]> git.ipfire.org Git - people/ms/u-boot.git/blob - disk/part_efi.c
gpt: Fix the protective MBR partition size
[people/ms/u-boot.git] / disk / part_efi.c
1 /*
2 * Copyright (C) 2008 RuggedCom, Inc.
3 * Richard Retanubun <RichardRetanubun@RuggedCom.com>
4 *
5 * SPDX-License-Identifier: GPL-2.0+
6 */
7
8 /*
9 * NOTE:
10 * when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this
11 * limits the maximum size of addressable storage to < 2 Terra Bytes
12 */
13 #include <asm/unaligned.h>
14 #include <common.h>
15 #include <command.h>
16 #include <ide.h>
17 #include <inttypes.h>
18 #include <malloc.h>
19 #include <part_efi.h>
20 #include <linux/ctype.h>
21
22 DECLARE_GLOBAL_DATA_PTR;
23
24 #ifdef HAVE_BLOCK_DEVICE
25 /**
26 * efi_crc32() - EFI version of crc32 function
27 * @buf: buffer to calculate crc32 of
28 * @len - length of buf
29 *
30 * Description: Returns EFI-style CRC32 value for @buf
31 */
32 static inline u32 efi_crc32(const void *buf, u32 len)
33 {
34 return crc32(0, buf, len);
35 }
36
37 /*
38 * Private function prototypes
39 */
40
41 static int pmbr_part_valid(struct partition *part);
42 static int is_pmbr_valid(legacy_mbr * mbr);
43 static int is_gpt_valid(block_dev_desc_t *dev_desc, u64 lba,
44 gpt_header *pgpt_head, gpt_entry **pgpt_pte);
45 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
46 gpt_header * pgpt_head);
47 static int is_pte_valid(gpt_entry * pte);
48
49 static char *print_efiname(gpt_entry *pte)
50 {
51 static char name[PARTNAME_SZ + 1];
52 int i;
53 for (i = 0; i < PARTNAME_SZ; i++) {
54 u8 c;
55 c = pte->partition_name[i] & 0xff;
56 c = (c && !isprint(c)) ? '.' : c;
57 name[i] = c;
58 }
59 name[PARTNAME_SZ] = 0;
60 return name;
61 }
62
63 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID;
64
65 static inline int is_bootable(gpt_entry *p)
66 {
67 return p->attributes.fields.legacy_bios_bootable ||
68 !memcmp(&(p->partition_type_guid), &system_guid,
69 sizeof(efi_guid_t));
70 }
71
72 static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba,
73 lbaint_t lastlba)
74 {
75 uint32_t crc32_backup = 0;
76 uint32_t calc_crc32;
77
78 /* Check the GPT header signature */
79 if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE) {
80 printf("%s signature is wrong: 0x%llX != 0x%llX\n",
81 "GUID Partition Table Header",
82 le64_to_cpu(gpt_h->signature),
83 GPT_HEADER_SIGNATURE);
84 return -1;
85 }
86
87 /* Check the GUID Partition Table CRC */
88 memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup));
89 memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32));
90
91 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
92 le32_to_cpu(gpt_h->header_size));
93
94 memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup));
95
96 if (calc_crc32 != le32_to_cpu(crc32_backup)) {
97 printf("%s CRC is wrong: 0x%x != 0x%x\n",
98 "GUID Partition Table Header",
99 le32_to_cpu(crc32_backup), calc_crc32);
100 return -1;
101 }
102
103 /*
104 * Check that the my_lba entry points to the LBA that contains the GPT
105 */
106 if (le64_to_cpu(gpt_h->my_lba) != lba) {
107 printf("GPT: my_lba incorrect: %llX != " LBAF "\n",
108 le64_to_cpu(gpt_h->my_lba),
109 lba);
110 return -1;
111 }
112
113 /*
114 * Check that the first_usable_lba and that the last_usable_lba are
115 * within the disk.
