\n",
902 __func__, count);
903 return NULL;
904 }
905
906 /* Read GPT Entries from device */
907 blk = le64_to_cpu(pgpt_head->partition_entry_lba);
908 blk_cnt = BLOCK_CNT(count, dev_desc);
909 if (blk_dread(dev_desc, blk, (lbaint_t)blk_cnt, pte) != blk_cnt) {
910 printf("*** ERROR: Can't read GPT Entries ***\n");
911 free(pte);
912 return NULL;
913 }
914 return pte;
915 }
916
917 /**
918 * is_pte_valid(): validates a single Partition Table Entry
919 * @gpt_entry - Pointer to a single Partition Table Entry
920 *
921 * Description: returns 1 if valid, 0 on error.
922 */
923 static int is_pte_valid(gpt_entry * pte)
924 {
925 efi_guid_t unused_guid;
926
927 if (!pte) {
928 printf("%s: Invalid Argument(s)\n", __func__);
929 return 0;
930 }
931
932 /* Only one validation for now:
933 * The GUID Partition Type != Unused Entry (ALL-ZERO)
934 */
935 memset(unused_guid.b, 0, sizeof(unused_guid.b));
936
937 if (memcmp(pte->partition_type_guid.b, unused_guid.b,
938 sizeof(unused_guid.b)) == 0) {
939
940 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__,
941 (unsigned int)(uintptr_t)pte);
942
943 return 0;
944 } else {
945 return 1;
946 }
947 }
948
949 /*
950 * Add an 'a_' prefix so it comes before 'dos' in the linker list. We need to
951 * check EFI first, since a DOS partition is often used as a 'protective MBR'
952 * with EFI.
953 */
954 U_BOOT_PART_TYPE(a_efi) = {
955 .name = "EFI",
956 .part_type = PART_TYPE_EFI,
957 .get_info = part_get_info_ptr(part_get_info_efi),
958 .print = part_print_ptr(part_print_efi),
959 .test = part_test_efi,
960 };
961 #endif