116 */
117 if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) {
118 printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n",
119 le64_to_cpu(gpt_h->first_usable_lba), lastlba);
120 return -1;
121 }
122 if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) {
123 printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n",
124 le64_to_cpu(gpt_h->last_usable_lba), lastlba);
125 return -1;
126 }
127
128 debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: "
129 LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba),
130 le64_to_cpu(gpt_h->last_usable_lba), lastlba);
131
132 return 0;
133 }
134
135 static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e)
136 {
137 uint32_t calc_crc32;
138
139 /* Check the GUID Partition Table Entry Array CRC */
140 calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
141 le32_to_cpu(gpt_h->num_partition_entries) *
142 le32_to_cpu(gpt_h->sizeof_partition_entry));
143
144 if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) {
145 printf("%s: 0x%x != 0x%x\n",
146 "GUID Partition Table Entry Array CRC is wrong",
147 le32_to_cpu(gpt_h->partition_entry_array_crc32),
148 calc_crc32);
149 return -1;
150 }
151
152 return 0;
153 }
154
155 static void prepare_backup_gpt_header(gpt_header *gpt_h)
156 {
157 uint32_t calc_crc32;
158 uint64_t val;
159
160 /* recalculate the values for the Backup GPT Header */
161 val = le64_to_cpu(gpt_h->my_lba);
162 gpt_h->my_lba = gpt_h->alternate_lba;
163 gpt_h->alternate_lba = cpu_to_le64(val);
164 gpt_h->partition_entry_lba =
165 cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1);
166 gpt_h->header_crc32 = 0;
167
168 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
169 le32_to_cpu(gpt_h->header_size));
170 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
171 }
172
173 #ifdef CONFIG_EFI_PARTITION
174 /*
175 * Public Functions (include/part.h)
176 */
177
178 void print_part_efi(block_dev_desc_t * dev_desc)
179 {
180 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
181 gpt_entry *gpt_pte = NULL;
182 int i = 0;
183 char uuid[37];
184 unsigned char *uuid_bin;
185
186 if (!dev_desc) {
187 printf("%s: Invalid Argument(s)\n", __func__);
188 return;
189 }
190 /* This function validates AND fills in the GPT header and PTE */
191 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
192 gpt_head, &gpt_pte) != 1) {
193 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
194 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
195 gpt_head, &gpt_pte) != 1) {
196 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
197 __func__);
198 return;
199 } else {
200 printf("%s: *** Using Backup GPT ***\n",
201 __func__);
202 }
203 }
204
205 debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
206
207 printf("Part\tStart LBA\tEnd LBA\t\tName\n");
208 printf("\tAttributes\n");
209 printf("\tType GUID\n");
210 printf("\tPartition GUID\n");
211
212 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) {
213 /* Stop at the first non valid PTE */
214 if (!is_pte_valid(&gpt_pte[i]))
215 break;
216
217 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
218 le64_to_cpu(gpt_pte[i].starting_lba),
219 le64_to_cpu(gpt_pte[i].ending_lba),
220 print_efiname(&gpt_pte[i]));
221 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
222 uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b;
223 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
224 printf("\ttype:\t%s\n", uuid);
225 uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b;
226 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
227 printf("\tguid:\t%s\n", uuid);
228 }
229
230 /* Remember to free pte */
231 free(gpt_pte);
232 return;
233 }
234
235 int get_partition_info_efi(block_dev_desc_t * dev_desc, int part,
236 disk_partition_t * info)
237 {
238 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
239 gpt_entry *gpt_pte = NULL;
240
241 /* "part" argument must be at least 1 */
242 if (!dev_desc || !info || part < 1) {
243 printf("%s: Invalid Argument(s)\n", __func__);
244 return -1;
245 }
246
247 /* This function validates AND fills in the GPT header and PTE */
248 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
249 gpt_head, &gpt_pte) != 1) {
250 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
251 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
252 gpt_head, &gpt_pte) != 1) {
253 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
254 __func__);
255 return -1;
256 } else {
257 printf("%s: *** Using Backup GPT ***\n",
258 __func__);
259 }
260 }
261
262 if (part > le32_to_cpu(gpt_head->num_partition_entries) ||
263 !is_pte_valid(&gpt_pte[part - 1])) {
264 debug("%s: *** ERROR: Invalid partition number %d ***\n",
265 __func__, part);
266 free(gpt_pte);
267 return -1;
268 }
269
270 /* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */
271 info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba);
272 /* The ending LBA is inclusive, to calculate size, add 1 to it */
273 info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1
274 - info->start;
275 info->blksz = dev_desc->blksz;
276
277 sprintf((char *)info->name, "%s",
278 print_efiname(&gpt_pte[part - 1]));
279 sprintf((char *)info->type, "U-Boot");
280 info->bootable = is_bootable(&gpt_pte[part - 1]);
281 #ifdef CONFIG_PARTITION_UUIDS
282 uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid,
283 UUID_STR_FORMAT_GUID);
284 #endif
285
286 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__,
287 info->start, info->size, info->name);
288
289 /* Remember to free pte */
290 free(gpt_pte);
291 return 0;
292 }
293
294 int get_partition_info_efi_by_name(block_dev_desc_t *dev_desc,
295 const char *name, disk_partition_t *info)
296 {
297 int ret;
298 int i;
299 for (i = 1; i < GPT_ENTRY_NUMBERS; i++) {
300 ret = get_partition_info_efi(dev_desc, i, info);
301 if (ret != 0) {
302 /* no more entries in table */
303 return -1;
304 }
305 if (strcmp(name, (const char *)info->name) == 0) {
306 /* matched */
307 return 0;
308 }
309 }
310 return -2;
311 }
312
313 int test_part_efi(block_dev_desc_t * dev_desc)
314 {
315 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz);
316
317 /* Read legacy MBR from block 0 and validate it */
318 if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1)
319 || (is_pmbr_valid(legacymbr) != 1)) {
320 return -1;
321 }
322 return 0;
323 }
324
325 /**
326 * set_protective_mbr(): Set the EFI protective MBR
327 * @param dev_desc - block device descriptor
328 *
329 * @return - zero on success, otherwise error
330 */
331 static int set_protective_mbr(block_dev_desc_t *dev_desc)
332 {
333 /* Setup the Protective MBR */
334 ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1);
335 memset(p_mbr, 0, sizeof(*p_mbr));
336
337 if (p_mbr == NULL) {
338 printf("%s: calloc failed!\n", __func__);
339 return -1;
340 }
341 /* Append signature */
342 p_mbr->signature = MSDOS_MBR_SIGNATURE;
343 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT;
344 p_mbr->partition_record[0].start_sect = 1;
345 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1;
346
347 /* Write MBR sector to the MMC device */
348 if (dev_desc->block_write(dev_desc->dev, 0, 1, p_mbr) != 1) {
349 printf("** Can't write to device %d **\n",
350 dev_desc->dev);
351 return -1;
352 }
353
354 return 0;
355 }
356
357 int write_gpt_table(block_dev_desc_t *dev_desc,
358 gpt_header *gpt_h, gpt_entry *gpt_e)
359 {
360 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries
361 * sizeof(gpt_entry)), dev_desc);
362 u32 calc_crc32;
363
364 debug("max lba: %x\n", (u32) dev_desc->lba);
365 /* Setup the Protective MBR */
366 if (set_protective_mbr(dev_desc) < 0)
367 goto err;
368
369 /* Generate CRC for the Primary GPT Header */
370 calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
371 le32_to_cpu(gpt_h->num_partition_entries) *
372 le32_to_cpu(gpt_h->sizeof_partition_entry));
373 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32);
374
375 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
376 le32_to_cpu(gpt_h->header_size));
377 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
378
379 /* Write the First GPT to the block right after the Legacy MBR */
380 if (dev_desc->block_write(dev_desc->dev, 1, 1, gpt_h) != 1)
381 goto err;
382
383 if (dev_desc->block_write(dev_desc->dev, 2, pte_blk_cnt, gpt_e)
384 != pte_blk_cnt)
385 goto err;
386
387 prepare_backup_gpt_header(gpt_h);
388
389 if (dev_desc->block_write(dev_desc->dev,
390 (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba)
391 + 1,
392 pte_blk_cnt, gpt_e) != pte_blk_cnt)
393 goto err;
394
395 if (dev_desc->block_write(dev_desc->dev,
396 (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1,
397 gpt_h) != 1)
398 goto err;
399
400 debug("GPT successfully written to block device!\n");
401 return 0;
402
403 err:
404 printf("** Can't write to device %d **\n", dev_desc->dev);
405 return -1;
406 }
407
408 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e,
409 disk_partition_t *partitions, int parts)
410 {
411 lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba);
412 lbaint_t start;
413 lbaint_t last_usable_lba = (lbaint_t)
414 le64_to_cpu(gpt_h->last_usable_lba);
415 int i, k;
416 size_t efiname_len, dosname_len;
417 #ifdef CONFIG_PARTITION_UUIDS
418 char *str_uuid;
419 unsigned char *bin_uuid;
420 #endif
421
422 for (i = 0; i < parts; i++) {
423 /* partition starting lba */
424 start = partitions[i].start;
425 if (start && (start < offset)) {
426 printf("Partition overlap\n");
427 return -1;
428 }
429 if (start) {
430 gpt_e[i].starting_lba = cpu_to_le64(start);
431 offset = start + partitions[i].size;
432 } else {
433 gpt_e[i].starting_lba = cpu_to_le64(offset);
434 offset += partitions[i].size;
435 }
436 if (offset >= last_usable_lba) {
437 printf("Partitions layout exceds disk size\n");
438 return -1;
439 }
440 /* partition ending lba */
441 if ((i == parts - 1) && (partitions[i].size == 0))
442 /* extend the last partition to maximuim */
443 gpt_e[i].ending_lba = gpt_h->last_usable_lba;
444 else
445 gpt_e[i].ending_lba = cpu_to_le64(offset - 1);
446
447 /* partition type GUID */
448 memcpy(gpt_e[i].partition_type_guid.b,
449 &PARTITION_BASIC_DATA_GUID, 16);
450
451 #ifdef CONFIG_PARTITION_UUIDS
452 str_uuid = partitions[i].uuid;
453 bin_uuid = gpt_e[i].unique_partition_guid.b;
454
455 if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_STD)) {
456 printf("Partition no. %d: invalid guid: %s\n",
457 i, str_uuid);
458 return -1;
459 }
460 #endif
461
462 /* partition attributes */
463 memset(&gpt_e[i].attributes, 0,
464 sizeof(gpt_entry_attributes));
465
466 /* partition name */
467 efiname_len = sizeof(gpt_e[i].partition_name)
468 / sizeof(efi_char16_t);
469 dosname_len = sizeof(partitions[i].name);
470
471 memset(gpt_e[i].partition_name, 0,
472 sizeof(gpt_e[i].partition_name));
473
474 for (k = 0; k < min(dosname_len, efiname_len); k++)
475 gpt_e[i].partition_name[k] =
476 (efi_char16_t)(partitions[i].name[k]);
477
478 debug("%s: name: %s offset[%d]: 0x" LBAF
479 " size[%d]: 0x" LBAF "\n",
480 __func__, partitions[i].name, i,
481 offset, i, partitions[i].size);
482 }
483
484 return 0;
485 }
486
487 int gpt_fill_header(block_dev_desc_t *dev_desc, gpt_header *gpt_h,
488 char *str_guid, int parts_count)
489 {
490 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE);
491 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1);
492 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header));
493 gpt_h->my_lba = cpu_to_le64(1);
494 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1);
495 gpt_h->first_usable_lba = cpu_to_le64(34);
496 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34);
497 gpt_h->partition_entry_lba = cpu_to_le64(2);
498 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS);
499 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry));
500 gpt_h->header_crc32 = 0;
501 gpt_h->partition_entry_array_crc32 = 0;
502
503 if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID))
504 return -1;
505
506 return 0;
507 }
508
509 int gpt_restore(block_dev_desc_t *dev_desc, char *str_disk_guid,
510 disk_partition_t *partitions, int parts_count)
511 {
512 int ret;
513
514 gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header),
515 dev_desc));
516 gpt_entry *gpt_e;
517
518 if (gpt_h == NULL) {
519 printf("%s: calloc failed!\n", __func__);
520 return -1;
521 }
522
523 gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS
524 * sizeof(gpt_entry),
525 dev_desc));
526 if (gpt_e == NULL) {
527 printf("%s: calloc failed!\n", __func__);
528 free(gpt_h);
529 return -1;
530 }
531
532 /* Generate Primary GPT header (LBA1) */
533 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count);
534 if (ret)
535 goto err;
536
537 /* Generate partition entries */
538 ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count);
539 if (ret)
540 goto err;
541
542 /* Write GPT partition table */
543 ret = write_gpt_table(dev_desc, gpt_h, gpt_e);
544
545 err:
546 free(gpt_e);
547 free(gpt_h);
548 return ret;
549 }
550
551 int is_valid_gpt_buf(block_dev_desc_t *dev_desc, void *buf)
552 {
553 gpt_header *gpt_h;
554 gpt_entry *gpt_e;
555
556 /* determine start of GPT Header in the buffer */
557 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
558 dev_desc->blksz);
559 if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA,
560 dev_desc->lba))
561 return -1;
562
563 /* determine start of GPT Entries in the buffer */
564 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
565 dev_desc->blksz);
566 if (validate_gpt_entries(gpt_h, gpt_e))
567 return -1;
568
569 return 0;
570 }
571
572 int write_mbr_and_gpt_partitions(block_dev_desc_t *dev_desc, void *buf)
573 {
574 gpt_header *gpt_h;
575 gpt_entry *gpt_e;
576 int gpt_e_blk_cnt;
577 lbaint_t lba;
578 int cnt;
579
580 if (is_valid_gpt_buf(dev_desc, buf))
581 return -1;
582
583 /* determine start of GPT Header in the buffer */
584 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
585 dev_desc->blksz);
586
587 /* determine start of GPT Entries in the buffer */
588 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
589 dev_desc->blksz);
590 gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) *
591 le32_to_cpu(gpt_h->sizeof_partition_entry)),
592 dev_desc);
593
594 /* write MBR */
595 lba = 0; /* MBR is always at 0 */
596 cnt = 1; /* MBR (1 block) */
597 if (dev_desc->block_write(dev_desc->dev, lba, cnt, buf) != cnt) {
598 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
599 __func__, "MBR", cnt, lba);
600 return 1;
601 }
602
603 /* write Primary GPT */
604 lba = GPT_PRIMARY_PARTITION_TABLE_LBA;
605 cnt = 1; /* GPT Header (1 block) */
606 if (dev_desc->block_write(dev_desc->dev, lba, cnt, gpt_h) != cnt) {
607 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
608 __func__, "Primary GPT Header", cnt, lba);
609 return 1;
610 }
611
612 lba = le64_to_cpu(gpt_h->partition_entry_lba);
613 cnt = gpt_e_blk_cnt;
614 if (dev_desc->block_write(dev_desc->dev, lba, cnt, gpt_e) != cnt) {
615 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
616 __func__, "Primary GPT Entries", cnt, lba);
617 return 1;
618 }
619
620 prepare_backup_gpt_header(gpt_h);
621
622 /* write Backup GPT */
623 lba = le64_to_cpu(gpt_h->partition_entry_lba);
624 cnt = gpt_e_blk_cnt;
625 if (dev_desc->block_write(dev_desc->dev, lba, cnt, gpt_e) != cnt) {
626 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
627 __func__, "Backup GPT Entries", cnt, lba);
628 return 1;
629 }
630
631 lba = le64_to_cpu(gpt_h->my_lba);
632 cnt = 1; /* GPT Header (1 block) */
633 if (dev_desc->block_write(dev_desc->dev, lba, cnt, gpt_h) != cnt) {
634 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
635 __func__, "Backup GPT Header", cnt, lba);
636 return 1;
637 }
638
639 return 0;
640 }
641 #endif
642
643 /*
644 * Private functions
645 */
646 /*
647 * pmbr_part_valid(): Check for EFI partition signature
648 *
649 * Returns: 1 if EFI GPT partition type is found.
650 */
651 static int pmbr_part_valid(struct partition *part)
652 {
653 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
654 get_unaligned_le32(&part->start_sect) == 1UL) {
655 return 1;
656 }
657
658 return 0;
659 }
660
661 /*
662 * is_pmbr_valid(): test Protective MBR for validity
663 *
664 * Returns: 1 if PMBR is valid, 0 otherwise.
665 * Validity depends on two things:
666 * 1) MSDOS signature is in the last two bytes of the MBR
667 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid()
668 */
669 static int is_pmbr_valid(legacy_mbr * mbr)
670 {
671 int i = 0;
672
673 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
674 return 0;
675
676 for (i = 0; i < 4; i++) {
677 if (pmbr_part_valid(&mbr->partition_record[i])) {
678 return 1;
679 }
680 }
681 return 0;
682 }
683
684 /**
685 * is_gpt_valid() - tests one GPT header and PTEs for validity
686 *
687 * lba is the logical block address of the GPT header to test
688 * gpt is a GPT header ptr, filled on return.
689 * ptes is a PTEs ptr, filled on return.
690 *
691 * Description: returns 1 if valid, 0 on error.
692 * If valid, returns pointers to PTEs.
693 */
694 static int is_gpt_valid(block_dev_desc_t *dev_desc, u64 lba,
695 gpt_header *pgpt_head, gpt_entry **pgpt_pte)
696 {
697 if (!dev_desc || !pgpt_head) {
698 printf("%s: Invalid Argument(s)\n", __func__);
699 return 0;
700 }
701
702 /* Read GPT Header from device */
703 if (dev_desc->block_read(dev_desc->dev, (lbaint_t)lba, 1, pgpt_head)
704 != 1) {
705 printf("*** ERROR: Can't read GPT header ***\n");
706 return 0;
707 }
708
709 if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba))
710 return 0;
711
712 /* Read and allocate Partition Table Entries */
713 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head);
714 if (*pgpt_pte == NULL) {
715 printf("GPT: Failed to allocate memory for PTE\n");
716 return 0;
717 }
718
719 if (validate_gpt_entries(pgpt_head, *pgpt_pte)) {
720 free(*pgpt_pte);
721 return 0;
722 }
723
724 /* We're done, all's well */
725 return 1;
726 }
727
728 /**
729 * alloc_read_gpt_entries(): reads partition entries from disk
730 * @dev_desc
731 * @gpt - GPT header
732 *
733 * Description: Returns ptes on success, NULL on error.
734 * Allocates space for PTEs based on information found in @gpt.
735 * Notes: remember to free pte when you're done!
736 */
737 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
738 gpt_header * pgpt_head)
739 {
740 size_t count = 0, blk_cnt;
741 gpt_entry *pte = NULL;
742
743 if (!dev_desc || !pgpt_head) {
744 printf("%s: Invalid Argument(s)\n", __func__);
745 return NULL;
746 }
747
748 count = le32_to_cpu(pgpt_head->num_partition_entries) *
749 le32_to_cpu(pgpt_head->sizeof_partition_entry);
750
751 debug("%s: count = %u * %u = %zu\n", __func__,
752 (u32) le32_to_cpu(pgpt_head->num_partition_entries),
753 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count);
754
755 /* Allocate memory for PTE, remember to FREE */
756 if (count != 0) {
757 pte = memalign(ARCH_DMA_MINALIGN,
758 PAD_TO_BLOCKSIZE(count, dev_desc));
759 }
760
761 if (count == 0 || pte == NULL) {
762 printf("%s: ERROR: Can't allocate 0x%zX "
763 "bytes for GPT Entries\n",
764 __func__, count);
765 return NULL;
766 }
767
768 /* Read GPT Entries from device */
769 blk_cnt = BLOCK_CNT(count, dev_desc);
770 if (dev_desc->block_read (dev_desc->dev,
771 (lbaint_t)le64_to_cpu(pgpt_head->partition_entry_lba),
772 (lbaint_t) (blk_cnt), pte)
773 != blk_cnt) {
774
775 printf("*** ERROR: Can't read GPT Entries ***\n");
776 free(pte);
777 return NULL;
778 }
779 return pte;
780 }
781
782 /**
783 * is_pte_valid(): validates a single Partition Table Entry
784 * @gpt_entry - Pointer to a single Partition Table Entry
785 *
786 * Description: returns 1 if valid, 0 on error.
787 */
788 static int is_pte_valid(gpt_entry * pte)
789 {
790 efi_guid_t unused_guid;
791
792 if (!pte) {
793 printf("%s: Invalid Argument(s)\n", __func__);
794 return 0;
795 }
796
797 /* Only one validation for now:
798 * The GUID Partition Type != Unused Entry (ALL-ZERO)
799 */
800 memset(unused_guid.b, 0, sizeof(unused_guid.b));
801
802 if (memcmp(pte->partition_type_guid.b, unused_guid.b,
803 sizeof(unused_guid.b)) == 0) {
804
805 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__,
806 (unsigned int)(uintptr_t)pte);
807
808 return 0;
809 } else {
810 return 1;
811 }
812 }
813 #endif